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Preface 
The symposium on Nature Inspired Computation and Applications (NICA) 

is the first of its kind at the AISB convention as it incorporates the whole 

field of naturally inspired computation.  However, it does take inspiration 

from previous successful symposia that focussed on particular algorithms, 

including evolutionary algorithms and swarm intelligence.  The papers in 

this symposium demonstrate the sheer breadth of research in this topic in AI, 

with a wide variety of algorithms covered (Bayesian algorithms, 

evolutionary algorithms, neural networks and herd behaviour) and 

applications proposed.   It is clear from this breadth of research that Nature-

Inspired Computation has the potential to impact many areas of everyday life 

for the foreseeable future. 
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Abstract

A three way collaboration between industry and two UK

universities led to the development of an intelligent spend

analysis system. In this paper we outline how a novel

combination of the ‘Decision Tree’ and ‘Bayesian Classi-

fier’ algorithms1, working with ‘big data’ on a real world

e-procurement problem, led to the development of sophis-

ticated, A.I. driven, intelligent spend analysis software,

subsequently commercially marketed throughout the UK

as the ‘SpendInsight’ system; a system recently deployed

by the UK-National Audit Office (NAO) to highlight po-

tential savings to UK-National Health Service (NHS) pro-

curement of £500 million per annum [14].

We subsequently investigate how deep-rooted ‘institu-

tional inertia’ can often work to inhibit the full realisa-

tion of the potential economic benefits to an organisa-

tion that should accrue from the deployment of intelligent

1Two algorithms identified in the CFP to be of specific relevance to

the 2012 NICA (Nature Inspired Computing Applications) symposium.

spend analysis. Finally we demonstrate how, by linking

the institutional roll-out of intelligent spend analysis to

an overarching green policy agenda, such barriers may be

overcome. We conclude the paper by showing (perhaps

counter-intuitively) that at the societal level a strong green

policy agenda may realise significant benefit for both the

environment and the economy.

1 Introduction

Three linked Knowledge Transfer Partnerships (KTP) be-

tween the University of Reading, Goldsmiths College

and @UK PLC — a leading cloud-based electronic mar-

ketplace provider — have produced a system named

SpendInsight. This system uses various Artificial Intel-

ligence (AI) techniques to enable e-procurers to analyse

their purchases and identify potentially significant sav-

ings. As an added benefit, it is also possible to estimate

the carbon footprint of products and so develop an envi-

1



ronmentally friendly procurement policy.

The level of automation in the spend analysis sys-

tem makes it fundamentally different from competing

providers, and this translates into a number of unique sell-

ing points:

• Firstly, the fast speed of the system shortens the time

from analysis to report from months to days, and

allows analyses to be performed more frequently.

The customer is therefore better equipped to react to

changing market conditions, monitor purchasing be-

haviour, and assess the effectiveness of procurement

policies.

• Secondly, the high level of automation allows the

system to produce reports in unprecedented detail.

This allows the customer to drill from high level

management reports right down to the original pur-

chase order and invoice data used to generate the

report. This visibility of original data provides the

accountability necessary to identify genuine savings

opportunities, quantify them accurately, and substan-

tiate conclusions reached from the analysis.

• Thirdly, detailed reports empower procurement pro-

fessionals to draw their own conclusions about their

own data, removing any need for expensive external

consultancy.

2 Background

During the three year period of development of the

SpendInsight project, as a result of data processing carried

out in development, opportunities arose which allowed

data to be obtained about procurements in the NHS. The

application for the project subsequently focused towards

analysis of spend for e-procurement for the NHS.

One component of the project focused on matching

companies and products identified in the spend analy-

sis, a second component, classification, had to work on

the product data so returned [11], and a third component,

ranking, focused on automatic detection of attribute data

in textual descriptions of products [1].

All three components worked together to form an inte-

grated system, which has been named SpendInsight. Key

to the system is the ability to classify vast numbers of

different products from a variety of suppliers and hence

determine equivalent products from different suppliers.

Given this, it is then possible to assess the economic cost

of each product and hence choose the cheapest.

The core system first went live in 2007 when the com-

pany created a repository of company and product infor-

mation and, importantly, a system for identifying dupli-

cate companies and products. Commercial opportunities

for the de-duplication technology were subsequently de-

veloped which, in turn, meant that the de-duplication sys-

tem became an important technology which needed to

scale with the overall system, whilst maintaining trace-

ability from input-data to output.

The scalable de-duplication technology enabled the de-

ployment of a large-scale spend analysis solution across

NHS trusts in London; this work highlighted potentially

large scale savings in NHS purchasing. This result was

subsequently independently affirmed in the National Au-

dit Office report of February 2011 [14], which concludes

that, rolled out across all NHS trusts in England, an-

nual savings of £500 million pounds could be made (over

10% of NHS spending on consumables). In addition, us-

ing related ‘GreenInsight’ technology, the ‘environmen-

tal’ cost of each classified product can also be allocated,

i.e., GreenInsight enables e-procurers to assess the envi-

ronmental cost of their purchases.

3 De-duplication

The core approach to de-duplication is to use two stag-

ing databases for the input data, at two levels of granu-

larity. At the most detailed level are purchase orders and

invoices, and each purchase order line and invoice line can

be traced back to lines in clients’ data files — which are

typically received in CSV format.

The first challenge, then, is data integration. First, data

must be extracted from diverse client systems. Although

normally delivered in CSV files, the number of files, the

columns in the files, and relations between the files are

typically peculiar to each client. (It is the first author’s

experience that no two installations of the Oracle ‘iPro-

curement’ system are the same).

Once received, data must be stored in a single unified

schema to allow it to be queried. However, this is insuf-

ficient to be able to generate useful reports; at this point



the duplication problem becomes apparent. Even within

the finance system of a single organisation a single sup-

plier may appear more than once — each occurrence with

a subtly different name, e.g., ‘Limited’ vs. ‘Ltd’. Of course

the problem is exaggerated when comparing across organ-

isations. Furthermore, one must first successfully identify

multiple instances of the same supplier before proceeding

to the harder problem of identifying the unique products

they sell.

3.1 Hierarchy of abstraction

When data files are received they are first loaded into a

‘raw data’ database. Each file is scanned and an SQL ta-

ble definition statement is created for the file. The table

is created and the file is loaded into it. This allows data

types to be determined for each column, and to check any

referential integrity constraints between the files. For ex-

ample, it may turn out that a purchase order in one file

gives an ID for a supplier but that ID does not exist in the

supplier file.

The second step is to transform the raw data into the

standard format. This can be as simple as specifying

a map between the columns in the client’s file and the

columns supported in the system. However, more elab-

orate queries may need to be developed — particularly

when relations between data in the input files must be

used. In very rare cases it is necessary to pre-process the

clients’ data files — for example when data rows are in-

terleaved with ‘sub-total’ rows.

The first level of abstraction models companies and the

products they supply. In this model many purchase or-

der lines may ‘point’ at the same product, and in turn a

product ‘points’ at a supplier. This abstraction is key to

achieving scalability. From this model the system builds a

‘cleansed view’ of the database which is used for driving

reporting for clients. In the cleansed view the suppliers

have been de-duplicated and, in turn, so have the products

they supply.

The cleansed view maintains an ‘audit trail’ of the

matching performed and the evidence upon which match-

ing was based. This is important if clients query results

because the results can always be traced back to the origi-

nal data. In the final reporting, clients can see how suppli-

ers and products have been matched, and can supply feed-

back to the system by identifying false-positive matches

and additional matches. Because the ‘cleansed view’ is

separate from the data itself, there is a complete ‘audit

trail’.

3.2 Rule engine

The cleansed view is built by a rule engine. All of the

rules are applied, iteratively, until the system stabilises.

Each rule may use information in both of the staging

databases and in the partially built cleansed view (a kind

of feedback loop), and the rule may make use of addi-

tional custom indices built on these data.

The staging databases have increased in size tenfold

over the last three years, but the processing time to build

the cleansed view has not increased significantly. Typi-

cally, using current technology the cleansed view can be

re-built from scratch in under one week.

4 Automatic classification

The automatic classification is the other substantial com-

ponent of the system. This was developed in parallel to

the de-duplication technology. The core technology al-

lows procurers to identify and cost ‘equivalent’ products,

with an extension offering ‘carbon analysis’ of purchasing

decisions enabling procurers to analyse both the economic

and environmental cost of purchases.

Text classification is the task of predicting the class of

a previously-unseen document based upon its words. The

relationship between words and class is learnt from a la-

belled training set. Since the 1960s, many methods have

been proposed, including decision rule classifiers [4], de-

cision trees [15], k-nearest neighbour [16], Naı̈ve Bayes

[8], neural networks [13], regression models [17], Roc-

chio [5], the support vector machine (SVM) [7] and winno

[2]. For this work the classification task is to assign each

product in the cleansed view into one of about 2,000 dif-

ferent classes. The main data source upon which the clas-

sification task draws is the free-text descriptions on pur-

chase order lines. In the cleansed view there may be hun-

dreds of different descriptions for the same product.

Naı̈ve Bayes is a probabilistic classifier that has been

used since the early 1960s [10]. It has advantages over

other classifiers in its simplicity, learning speed, classi-

fication speed, and storage space requirements [3]. In



the multi-variate Bernoulli event model, a document is a

binary vector over the space of words [10] i.e., each di-

mension of the space corresponds to a word. The words

are assumed to be dependent only on the class to which

their document belongs — an assumption which clearly

is false. This is the naı̈ve step. Nevertheless, Naı̈ve

Bayes has empirically outperformed many other algo-

rithms [6, 9, 10, 3].

In our work the descriptions for each product are re-

duced to a bag of words and a set of manually classified

training data is used to calculate the conditional probabil-

ity of a word belonging to (a product in) each class. An

application of Bayes Theorem gives the conditional prob-

ability of a class given a word; thus words and, in turn,

products can be classified.

While in principle the Naı̈ve Bayes classifier can be ap-

plied to the whole data set, in practice the applicability is

limited by the training data set. If there is little or no train-

ing data for a particular class then the probability of the

class being chosen is small. In one example we found

‘bone granules’ classified as food because the only ‘gran-

ulated’ product in the training data was gravy.

The training data set has been expanded considerably

since the start of the project, and wherever possible as-

similates clients’ classified data sets. However, here we

have the additional problem of deciding whether we be-

lieve that clients’ data has been accurately classified. We

found useful heuristics for this decision problem to in-

clude the proportion of products classified to non-existent

classes, and the internal consistency of the classification,

i.e., to how many different classes has the same product

been assigned.

Even when clients’ data is not suitable for use as

training data, it can still be used to provide ‘additional

guidance’. Two kinds of extra guidance data are used by

the SpendInsight system. Both make use of the three-

level hierarchy of the 2,000 classes. The first is prod-

uct type: the system may deduce that a certain product

should be classified into a specific level 1 or 2 class. Such

deductions can be made where a product has previously

been classified inconsistently between different clients or

sources. This extra information is used to limit the classes

into which the Naı̈ve Bayes algorithm may assign the

product. The second type of extra guidance is at supplier

level: the system may either deduce [or be told] that a spe-

cific supplier either only supplies products in or does not

supply products in certain level 1 classes. Such informa-

tion is typically used to limit the classifications permitted

by the Naı̈ve Bayes algorithm.

The second major NICA algorithm employed for clas-

sification is the ‘Decision Tree’ which is a divide and con-

quer approach. The node at the root of the tree divides the

training set into two subsets. In text classification, one set

usually contains those training documents with a certain

word, and the other contains those without. Both of these

subsets are further split at the root’s children, further split

at the root’s grandchildren, and so forth down the tree. A

leaf is usually formed where the set of training documents

are all of the same class, and that class is assigned to the

leaf as a label.

One of the most popular decision tree algorithms is

Quinlan’s C4.5 [15] which uses an error-based pruning

algorithm.

In our work the Decision Trees are taught from the

training data by the symbolic rule induction system

(SRIS). Decision Trees have been built for only 19 classes,

all of which have been carefully selected (by hand) to have

good supporting training data and be among the classes

that are more highly visible to clients. Building and test-

ing a decision tree can take many weeks, which limits the

rate at which they can be added to the system.

Finally, for each product the classification system must

decide between the various candidate classes suggested

by each of the algorithms. Essentially, there is a trade-off

between the accuracy of a method and the proportion of

the dataset to which it can be applied. For example Naı̈ve

Bayes is the least accurate method but can be applied to

the whole of the data set, whereas a Decision Trees can

be much more accurate but applied only to relatively few

classes. The total time taken to apply classification is

dominated by the Naı̈ve Bayes algorithm, which can clas-

sify about 100 descriptions per second.

5 Intelligent spend-analysis — bar-

riers to full impact: changing pur-

chasing behaviour

At the launch of the software industry standard for green

data interchange (RSA London, 15/11/11) Ronald Dun-

can of @UK PLC reported how AI technology in classifi-



cation and matching was exploited in a new ‘spend analy-

sis’ system co- developed with the University of Reading

and Goldsmiths College.

By highlighting how equivalent products can be bought

at the cheapest available price, the SpendInsight software

was successfully deployed by the UK NAO2 to generate

the evidence base for its recent report [14] assaying huge

potentially savings (of around £500 million per annum) to

UK NHS procurement3. The fall-out from this research

prompting widespread coverage in the UK news media4

and a subsequent exposé by the BBC radio ‘File on Four’

programme detailing inefficiencies in NHS procurement5,

with the impact of the work subsequently meriting discus-

sion in the UK parliament6. And yet, perhaps surprisingly

given the current economic climate, data in the NAO re-

port details only 61 of UK Health Trusts currently deploy-

ing the SpendInsight system.

At first sight the huge potential savings highlight by

intelligent spend-analysis software might imply organi-

sations would rush to embrace intelligent spend analysis

technology, however @UK PLC experience in deploying

the SpendInsight system with the NHS procurement sug-

gest that this is not always the case; factors other than

raw cost are often important in institutionalised purchas-

ing environments.

2The NAO report states, “@UK PLC uses its in-house artificial in-

telligence system to classify every purchase order line raised by the trust

in a twelve month period to a unique product code. This system also

extracts information on supplier, cost, date and quantity ordered.”
3“...accounting for £4.6 billion in expenditure, using a conservative

estimate of 10 per cent, savings of around £500 million could be made.”
4BBC News:

<http://www.bbc.co.uk/news/health-14971984>

< http://www.bbc.co.uk/news/health-12338984>.
5BBC Radio File on 4:

<http://downloads.bbc.co.uk/podcasts/radio4/

fileon4/fileon4_20110927-2045a.mp3>.
6House of Commons Committee of Public Accounts, Formal Min-

utes Session 2010–12, “TUESDAY 15 March 2011. Members present:

Mrs Margaret Hodge, in the Chair, Mr Richard Bacon, Stephen Barclay,

Matthew Hancock, Jo Johnson, Mrs Anne McGuire, Austin Mitchell,

Nick Smith, Ian Swales, James Wharton. Agenda item (1) NHS

Trust Procurement. Amyas Morse, Comptroller and Auditor General,

Gabrielle Cohen, Assistant Auditor General and Mark Davies, Director,

National Audit Office were in attendance. The Comptroller and Audi-

tor General’s Report NHS Trust Procurement was considered. Sir David

Nicholson KCB CBE, Chief Executive, NHS, David Flory CBE, Deputy

Chief, Executive, NHS, Peter Coates CBE, Commercial Director, and

Howard Rolfe, Procurement Director, gave oral evidence (HC 875-i).

[Adjourned till Wednesday 16 March at 15.00pm].”

Thus, results from a recent survey7 of attitudes to in-

dividual and organisation change, amongst 229 civil ser-

vants involved in the purchasing process, clearly showed

that whilst individual buying behaviour is strongly cor-

related with cost, only 57% of the respondents reported

cost criteria alone were enough to ‘probably or definitely’

change organisational purchasing decisions. Conversely,

the results suggested that by linking economic savings

with improved sustainability (e.g., a lower carbon foot-

print), there was a significant increase, with 84% of re-

spondents assessing that their organisation would ‘proba-

bly or definitely’ change purchasing choices8.

6 Conclusions

The survey of purchasing behaviour reported in this pa-

per unambiguously demonstrated that sustainability is-

sues are a strong motivating factor in changing buying be-

haviour; linking economic and green spend analysis may

speed up and unblock process change within an organisa-

tion. Clearly, given the large potential savings identified

by intelligent spend analysis compared with the relatively

small incremental cost (per product) of carbon off-setting,

serious consideration of green issues can easily result in

substantial economic benefit to an organisation. Thus, at

the societal level, a strong green policy agenda may re-

alise significant benefit for both the environment and the

economy.
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Evolution of unknotting strategies for knots and braids

Nicholas Jackson1 and Colin G. Johnson2

Abstract. This paper explores the problem of unknotting closed

braids and classical knots in mathematical knot theory. We apply

evolutionary computation methods to learn sequences of moves that

simplify knot diagrams, and show that this can be effective both when

the evolution is carried out for individual knots and when a generic

sequence of moves is evolved for a set of knots.

1 INTRODUCTION

1.1 Knots and links

Knot theory is currently one of the richest and most vibrant areas of

pure mathematics, having connections not only with other topics in

algebraic and geometric topology, but also with many other branches

of mathematics, as well as mathematical physics [20] and biochem-

istry [18].

A full introduction to the study of knots and links is beyond the

scope of this article, but a readable introduction may be found in, for

example, the book by Cromwell [8], and a more comprehensive but

still accessible survey in Rolfsen’s classic text [17].

Figure 1. Examples of knots: the trefoil (31), Conway’s knot (11n34) and
the Kinoshita–Terasaka knot (11n42)

We define a knot to be an isotopy class of embeddings K : S1 →֒
R

3, where S1 = {eiθ ∈ C : 0 6 θ < 2π} denotes the standard

unit circle; informally, this is a set of placements of a closed circle

in space. A link is a knot with more than one circular component,

that is, an (isotopy class of an) embedding L : S1 ⊔ . . . ⊔ S1 →֒
R

3. (Alternatively, a knot may be regarded as a link with a single

component.)

We generally represent knots and links with diagrams in the plane:

projections of the embedded circle(s) where each double intersection

point is equipped with crossing information, and we disallow cusps,

tangencies or triple-points. Examples may be seen in Figure 1. Iden-

tifiers such as 31 and 817 refer to the table in Rolfsen’s book [17],

while identifiers of the form 11a367 and 11n34 refer to, respec-

tively, alternating and non-alternating knots in the census of Hoste,

Thistlethwaite and Weeks [10].

1 Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK.
Email: Nicholas.Jackson@warwick.ac.uk

2 School of Computing, University of Kent, Canterbury CT2 7NF, UK. Email:
C.G.Johnson@kent.ac.uk

Isotopy of embeddings descends to certain allowable local moves

on diagrams which were first studied by Reidemeister [16] and by

Alexander and Briggs [2]. These Reidemeister moves are depicted

in Figure 2. Two knots or links are isotopic if and only if their dia-

grams are connected by a finite sequence of Reidemeister moves and

continuous deformations of the ambient projection plane.

R1←→
R1←→

R2←→
R2←→

R3←→

Figure 2. Reidemeister moves

There are a number of different measures of the complexity of a

given knot or link K, the best known of which is the crossing num-

ber: the minimal number of crossings over all possible diagrams for

K. Related to this is the unknotting number u(K): the minimal num-

ber, over all possible diagrams for a knot, of crossings which must

be changed in order to obtain a trivial knot. The trefoil in Figure 1

has unknotting number u(31) = 1: it may be seen to be nontrivially

knotted (that is, not isotopic to an unknotted circle) but changing any

single crossing results in a diagram which may be transformed (by

means of an R2 move followed by an R1 move) into an unknotted

circle. Less obviously, the other two knots in Figure 1 are also known

to have unknotting number 1.

The unknotting number u(K) is a conceptually simple measure

of the complexity of a given knot K (broadly speaking, the higher

the unknotting number, the more knotted the knot in question) but

one which is often not straightforward to calculate. According to the

KnotInfo database [12], the unknotting number is currently unknown

for nine of the 165 prime knots with ten crossings (and also for many

knots of higher crossing number); for these nine knots, the unknot-

ting number is is known to be either 2 or 3, due at least in part to work

on Heegaard Floer homology by Oszváth and Szabó [15] which ruled

out unknotting number 1. Recent work by Borodzik and Friedl [6]

has introduced a new invariant which provides a lower bound of 3

for the unknotting number of twenty-five otherwise difficult cases of

knots with up to twelve crossings.

In this paper, our main goal is not necessarily to find optimal



bounds on the unknotting numbers of currently unresolved cases, but

to explore the possibilities afforded by applying evolutionary com-

puting techniques to pure mathematical problems in group theory

and geometric topology, and to try to obtain some qualitative under-

standing of the search landscape for these problems. The unknotting

problem is relatively straightforward to describe and implement, and

thus provides a good candidate for a preliminary investigation of this

type.

1.2 Braids

The theory of braids was first seriously investigated by Artin [3], and

again a full treatment is far beyond the scope of this article, so we will

discuss only those aspects essential for what follows. A more com-

prehensive discussion may be found in either the book by Hansen [9]

or the classic monograph by Birman [5].

We define a geometric braid on n strings to be a system of n dis-

joint, embedded arcs A = {A1, . . . , An} in R
2× [0, 1], such that the

arc Ai joins the point Pi = (i, 0, 1) to the point Qτ(i) = (τ(i), 0, 0),
where τ denotes some permutation of the numbers {1, . . . , n}, such

that each arc Ai intersects the intermediate plane R
2 × {z} exactly

once, for all 0 < z < 1. Figure 3 shows an example of a 4–string

braid.

Figure 3. A 4–string braid

The elementary braid σi, for 1 6 i 6 n−1, is the n–string braid

in which the (i+1)st string crosses over the ith string, and no other

interactions take place; its inverse σ−1
i is the braid in which the ith

string crosses over the (i+1)st string (see Figure 4). Any n–string

braid β may be represented (although not, in general, uniquely) as a

concatenated sequence of elementary braids.

σi =

1

· · ·

i−1 i i+1 i+2

· · ·

n

σ−1
i =

1

· · ·

i−1 i+1i i+2

· · ·

n

Figure 4. The elementary braids σi and σ−1
i

We consider two n–braids β1 and β2 to be equivalent if they are

related by an isotopy which keeps their endpoints fixed. In the lan-

guage of elementary braids, this translates to the following identities:

σiσj = σjσi for |i− j| > 1 (1)

σiσi+1σi = σi+1σiσi+1 for 1 6 i 6 n− 1 (2)

Geometrically, the first of these corresponds to moving two non-

interacting elementary braids past each other, and the second is es-

sentially the third Reidemeister move R3.

We may define the braid group Bn by the following presentation:

〈
σ1, . . . , σn−1

∣∣∣∣
σiσj = σjσi |i− j| > 1
σiσi+1σi = σi+1σiσi+1 1 6 i 6 n− 1

〉
(3)

It can be shown that the group defined by this presentation is isomor-

phic to the group obtained by imposing the obvious concatenation

operation on the (in general, infinite) set of all n–string geometric

braids. In this latter group, the identity element is the trivial n–braid

(the one with no crossings) and for any braid β, the inverse β−1 may

be obtained by reflecting β in the horizontal plane R
2 ×

{
1
2

}
.

There are other, equivalent constructions of the n–string braid

group, including one in terms of the fundamental group of a particu-

lar configuration space factored by an action of the symmetric group

Sn but these will not concern us here.

Given a braid β ∈ Bn, we can obtain a link β̂ by the closure oper-

ation depicted in Figure 5, that is, we join each point Pi = (i, 0, 1)
to the point Qi = (i, 0, 0). In fact, Alexander’s Theorem [1] (see

also Birman [5, Theorem 2.1]) states that any knot or link can be

obtained in this way; an explicit algorithm may be found in the pa-

per by Vogel [19]. Note that a closed-braid presentation need not be

minimal with respect to the crossing number of the knot. That is, an

n–crossing knot might not have a closed-braid presentation with n

crossings. Table 1 lists several examples of non-minimal presenta-

tions.

closure
−→

β
closure
−→ β̂

Figure 5. The closure operation on braids

The following theorem gives explicit conditions for when two dif-

ferent braids yield isotopic knots or links. This result was due origi-

nally to Markov, although a full proof was only published some years

later by Birman [5, Theorem 2.3] (see also the paper by Rourke and

Lambropoulou [11]).

Theorem 1 (Markov [14]). Two braids β1 ∈ Bm and β2 ∈ Bn

yield closures β̂1 and β̂2 which are isotopic as links if and only if

β1 and β2 are connected by a finite sequence of moves of type M1

(conjugation) and M2 (stabilisation), as depicted in Figure 6.

2 UNKNOTTING

We now attempt to use evolutionary techniques to devise optimal

unknotting strategies for knots and links. The theorems of Alexan-

der and Markov enable us to represent knots and links as words in

the standard generators σi of the braid group Bn for some n. The



K Braid word Strands Crossings

31 σ3
1 2 3

41 σ1σ
−1
2 σ1σ

−1
2 3 4

51 σ5
1 2 5

52 σ3
1σ2σ

−1
1 σ2 3 6

61 σ2
1σ2σ

−1
1 σ−1

3 σ2σ
−1
3 4 7

62 σ3
1σ

−1
2 σ1σ

−1
2 3 6

63 σ2
1σ

−1
2 σ1σ

−2
2 3 6

71 σ7
1 2 7

72 σ3
1σ2σ

−1
1 σ2σ3σ

−1
2 σ3 4 9

73 σ1σ1σ1σ1σ1σ2σ
−1
1 σ2 3 8

74 σ2
1σ2σ

−1
1 σ2

2σ3σ
−1
2 σ3 4 9

75 σ4
1σ2σ

−1
1 σ2

2 3 8

76 σ2
1σ

−1
2 σ1σ3σ

−1
2 σ3 4 7

77 σ1σ
−1
2 σ1σ

−1
2 σ3σ

−1
2 σ3 4 7

81 σ2
1σ2σ

−1
1 σ2σ3σ

−1
2 σ−1

4 σ3σ
−1
4 5 10

82 σ5
1σ

−1
2 σ1σ

−1
2 3 8

83 σ2
1σ2σ

−1
1 σ−1

3 σ2σ
−1
3 σ−1

4 σ3σ
−1
4 5 10

84 σ3
1σ

−1
2 σ1σ

−1
2 σ−1

3 σ2σ
−1
3 4 9

85 σ3
1σ

−1
2 σ3

1σ
−1
2 3 8

86 σ4
1σ2σ

−1
1 σ−1

3 σ2σ
−1
3 4 9

87 σ4
1σ

−1
2 σ1σ

−1
2 σ−1

2 3 8

88 σ3
1σ2σ

−1
1 σ−1

3 σ2σ
−2
3 4 9

89 σ3
1σ

−1
2 σ1σ

−3
2 3 8

810 σ3
1σ

−1
2 σ2

1σ
−2
2 3 8

811 σ2
1σ2σ

−1
1 σ2

2σ
−1
3 σ2σ

−1
3 4 9

812 σ1σ
−1
2 σ1σ3σ

−1
2 σ−1

4 σ3σ
−1
4 5 8

813 σ2
1σ

−1
2 σ1σ

−2
2 σ−1

3 σ2σ
−1
3 4 9

814 σ3
1σ2σ

−1
1 σ2σ

−1
3 σ2σ

−1
3 4 9

815 σ2
1σ

−1
2 σ1σ3σ

3
2σ3 4 9

816 σ2
1σ

−1
2 σ2

1σ
−1
2 σ1σ

−1
2 3 8

817 σ2
1σ

−1
2 σ1σ

−1
2 σ1σ

−2
2 3 8

818 σ1σ
−1
2 σ1σ

−1
2 σ1σ

−1
2 σ1σ

−1
2 3 8

819 σ3
1σ2σ

3
1σ2 3 8

820 σ3
1σ

−1
2 σ−3

1 σ−1
2 3 8

821 σ3
1σ2σ

−2
1 σ2

2 3 8

Table 1. Braid words for knots with up to eight crossings [12]

· · ·

· · ·

· · ·

β2

β1 M1←→
· · ·

· · ·

· · ·

β1

β2

β

1 n n+1

· · ·

· · ·

M2←→ β

1 n

· · ·

· · ·

M2←→ β

1 n n+1

· · ·

· · ·

Figure 6. Markov moves of type M1 (conjugation) and M2 (stabilisation)

crossing-change operation is then simply a matter of taking such a

word and then replacing a given σi with its inverse σ−1
i or vice-versa.

Our goal is, given a knot K represented as the closure of a braid

word w ∈ Bn, to evolve a sequence of certain moves which triv-

ialises the knot with the smallest number of crossing-changes, thus

obtaining an upper bound on the unknotting number u(K) of K. The

allowable moves are those which either leave the isotopy class of the

corresponding knot unchanged, or which change the sign of a single

crossing, and may be seen in Table 2.

R±
2 σ±1

i σ∓1
i 7−→ 1

R±
2 1 7−→ σ±1

i σ∓1
i

R±
3 σ±1

i σ±1
i+1σ

±1
i 7−→ σ±1

i+1σ
±1
i σ±1

i+1

R±
3 σ±1

i+1σ
±1
i σ±1

i+1 7−→ σ±1
i σ±1

i+1σ
±1
i

M±
1 σ±1

i α 7−→ ασ±1
i

M±
1 ασ±1

i 7−→ σ±1
i α

M±
2 ασ±1

n 7−→ α

M±
2 α 7−→ ασ±1

n

S±± σ±1
i σ±1

j 7−→ σ±1
j σ±1

i (if |i−j| > 1)

S±± σ±1
j σ±1

i 7−→ σ±1
i σ±1

j (if |i−j| > 1)

U+ = U− σi 7−→ σ−1
i

U− = U+ σ−1
i 7−→ σi

Table 2. Allowable moves on braid words

In more detail, a move of type R+
2 cancels a substring of the form

σiσ
−1
i , a move of type R−

2 cancels a substring of the form σ−1
i σi,

and moves of type R± introduce corresponding substrings. These are

the Reidemeister moves of type 2, translated into the context of braid

words. Similarly, moves of type R3 perform Reidemeister moves of

type 3, moves of type M1 and M2 are Markov moves, moves of

type S represent non-interacting crossings sliding past each other,

and moves of type U change the sign of a single crossing.

3 METHODS

In this paper, we use evolutionary techniques to find sequences of

unknotting primitives which are optimal with respect to two subtly

different but related problems:

Problem 1. Given an arbitrary knot K, described as the closure β̂

of some braid word β ∈ Bn, is there a sequence of moves which

reduces β to the trivial word 1 ∈ B1? If so, what is the minimal such

sequence with respect to the number of crossing-change operations

U±, and in what cases does this yield a sharp upper bound for the

unknotting number u(K) of K when compared to known values such

as those listed in the KnotInfo database [12].

Problem 2. Given a finite set S of knots, each described as the clo-

sure β̂ of some braid word β ∈ Bn, is there a single, universal se-

quence of moves which, possibly with repeated applications, trivi-

alises each knot in S?

The second of these problems is, broadly speaking, the generali-

sation of the first to more than one reference knot; equivalently, the

first problem is the special case of the second where we consider a

single knot.

As usual in an evolutionary computation approach, we need to

define seven things: how population members are represented; the



parameters; how the population is initialised; how the mutation and

crossover operators are defined; and how fitness evaluation and se-

lection happen.

3.1 Representation

Each member of the population consists of a list of moves drawn

from those in Table 2. This list can be of any length.

3.2 Parameters

For Problem 1 the population size was 500 and the number of iter-

ations was 4 × length(K)2, where K is the knot in question and

length is the number of crossings. For Problem 2 the population size

was 200 and the number of iterations was 4 × max(length(S))2,

where S is the set of knots. These parameters were determined by

informal experimentation. The program was run three times for each

knot or set of knots, and the best result is reported.

3.3 Initialisation

Each member of the population is initialised by first choosing a num-

ber uniformly at random in the range [1,15] which is the length of the

list, and then each slot in the list is filled in uniformly at random from

the moves given in Table 2. The moves are selected with replacement;

that is, a sequence may include more than one move of a given type.

3.4 Mutation

There are three different mutation operators, which are selected uni-

formly at random and applied to individuals with the overall mutation

probability being 10%. These are:

1. Select a random move from the list and replace it with a move

drawn randomly from the moves in Table 2.

2. Choose a random move from the list and delete it (as long as the

list of moves contains at least one move).

3. Choose a random position in the list and insert a randomly chosen

move from the moves in Table 2.

3.5 Crossover

One-point crossover is applied to all individuals as follows: the two

strings are aligned, a position less than or equal to the length of the

shortest string is selected at random, and the strings crossed over at

that point.

3.6 Fitness evaluation

The members of the population are evaluated by attempting to unknot

each of a set of knots, which in the case of Problem 1 will be just a

single example, and in the case of Problem 2 will consist of more

than one knot. The execution is carried out as follows. Let M =
m1,m2, . . . ,mn be the n moves in the list. Let K = K0 be the

original knot, and K1,K2, . . . be the sequence of knots generated.

The knot K0 is analysed for the preconditions for m1 to be

carried out, if they are satisfied then the move is applied, so that

K1 := m1(K0); if the preconditions are not satisfied then the knot

is unchanged (K1 := K0). The next step is to attempt to apply m2 to

K1 by seeing if its preconditions are satisfied, and so on. When the

end of M is reached, the list is begun again from the beginning.

Each time the knot is changed as a result of applying the move, the

knot is checked to see if there are any crossings remaining. If so, the

algorithm terminates, and a positive result returned.

For Problem 1 we apply the sequence M once only, but for Prob-

lem 2 we perform repeated applications of M . If the knot hasn’t been

trivialised by 50 applications of M , we assume that it has become

stuck in a repeating loop (which, for the 1 701 936 knots with sixteen

or fewer crossings [10], is a valid assumption), terminate the process

with a negative result, and move on to the next knot (if any) on the

list.

By inspection of Table 2 we see that certain operations (namely,

those of type R2 and M2) reduce the length of the braid word under

investigation, some (types R3, M1 and U ) don’t, and the rest (types

R2 and M2) increase the length of the braid word.

It is known (see, for example, the paper by Coward [7]) that there

exist diagrams for the unknot which can only be reduced to the stan-

dard (zero-crossing) diagram of the unknot by means of at least one

move of type R2. That is, at some point during the reduction process,

we have to temporarily increase the complexity. In this article how-

ever, for simplicity, we will restrict ourselves to sequences of moves

which do not increase the length of the braid word. We intend to

explore the more general case in later work.

With regard to Problem 1, we are trying to find a sequence of op-

erations which unknot a specific knot with the smallest number of

crossing changes. Slightly less importantly, we want to find the sim-

plest possible such unknotting sequence.

For Problem 2, we are trying to find a sequence of operations

which (perhaps with repeated applications) unknots as many knots

as possible, as efficiently as possible.

Let S denote the set of reference braids, on which each sequence is

being tested. (For Problem 1 this will consist of a single braid word.)

Let rS(M) denote the number of braids in S which are fully reduced

by (one or more application of) the sequence M . (In practice, we

specify an upper threshold of 50 iterations, as described above.) Let

minS(M) and maxS(M) denote, respectively, the minimum and

maximum number, over all braids in S, of iterations of M required

to reduce a (reducible) braid. Let l(M) denote the length of the se-

quence M . By c(M) we denote the number of crossing-change (type

U ) operations in M , and by cS(M) we denote the total number, over

all braids in S, of successful crossing-change (type U ) operations.

That is, cS(M) gives a measure of the total amount of unknotting

actually performed by the sequence M .

In the case of Problem 1, some of the operations in the string M

may have no effect on the braid under examination. For example,

applying an R2 move to a braid which at that stage has no σ±1
i σ∓1

i

substrings will leave the braid unchanged, and may thus be safely

elided from the sequence, resulting in a shorter sequence. Given a

sequence M , applied to a braid β ∈ Bn, we denote by lopt(M) the

length of the sequence obtained by optimising M in this way with

respect to β.

The fitness function should, ideally, seek to minimise the number

of crossing changes, maximise (at least when working on Problem 2)

the number of knots which can be reduced by a given sequence, min-

imise the length of the sequence, and minimise the number of re-

peated applications of the sequence required to reduce those braids

in S which are reducible by the operations under consideration.

With those criteria in mind, we define the fitness function for Prob-

lem 1 to be

f1(M) = 1 +
10000rS(M)

lopt(M) + cS(M)3 + 1



and that for Problem 2 to be

f2(M) = 1 +
rS(M)2

1 + maxS(M) + l(M)
.

Since both f1(M) and f2(M) depend only on the set of braids under

consideration, which doesn’t change between generations, we can

optimise the simulations by caching the fitness values for a given

string M , rather than recalculating it each time.

3.7 Selection

Using an approach similar to the Stochastic Universal Sampling Al-

gorithm [4], in each generation, we rank the candidate sequences in

order of their normalised fitness f̄(M): the fitness f(M) of the se-

quence M divided by the mean fitness over the whole population.

The integer part of f̄(M) gives the number of copies contributed to

the next generation, while the fractional part gives the probability

of an additional copy. So, a sequence M with a normalised fitness

f̄(M) = 1.72 contributes one copy to the following generation, plus

a 72% chance of a second copy.

3.8 Implementation

The source code for the implementation is available from the authors

on request.

4 RESULTS

4.1 The single unknotting problem

Table 1 lists braid words for all knots with up to eight crossings, and

Table 3 lists unknotting sequences for those knots, generated by a

Perl program implementing Problem 1. The sequences are not nec-

essarily unique (and in many cases will not be), nor are they guaran-

teed to be optimal; however we observe that for 21 of the 35 knots

with eight or fewer crossings, our program has correctly calculated

the unknotting number.

Figure 7 shows the braid σ1σ
−1
2 σ1σ

−1
2 (whose closure is iso-

topic to the figure-eight knot 41) being reduced by the sequence

UM2
1R3R2M

2
2 .

U+

−→
M

−

1−→
M

−

1−→

R
−

3−→
R

−

2−→
M

−

2−→
M

−

2−→

Figure 7. Reduction of the figure-eight knot

The knots 31, 51 and 71 are worth examining a little closer:

these are the torus knots of type (2, 2n+1), with braid presentation

σ2n+1
1 ∈ B2 and unknotting number u(K) = n. The unknotting

sequences obtained for these knots have a very similar form, namely

(UR2)
n−1M2. More generally, given two positive, coprime integers

p and q, the torus knot of type (p, q) is the knot which can be drawn

on the surface of a standard, unknotted torus so that the strands wind

p times round the torus in the longitudinal direction, and q times

in the meridional direction. The torus knot Tp,q of type (p, q) has

unknotting number u(Tp,q) =
1
2
(p−1)(q−1). See Rolfsen [17, Sec-

tion 3.C] or Cromwell [8, Section 1.5] for further details on torus

knots.

K Unknotting sequence M c(M) u(K)
31 UR2M2 1 1

41 UM2
1R3R2M

2
2 1 1

51 (UR2)2M2 2 2

52 UR2M
2
1R3R2M

2
2 1 1

61 UR2UM2M
2
1R3R2M

2
2 2 1

62 UR2UM2
1R3R2M

2
2 2 1

63 UR2UM2R2M2 2 1

71 (UR2)3M2 3 3

72 UR2M1(M1U)2(M1R3R2M2)2M2 3 1

73 (UR2M1)2R3R2M
2
2 2 2

74 UR2M2UR2M
2
1R3R2M

2
2 2 2

75 (UR2)2M2UR2M2 3 2

76 UR2M2UM2
1R3R2M

2
2 2 1

77 M1UM4
1 (R3R2M2)2M2 1 1

81 (UR2M2)2UM2
1R3R2M

2
2 3 1

82 UR2M
4
1UM2

1R3M1R
2
2M

2
2 2 2

83 UR2M2M
2
1UM2

1R3R2M1M2R3R2M
2
2 2 2

84 M1UR2M1UM3
1 (R3R2M2)2M2 2 2

85 UM1UR2M
2
1R3R

2
2M

2
2 2 2

86 (UR2)2M2UM2
1R3R2M

2
2 3 2

87 M1UR2M1UM2
1R

2
3(R2M2)2 2 1

88 UR2M
5
1UR2M

2
1R3M1R2M

3
2 2 2

89 M3
1UM2

1R
3
3M2R

3
2M2 1 1

810 UR2UM3
1 (R3R2)2M2

2 2 2

811 UR2M2M
2
1UM2

1R3M1R
2
2M

2
2 2 1

812 M1UM5
1UM1R3M1UM2R2M2R3R2M

2
2 3 2

813 UR2M2UR2M
2
1R3R2M

2
2 2 1

814 UR2M1UM2
1UM2

1 (R3R2M2)2M2 3 1

815 UR2M2M
3
1UR2M1R3R2M

2
2 2 2

816 UR2UM1U(R2M2)2 3 2

817 M2
1UM3

1R3M1R2(R3R2)2M2
2 1 1

818 UM2
1R3R2M1U(R2M2)2 2 2

819 UR2M1R3UM1U(R2M2)2 3 3

820 M5
1UR2M

2
1R3R

2
2M

2
2 1 1

821 UR2M
3
1 (R3R2)2M2

2 1 1

Table 3. Unknotting sequences M for single knots K, using the braid
words from Table 1, comparing the number c(M) of crossing changes

performed by the sequence M , and the crossing number u(K) of the knot K

4.2 The multiple unknotting problem

A simulation of Problem 2, again implemented in Perl, obtains uni-

versal or near-universal unknotting sequences, some examples of

which are listed in Table 4. Some of the more complex braids (those

corresponding to knots with minimal crossing number 9 or higher)

were unreducible by any scheme found by our program, because we

restricted ourselves to operations which don’t increase the length of

the braid word. As noted earlier (see the paper by Coward [7] for de-

tails), sometimes we need to perform a move of type R±
2 to introduce

two additional crossings during the reduction scheme.



S M maxS(M) rS(M) |S|
31–41 UM2

1R3R2M
2
2 1 2 2

31–41 UM2
1R3R2M2 2 2 2

31–41 UR2R3M2M
2
1 3 2 2

31–52 M1UR3R2M1M
2
2U 2 4 4

31–52 UR2M
2
1R3M2R2M2 2 4 4

31–52 UR3R2M
3
1R3M

2
2 2 4 4

31–63 M1R2UM2
1R3R2M2 3 7 7

31–63 M1UM2
1R3R2M2 3 7 7

31–77 M2UR2M2M1UR3 4 14 14

M2
1M2

31–77 M1R3USM1R2 5 14 14
M2M1

31–77 UR3R2SM2M
2
1M2 6 14 14

31–821 M1UR3M
2
1R3M2 5 35 35

SR3R2M
3
2

31–821 M1UM1R3R2M
2
2 7 35 35

R3M1

31–949 UR2R3M
2
1UM2 6 74 84

R3M1M2M1R3

31–949 R3R2UM2
1M

2
2 10 73 84

Table 4. Universal or near-universal unknotting sequences for multiple
knots

5 CONCLUSIONS AND FUTURE WORK

In this paper we have seen how an unknotting algorithm can be

evolved based on a number of primitive moves. There are a number

of future directions for research in the area of applying evolutionary

algorithms and other machine learning techniques to mathematical

problems in knot theory and related areas.

Initially, there are some basic extensions to the work described

in this paper. For example, rather than focusing on unknotting we

could use similar techniques to address the related problem of knot

equivalence. Furthermore, there are similar problems in other areas

of mathematics (for example, graph theory and group theory) so this

could be extended to those.

More interestingly, there is the question of counterexample search.

There are a number of conjectures in this area where there are some

measures that could be used to ascertain how close a particular ex-

ample is to being a counterexample to the conjecture. Using these

measures, experiments could be done on exploring the space of knots

to find a counterexample; some preliminary work along these lines

has been done by Mahrwald [13].

Another approach would be to take a data mining approach to cer-

tain mathematical problems. For example, we could generate a large

database of knots and then apply classification techniques to distin-

guish different classes of knot, or applying clustering techniques to

group knots according to some metric.

An examination of the results from this classification might give new

insights into the underlying structure of the space of knots. A re-

lated topic is using genetic programming to evolve invariants, that

is, functions that distinguish between different knots by processing

their diagrams.
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Abstract.  Neural networks that are capable of representing 

symbolic information such as logic programs are said to be 

neural-symbolic. Because the human mind is composed of 

interconnected neurons and is capable of storing and processing 

symbolic information, neural-symbolic networks contribute 
towards a model of human cognition. Given that natural 

evolution and development are capable of producing biological 

networks that are able to process logic, it may be possible to 

produce their artificial counterparts through evolutionary 

algorithms that have developmental properties. The first step 
towards this goal is to design a genome representation of a 

neural-symbolic network. This paper presents a genome that 

directs the growth of neural-symbolic networks constructed 

according to a model known as SHRUTI. The genome is  

successful in producing SHRUTI networks that learn to 
represent relations between logical predicates based on 

observations of sequences of predicate instances. A practical 

advantage of the genome is that its length is independent of the 

size of the network it encodes, because rather than explicitly 

encoding a network topology, it encodes a set of developmental 
rules. This approach to encoding structure in a genome also has  

biological grounding.  

1 INTRODUCTION 

Neural-Symbolic Integration [1, 9] is a field in which symbolic 

and sub-symbolic approaches to artificial intelligence are united 
by representing logic programs as neural networks or by 

developing methods of extracting knowledge from trained 

networks. The motivation behind this work is either the 

construction of effective reasoning systems, the understanding of 

knowledge encoded in neural networks, a model of human 
cognition, or a combination of these. 

It may be possible to find powerful neural-symbolic 

networks through an evolutionary search. However, as the size 

of a logic program increases, so does the size of the network 

used to represent it. An evolutionary search for larger networks 
would take longer than it would for smaller networks as the 

search space would be larger, unless networks can be 

represented in a scalable way. Artificial development is a sub-

field of evolutionary computing in which genomes encode rules  

for the gradual development of phenotypes rather than encoding 
their structures explicitly  [3]. The genomes are scalable because 

genomes of equal length can produce solutions of different sizes. 

Among other applications, this encoding method can be applied 

to the representation of neural networks. This method of 

encoding networks is referred to as indirect encoding.  

In addition to producing powerful reasoning systems, 

representing neural-symbolic networks in this way is more 

biologically plausible than encoding topologies directly. Because 

neural-symbolic networks claim to be a step towards a model of 

human cognition, it seems reasonable to develop them in a way 
which is also biologically plausible. If human cognition can be 

produced through evolution and development, then perhaps an 

artificial model of cognition can be produced through artificial 

models of evolution and development. 

No attempt has yet been made to evolve neural-symbolic 
networks using artificial development. This paper introduces a 

scalable genome representation of neural-symbolic networks 

which adhere to a model known as SHRUTI [22, 23]. The 

genome was  successful in its ability to construct four SHRUTI 

networks that were able to learn a set of relations between 
logical predicates. The intention is to eventually produce these 

genomes using an evolutionary algorithm, but this algorithm has 

yet to be implemented. Nonetheless, if SHRUTI networks can be 

produced through artificial development, it opens the possibility 

that other neural-symbolic models can be too. Section 2 provides  
an overview of SHRUTI and artificial development models used 

for the evolution of standard neural networks. Section 3 

describes the experiments performed, the genome model used in 

these experiments and the target networks. Section 4 presents 

and discusses the results and section 5 concludes. 
 

2 BACKGROUND 

 

2.1 SHRUTI 

SHRUTI is a neural-symbolic model in which predicates are 
represented as clusters of neurons and the relations between 

them as connections between those neurons [22, 23]. Predicate 

arguments are bound to entities filling the roles of those 

arguments by the synchronous firing of the neurons representing 

them. There is therefore no need to create a connection for every 
argument-entity combination. The SHRUTI authors claim that 

their approach, known as temporal synchrony, has biological 

grounding in that it is used for signal processing in biological 

neurons. SHRUTI can be used for forward or backward 

reasoning. In forward reasoning, the system is used to predict all 
the consequences of the facts. In backward reasoning, the system 

is used to confirm or deny the truth of a predicate instance based 

on the facts encoded. In other words, a backward reasoner 

answers ‘true or false’ questions. This paper concerns backward 

reasoning only. 
Figure 1 provides an example of a basic SHRUTI network. 

Argument and entity neurons fire signals in phases, and a 

predicate is instantiated by firing its argument neurons in phase 
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with the entities fulfilling roles in the predicate instance. The 

other neurons in a predicate cluster fire signals of continuous  

phase only upon receipt of signals of the same nature. Positive 

and negative collectors (labelled ‘+’ and ‘-‘) fire when the 

current predicate instance is found to be true or false 
respectively, and enablers ( labelled ‘?’) fire when the truth value 

of the current predicate instance is queried. Relations between 

predicates are established by linking corresponding neurons such 

that argument bindings are propagated between predicates. Facts 

are represented by static bindings between entities and predicate 
arguments such that the firing of a corresponding fact neuron  

(represented as a triangle in figure 1) is inhibited if the current  

dynamic bindings of the predicate do not match the static 

bindings of the fact. 

 

 
 

Figure 1 – A simple SHRUTI network for the relations 

Give(x,y,z) → Own(y,z) and Buy(x,y) → Own(x,y) and the 

facts Give(John, Mary, Book) and Buy(Paul,y) 

The example network in figure 1 represents the relations 
Give(x,y,z) → Own(y,z) (if person x gives z to person y, then 

person y owns z) and Buy(x,y) → Own(x,y) (if person x buys y, 

then person x owns y). Also, two facts are represented: 

give(John,Mary,Book) (John gave Mary the book) and 

buy(Paul,x) (Paul bought something). This network is configured 
for backward reasoning. If one wishes to find the truth for 

own(Mary, Book) (Does Mary own the Book?), an instance of 

the own predicate must first be created by firing its owner and 

object neurons in the same phases as the neurons representing 

Mary and Book respectively. This creates a pair of dynamic 
bindings. The enabler (?) of own must also be fired to indicate 

that a search of own’s current instance is sought. The dynamic 

bindings are propagated along the connections to give and buy 

such that the neurons representing recipient and buyer are now 
firing in phase with Mary and the neurons representing object for 

give and buy are firing in phase with Book. Give and buy are 

therefore instantiated with the queries give(x, Mary, Book) (did 

somebody give Mary the book?) and buy(Mary, Book) (did Mary 

buy the book?). The dynamic bindings are then propagated to the 
static bindings representing facts. The static bindings of 

buy(Paul,x)  do not match the dynamic bindings of buy(Mary, 

Book), and so the static bindings inhibit the firing of the 

corresponding fact node which would otherwise activate the 

positive collector of buy. However, the dynamic bindings of 
give(x, Mary, Book) do match the static bindings of 

give(John,Mary,Book). The corresponding fact node is therefore 

not inhibited and activates the positive collector of give to assert 

that give(x, Mary, Book) is true. This collector in turn activates  

the positive collector of  own to assert that own(Mary, Book) is  

also true, i.e. that Mary does indeed own the book. 

There are many more features which may be included in a 
SHRUTI network. The literature also presents means of 

restricting dynamic bindings by entity types, conjoining 

predicates, enabling multiple instantiations of a predicate, and 

many other features. More complex models even use multiple 

neurons to represent one argument or entity, as the use of only 
one neuron to represent a concept lacks biological plausibility. 

One particular feature worth discussing in further detail is  

SHRUTI’s learning mechanism [26] since it plays an important 

role in the developmental process discussed later in this paper. 

SHRUTI’s learning mechanism takes inspiration from 
Hebbian learning [10]. The training data is a sequence of events 

(predicate instances) observed over time that reflect the causal 

relations between the predicates. When two predicates are 

observed within a fixed time window, any connections  

representing relations between them are strengthened to increase 
the likelihood that the predicate observed first is a cause of the 

second. After a predicate is observed, any predicates that are 

connected to it but are not observed within the time window 

have those connections weakened to reflect the likelihood that 

they are not consequents of the first predicate. When a weight ω 
is strengthened, it is updated according to equation 1. When ω is  

weakened, it is updated according to equation 2. In both cases, 

the learning rate α is defined according to equation 3. This  

ensures that it becomes more difficult to change a relation for 

which evidence has been observed a large number of times.  
 

(1)  

(2)  

(3)  

 

For example, if B(a,b)  is observed shortly after A(a,b), 

connections will be updated to reflect A(x,y) → B(x,y). 
However, if A(a,b) is observed with no immediate observation of 

B(a,b), the same connection weights are weakened to reflect the 

lack of a relation between the two predicates. A new predicate 

can be recruited into the network once the connection weights of 

its neurons have gained sufficient strength.  
The SHRUTI developers argue that some level of pre-

organisation would be necessary for this learning model to work, 

and that this pre-organisation could be the product of 

evolutionary and developmental processes. To support the 

biological plausibility of pre-organisation, they point to the work 
of Marcus [16], who proposed ideas similar to those found in 

artificial development. However, a further review of literature 

has failed to find any attempts to produce SHRUTI networks 

using artificial development or similar methods. This is what 

motivates the ideas proposed in this paper. 
 

2.2 Artificial Development of Neural Networks 

Artificial development is a form of evolutionary computing in 

which the genome encodes instructions for the gradual 

development of the phenotype. This method is argued to be more 
biologically plausible than the alternative of encoding the 

structure of a phenotype explicitly in the genome, as it is closer 



3 

 

to the means by which DNA encodes biological structures. 

Dawkins argues that DNA is not a blueprint of biological 

structure but is more like a recipe for its construction [5]. 

Artificial development can be applied to a range of problems, 

and Chavoya provides a recent overview of artificial 
development models [3]. However, this paper is only concerned 

with the artificial development of neural networks. 

One approach to evolving neural networks involves 

genomes which encode network topologies [24, 25]. For 

example, the genome may contain a list of neurons and another 
list of connections between them, or it may represent a 

connection matrix. Such methods of encoding are often referred 

to as direct encoding. The disadvantage of direct encoding is that 

the size of the genome increases in proportion to that of the 

network it represents. The alternative, indirect encoding,  
overcomes this problem by encoding a set of rules for the 

gradual development of the network. Just as a biological 

organism’s cells all contain the same DNA, neurons within 

networks encoded by indirect encoding all contain or refer to a 

copy of the same genome, which represents a set of 
developmental rules. These rules provide instructions as to how 

the neuron should develop, for example by duplicating or 

deleting itself or by establishing a connection to another neuron. 

The developmental process often begins with only one neuron. 

When a neuron divides, its genome is passed on to both of its 
children, which is how all neurons are able to share the same 

genome. Which developmental operation takes place depends on 

the current attributes of the neuron. Therefore even though all 

neurons share the same genome, which developmental 

operations are executed at which point in time will not 
necessarily be the same for each neuron. Some models for the 

artificial development of neural networks use graph grammars  

inspired by Lindenmayer systems [15], whereas others use more 

biologically inspired ideas where neurons and connections are 

defined in a two or three dimensional Euclidean grid space. 
Figure 2 presents grammar trees used by Gruau to define 

cell division processes [8]. Each node in the tree describes a cell 

(neuron) division. The children of each node describe the 

following division for each child neuron produced by the 

previous division. Separate grammar trees define sub-trees, the 
roots of which can be referenced by leaf nodes of the main tree. 

A sub-structure can therefore be encoded once but reused 

multiple times. As a consequence, genomes are more compact 

and convergence speed during evolution is reduced because the 

search space is smaller. Kitano used grammar encoding to 
develop connection matrices [12, 13]. This method could also 

produce repeated sub-structures, evident from repeated patterns 

in the connection matrices produced. 

 
Figure 2 – Gruau’s grammar trees. Each node corresponds 

to a cell division. The left-most tree describes the initial 
divisions from the root, and the second tree describes sub-

trees which may grow from the leaves of the first tree. The 

third tree depicts the overall cell division process. 

In the more biologically inspired methods, neurons and their 

connections (often regarded as axons, as with actual biological 

neurons) have positional attributes. A neuron's axon grows in the 

grid space, guided by developmental rules encoded in the 

genome, and form a connection when they come into contact  
with another neuron. The positional information of a neuron and 

its axons can be used to influence development. Eggenberger 

employed this idea using gene regulation [6, 7]. The activation 

of one gene, in addition to producing or deleting cells or 

connections, may also activate or inhibit the activation of other 
genes in the genome. Information can be passed between cells  

and the between the genes in those cells  using artificial 

molecules. Concentration gradients of these molecules provide 

the positional information required to direct growth. Kitano also 

developed a similar model [14]. A different approach has been to 
use Cartesian genetic programs [18] to influence development in 

a grid [11]. The genome represents a set of seven interconnected 

programs. Three of these programs control signal processing in 

neurons, three control life-cycle processes such as the addition 

and deletion of neurons, and another controls weight updates. 
Nolfi and Parisi used a means of measuring the fitness of a 

developing network that may prove useful in further research 

[19, 20]. Rather than simply measuring fitness at the end of the 

life-cycle of each phenotype, fitness was measured at different 

stages throughout development in order to observe how fitness 
increased over time. Such information on how the phenotype 

develops may be useful in the calculation of an overall fitness. 

For example, one might wish to measure overall fitness as the 

area under the fitness-time graph. 

3 METHOD 

A scalable genome model for the development of SHRUTI 

networks was produced, and the aim of the experiments 

conducted was to demonstrate, using an instance of this genome 

model, that the model could be used to develop four networks 

that could learn a set of logical relations between predicates 
based on a series of observed events. Each event was a predicate 

instance and each event sequence was representative of the 

relationships between the predicates in each logic program.  

Experiments were later repeated with shuffled event sequences 

in order to observe whether or not the genome could still develop 
networks which could represent the same logic programs. In 

additional experiments, sections of the genome were removed in 

order to see how the structures of the developed networks were 

affected. This section outlines how a SHRUTI model was 

implemented for these experiments, the genome model used to 
represent this implementation, and the target networks that were 

developed by the genome.  

 

3.1 SHRUTI implementation 

It seems reasonable to attempt the artificial development of a 
simple SHRUTI network before the development of more 

complex features is attempted. Therefore the basic SHRUTI 

model capable of learning as described in section 2.1 was  

implemented but more complicated features such as type 

restrictions and conjunction were excluded.  
A minor adjustment was made to the learning mechanism in 

order to overcome difficulties learning certain structures. If two 

relations exist which share the same antecedent but with 

different signs for that antecedent, the system struggles to learn 
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both relations because the strengthening of one weakens the 

other unless both relations have been observed a sufficient  

number of times. To explain why this occurs, the learning of the 

relations P(x,y) → Q(x,y) and ¬P(x,y) → R(x,y) will be used as 

an example. The collectors of Q and R receive input from 
different collectors of P (+P and -P respectively). However, the 

enablers of Q and R both provide input to the same (and only) 

enabler of P (?P). Observation of P(x,y) and Q(x,y) within the 

time window will strengthen the connection from +P to +Q and 

the connection from ?Q to ?P. However, since ?P is activated 
and ?R is not, the connection from ?R to ?P will weaken. 

Likewise, if -P(x,y) and R(x,y) are observed within the time 

window, The connection from ?R to ?P will strengthen but the 

connection from ?Q to ?P will weaken.  

To overcome this problem, the learning mechanism was  
configured by adjusting the learning rate α to update by a greater 

magnitude when strengthening weights than when weakening 

them. Therefore when weakening weights, α is defined as in 

equation 3, but when strengthening weights it is increased as  

shown in equation 4: 
 

(4)  

 

This makes it possible to learn these conflicting pairs of 

relations as long as the events that reflect them occur a sufficient  
number of times. 

 

3.2 The Genome 

In this first genome model, only the connections between 

neurons are developed, and not the neurons themselves. This 
approach assumes the pre-existence of neuron clusters 

representing facts and predicates, but there is room in future 

work to attempt the development of these clusters also. 

Each genome describes a tree structure in which leaf nodes 

represent actions to be performed and all other nodes represent 
conditions. Each path through the tree structure from the root 

node to a leaf node represents a different rule. After each event  

has been observed and weights have been updated accordingly, 

the conditions encoded in a genome are tested for each neuron 

and each of its existing and possible inputs. If a leaf node is  
reached, the action it encodes is executed. The genome labels the 

current neuron for which input connections are being made as  

SELF. The neuron from which a connection is being considered 

is labelled as P_INPUT (possible input) if it does not yet exist 

and E_INPUT (existing input) if it does exist.  
Figure 3 shows a set of conditions encoded by a genome for 

the development of a SHRUTI network and figure 4 shows them 

as a decision tree. Figure 5 presents an example of how an input 

connection is created using rule 2. To reduce execution time, 

conditions which affect SELF are considered first, so that 
evaluation of existing or potential inputs is only  performed when 

necessary. Branching from one condition to another is therefore 

limited such that SELF conditions can branch to P_INPUT and 

E_INPUT conditions, but P_INPUT and E_INPUT conditions 

cannot branch to SELF conditions. The genome begins with a 
header containing the genome index of each type of condition 

and of the actions. 

For each condition, the genome encodes the attribute to be 

tested, an operator (<,≤,=,≥,>,≠), and the value to test that 

attribute against. Attributes which can be tested in this model are 

the neuron's current level of activity, its type (role, enabler or 

collector), the total number of inputs, and for existing inputs, the 

weight and the number of updates (how many times a connection 

has been strengthened or weakened). The genome also specifies  

the next condition to test or action to perform in the event of the 
current condition being evaluated as true or false. Alternatively, 

the tree search can end when a condition is evaluated as false 

and no actions are performed. For each action, the genome 

specifies one of two types of action to be performed: the addition 

or deletion of a connection. If a new connection is  to be created, 
the genome also specifies the weight of the new connection.  

 

SELF conditions: 

1. If activity > 0.5, go to 2, else go to 5 

2. If type = role node, go to 8, else go to 3  
3. If type = enabler, go to 9, else go to 4 

4. If type = collector, go to 10, else end.  

 

E_INPUT conditions: 

5. If number of updates > 7, go to 6, else end 
6. If weight < 0.5, go to 12, else end.  

 

P_INPUT conditions: 

7. If activity > 0.5, go to 11, else end. 

8. If type = role node, go to 7, else end.  
9. If type = enabler, go to 7, else end.  

10. If type = collector, go to 7, else end.  

 

Actions: 

11. Add connection with weight 0.1 
12. Delete connection 

 

Figure 3 – Conditions represented in the genome. 

 

 
Figure 4 – A decision tree representation of the conditions 

given in figure 3 (T = True, F = False). 
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Figure 5 – How rule 2 is used to develop connections between 

enablers for the rule P(x,y) → Q(x,y). All nodes are active 

and a connection from -P to -Q  already exists (1). The 

genome in ?P searches for input connections, starting with    

-Q (2). Both neurons are active and ?P is an enabler, but -Q 
is not, so no connection is made. The test is repeated for ?Q 

(3). Both neurons are enablers and both nodes are active, so 

an input connection is made (4). 

In the genome defined in figures 3 and 4, rule 1 (R1) 

establishes connections between active role nodes. Rule 2 (R2) 

does the same for enablers and rule 3 (R3) does the same for 

collectors. Unwanted connections between neurons will 
inevitably form, but after Hebbian learning has taken place, their 

weights will weaken. Rule 4 (R4) prunes connections that are 

weak despite a large number of updates. A threshold of seven 

updates was chosen because this was the minimum value 

required to enable all test networks to learn desired connection 
weights without those connections being removed too early. This 

genome is one of a number which may be defined using this  

model to produce working SHRUTI networks. 

 

3.3 Target networks 
Figure 6 shows four target networks to be developed using the 

genome in figure 3. One of the networks is smaller than others in 

order to demonstrate the scalability of the genome. The two 

larger networks are of similar sizes but differ in structure. The 

logic program represented by the network with the label SubNets  
contains a relation and a predicate that are disjoint from the other 

relations and from each other. They are therefore each 

represented by separate sub-networks. 

The initial state of each network is a set of neurons 
encoding facts connected to predicates, with the intention that 

connections will develop between predicate neurons over time in 

order to represent the relations between the predicates. For each 

network, a sequence of events in the form of predicate instances 

is defined. Each sequence reflects the relations between the 
predicates in the corresponding logic program. Different sub-

sequences provide evidence for different sets of transitive 

relations. For example, observing the sub-sequence P(a,b), 

Q(a,b), R(a,b) supports the transitive pair of relations  

P(x,y)→Q(x,y), Q(x,y)→R(x,y). 

 

Small  

Expected Relations Facts 

P(x,y) → Q(x,y) 

¬P(x,y) → R(x,y) 

P(a,b) 

¬P(c,d) 

 
Large1  

Expected Relations Facts 

P(x,y) → Q(x,y) 

Q(x,y) → ¬R(x,y) 

¬Q(x,y) → S(x,y) 

¬R(x,y) → ¬T(x,y) 

¬R(x,y) → ¬U(x,y) 
S(x,y) → V(x,y) 

P(a,b) 

¬Q(c,d) 

Q(e,f) 

S(g,h) 

 

Large2  

Expected Relations Facts 

P(x,y) → ¬Q(x,y) 
¬P(x,y) → R(x,y) 

¬Q(x,y) → ¬S(x,y) 

R(x,y) → T(x,y) 

¬R(x,y) → ¬U(x,y) 

P(a,b) 
¬Q(c,d) 

¬P(e,f) 

R(g,h) 

¬R(i,j) 

 

SubNets  

Expected Relations Facts 

P(x,y) → Q(x,y) P(a,b) 

R(c,d) 

¬R(e,f) 
¬T(g,h) 

V(a,b) 

R(x,y) → S(x,y) 

¬R(x,y) → T(x,y) 

¬T(x,y) → ¬U(x,y) 

Figure 6 – Target networks. Each table shows the relations 
which were expected to develop and the hard coded facts 

which make up the background knowledge. In the logic 

program represented by SubNets, the relation P(x,y) → 

Q(x,y) and the predicate V(a,b) are disjoint from the other 

relations and from each other. 

Any number of events may occur at each time t, even zero. 

At each t, neurons that represent an observed predicate are fired 
and Hebbian learning is used to update the weights of the 

connections between the neurons that fire within a fixed time 

window of each other in order to build relations between 

predicates. Developed networks were tested by inputting ‘true or 

false’ questions and fitness was based on the number of 
questions answered correctly. The reader is reminded that each 

predicate includes two collectors: one positive and one negative, 

to assert the truth and falsity of the predicate respectively. 

Activation of one of these collectors shall be denoted 1, and 

deactivation 0. The truth of a predicate instance is therefore 
denoted by (1, 0), falsity by (0, 1), uncertainty by (0, 0) and 

contradiction by (1, 1). Fitness is measured as the number of 

correct collector activations. For example, consider a question 

with expected answer (1, 0). Answering (1, 0) would add 2 to the 

fitness, answering (0, 0) or (1, 1) would add 1, and (0, 1) would 
add 0. 

For each network, the following statistics were recorded: the 

number of connection additions and deletions, the final number 

of connections and the final number of live connections. A 

connection is live when its weight is above the threshold of the 
neuron for which it is an input. Connections that are not live 

-P P(x,y) ?P 

Q(x,y) 

P(x,y) 

Q(x,y) 

P(x,y) 

Q(x,y) 

SELF 

SELF 

P_INPUT 

P_INPUT 

1. 2. 

3. 4. SELF 

E_INPUT 

-Q ?Q 

-P ?P 

-Q ?Q 

-P ?P 

-Q ?Q 

P(x,y) 

Q(x,y) 

-P ?P 

-Q ?Q 
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make no contribution to inference in the network. However, this 

does not necessarily mean that all live connections do. 

4 RESULTS 

All test networks developed such that they could answer all of 

their test questions correctly. The same genome was successfully 
applied to the development of large and small networks, 

demonstrating that the genome is scalable in that its size is 

independent of the size of the phenotype. Further experiments 

observed how different components of the genome affected the 

network structure and what affected the change in fitness over 
time. 

 

4.1 Network structure 

Table 1 shows the statistics for each network. In each case, the 

total number of connections developed was not much greater 
than the number of live connections, meaning that only a few 

superfluous connections were developed.  

 

Network Connections Live  Additions Deletions 

Small 10 10 30 20 

Large1 49 36 138 89 

Large2 43 35 86 43 

SubNets 45 29 74 29 

Table 1 – Statistics of fully developed networks: the total 

number of connections, the number of live connections 
(connections for which weight is greater than or equal to 

0.5), and the number of connection additions and deletions. 

Table 2 shows the results of removing different components 

of the genome when testing on the network Large1. In each case, 

maximum fitness was achieved with the same number of live 

connections. However, the total number of connections was 

greater because removing rules and conditions removed 
constraints on network size. The genome was constructed not 

only to develop networks capable of answering all questions 

correctly, but to do so with the minimal number of connections.  

 

Excluded Connections Live  Additions Deletions 

None 49 36 138 89 

Rule 4 98 36 98 0 

Condition 7 171 36 491 320 

Rule 4 and 

Condition 7 

328 36 328 0 

Table 2 – The effects of excluding rules and conditions from 

the genome when developing Large1. 

Removing rule 4, which prunes superfluous connections, 

caused the total number of connections to double. However the 

number of additions decreased, implying that when rule 4 is 

included some of the connections it removes redevelop. 
Condition 7 limits connections to inputs from active neurons. 

Bypassing this caused an even greater increase in the number of 

connections. This, coupled with the tendency of deleted 

connections to redevelop, suggests that it is more beneficial to 

prevent the growth of superfluous connections than it is to delete 
them once created. Removing conditions 2 to 4 and 8 to 10, 

which limit connections to neurons of the same type, resulted in 

the network being unable to answer all questions correctly. 

Removing these conditions caused connections to form between 

enablers and collectors such that activation of a predicate’s 

enabler triggered the immediate activation of one or both of its 
collectors, depending on which collectors were activated during 

training. All questions were therefore answered true (1,0), false 

(0,1) or both (1,1), but never unknown (0,0), and so questions for 

which unknown was the correct answer were answered 

incorrectly. 
 

4.2 Fitness 

Figure 7 shows the change in fitness as the network Large1 

develops, and figure 8 shows the change in fitness after shuffling 

the event sequence. Note that the initial fitness in both cases is  
not zero. This is due to the fact that fitness is based on the 

number of correct collector firings. An undeveloped network 

will answer all questions as ‘unknown’ (0, 0). For some test 

questions, this will in fact be the correct answer, so an 

undeveloped network automatically answers them correctly. For 
other questions, target answers are either (1, 0) (true) or (0, 1) 

(false), meaning that an answer of (0, 0) will be half correct for 

each of these questions. In summary, the initial fitness is due to 

the inability of an undeveloped network to fire any collectors 

and the large number of zeros (instances of collectors failing to 
fire) in the test data. 

 
 

Figure 7 – The change in fitness over time for the network 

Large 1 

 
 

Figure 8 – The development of Large1 after shuffling the 

event sequence. 
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In figures 7 and 8, maximum fitness is eventually achieved, 

but the fitness decreases and increases again before it reaches the 

maximum. This behaviour was caused by the weakening of some 

relations upon the strengthening of others, as described in 

section 3.1. In order to confirm that it was these conflicting 
relations that caused the trend of oscillating fitness, the learning 

experiment was repeated on a simple network which did not 

contain conflicting relations. The network represented a linear 

chain of predicates in which each predicate (with the exception 

of those at the beginning and end of the chain) was the 
consequent and antecedent of only one other predicate (P(x,y) → 

Q(x,y), Q(x,y) → R(x,y) …. T(x,y) → U(x,y)). Figure 9 shows 

that in this case, the fitness only increased and never decreased, 

as no learned relations were disturbed by the learning of others. 

 
 

Figure 9 – The development of a network representing a 

linear chain of predicates 

 

In the process of learning conflicting relationships which 

affect each other in this way, relations are learned and unlearned 
until both have been observed enough times (usually about 3) to 

support evidence for both, at which point both relations are 

successfully represented. This learning and unlearning of 

relations affects the truth values of predicate instances that 

depend on them, meaning that the correct assertion of these 
predicate instances is also periodic until the network settles. As a 

consequence, questions are periodically answered correctly and 

incorrectly before they can be consistently answered correctly, 

which explains the peaks and troughs in the graph. How soon a 

network settles into a state whereby this behaviour stops depends 
on the number of event sub-sequences supporting each relation 

and on the order in which they occur. This is  due to the fact that 

the magnitude of change depends on the value of α, which is  

defined slightly differently for the weakening and strengthening 

of weights (as in equations 3 and 4 respectively) but is inversely 
proportional to the number of updates in both cases. In other 

words, how long the network takes to settle depends on how 

many times connections have been strengthened and how many 

times they have been weakened. 

For example, consider the shuffled event sequence used for 
learning Large1 as shown in figure 8. The set of relations 

dependent on Q(x,y) is [Q(x,y)→¬R(x,y), ¬R(x,y)→ ¬T(x,y), 

¬R(x,y)→ ¬U(x,y)]. The set of sub-sequences that supports this 

set will be referred to as X. The set of relations dependent on  

¬Q(x,y) is [¬Q(x,y)→ S(x,y), S(x,y)→ V(x,y)]. The set of event 
sub-sequences supporting evidence for this set will be referred to 

as Y. The initial peak in fitness occurs when a member of X, X1,  

completes at t=7, and drops again when Y1 completes at t=17.  

Y2 and Y3 then complete at t=25 and t=39. X2 completes at 

t=54, but has no effect on fitness because the number of 

instances of X isn’t enough to balance the connection weights. 

Y4 completes at t=66. X3 completes at t=72 and instances of 

both X and Y have now occurred enough times that the 

relationships they each support are strong enough to maintain 
maximum fitness without the observation of one disturbing the 

relationship supported by the other. After X3, further instances of 

X and Y occur interchangeably but fitness does not drop now 

that the relationships are balanced.  

This hypothesis as to why the peaks and troughs occur was 
tested by moving X1 further along the timeline of events in order 

to move the initial peak in fitness seen in figure 8 along the 

graph. This is demonstrated in figure 10. In the first image, X1 is  

moved to occur just before Y1, causing the peak to become 

narrower.  In the second image, X1 is moved to occur after Y1  
but just before Y2, creating another narrow peak as X1 improves 

fitness but Y2 reduces it again. In the third image, X1 is moved to 

occur just before Y3  to temporarily increase fitness to the 

maximum. After Y3 causes fitness to drop soon after, X2 is able 

to increase it again, for a bit longer, before Y4 causes a drop in 
fitness once more. After X3, the network is balanced. In the final 

image, X1 is moved to occur just before X2 and this balances the 

relations. Note that unlike the other graphs, the third graph 

contains two peaks before fitness settles. In this case, instances  

of X and Y alternate more than they do in others, and the graph 
contains the greatest number of fitness peaks before the network 

settles. In the fourth graph, there are no peaks and only one 

change from Y to X before the network settles. Furthermore, the 

network settles slightly earlier than in the other trials. These 

behaviours imply that fitness peaks are caused by observation 
sub-sequences that alternate more, and that conflicting relations  

can be learned more quickly when the evidence for them 

alternates less. 

 

1 

 

2 

 
 

3 

 

4 

 
 

1. X1 Y1  Y2  Y3  X2 Y4  X3 X4 Y5  X5 Y6  X6 

2. Y1  X1 Y2  Y3  X2 Y4  X3 X4 Y5  X5 Y6  X6 

3. Y1  Y2  X1 Y3  X2 Y4  X3 X4 Y5  X5 Y6  X6 

4. Y1  Y2  Y3  X1 X2 Y4  X3 X4 Y5  X5 Y6  X6 

 

Figure 10 – The effects of moving sub-sequence X1, which 

supports evidence for relations depending on Q(x,y), further 
along the timeline. The resultant ordering of sub-sequences 

for each graph is displayed at the bottom. 
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This tendency of fitness to rise and fall before development 

is complete is similar to a phenomenon referred to as U-shaped 

development which has  been observed in various aspects of 

cognitive development [2, 4, 17, 21]. One example from natural 

language is the way children learn past tense conjugation [21]. In 
early stages of natural language development children will know 

some regular and irregular past tense verbs and apply them 

correctly. However, data shows that once they realise that a large 

number of verbs are conjugated by the addition of ‘ed’ to those 

verbs, they over-generalise this rule to the irregular verbs as  
well, ignoring the irregularities they have already acquired and 

incorrectly conjugating them like any other. For example, upon 

noticing correct conjugations such as the derivation of 'reached' 

from 'reach' and 'heated' from 'heat', they often derive 'eated' 

from 'eat', 'goed' from 'go', and so forth, even though they 
correctly used ‘ate’ and ‘went’ before. Only once they have had 

more exposure to the English language and have heard 

regularities and irregularities frequently enough do they realise 

that the addition of ‘ed’ does not apply to all verbs. They are 

then able to apply regularities and irregularities correctly once 
again. In summary, the child's language ability gets worse before 

it improves. Though correction by adults may play some part in 

this process, it is largely credited to observations of how others 

use language. Errors tend to occur with verbs heard less often. 

Only when an irregularity is observed enough times is that 
irregularity able to ‘block’ the application of the rule to a verb 

stem. In SHRUTI’s learning system, conflicting relations also 

require a sufficient number of observations before the 

representation of both relations can be balanced.  

U-shaped development in children has been observed in a 
range of other cognitive tasks [2, 4, 17]. The U-shaped 

development observed in the SHRUTI learning model gives it 

another level of biological plausibility. Of course, the U-shaped 

development observed in SHRUTI is not caused by rules being 

over-generalised to irregularities but by rule pairs for which 
antecedents are of the same predicate but have different signs. 

However, the developmental process is similar in the sense that 

it is influenced by observations that may result in the ability of 

the developing structure declining before it is able to improve 

even further. It should also be noted that SHRUTI’s U-shaped 
development is a result of the learning process and not of the 

developmental model which was implemented for these 

experiments. Nonetheless, the results above have been useful in 

determining that the genome model is able to support weights 

that continually gain and lose strength before they are 
consistently strong enough to represent relations. There was 

always the danger that a weight would lose enough strength that 

the genome would prune the connection before it was given a 

change to gain its strength back. This was not the case. 

SHRUTI’s U-shaped development will need to be taken into 
consideration when assessing the fitness of genomes in planned 

attempts to evolve them. A genome in the population which 

exhibits a lower fitness may have more potential for 

improvement than a genome with a slightly higher fitness. It may 

be necessary to adjust the measurement of fitness so that this 
potential is also taken into account, in addition to the number of 

questions a developed network can answer correctly. However, 

the challenge this idea presents is that of finding a way to 

quantify this potential. 

 
 

5 CONCLUDING REMARKS 

A scalable genome encoding of basic SHRUTI networks has 

been produced. A genome constructed using the presented model 

was successful in growing neural connections in SHRUTI 

networks such that those networks were able to correctly answer 
all their test questions correctly. Due to the rule-instructed 

growth, the size of the genome is independent of that of the 

phenotype, i.e. a network representing a logic program. The 

model applies the reuse of sub-structure as used by Gruau and 

Kitano. The four rules depicted in figure 4 share some repeated 
conditions, but these are only encoded once in the genome. 

Encoding these rules separately would have resulted in repeated 

encoding of these conditions, thus reducing the compactness of 

the genome. 

The genome model proposed contributes towards two goals 
of neural-symbolic integration. For those interested in the 

practical application of neural-symbolic networks, a scalable 

means of representing them has been produced. With regards to 

developing a working model of logic representation in the 

human brain, this model is relevant because artificial 
development and neural-symbolic implementation both claim 

some degree of biological plausibility. The biologically plausible 

traits currently exhibited by the system as a whole include the  

indirect encoding and gradual development of the phenotype, the 

temporal synchrony and Hebbian learning employed by 
SHRUTI, and the U-shaped development observed in the change 

in fitness over time. However, one function that the current 

genome model lacks that would otherwise increase its biological 

plausibility further is the production of neurons. The current 

genome model only develops connections between neurons and 
not the neurons themselves. Biological development produces 

neurons and the genome model presented should eventually be 

updated to include rules for neuron production also. Cell division 

would be a suitable, biologically plausible means of 

implementing this. 
The model presented is the first step towards producing 

SHRUTI networks, and possibly other types of neural-symbolic 

network, using artificial development. The next stage is to 

attempt the production of these genomes using an evolutionary 

algorithm. The current fitness function only takes into account 
the number of questions a network can answer correctly. 

However, it should be adapted to also take into account a 

network’s potential to improve through further development. 

Successful evolution of these developmental genomes would 

contribute towards a means of producing artificial models of 
cognition that takes inspiration from the way cognitive structures 

emerge through natural evolution.  
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