CFProposal AISB2018

  The Society for the Study of Artificial Intelligence and Simulation for Behaviour (AISB) is soliciting proposals for symposia to be held at the AISB 2018 convention.The longest running convention on Artificial Intelligence, A...


Insurance AI Analy...

Insurance AI Analytics Summit, October 9-10, London Join us for Europe’s only AI event dedicated to insurance where 300 attendees will unite from analytics, pricing, marketing, claims and underwriting. You’ll find out how advan...


AISB 2018 Convention

  The longest running convention on Artificial Intelligence, AISB 2018 will be held at the University of Liverpool, chaired by Floriana Grasso and Louise Dennis. As in the past years, AISB 2018 will provide a unique forum for p...


AI Summit London

     The AI Summit London: The World’s Number One AI Event for Business  Date: 9-10 May 2017 Venue: Business Design Centre, London. The AI Summit is the world’s first and largest/number one conference exhibition dedicated to t...


AISB Wired Health

    AISB and WIRED events have partnered to bring together inspirational high-profile speakers. Join hundreds of healthcare, pharmaceutical and technology influencers and leaders at the 4th Annual WIRED Health event, taking pl...


Hugh Gene Loebner

  The AISB were sad to learn last week of the passing of philanthropist and inventor Hugh Gene Loebner PhD, who died peacefully in his home in New York at the age of 74.  Hugh was founder and sponsor of The Loebner Prize, an an...


AI Europe 2016

  Partnership between AISB and AI Europe 2016: Next December 5th and 6th in London, AI Europe will bring together the European AI eco-system by gathering new tools and future technologies appearing in professional fields for th...


AISB convention 2017

  In the run up to AISB2017 convention (, I've asked Joanna Bryson, from the organising team, to answer few questions about the convention and what comes with it. Mohammad Majid...


Harold Cohen

Harold Cohen, tireless computer art pioneer dies at 87   Harold Cohen at the Tate (1983) Aaron image in background   Harold Cohen died at 87 in his studio on 27th April 2016 in Encintias California, USA.The first time I hear...


Dancing with Pixies?...

At TEDx Tottenham, London Mark Bishop (the former chair of the Society) demonstrates that if the ongoing EU flagship science project - the 1.6 billion dollar "Human Brain Project” - ultimately succeeds in understanding all as...



AISB event Bulletin Item

CEU Summerschool on Advanced Data Analysis and Modelling, Spain

Dear colleagues,

San Pablo - CEU University in collaboration with other five universities (Mlaga,
Politcnica de Madrid, Pas Vasco, Complutense, and Castilla La Mancha), Unin Fenosa, CSIC and IEEE
organizes a summerschool on "Advanced Statistics and Data Mining" in Madrid between June 30th
and July 11th. The summerschool comprises 12 courses divided in 2 weeks.
Attendees may register in each course independently. Registration will be considered upon
strict arrival order.For more information, please, visit

Best regards, Carlos Oscar

*List of courses and brief description* (full description at

Week 1 (June 30th - July 4th, 2008)

Course 1: Bayesian networks (15 h), Practical sessions: Hugin, Elvira, Weka, LibB
	Bayesian networks basics. Inference in Bayesian networks.
	Learning Bayesian networks from data
Course 2: Multivariate data analysis (15 h), Practical sessions: MATLAB
	Introduction. Data Examination. Principal component analysis (PCA).
	Factor Analysis. Multidimensional Scaling (MDS). Correspondence analysis.
	Multivariate Analysis of Variance (MANOVA). Canonical correlation.
Course 3: Supervised pattern recognition (Classification) (15 h), Practical sessions: Weka
	Introduction. Assessing the Performance of Supervised Classification Algorithms.
	Classification techniques. Combining Classifiers.
	Comparing Supervised Classification Algorithms
Course 4: Association rules (15 h), Practical sessions: Bioinformatic tools
	Introduction. Association rule discovering. Rule Induction. KDD in biological data.
	Applications. Hands-on exercises.
Course 5: Neural networks (15 h), Practical sessions: MATLAB
	Introduction to the biological models. Nomenclature. Perceptron networks.
	The Hebb rule. Foundations of multivariate optimization. Numerical optimization.
	Rule of Widrow-Hoff. Backpropagation algorithm.
	Practical data modelling with neural networks
Course 6: Time series analysis (15 h), Practical sessions: MATLAB
	Introduction. Probability models to time series. Regression and Fourier analysis.
	Forecasting and Data mining.

Week 2 (July 7th - July 11th, 2008)
Course 7: Regression (15 h), Practical sessions: SPSS
	Introduction. Simple Linear Regression Model. Measures of model adequacy.
	Multiple Linear Regression. Regression Diagnostics and model violations.
	Polynomial regression. Variable selection. Indicator variables as regressors.
	Logistic regression. Nonlinear Regression.
Course 8: Practical Statistical Questions (15 h), Practical sessions: study of cases (without computer)
	I would like to know the intuitive definition and use of 
: The basics.
	How do I collect the data? Experimental design.
	Now I have data, how do I extract information? Parameter estimation
	Can I see any interesting association between two variables, two populations, 
	How can I know if what I see is “true”? Hypothesis testing
	How many samples do I need for my test?: Sample size
	Can I deduce a model for my data? Other questions?
Course 9: Hidden Markov Models (15 h), Practical sessions:HTK
	Introduction. Discrete Hidden Markov Models. Basic algorithms for Hidden Markov Models.
	Semicontinuous Hidden Markov Models. Continuous Hidden Markov Models.
	Unit selection and clustering. Speaker and Environment Adaptation for HMMs.
	Other applications of HMMs
Course 10: Statistical inference (15 h), Practical sessions: SPSS
	Introduction. Some basic statistical test. Multiple testing. Introduction to bootstrapping
Course 11: Dimensionality reduction (15 h), Practical sessions: MATLAB
	Introduction. Matrix factorization methods. Clustering methods. Projection methods.
Course 12: Unsupervised pattern recognition (clustering) (15 h), Practical sessions: MATLAB
	Introduction. Prototype-based clustering. Density-based clustering.
	Graph-based clustering. Cluster evaluation. Miscellanea