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Evidence-Based Interpretations of PA

Bhupinder Singh Anand

Abstract. We show that Tarski’s inductive definitions admit
evidence-based interpretations of the first-order Peano Arith-
metic PA that allow us to define the satisfaction and truth of
the quantified formulas of PA constructively over the domain
N of the natural numbers in two essentially different ways:
(1) in terms of algorithmic verifiabilty; and (2) in terms of
algorithmic computability. We argue that the algorithmically
computable PA-formulas can provide a finitary interpretation
of PA over the domain N of the natural numbers from which
we may conclude that PA is consistent.

Keywords Algorithmic computability, algorithmic verifiability, Aris-

totle’s particularisation, atomic formulas, consistency, constructive,

decidability, domain, finitary, finite induction, first-order, formal

language, interpretation, natural numbers, numerals, Gödel, ω-

consistency, Peano Arithmetic PA, satisfaction, soundness, standard

interpretation, Tarski, truth.

1 Introduction

In this paper we seek to address one of the philosophical
challenges associated with accepting arithmetical propositions
as true under an interpretation—either axiomatically or on
the basis of subjective self-evidence—without any effective
methodology for objectively evidencing such acceptance1.

For instance, conventional wisdom accepts Alfred Tarski’s
definitions of the satisfiability and truth of the formulas of
a formal language under an interpretation2 and postulates
that, under the standard interpretation IPA(N, Standard) of
the first-order Peano Arithmetic PA3 over the domain N of
the natural numbers:

(i) The atomic formulas of PA can be assumed as decid-
able under IPA(N, Standard);

(ii) The PA axioms can be assumed to interpret as sat-
isfied/true under IPA(N, Standard);

(iii) the PA rules of inference—Generalisation and
Modus Ponens—can be assumed to preserve such sat-
isfaction/truth under IPA(N, Standard).

Standard interpretation of PA The standard inter-
pretation IPA(N, Standard) of PA over the domain N of
the natural numbers is the one in which the logical con-
stants have their ‘usual’ interpretations4 in Aristotle’s

1 For a brief recent review of such challenges, see [Fe06], [Fe08].
2 As detailed in Section 4.
3 We take this to be the first-order theory S defined in [Me64],
p.102.

4 We essentially follow the definitions in [Me64], p.49.

logic of predicates (which subsumes Aristotle’s particu-
larisation5), and6:

(a) the set of non-negative integers is the domain;
(b) the symbol [0] interprets as the integer 0;
(c) the symbol [′] interprets as the successor operation

(addition of 1);
(d) the symbols [+] and [⋆] interpret as ordinary addition

and multiplication;
(e) the symbol [=] interprets as the identity relation.

The axioms of first-order Peano Arithmetic (PA)

PA1 [(x1 = x2) → ((x1 = x3) → (x2 = x3))];
PA2 [(x1 = x2) → (x′

1 = x′
2)];

PA3 [0 6= x′
1];

PA4 [(x′
1 = x′

2) → (x1 = x2)];
PA5 [(x1 + 0) = x1];
PA6 [(x1 + x′

2) = (x1 + x2)′];
PA7 [(x1 ⋆ 0) = 0];
PA8 [(x1 ⋆ x′

2) = ((x1 ⋆ x2) + x1)];
PA9 For any well-formed formula [F (x)] of PA:

[F (0) → (((∀x)(F (x) → F (x′))) → (∀x)F (x))].

Generalisation in PA If [A] is PA-provable, then so
is [(∀x)A].

Modus Ponens in PA If [A] and [A → B] are PA-
provable, then so is [B].

We shall show that although the seemingly innocent and
self-evident assumption in (i) can, indeed, be justified, it
conceals an ambiguity whose impact on (ii) and (iii) is far-
reaching in significance and needs to be made explicit.

Reason: Tarski’s inductive definitions admit evidence-based
interpretations of PA that actually allow us to metamathe-
matically define the satisfaction and truth of the atomic (and,
ipso facto, quantified) formulas of PA constructively over N

in two essentially different ways as below, only one of which
is finitary7:

(1) in terms of algorithmic verifiabilty8;

(2) in terms of algorithmic computability9.

5 We define this important concept explicitly later in Section 2.1.
Loosely speaking, Aristotle’s particularisation is the assumption
that we may always interpret the formal expression ‘[(∃x)F (x)]’
of a formal language under an interpretation as ‘There exists an
object s in the domain of the interpretation such that F (s)’.

6 See [Me64], p.107.
7 ‘Finitary’ in the sense that “. . . there should be an algorithm
for deciding the truth or falsity of any mathematical statement”
. . . http://en.wikipedia.org/wiki/Hilbert’s program. For a brief re-
view of ‘finitism’ and ‘constructivity’ in the context of this paper
see [Fe08].

8 Section 3, Definition 1.
9 Section 3, Definition 2.

http://en.wikipedia.org/wiki/Hilbert's_program


Case 1 : We show in Section 4.2 that the algorithmically
verifiable PA-formulas admit an unusual, ‘instantiational’
Tarskian interpretation IPA(N, Instantiational) of PA over the
domain N of the PA numerals; and that this interpretation is
sound if, and only if, PA is ω-consistent.

Soundness (formal system): We define a formal system S
as sound under a Tarskian interpretation IS over a domain
D if, and only if, every theorem [T ] of S translates as ‘[T ] is
true under IS in D’.

Soundness (interpretation): We define a Tarskian inter-
pretation IS of a formal system S as sound over a domain D
if, and only if, S is sound under the interpretation IS over the
domain D.

Simple consistency: A formal system S is simply consistent
if, and only if, there is no S-formula [F (x)] for which both
[(∀x)F (x)] and [¬(∀x)F (x)] are S-provable.

ω-consistency: A formal system S is ω-consistent if, and only
if, there is no S-formula [F (x)] for which, first, [¬(∀x)F (x)]
is S-provable and, second, [F (a)] is S-provable for any given
S-term [a].

We further show that this interpretation can be viewed as a
formalisation of the standard interpretation IPA(N, Standard)

of PA over N ; in the sense that—under Tarski’s definitions—
IPA(N, Instantiational) is sound over N if, and only if,
IPA(N, Standard) is sound over N (as postulated in (ii) and
(iii) above).

Although the standard interpretation IPA(N, Standard) is
assumed to be sound over N (as expressed by (ii) and (iii)
above), it cannot claim to be finitary since it it is not known
to lead to a finitary justification of the truth—under Tarski’s
definitions—of the Axiom Schema of (finite) Induction of PA
in N from which we may conclude—in an intuitionistically
unobjectionable manner—that PA is consistent10.

We note that Gerhard Gentzen’s ‘constructive’11 consistency
proof for formal number theory12 is debatably finitary13, since
it involves a Rule of Infinite Induction that appeals to the
properties of transfinite ordinals.

Case 2 : We show further in Section 4.3 that the algo-
rithmically computable PA-formulas admit an ‘algorithmic’
Tarskian interpretation IPA(N, Algorithmic) of PA over N .

We then argue in Section 5 that IPA(N, Algorithmic) is es-
sentially different from IPA(N, Instantiational) since the PA-
axioms—including the Axiom Schema of (finite) Induction—
are algorithmically computable as satisfied/true under the
standard interpretation of PA over N , and the PA rules
of inference preserve algorithmically computable satisfiabil-
ity/truth under the interpretation14.

We conclude from the above that the interpretation
IPA(N, Algorithmic) is finitary, and hence sound over N15.

We further conclude from the soundness of the interpreta-
tion IPA(N, Algorithmic) over N that PA is consistent16.

10 The possibility/impossibility of such justification was the subject
of the famous Poincaré-Hilbert debate. See [Hi27], p.472; also
[Br13], p.59; [We27], p.482; [Pa71], p.502-503.

11 In the sense highlighted by Elliott Mendelson in [Me64], p.261.
12 cf. [Me64], p258.
13 See for instance http://en.wikipedia.org/wiki/Hilbert’s program.
14 Section 5.2, Theorem 4.
15 Section 5.3, Theorem 5.
16 Section 5.3, Theorem 6.

2 Interpretation of an arithmetical
language in terms of the computations of
a simple functional language

We begin by noting that we can, in principle, define17 the clas-
sical ‘satisfaction’ and ‘truth’ of the formulas of a first order
arithmetical language, such as PA, verifiably under an inter-
pretation using as evidence18 the computations of a simple
functional language.

Such definitions follow straightforwardly for the atomic for-
mulas of the language (i.e., those without the logical constants
that correspond to ‘negation’, ‘conjunction’, ‘implication’ and
‘quantification’) from the standard definition of a simple func-
tional language19.

Moreover, it follows from Alfred Tarski’s seminal 1933 pa-
per on the concept of truth in the languages of the deductive
sciences20 that the ‘satisfaction’ and ‘truth’ of those formulas
of a first-order language which contain logical constants can
be inductively defined, under an interpretation, in terms of
the ‘satisfaction’ and ‘truth’ of the interpretations of only the
atomic formulas of the language.

Hence the ‘satisfaction’ and ‘truth’ of those formulas (of an
arithmetical language) which contain logical constants can,
in principle, also be defined verifiably under an interpretation
using as evidence the computations of a simple functional
language.

We show in Section 4 that this is indeed the case for PA
under its standard interpretation IPA(N, Standard), when this
is explicitly defined as in Section 5.

We show, moreover, that we can further define ‘algorith-
mic truth’ and ‘algorithmic falsehood’ under IPA(N, Standard)

such that the PA axioms interpret as always algorithmically
true, and the rules of inference preserve algorithmic truth,
over the domain N of the natural numbers.

2.1 The definitions of ‘algorithmic truth’
and ‘algorithmic falsehood’ under
IPA(N, Standard) are not symmetric with

respect to ‘truth’ and ‘falsehood’ under
IPA(N, Standard)

However, the definitions of ‘algorithmic truth’ and ‘algorith-
mic falsehood’ under IPA(N, Standard) are not symmetric with
respect to classical (verifiable) ‘truth’ and ‘falsehood’ under
IPA(N, Standard).

For instance, if a formula [(∀x)F (x)] of an arithmetic
is algorithmically true under an interpretation (such as
IPA(N, Standard)), then we may conclude that there is an algo-
rithm that, for any given numeral [a], provides evidence that
the formula [F (a)] is algorithmically true under the interpre-
tation.

In other words, there is an algorithm that provides evidence
that the interpretation F ∗(a) of [F (a)] holds in N for any
given natural number a.

Notation: We use enclosing square brackets as in ‘[F (x)]’
to indicate that the expression inside the brackets is to be

17 Formal definitions are given in Section 4.
18 [Mu91].
19 Such as, for instance, that of a deterministic Turing machine

([Me64], pp.229-231) based essentially on Alan Turing’s seminal
1936 paper on computable numbers ([Tu36]).

20 [Ta33].

http://en.wikipedia.org/wiki/Hilbert's_program


treated as denoting a formal expression (formal string) of a
formal language. We use an asterisk as in ‘F ∗(x)’ to indicate
the asterisked expression F ∗(x) is to be treated as denoting
the interpretation of the formula [F (x)] in the corresponding
domain of the interpretation.

Defining the term ‘hold’: We define the term ‘hold’—when
used in connection with an interpretation of a formal language
L and, more specifically, with reference to the computations of
a simple functional language associated with the atomic for-
mulas of the language L—explicitly in Section 4; the aim being
to avoid appealing to the classically subjective (and existen-
tial) connotation implicitly associated with the term under an
implicitly defined standard interpretation of an arithmetic21.

However, if a formula [(∀x)F (x)] of an arithmetic is algo-
rithmically false under an interpretation, then we can only
conclude that there is no algorithm that, for any given natu-
ral number a, can provide evidence whether the interpretation
F ∗(a) holds or not in N .

We cannot conclude that there is a numeral [a] such that
the formula [F (a)] is algorithmically false under the interpre-
tation; nor can we conclude that there is a natural number b
such that F ∗(b) does not hold in N .

Such a conclusion would require:

(i) either some additional evidence that will verify for some
assignment of numerical values to the free variables of [F ] that
the corresponding interpretation F ∗ does not hold22;

(ii) or the additional assumption that either Aristotle’s
particularisation holds over the domain of the interpretation
(as is implicitly presumed under the standard interpretation
of PA over N) or, equivalently, that the arithmetic is ω-
consistent23.

Aristotle’s particularisation This holds that from a meta-
assertion such as:

‘It is not the case that: For any given x, P ∗(x) does not
hold’,

usually denoted symbolically by ‘¬(∀x)¬P ∗(x)’, we may al-
ways validly infer in the classical, Aristotlean, logic of predi-
cates24 that:

‘There exists an unspecified x such that P ∗(x) holds’,

usually denoted symbolically by ‘(∃x)P ∗(x)’.

The significance of Aristotle’s particularisation for
the first-order predicate calculus: We note that in a for-
mal language the formula ‘[(∃x)P (x)]’ is an abbreviation for
the formula ‘[¬(∀x)¬P (x)]’. The commonly accepted interpre-
tation of this formula—and a fundamental tenet of classical
logic unrestrictedly adopted as intuitively obvious by stan-
dard literature25 that seeks to build upon the formal first-
order predicate calculus—tacitly appeals to Aristotlean par-
ticularisation.

However, L. E. J. Brouwer had noted in his seminal 1908 pa-
per on the unreliability of logical principles26 that the com-
monly accepted interpretation of this formula is ambiguous if
interpretation is intended over an infinite domain.

21 As, for instance, in [Go31].
22 Essentially reflecting Brouwer’s objection to the assumption of

Aristotle’s particularisation over an infinite domain.
23 An assumption explicitly introduced by Gödel in [Go31].
24 [HA28], pp.58-59.
25 See [Hi25], p.382; [HA28], p.48; [Sk28], p.515; [Go31], p.32.;

[Kl52], p.169; [Ro53], p.90; [BF58], p.46; [Be59], pp.178 & 218;
[Su60], p.3; [Wa63], p.314-315; [Qu63], pp.12-13; [Kn63], p.60;
[Co66], p.4; [Me64], p.52(ii); [Nv64], p.92; [Li64], p.33; [Sh67],
p.13; [Da82], p.xxv; [Rg87], p.xvii; [EC89], p.174; [Mu91]; [Sm92],
p.18, Ex.3; [BBJ03], p.102; [Cr05], p.6.

26 [Br08].

Brouwer essentially argued that, even supposing the formula
‘[P (x)]’ of a formal Arithmetical language interprets as an
arithmetical relation denoted by ‘P ∗(x)’, and the formula
‘[¬(∀x)¬P (x)]’ as the arithmetical proposition denoted by
‘¬(∀x)¬P ∗(x)’, the formula ‘[(∃x)P (x)]’ need not interpret
as the arithmetical proposition denoted by the usual abbre-
viation ‘(∃x)P ∗(x)’; and that such postulation is invalid as a
general logical principle in the absence of a means for con-
structing some putative object a for which the proposition
P ∗(a) holds in the domain of the interpretation.

Hence we shall follow the convention that the assumption
that ‘(∃x)P ∗(x)’ is the intended interpretation of the for-
mula ‘[(∃x)P (x)]’—which is essentially the assumption that
Aristotle’s particularisation holds over the domain of the
interpretation—must always be explicit.

The significance of Aristotle’s particularisation for
PA: In order to avoid intuitionistic objections to his rea-
soning, Kurt Gödel introduced the syntactic property of ω-
consistency as an explicit assumption in his formal reasoning
in his seminal 1931 paper on formally undecidable arithmeti-
cal propositions27.

Gödel explained at some length28 that his reasons for intro-
ducing ω-consistency explicitly was to avoid appealing to the
semantic concept of classical arithmetical truth in Aristotle’s
logic of predicates (which presumes Aristotle’s particularisa-
tion).

It is straightforward to show that the two concepts are meta-
mathematically equivalent in the sense that, if PA is consis-
tent, then PA is ω-consistent if, and only if, Aristotle’s par-
ticularisation holds under the standard interpretation of PA
over N .

3 Defining algorithmic verifiability and
algorithmic computability

The asymmetry of Section 2.1 suggests the following two con-
cepts29:

Definition 1 Algorithmic verifiability:

An arithmetical formula [(∀x)F (x)] is algorithmically verifi-
able as true under an interpretation if, and only if, for any
given numeral [a], we can define an algorithm which provides
evidence that [F (a)] interprets as true under the interpreta-
tion.

Tarskian interpretation of an arithmetical language veri-
fiably in terms of the computations of a simple functional
language We show in Section 4 that the ‘algorithmic verifiabil-
ity’ of the formulas of a formal language which contain logical
constants can be inductively defined under an interpretation in
terms of the ‘algorithmic verifiability’ of the interpretations of the
atomic formulas of the language; further, that the PA-formulas
are decidable under the standard interpretation of PA over N if,
and only if, they are algorithmically verifiable under the interpre-
tation (Corollary 2).

Definition 2 Algorithmic computability:

An arithmetical formula [(∀x)F (x)] is algorithmically com-
putable as true under an interpretation if, and only if, we can
define an algorithm that, for any given numeral [a], provides
evidence that [F (a)] interprets as true under the interpreta-
tion.

27 [Go31], p.23 and p.28.
28 In his introduction on p.9 of [Go31].
29 The distinction sought to be made between algorithmic verifia-

bilty and algorithmic computability can be viewed as reflecting
in number theory the similar distinction in analysis between, for
instance, continuous functions ([Ru53], p.65, §4.5) and uniformly
continuous functions ([Ru53], p.65, §4.13); or that between con-
vergent sequences ([Ru53], p.65, §7.1) and uniformly convergent
sequences ([Ru53], p.65, §7.7).



Tarskian interpretation of an arithmetical language algo-
rithmically in terms of the computations of a simple func-
tional language We show in Section 4 that the ‘algorithmic
computability’ of the formulas of a formal language which con-
tain logical constants can also be inductively defined under an
interpretation in terms of the ‘algorithmic computability’ of the
interpretations of the atomic formulas of the language; further,
that the PA-formulas are decidable under an algorithmic inter-
pretation of PA over N if, and only if, they are algorithmically
computable under the interpretation .

We now show that the above concepts are well-defined un-
der the standard interpretation of PA over N .

4 The implicit Satisfaction condition in
Tarski’s inductive assignment of
truth-values under an interpretation

We first consider the significance of the implicit Satisfaction
condition in Tarski’s inductive assignment of truth-values un-
der an interpretation.

We note that—essentially following standard expositions30

of Tarski’s inductive definitions on the ‘satisfiability’ and
‘truth’ of the formulas of a formal language under an
interpretation—we can define:

Definition 3 If [A] is an atomic formula [A(x1, x2, . . . , xn)]
of a formal language S, then the denumerable sequence
(a1, a2, . . .) in the domain D of an interpretation IS(D) of
S satisfies [A] if, and only if:

(i) [A(x1, x2, . . . , xn)] interprets under IS(D) as a unique
relation A∗(x1, x2, . . . , xn) in D for any witness WD of
D;

(ii) there is a Satisfaction Method, SM(IS(D)) that
provides objective evidence31 by which any witness
WD of D can objectively define for any atomic for-
mula [A(x1, x2, . . . , xn)] of S, and any given denumer-
able sequence (b1, b2, . . .) of D, whether the proposition
A∗(b1, b2, . . . , bn) holds or not in D;

(iii) A∗(a1, a2, . . . , an) holds in D for any WD.

Witness: From a constructive perspective, the existence of a
‘witness’ as in (i) above is implicit in the usual expositions of
Tarski’s definitions.

Satisfaction Method: From a constructive perspective, the
existence of a Satisfaction Method as in (ii) above is also
implicit in the usual expositions of Tarski’s definitions.

A constructive perspective: We highlight the word ‘de-
fine’ in (ii) above to emphasise the constructive perspective
underlying this paper; which is that the concepts of ‘satisfac-
tion’ and ‘truth’ under an interpretation are to be explic-
itly viewed as objective assignments by a convention that
is witness-independent. A Platonist perspective would sub-
stitute ‘decide’ for ‘define’, thus implicitly suggesting that
these concepts can ‘exist’, in the sense of needing to be dis-
covered by some witness-dependent means—eerily akin to a
‘revelation’—if the domain D is N .

We can now inductively assign truth values of ‘satisfaction’,
‘truth’, and ‘falsity’ to the compound formulas of a first-order
theory S under the interpretation IS(D) in terms of only the
satisfiability of the atomic formulas of S over D as usual32:

30 cf. [Me64], p.51.
31 In the sense of [Mu91].
32 See [Me64], p.51; [Mu91].

Definition 4 A denumerable sequence s of D satisfies [¬A]
under IS(D) if, and only if, s does not satisfy [A];

Definition 5 A denumerable sequence s of D satisfies [A →
B] under IS(D) if, and only if, either it is not the case that s
satisfies [A], or s satisfies [B];

Definition 6 A denumerable sequence s of D satisfies
[(∀xi)A] under IS(D) if, and only if, given any denumerable
sequence t of D which differs from s in at most the i’th com-
ponent, t satisfies [A];

Definition 7 A well-formed formula [A] of D is true under
IS(D) if, and only if, given any denumerable sequence t of D,
t satisfies [A];

Definition 8 A well-formed formula [A] of D is false under
IS(D) if, and only if, it is not the case that [A] is true under
IS(D).

It follows that33:

Theorem 1 (Satisfaction Theorem) If, for any interpreta-
tion IS(D) of a first-order theory S, there is a Satisfaction
Method SM(IS(D)) which holds for a witness WD of D, then:

(i) The ∆0 formulas of S are decidable as either true or
false over D under IS(D);

(ii) If the ∆n formulas of S are decidable as either true
or as false over D under IS(D), then so are the ∆(n+1)
formulas of S.

Proof It follows from the above definitions that:

(a) If, for any given atomic formula [A(x1, x2, . . . , xn)] of
S, it is decidable by WD whether or not a given denumer-
able sequence (a1, a2, . . .) of D satisfies [A(x1, x2, . . . , xn)]
in D under IS(D) then, for any given compound formula
[A1(x1, x2, . . . , xn)] of S containing any one of the logical
constants ¬,→, ∀, it is decidable by WD whether or not
(a1, a2, . . .) satisfies [A

1(x1, x2, . . . , xn)] in D under IS(D);

(b) If, for any given compound formula [Bn(x1, x2, . . . , xn)]
of S containing n of the logical constants ¬,→, ∀, it is
decidable by WD whether or not a given denumerable
sequence (a1, a2, . . .) of D satisfies [Bn(x1, x2, . . . , xn)] in
D under IS(D) then, for any given compound formula

[B(n+1)(x1, x2, . . . , xn)] of S containing n + 1 of the logi-
cal constants ¬,→, ∀, it is decidable by WD whether or not
(a1, a2, . . .) satisfies [B

(n+1)(x1, x2, . . . , xn)] inD under IS(D);

We thus have that:

(c) The ∆0 formulas of S are decidable by WD as either
true or false over D under IS(D);

(d) If the ∆n formulas of S are decidable by WD as either
true or as false over D under IS(D), then so are the ∆(n+1)
formulas of S. 2

In other words, if the atomic formulas of of S interpret un-
der IS(D) as decidable with respect to the Satisfaction Method
SM(IS(D)) by a witness WD over some domain D, then the

33 cf. [Me64], pp.51-53.



propositions of S (i.e., the Πn and Σn formulas of S) also in-
terpret as decidable with respect to SM(IS(D)) by the witness
WD over D.

We now consider the application of Tarski’s definitions to
various interpretations of first-order Peano Arithmetic PA.

4.1 The standard interpretation of PA over
the domain N of the natural numbers

The standard interpretation IPA(N, Standard) of PA over the
domain N of the natural numbers is obtained if, in IS(D):

(a) we define S as PA with standard first-order predicate
calculus as the underlying logic34;
(b) we define D as the set N of natural numbers;
(c) for any atomic formula [A(x1, x2, . . . , xn)] of
PA and sequence (a1, a2, . . . , an) of N , we take
‖SATCON(IPA(N))‖ as:

‖A∗(a∗
1, a

∗
2, . . . , a

∗
n) holds in N and, for any given

sequence (b∗1, b
∗
2, . . . , b

∗
n) of N , the proposition

A∗(b∗1, b
∗
2, . . . , b

∗
n) is decidable in N‖;

(d) we define the witness W(N, Standard) informally as
the ‘mathematical intuition’ of a human intelligence for
whom, classically, ‖SATCON(IPA(N))‖ has been implic-
itly accepted as objectively ‘decidable’ in N ;

We shall show that such acceptance is justified, but
needs to be made explicit since:

Lemma 1 A∗(x1, x2, . . . , xn) is both algorithmically
verifiable and algorithmically computable in N by
W(N, Standard).

Proof (i) It follows from the argument in Theorem 2
(below) that A∗(x1, x2, . . . , xn) is algorithmically verifi-
able in N by W(N, Standard).

(ii) It follows from the argument in Theorem 3 (below)
that A∗(x1, x2, . . . , xn) is algorithmically computable in
N by W(N, Standard). The lemma follows. 2

Now, although it is not immediately obvious from
the standard interpretation of PA over N which
of (i) or (ii) may be taken for explicitly deciding
‖SATCON(IPA(N))‖ by the witness W(N, Standard),

we shall show in Section 4.2 that (i) is consistent with
(e) below; and in Section 4.3 that (ii) is inconsistent
with (e). Thus the standard interpretation of PA over
N implicitly presumes (i).

(e) we postulate that Aristotle’s particularisation holds
over N35.

Clearly, (e) does not form any part of Tarski’s inductive
definitions of the satisfaction, and truth, of the formulas of
PA under the above interpretation. Moreover, its inclusion
makes IPA(N, Standard) extraneously non-finitary36.

We note further that if PA is ω-inconsistent, then Aristo-
tle’s particularisation does not hold over N , and the interpre-
tation IPA(N, Standard) is not sound over N .

34 Where the string [(∃ . . .)] is defined as—and is to be treated as
an abbreviation for—the string [¬(∀ . . .)¬]. We do not consider
the case where the underlying logic is Hilbert’s formalisation of
Aristotle’s logic of predicates in terms of his ǫ-operator ([Hi27],
pp.465-466).

35 Hence a PA formula such as [(∃x)F (x)] interprets under
IPA(N, Standard) as ‘There is some natural number n such that

F (n) holds in N .
36 [Br08].

4.2 An instantiational interpretation of PA
over the domain N of the PA numerals

We next consider an instantiational interpretation
IPA(N, Instantiational) of PA over the domain N of the
PA numerals37 where:

(a) we define S as PA with standard first-order predicate
calculus as the underlying logic;
(b) we define D as the set N of PA numerals;
(c) for any atomic formula [A(x1, x2, . . . , xn)] of PA and
any sequence [(a1, a2, . . . , an)] of PA numerals in N, we
take ‖SATCON(IPA(N))‖ as:

‖[A(a1, a2, . . . , an)] is provable in PA and, for any
given sequence of numerals [(b1, b2, . . . , bn)] of PA,
the formula [A(b1, b2, . . . , bn)] is decidable as either
provable or not provable in PA‖;

(d) we define the witness W(N, Instantiational) as the
meta-theory MPA of PA.

Lemma 2 [A(x1, x2, . . . , xn)] is always algorithmically
verifiable in PA by W(N, Instantiational).

Proof It follows from Gödel’s definition of the primitive
recursive relation xBy38—where x is the Gödel number
of a proof sequence in PA whose last term is the PA for-
mula with Gödel-number y—that, if [A(x1, x2, . . . , xn)]
is an atomic formula of PA, MPA can algorithmically
verify for any given sequence [(b1, b2, . . . , bn)] of PA nu-
merals which one of the PA formulas [A(b1, b2, . . . , bn)]
and [¬A(b1, b2, . . . , bn)] is necessarily PA-provable. 2

Now, if PA is consistent but not ω-consistent, then there is
a Gödelian formula [R(x)]39 such that:

(i) [(∀x)R(x)] is not PA-provable;
(ii) [¬(∀x)R(x)] is PA-provable;
(iii) for any given numeral [n], the formula [R(n)] is PA-
provable.

However, if IPA(N, Instantiational) is sound over N, then (ii)
implies contradictorily that it is not the case that, for any
given numeral [n], the formula [R(n)] is PA-provable.

It follows that if IPA(N, Instantiational) is sound over N, then
PA is ω-consistent and, ipso facto, Aristotle’s particularisation
must hold over N .

Moreover, if PA is consistent, then every PA-provable for-
mula interprets as true under some sound interpretation of
PA over N . Hence MPA can effectively decide whether, for
any given sequence of natural numbers (b∗1, b

∗
2, . . . , b

∗
n) in N ,

the proposition A∗(b∗1, b
∗
2, . . . , b

∗
n) holds or not in N .

It follows that IPA(N, Instantiational) can be viewed as a
constructive formalisation of the ‘standard’ interpretation
IPA(N, Standard) of PA in which we do not need to non-
constructively assume that Aristotle’s particularisation holds
over N .

37 The raison d’être, and significance, of such interpreta-
tion is outlined in this short unpublished note accessible at
http://alixcomsi.com/8 Meeting Wittgenstein requirement 1000.pdf.

38 [Go31], p. 22(45).
39 Gödel constructively defines, and refers to, this formula by its

Gödel number ‘r’: see [Go31], p.25, Eqn.(12);.

http://alixcomsi.com/8_Meeting_Wittgenstein_requirement_1000.pdf


4.3 An algorithmic interpretation of PA
over the domain N of the natural
numbers

We finally consider the purely algorithmic interpretation
IPA(N, Algorithmic) of PA over the domain N of the natural
numbers where:

(a) we define S as PA with standard first-order predicate
calculus as the underlying logic;
(b) we define D as the set N of natural numbers;
(c) for any atomic formula [A(x1, x2, . . . , xn)] of PA and
any sequence (a1, a2, . . . , an) of natural numbers in N ,
we take ‖SATCON(IPA(N))‖ as:

‖A∗(a∗
1, a

∗
2, . . . , a

∗
n) holds in N and, for any given

sequence (b∗1, b
∗
2, . . . , b

∗
n) of N , the proposition

A∗(b∗1, b
∗
2, . . . , b

∗
n) is decidable as either holding or

not holding in N‖;

(d) we define the witness W(N, Algorithmic) as any
simple functional language that gives evidence that
‖SATCON(IPA(N))‖ is always effectively decidable inN :

Lemma 3 A∗(x1, x2, . . . , xn) is always algorithmically com-
putable in N by W(N, Algorithmic).

Proof If [A(x1, x2, . . . , xn)] is an atomic formula of PA then,
for any given sequence of numerals [b1, b2, . . . , bn], the PA
formula [A(b1, b2, . . . , bn)] is an atomic formula of the form
[c = d], where [c] and [d] are atomic PA formulas that denote
PA numerals. Since [c] and [d] are recursively defined formulas
in the language of PA, it follows from a standard result40 that,
if PA is consistent, then [c = d] is algorithmically computable
as either true or false in N . In other words, if PA is consistent,
then [A(x1, x2, . . . , xn)] is algorithmically computable (since
there is an algorithm that, for any given sequence of numerals
[b1, b2, . . . , bn], will give evidence whether [A(b1, b2, . . . , bn)]
interprets as true or false in N . The lemma follows. 2

It follows that IPA(N, Algorithmic) is an algorithmic formu-
lation of the ‘standard’ interpretation of PA over N in which
we do not extraneously assume either that Aristotle’s par-
ticularisation holds over N or, equivalently, that PA is ω-
consistent.

5 Formally defining the standard
interpretation of PA over N

constructively

It follows from the analysis of the applicability of Tarski’s
inductive definitions of ‘satisfiability’ and ‘truth’ in Section
4 that we can formally define the standard interpretation
IPA(N, Standard) of PA constructively where:

(a) we define S as PA with standard first-order predicate
calculus as the underlying logic;

(b) we define D as N ;

(c) we take SM(IPA(N, Standard)) as any simple func-
tional language.

We note that:

40 For any natural numbers m, n, if m 6= n, then PA proves [¬(m =
n)] ([Me64], p.110, Proposition 3.6). The converse is obviously
true.

Theorem 2 The atomic formulas of PA are algorithmically
verifiable under the standard interpretation IPA(N, Standard).

Proof If [A(x1, x2, . . . , xn)] is an atomic formula of PA
then, for any given denumerable sequence of numerals
[b1, b2, . . .], the PA formula [A(b1, b2, . . . , bn)] is an atomic
formula of the form [c = d], where [c] and [d] are atomic PA
formulas that denote PA numerals. Since [c] and [d] are re-
cursively defined formulas in the language of PA, it follows
from a standard result that, if PA is consistent, then [c = d]
interprets as the proposition c = d which either holds or not
for a witness WN in N .

Hence, if PA is consistent, then [A(x1, x2, . . . , xn)] is al-
gorithmically verifiable since, for any given denumerable se-
quence of numerals [b1, b2, . . .], we can define an algorithm
that provides evidence that the PA formula [A(b1, b2, . . . , bn)]
is decidable under the interpretation.

The theorem follows. 2

It immediately follows that:

Corollary 1 The ‘satisfaction’ and ‘truth’ of PA formulas
containing logical constants can be defined under the standard
interpretation of PA over N in terms of the evidence provided
by the computations of a simple functional language.

Corollary 2 The PA-formulas are decidable under the stan-
dard interpretation of PA over N if, and only if, they are
algorithmically verifiable under the interpretation.

5.1 Defining ‘algorithmic truth’ under the
standard interpretation of PA over N

Now we note that, in addition to Theorem 2:

Theorem 3 The atomic formulas of PA are algorith-
mically computable under the standard interpretation
IPA(N, Standard).

Proof If [A(x1, x2, . . . , xn)] is an atomic formula of PA then
we can define an algorithm that, for any given denumerable
sequence of numerals [b1, b2, . . .], provides evidence whether
the PA formula [A(b1, b2, . . . , bn)] is true or false under the
interpretation.

The theorem follows. 2

This suggests the following definitions:

Definition 9 A well-formed formula [A] of PA is algorithmi-
cally true under IPA(N, Standard) if, and only if, there is an
algorithm which provides evidence that, given any denumer-
able sequence t of N , t satisfies [A];

Definition 10 A well-formed formula [A] of PA is algorith-
mically false under IPA(N, Standard) if, and only if, it is not
algorithmically true under IPA(N).

5.2 The PA axioms are algorithmically
computable

The significance of defining ‘algorithmic truth’ under
IPA(N, Standard) as above is that:



Lemma 4 The PA axioms PA1 to PA8 are algorithmically
computable as algorithmically true over N under the inter-
pretation IPA(N, Standard).

Proof Since [x + y], [x ⋆ y], [x = y], [x′] are defined recur-
sively41, the PA axioms PA1 to PA8 interpret as recursive
relations that do not involve any quantification. The lemma
follows straightforwardly from Definitions 3 to 8 in Section 4
and Theorem 2. 2

Lemma 5 For any given PA formula [F (x)], the Induction
axiom schema [F (0) → (((∀x)(F (x) → F (x′))) → (∀x)F (x))]
interprets as algorithmically true under IPA(N, Standard).

Proof By Definitions 3 to 10:

(a) If [F (0)] interprets as algorithmically false under
IPA(N, Standard) the lemma is proved.

Since [F (0) → (((∀x)(F (x) → F (x′))) → (∀x)F (x))]
interprets as algorithmically true if, and only if,
either [F (0)] interprets as algorithmically false or
[((∀x)(F (x) → F (x′))) → (∀x)F (x)] interprets as al-
gorithmically true.

(b) If [F (0)] interprets as algorithmically true and
[(∀x)(F (x) → F (x′))] interprets as algorithmically false
under IPA(N, Standard), the lemma is proved.

(c) If [F (0)] and [(∀x)(F (x) → F (x′))] both interpret
as algorithmically true under IPA(N, Standard), then by
Definition 9 there is an algorithm which, for any natural
number n, will give evidence that the formula [F (n) →
F (n′)] is true under IPA(N, Standard).

Since [F (0)] interprets as algorithmically true under
IPA(N, Standard), it follows that there is an algorithm
which, for any natural number n, will give evidence that
the formula [F (n)] is true under the interpretation.

Hence [(∀x)F (x)] is algorithmically true under
IPA(N, Standard).

Since the above cases are exhaustive, the lemma follows.2

The Poincaré-Hilbert debate: We note that Lemma 5 ap-
pears to settle the Poincaré-Hilbert debate42 in the latter’s
favour. Poincaré believed that the Induction Axiom could not
be justified finitarily, as any such argument would necessarily
need to appeal to infinite induction. Hilbert believed that a
finitary proof of the consistency of PA was possible.

Lemma 6 Generalisation preserves algorithmic truth under
IPA(N, Standard).

Proof The two meta-assertions:

‘[F (x)] interprets as algorithmically true under
IPA(N, Standard)

43’

and

‘[(∀x)F (x)] interprets as algorithmically true under
IPA(N, Standard)’

41 cf. [Go31], p.17.
42 See [Hi27], p.472; also [Br13], p.59; [We27], p.482; [Pa71], p.502-

503.
43 See Definition 7

both mean:

[F (x)] is algorithmically computable as always true un-
der IPA(N), Standard). 2

It is also straightforward to see that:

Lemma 7 Modus Ponens preserves algorithmic truth under
IPA(N, Standard). 2

We thus have that:

Theorem 4 The axioms of PA are always algorithmically
true under the interpretation IPA(N, Standard), and the rules
of inference of PA preserve the properties of algorithmic sat-
isfaction/truth under IPA(N, Standard)

44. 2

5.3 The interpretation IPA(N, Algorithmic) of

PA over N is sound

We conclude from Section 4.3 and Section 5.2 that there is
an algorithmic interpretation IPA(N, Algorithmic) of PA over
N such that:

Theorem 5 The interpretation IPA(N, Algorithmic) of PA is
sound over N .

Proof It follows immediately from Theorem 4 that the
axioms of PA are always true under the interpretation
IPA(N, Algorithmic), and the rules of inference of PA preserve
the properties of satisfaction/truth under IPA(N, Algorithmic).
2

We thus have a finitary proof that:

Theorem 6 PA is consistent. 2

6 Conclusion

We have shown that although conventional wisdom is justified
in assuming that the quantified arithmetical propositions of
the first order Peano Arithmetic PA are constructively decid-
able under the standard interpretation of PA over the domain
N of the natural numbers, the assumption does not address—
and implicitly conceals—a significant ambiguity that needs to
be made explicit.

Reason: Tarski’s inductive definitions admit evidence-based
interpretations of the first-order Peano Arithmetic PA that al-
low us to define the satisfaction and truth of the quantified
formulas of PA constructively over N in two essentially dif-
ferent ways.

First in terms of algorithmic verifiabilty. We show that
this allows us to define a formal instantiational interpreta-
tion IPA(N, Instantiational) of PA over the domain N of the PA
numerals that is sound (i.e. PA theorems interpret as true
in N) if, and only if, the standard interpretation of PA over
N—which is not known to be finitary—is sound.

Second in terms of algorithmic computability. We show that
this allows us to define a finitary algorithmic interpretation
IPA(N, Algorithmic) of PA over N which is sound, and so we
may conclude that PA is consistent.

44 Without appeal, moreover, to Aristotle’s particularisation.
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Machine Intention

Don Berkich 1

Abstract. Skeptics find the thought that a robot can act of its own

accord puzzling: Why should we think that a mere artifact, no matter

how complicated, could ever have the capacity to act of its own ac-

cord given that its purpose and function is completely determined by

its design specification? That is, why should we think that any such

creation could be more than a mere cog in its causal environment?

The skeptic’s intuition is that machine agency is deeply incompat-

ible with machine-hood in just the way it is not with person-hood.

Thus the actions of, say, a situated robot like the Mars rovers cannot

be more than a mere extension of the roboticist’s agency inasmuch as

the robot’s design tethers it to the roboticist’s intentions. In this talk

I delve into the strongest version of the skeptical argument I’ve been

able to make out so as to explore the roboticist’s challenge.

Introduction

It can be argued that there exists a counterpart to the distinction be-

tween original intentionality and derived intentionality in agency:

Given its design specification, a machine’s agency is at most derived

from its designer’s original agency, even if the machine’s resulting

behavior sometimes surprises or dismays the designer. The argument

for drawing this distinction hinges on the notion that intentions are

necessarily conferred on machines by their designers’ ambitions. To

be sure, this is a decidedly negative conclusion for the prospects of

strong artificial intelligence.

In this paper I wish to turn the tables by dismantling the strongest

argument I can locate in the philosophical literature against the pos-

sibility of original machine agency, with the following caveat. The

artificial intelligence (AI) crowd, if I may, tends to dismiss the phi-

losophy of mind crowd’s demands as unreasonable in light of the

range of highly sophisticated behaviors currently demonstrated by

the most advanced robotic systems. The mind crowd’s objections, it

is thought, result from an unfortunate lack of technical sophistica-

tion which leads to a failure to grasp the full import of the roboti-

cists’ achievements. The mind crowd’s response is to point out that

sophisticated behavior alone is not a sufficient condition on full-bore

mentality: Thus John Searle’s article in the February 23, 2011 issue

of the Wall Street Journal is aptly entitled, ”Watson Doesn’t Know It

Won on Jeopardy!” I think it a mistake for the AI crowd to dismiss

the mind crowd’s worries without very good reasons. By keeping the

AI crowd’s feet to the fire, the mind crowd is providing a welcome

skeptical service. That said, sometimes there are very good reasons

for the AI crowd to push back against the mind crowd; here I provide

a specific and important case-in-point so as to illuminate some of the

pitfalls in their complicated relationship.

In general, skeptical arguments against original machine agency

may be stated in the Modus Tollens form:

1 Texas AM University-Corpus Christi, Corpus Christi, Texas, email:
don.berkich@tamucc.edu

1. If X is an original agent, then X must have property P.

2. No machine can have property P.

3. Therefore, no machine can be an original agent. 1&2

The force of each skeptical argument depends, of course, on the

property P: The more clearly a given P is such as to be required by

original agency but excluded by mechanism the better the skeptic’s

case. By locating property P in intention formation, Lynne Rudder

Baker [2] identifies a particularly potent skeptical argument against

original machine agency, if it succeeds. I proceed as follows. In the

first section I set out and refine Baker’s challenge. In the second sec-

tion I propose a measured response. In the third and final section I

use the measured response to draw attention to some of the excesses

on both sides.

The Mind Crowd’s Challenge: Baker’s Skeptical
Argument

Roughly put, Baker argues that machines cannot act since actions

require intentions, intentions require a first-person perspective, and

no amount of third-person information can bridge the gap to a first-

person perspective. Baker [2, p. 157] usefully sets her own argument

out:

Argument A

1. In order to be an agent, an entity must be able to formulate inten-

tions.

2. In order to formulate intentions, an entity must have an irreducible

first-person perspective.

3. Machines lack an irreducible first-person perspective.

4. Therfore, machines are not agents. 1,2&3

Baker has, however, failed to state her argument correctly. It is not

just that machines are not (original) agents or do not happen presently

to be agents, since that allows that at some point in the future ma-

chines may be agents or at least that machines can in principle be

agents. Baker’s conclusion is actually much stronger. As she outlines

her own project, ”[w]ithout denying that artificial models of intelli-

gence may be useful for suggesting hypotheses to psychologists and

neurophysiologists, I shall argue that there is a radical limitation to

applying such models to human intelligence. And this limitation is

exactly the reason why computers can’t act.” [2, p. 157]

Note that ’computers can’t act’ is substantially stronger than ’ma-

chines are not agents’. Baker wants to argue that it is impossible for

machines to act, which is presumably more difficult than arguing that

we don’t at this time happen to have the technical sophistication to

create machine agents. Revising Baker’s extracted argument to bring

it in line with her proposed conclusion, however, requires some cor-

responding strengthening of premise A.3, as follows:



Argument B

1. In order to be an original agent, an entity must be able to formulate

intentions.

2. In order to formulate intentions, an entity must have an irreducible

first-person perspective.

3. Machines necessarily lack an irreducible first-person perspective.

4. Therefore, machines cannot be original agents. 1,2&3

Argument B succeeds in capturing Baker’s argument provided that

her justification for B.3 has sufficient scope to conclude that ma-

chines cannot in principle have an irreducible first-person perspec-

tive. What support does she give for B.1, B.2, and B.3?

B.1 is true, Baker asserts, because original agency implies inten-

tionality. She takes this to be virtually self-evident; the hallmark of

original agency is the ability to form intentions, where intentions are

to be understood on Castaneda’s [4] model of being a ”dispositional

mental state of endorsingly thinking such thoughts as ’I shall do A’.”

[2, p. 157] B.2 and B.3, on the other hand, require an account of the

first-person perspective such that

• The first person perspective is necessary for the ability to form

intentions; and

• Machines necessarily lack it.

As Baker construes it, the first person perspective (FPP) has at

least two essential properties. First, the FPP is irreducible, where the

irreducibility in this case is due to a linguistic property of the words

used to refer to persons. In particular, first person pronouns cannot be

replaced with descriptions salve veritate. ”First-person indicators are

not simply substitutes for names or descriptions of ourselves.” [2, p.

157] Thus Oedipus can, without absurdity, demand that the killer of

Laius be found. ”In short, thinking about oneself in the first-person

way does not appear reducible to thinking about oneself in any other

way.” [2, p. 158]

Second, the FPP is necessary for the ability to ”conceive of one’s

thoughts as one’s own.” [2, p. 158] Baker calls this ’second-order

consciousness’. Thus, ”if X cannot make first-person reference, then

X may be conscious of the contents of his own thoughts, but not

conscious that they are his own.” [2, p. 158] In such a case, X fails

to have second-order consciousness. It follows that ”an entity which

can think of propositions at all enjoys self-consciousness if and only

if he can make irreducible first-person reference.” [2, p. 158] Since

the ability to form intentions is understood on Castaneda’s model as

the ability to endorsingly think propositions such as ”I shall do A”,

and since such propositions essentially involve first-person reference,

it is clear why the first person perspective is necessary for the ability

to form intentions. So we have some reason to think that B.2 is true.

But, apropos B.3, why should we think that machines necessarily

lack the first-person perspective?

Baker’s justification for B.3 is captured by her claim that

”[c]omputers cannot make the same kind of reference to themselves

that self-conscious beings make, and this difference points to a fun-

damental difference between humans and computers–namely, that

humans, but not computers, have an irreducible first-person perspec-

tive.” [2, p. 159] To make the case that computers are necessarily

handicapped in that they cannot refer to themselves in the same way

that self-conscious entities do, she invites us to consider what would

have to be the case for a first person perspective to be programmable:

a) FPP can be the result of information processing.

b) First-person episodes can be the result of transformations on dis-

crete input via specifiable rules. [2, p. 159]

Machines necessarily lack an irreducible first-person perspective

since both (a) and (b) are false. (b) is straightforwardly false, since

”the world we dwell in cannot be represented as some number of

independent facts ordered by formalizable rules.” [2, p. 160] Worse,

(a) is false since it presupposes that the FPP can be generated by

a rule governed process, yet the FPP ”is not the result of any rule-

governed process.” [2, p. 160] That is to say, ”no amount of third-

person information about oneself ever compels a shift to first person

knowledge.” [2, p. 160] Although Baker does not explain what she

means by ”third-person information” and ”first person knowledge,”

the point, presumably, is that there is an unbridgeable gap between

the third-person statements and the first-person statements presup-

posed by the FPP. Yet since the possibility of an FPP being the result

of information processing depends on bridging this gap, it follows

that the FPP cannot be the result of information processing. Hence it

is impossible for machines, having only the resource of information

processing as they do, to have an irreducible first-person perspective.

Baker’s skeptical challenge to the AI crowd may be set out in detail

as follows:

Argument C

1. Necessarily, X is an original agent only if X has the capacity to

formulate intentions.

2. Necessarily, X has the capacity to formulate intentions only if X

has an irreducible first person perspective.

3. Necessarily, X has an irreducible first person perspective only if

X has second-order consciousness.

4. Necessarily, X has second-order consciousness only if X has self-

consciousness.

5. Therefore, necessarily, X is an original agent only if X has self-

consciousness 1,2,3&4

6. Necessarily, X is a machine only if X is designed and pro-

grammed.

7. Necessarily, X is designed and programmed only if X operates just

according to rule-governed transformations on discrete input.

8. Necessarily, X operates just according to rule-governed transfor-

mations on discrete input only if X lacks self-consciousness.

9. Therefore, necessarily, X is a machine only if X lacks self-

consciousness. 6,7&8

10. Therefore, necessarily, X is a machine only if X is not an original

agent. 5&9

A Measured Response on Behalf of the AI Crowd

While there presumably exist skeptical challenges which ought not

be taken seriously because they are, for want of careful argumenta-

tion, themselves unserious, I submit that Baker’s skeptical challenge

to the AI crowd is serious and ought to be taken as such. It calls for a

measured response. It would be a mistake, in other words, for the AI

crowd to dismiss Baker’s challenge out of hand for want of techni-

cal sophistication, say, in the absence of decisive counterarguments.

Moreover, counterarguments will not be decisive if they simply ig-

nore the underlying import of the skeptic’s claims.

For example, given the weight of argument against physicalist so-

lutions to the hard problem of consciousness generally, it would be

incautious of the AI crowd to respond by rejecting C.8 (but see [5]

for a comprehensive review of the hard problem). In simple terms,

the AI crowd should join the mind crowd in finding it daft at this

point for a roboticist to claim that there is something it is like to be

her robot, however impressive the robot or resourceful the roboticist

in building it.



A more modest strategy is to sidestep the hard problem of con-

sciousness altogether by arguing that having an irreducible FPP is

not, contrary to C.2, a necessary condition on the capacity to form

intentions. This is the appropriate point to press provided that it also

appeals to the mind crowd’s own concerns. For instance, if it can be

argued that the requirement of an irreducible FPP is too onerous even

for persons to formulate intentions under ordinary circumstances,

then Baker’s assumption of Castaneda’s account will be vulnerable to

criticism from both sides. Working from the other direction, it must

also be argued the notion of programming that justifies C.7 and C.8

is far too narrow even if we grant that programming an irreducible

FPP is beyond our present abilities. The measured response I am

presenting thus seeks to moderate the mind crowd’s excessively de-

manding conception of intention while expanding their conception

of programming so as to reconcile, in principle, the prima facie ab-

surdity of a programmed (machine) intention.

Baker’s proposal that the ability to form intentions implies an ir-

reducible FPP is driven by her adoption of Castaneda’s [4] analysis

of intention: To formulate an intention to A is to endorsingly think

the thought, ”I shall do A”. There are, however, other analyses of in-

tention which avoid the requirement of an irreducible FPP. Davidson

[6] sketches an analysis of what it is to form an intention to act: ”an

action is performed with a certain intention if it is caused in the right

way by attitudes and beliefs that rationalize it.” [6, p. 87] Thus,

If someone performs an action of type A with the intention

of performing an action of type B, then he must have a pro-

attitude toward actions of type B (which may be expressed in

the form: an action of type B is good (or has some other posi-

tive attribute)) and a belief that in performing an action of type

A he will be (or probably will be) performing an action of type

B (the belief may be expressed in the obvious way). The ex-

pressions of the belief and desire entail that actions of type A

are, or probably will be, good (or desirable, just, dutiful, etc.).

[6, pp. 86-87]

Davidson is proposing that S A’s with the intention of B-ing only

if

i. S has pro-attitudes towards actions of type B.

ii. S believes that by A-ing S will thereby B.

The pro-attitudes and beliefs S has which rationalize his action

cause his action. But, of course, it is not the case that S’s having

pro-attitudes towards actions of type B and S’s believing that by A-

ing she will thereby B jointly implies that S actually A’s with the

intention of B-ing. (i) and (ii), in simpler terms, do not jointly suf-

fice for S’s A-ing with the intention of B-ing since it must be that S

A’s because of her pro-attitudes and beliefs. For Davidson, ’because’

should be read in its causal sense. Reasons consisting as they do of

pro-attitudes and beliefs cause the actions they rationalize.

Causation alone is not enough, however. To suffice for intentional

action reasons must cause the action in the right way. Suppose (cf

[6, pp. 84-85]) Smith gets on the plane marked ’London’ with the

intention of flying to London, England. Without alarm and without

Smith’s knowledge, a shy hijacker diverts the plane from its Lon-

don, Ontario destination to London, England. Smith’s beliefs and

pro-attitudes caused him to get on the plane marked ’London’ so

as to fly to London, England. Smith’s intention is satisfied, but only

by accident, as it were. So it must be that Smith’s reasons cause his

action in the right way, thereby avoiding so called wayward causal

chains. Hence, S A’s with the intention of B-ing if, and only if,

i. S has pro-attitudes towards actions of type B.

ii. S believes that by A-ing S will thereby B.

iii. S’s relevant pro-attitudes and beliefs cause her A-ing with the

intention of B-ing in the right way.

Notice that there is no reference whatsoever involving an irre-

ducible FPP in Davidson’s account. Unlike Castaneda’s account,

there is no explicit mention of the first person indexical. So were

it the case that Davidson thought animals could have beliefs, which

he does not [7], it would be appropriate to conclude from Davidson’s

account that animals can act intentionally despite worries that ani-

mals would lack an irreducible first-person perspective. Presumably

robots would not be far behind.

It is nevertheless open to Baker to ask about (ii): S believes that

by A-ing S will thereby B. Even if S does not have to explicitly and

endorsingly think, ”I shall do A” to A intentionally, (ii) requires that

S has a self-referential belief that by A-ing he himself will thereby B.

Baker can gain purchase on the problem by pointing out that such a

belief presupposes self-consciousness every bit as irreducible as the

FPP.

Consider, however, that a necessary condition on Davidson’s ac-

count of intentional action is that S believes that by A-ing S will

thereby B. Must we, however, take ’S’ in S’s belief that by A-ing S

will thereby B de dicto? Just as well, could it not be the case (de re)

that S believes, of itself, that by A-ing it will thereby B?

The difference is important. Taken de dicto, S’s belief presupposes

self-consciousness since S’s belief is equivalent to having the belief,

”by A-ing I will thereby B”. Taken (de re), however, S’s belief pre-

supposes at most self-representation, which can be tokened without

solving the problem of (self) consciousness.

Indeed, it does not seem to be the case that the intentions I form

presuppose either endorsingly thinking ”I shall do A!” as Castaneda

(and Baker) would have it or a de dicto belief that by A-ing I will B as

Davidson would have it. Intention-formation is transparent: I simply

believe that A-ing B’s, so I A. The insertion of self-consciousness as

an intermediary requirement in intention formation would effectively

eliminate many intentions in light of environmental pressures to act

quickly. Were Thog the caveman required to endorsingly think ”I

shall climb this tree to avoid the saber-toothed tiger” before scram-

bling up the tree he would lose precious seconds and, very likely,

his life. Complexity, particularly temporal complexity, constrains us

as much as it does any putative original machine agent. A theory

of intention which avoids this trouble surely has the advantage over

theories of intention which do not.

The mind crowd may nevertheless argue that even a suitably atten-

uated conception of intention cannot be programmed under Baker’s

conception of programming. What is her conception of program-

ming? Recall that Baker defends B.3 by arguing that machines can-

not achieve a first-person perspective since machines gain informa-

tion only through rule-based transformations on discrete input and no

amount or combination of such transformations could suffice for the

transition from a third-person perspective to a first-person perspec-

tive. That is,

Argument D

1. If machines were able to have a FPP, then the FPP can be the result

of transformations on discrete input via specifiable rules.

2. If the FPP can be the result of transformations on discrete input via

specifiable rules, then there exists some amount of third-person

information which compels a shift to first-person knowledge.



3. No amount of third-person information compels a shift to first-

person knowledge.

4. Therefore, first-person episodes cannot be the result of transfor-

mations on discrete input via specifiable rules. 2&3

5. Therefore, machines necessarily lack an irreducible first-person

perspective. 1&4

The problem with D is that it betrays an overly narrow conception

of machines and programming, and this is true even if we grant that

we don’t presently know of any programming strategy that would

bring about an irreducible FPP.

Here is a simple way of thinking about machines and program-

ming as D would have it. There was at one time (for all I know, there

may still be) a child’s toy which was essentially a wind-up car. The

car came with a series of small plastic disks, with notches around the

circumference, which could be fitted over a rotating spindle in the

middle of the car. The disks acted as a cam, actuating a lever which

turned the wheels when the lever hit a notch in the side of the disk.

Each disk had a distinct pattern of notches and resulted in a distinct

route. Thus, placing a particular disk on the car’s spindle ’programs’

the car to follow a particular route.

Insofar as it requires that programming be restricted to transfor-

mations on discrete input via specifiable rules, Argument D treats all

machines as strictly analogous to the toy car and programming as

analogous to carving out new notches on a disk used in the toy car.

Certainly Argument D allows for machines which are much more

complicated than the toy car, but the basic relationship between pro-

gram and machine behavior is the same throughout. The program de-

termines the machine’s behavior, while the program itself is in turn

determined by the programmer. It is the point of D.2 that, if an ir-

reducible FPP were programmable, it would have to be because the

third-person information which can be supplied by the programmer

suffices for a first-person perspective, since all the machine has ac-

cess to is what can be supplied by a programmer.

Why should we think that a machine’s only source of information

is what the programmer provides? Here are a few reasons to think

that machines are not so restricted:

• Given appropriate sensory modalities and appropriate recognition

routines, machines are able to gain information about their en-

vironment without that information having been programmed in

advance. [1] It would be as if the toy car had an echo-locator on

the front and a controlling disk which notched itself in reaction to

obstacles so as to maneuver around them.

• Machines can be so constructed as to ’learn’ by a variety of tech-

niques. [8] Even classical conditioning techniques have been used.

The point is merely that suitably constructed, a machine can put

together information about its environment and itself which is not

coded in advance by the programmer and which is not available

other than by, for example, trial and error. It would be as if the toy

car had a navigation goal and could adjust the notches in its disk

according to whether it is closer or farther from its goal.

• Machines can evolve. [3] Programs evolve through a process of

mutation and extinction. Code in the form of so-called genetic al-

gorithms is replicated and mutated. Unsuccessful mutations are

culled, while successful algorithms are used as the basis for the

next generation. Using this method one can develop a program

for performing a particular task without having any knowledge of

how the program goes about performing the task. Strictly speak-

ing, there is no programmer for such programs. Here the analogy

with the toy car breaks down somewhat. It’s as if the toy car started

out with a series of disks of differing notch configurations and the

car can take a disk and either throw it out or use it as a template

for further disks, depending on whether or not a given disk results

in the car being stuck against an obstacle, for instance.

• Programs can be written which write their own programs. [3] A

program can spawn an indefinite number of programs, including

an exact copy of itself. It need not be the case that the program-

mer be able to predict what future code will be generated, since

that code may be partially the result of information the machine

gathers, via sensory modalities, from its environment. So, again,

in a real sense there is no programmer for these programs. The toy

car in this case starts out with a disk which itself generates disks

and these disks may incorporate information about obstacles and

pathways.

Indeed, many of the above techniques develop Turing’s own sug-

gestions:

Let us return for a moment to Lady Lovelace’s objection, which

stated that the machine can only do what we tell it to do...

Instead of trying to produce a programme to simulate the adult

mind, why not rather try to produce one which simulates the

child’s? If this were then subjected to an appropriate course

of education one would obtain the adult brain. Presumably the

child brain is something like a notebook as one buys it from the

stationer’s. Rather little mechanism, and lots of blank sheets.

(Mechanism and writing are from our point of view almost syn-

onymous.) Our hope is that there is so little mechanism in the

child brain that something like it can be easily programmed.

The amount of work in the education we can assume, as a first

approximation, to be much the same as for the human child.

We have thus divided our problem into two parts. The child

programme and the education process. These two remain very

closely connected. We cannot expect to find a good child ma-

chine at the first attempt. One must experiment with teaching

one such machine and see how well it learns...

The idea of a learning machine may appear paradoxical to some

readers. How can the rules of operation of the machine change?

They should describe completely how the machine will react

whatever its history might be, whatever changes it might un-

dergo. The rules are thus quite time-invariant. This is quite

true. The explanation of the paradox is that the rules which

get changed in the learning process are of a rather less pre-

tentious kind, claiming only an ephemeral validity. The reader

may draw a parallel with the Constitution of the United States.

[9, pp. 454-458]

As Turing anticipated, machines can have access to information

and utilize it in ways which are completely beyond the purview of

the programmer. So while it may not be the case that a programmer

can write code for an irreducible FPP, as Argument D requires, it

still can be argued that the sources of information available to a suit-

ably programmed robot nevertheless enable it to formulate intentions

when intentions do not also presuppose an irreducible FPP.

Consider the spectacularly successful Mars rovers Spirit and Op-

portunity. Although the larger goal of moving from one location to

another was provided by mission control, specific routes were deter-

mined in situ by constructing maps and evaluating plausible routes

according to obstacles, inclines, etc. Thus the Mars rovers were, in

a rudimentary sense, gleaning information from their environment

and using that information to assess alternatives so as to plan and

execute subsequent actions. None of this was done with the require-

ment of, or pretense to having, an irreducible FPP, yet it does come



closer to fitting the Davidsonian model of intentions. To be sure, this

is intention-formation of the crudest sort, and it requires further ar-

gument that propositional attitudes themselves are computationally

tractable.

A Larger Point: Avoiding Excesses on Both Sides

Baker closes by pointing out that robots’ putative inability to form

intentions has far-reaching implications:

So machines cannot engage in intentional behavior of any kind.

For example, they cannot tell lies, since lying involves the in-

tent to deceive; they cannot try to avoid mistakes, since trying

to avoid mistakes entails intending to conform to some norma-

tive rule. They cannot be malevolent, since having no intentions

at all, they can hardly have wicked intentions. And, most sig-

nificantly, computers cannot use language to make assertions,

ask questions, or make promises, etc., since speech acts are but

a species of intentional action. Thus, we may conclude that a

computer can never have a will of its own. [2, p. 163]

The challenge for the AI crowd, then, is to break the link Baker

insists exists between intention formation and an irreducible FPP.

For if Baker is correct and the FPP presupposes self-consciousness,

the only way the roboticist can secure machine agency is by solv-

ing the vastly more difficult problem of consciousness, which so far

as we presently know is computationally intractable. I have argued

that the link can be broken, provided a defensible and computation-

ally tractable account of intention is available to replace Castaneda’s

overly demanding account.

If my analysis is sound, then there are times when it is appropriate

for the AI crowd to push back against the mind crowd. Yet they must

do so in such a way as to respect so far as possible the ordinary

notions the mind crowd expects to see employed. In this case, were

the AI crowd to so distort the concept of intention in their use of the

term that it no longer meets the mind crowd’s best expectations, the

AI crowd would merely have supplied the mind crowd with further

skeptical arguments. In this sense, the mind crowd plays a valuable

role in demanding that the AI crowd ground their efforts in justifiable

conceptual requirements, which in no way entails that the AI crowd

need accept those conceptual requirements without further argument.

Thus the enterprise of artificial intelligence has as much to do with

illuminating the efforts of the philosophers of mind as the latter have

in informing those working in artificial intelligence.

This is a plea by example, then, to the AI crowd that they avoid be-

ing overly satisfied with themselves simply for simulating interesting

behaviors, unless of course the point of the simulation is the behav-

ior. At the same time, it is a plea to the mind crowd that they recog-

nize when their claims go too far even for human agents and realize

that the AI crowd is constantly adding to their repertoire techniques

which can and should inform efforts in the philosophy of mind.
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A lesson from subjective computing:
autonomous self-referentiality and social interaction

as conditions for subjectivity

Patrick Grüneberg1 and Kenji Suzuki2

Abstract. In this paper, we model a relational notion of subjectivity

by means of two experiments in subjective computing. The goal is to

determine to what extent a cognitive and social robot can be regarded

to act subjectively. The system was implemented as a reinforcement

learning agent with a coaching function. To analyze the robotic agent

we used the method of levels of abstraction in order to analyze the

agent at four levels of abstraction. At one level the agent is described

in mentalistic or subjective language respectively. By mapping this

mentalistic to an algorithmic, functional, and relational level, we can

show to what extent the agent behaves subjectively as we make use

of a relational concept of subjectivity that draws upon the relations

that hold between the agent and its environment. According to a rela-

tional notion of subjectivity, an agent is supposed to be subjective if it

exhibits autonomous relations to itself and others, i.e. the agent is not

fully determined by a given input but is able to operate on its input

and decide what to do with it. This theoretical notion is confirmed by

the technical implementation of self-referentiality and social interac-

tion in that the agent shows improved behavior compared to agents

without the ability of subjective computing. On the one hand, a re-

lational concept of subjectivity is confirmed, whereas on the other

hand, the technical framework of subjective computing is being the-

oretically founded.

1 INTRODUCTION

The mental phenomenon called ‘subjectivity’ has been up to present

days one of the central topics of philosophical discussion. Even be-

fore the proclamation of the ‘subject’ as a principal of knowledge,

one might regard the relation of an epistemic and practical agent to

the world and itself as one of the most notorious issues even in an-

tique and medieval philosophy. However, in these days, ‘subjectivity’

enjoys great popularity as phenomenal consciousness, as the individ-

ual first-person perspective.3 But ‘subjectivity’ needs not necessarily

be related to consciousness. Instead, recent developments in robotics

show that ‘subjectivity’ can also be related to intelligence. Actually,

the idea to analyze ‘subjectivity’ as intelligence is not that new [8],

[9]. One obvious advantage of decoupling ‘subjectivity’ from con-

sciousness is that intelligence can be analyzed without making use

1 Artficial Intelligence Laboratory, University of Tsukuba, Japan; Institut für
Philosophie, Literatur-, Wissenschafts- und Technikgeschichte, Technical
University Berlin, Germany, e-mail: patrick.grueneberg@tu-berlin.de.

2 Center for Cybernics Research, University of Tsukuba, Japan, Japan Sci-
ence and Technology Agency, Japan, e-mail: kenji@ieee.org.

3 [24] and [19] are just two of the most prominent examples for phenomenally
based accounts. [22] follows a cognitive science approach to subjectivity in
terms of a phenomenal perspective to the world and the agent itself.

of the most difficult concepts of (phenomenal) consciousness. From

this perspective, ‘subjectivity’ is conceptualized as a relational con-

cept, i.e. subjectivity comprises certain relations of an agent towards

itself and its environment [16]. The question of phenomenal con-

sciousness is then subordinated in favor of the agent’s self-relation

and relations to others. An agent then is supposed to be subjective

if it exhibits autonomous relations to itself and others, i.e. the agent

is not fully determined by a given input but is able to operate on its

input and decide what to do with it. This relational perspective also

allows us to take into account social relations. Accordingly, intelli-

gence is not solely a product of internal processes but is constituted

in the course of social interaction and therefore builds on the notions

of Aufforderung [2] and recognition [18].

To narrow down and as an attempt to verify this philosophical and

quite abstract notion of subjectivity, we refer to two experiments in

subjective computing [17], [14]. Subjective computing aims at uti-

lizing insights from human subjectivity in general, the perceptual

process, and human-human interaction for the design of algorithms

and human-robot interaction (this concept was initially proposed in

[21]). From an engineering perspective it is not the goal to give an

account on subjectivity, but rather to utilize certain aspects of human

cognition to solve specific problems. One major problem concerns

reinforcement learning (RL). Even if an agent is able to decide au-

tonomously about the modification of its behavior, the agent still has

to learn what kind of behavior is well suited in order to accomplish

a certain task. In order to evaluate the agent’s behavior a coaching

function has been implemented into a RL agent so that the agent can

receive a trainer’s feedback. The crucial point regarding the poten-

tial subjectivity of this agent is that this feedback does not modify

the agent’s behavior directly, but the agent interprets the feedback

and decides about the subsequent modification of its behavior by it-

self. Thus, with regard to the relational notion of subjectivity, the

agent relates to itself while interpreting feedback and at the same

time socially relates to a human trainer. For the implementation of

this robotic system both relations, the self-relation in the course of

interpretation and the relation to others (the human trainer) enable

the robotic agent to successfully accomplish a difficult learning task.

In our relational analysis of the robotic agent we draw upon the

ascription of mental abilities to the robotic agent that is supposed to

observe, interpret, and reflect the feedback. The question is to what

extent this mental behavior is finally algorithmically implemented.

By means of an analysis of levels of abstraction [10], we relate the

algorithmic to the mentalistic level. The focus lies on an interme-

diate relational level where it can be shown that the robotic agent

exhibits an autonomous self-relation and a social relation to others.



Even if the robotic agent cannot be conceived of as a full-blown

subject (compared to humans), the successful implementation of au-

tonomous self-referentiality and a social relation to others allows us

to ascribe subjective states to the robotic agent. Even if the robotic

agent cannot be regarded as a full-blown human subject, the suc-

cessful engineering implementation of this relational structure can

be seen as a confirmation for the philosophical notion of subjectivity

as increased intelligent behavior has been gained.

In section 2 we will start by shortly introducing the relational con-

cept of subjectivity and by explaining our case study, “coaching a

robot based on human affective feedback”. After describing the al-

gorithm and the coaching function as well as the experimental layout

and results, in section 3, we introduce Floridi’s method of levels of

abstraction by explaining what this method consists in and how we

use it to analyze the robotic agent. By means of four levels of ab-

stractions we will then analyze the robotic agent with a focus on its

relational structure. Section 4 begins with an informal analysis that

is followed by a formal treatment of the levels of abstraction and

their relations. Finally, we evaluate to what extent mental subjective

abilities can be ascribed to the robotic agent.

2 PHILOSOPHICAL AND TECHNICAL
BACKGROUNDS

2.1 Relational subjectivity

To introduce the concept of relational subjectivity, it is helpful to

refer to the current philosophical debate, especially to phenomenal

and first-person accounts of subjectivity which enjoy great popularity

(see note 3). According to the general idea of this framework, sub-

jectivity consists in phenomenal consciousness so that a phenomenal

subject is able to experience its mental states. These mental states re-

fer to environmental entities (or their features, respectively) or states

of the agent itself. The experience of these states is subjective to the

extent that this experience is only accessible for the agent who has it.

Furthermore, such accounts are often representationally or, at least,

realistically based, i.e. the experience refers to an objectively exist-

ing (independently of the agent) world that becomes conscious in the

agent’s mind. Although there are plenty of different versions of phe-

nomenal and first-person, representational and realistic accounts, the

crucial point for our investigation lies in decoupling subjectivity from

the any kind of phenomenal consciousness (for further explanation of

the methodological arguments for this decoupling see [16]).

Instead, subjectivity can be grounded in action. In a Kantian and

therefore transcendental perspective, this action is conceived of as

a condition of the possibility of subjectivity. The main purpose of

this action is to structure and construct the subject’s reality by means

of schematic capacities.4. These schematic capacities generate the

subject’s attitude towards a given reality in which the subject can

act. Hence, subjectivity has, secondly, to be decoupled from the no-

tion of a psychological subject. The distinction between different in-

dividual subjects is not based on different individuals. Instead, the

schematic processes make the difference as these exhibit necessary

features that apply for every individual subject. Accordingly, subjects

usually share the same space-time dimension. On the other hand,

schematic processes are not completely determined and thus allow

for voluntary action that depends on individual decisions, e.g. on the

individual use of cognitive abilities as perception or action. An indi-

vidual subject can voluntarily focus its visual attention to a certain

4 See historically [20] and, in the sense of an extended schematism, [9]; in
the following we refer to an updated schematic account in [16]

position in space and decide to move in this direction or to hold its

current place. In turn, these voluntary actions depend on determina-

tions that are out of reach for the individual subject, i.e. when visual

attention has been focused to a certain position, then the content of

the visual experience is determined.

Accordingly, subjectivity is relationally generated by simultane-

ous processes of determining and voluntary schematic activity. One

and the same cognitive action underlies this twofold schematism so

that subjectivity is conceived as a relational momentum that is gen-

erated in opposition to an objective or determining momentum in an

agent’s information space. This twofold structure also applies for the

individual agent that acts in the social context of other individual

agents: On the one hand, the agent relies on its autonomous capaci-

ties. At the same time, it depends on social interaction as social inter-

action constrains its autonomy and therefore provokes a reaction. A

reaction here is understood as a self-determination of the agent’s ac-

tions provoked by some external constraint. Again, a subjective agent

is conceived of as relationally constituted. This mutual interdepen-

dency of voluntarily determining and necessarily being determined

forms the basic framework for a relational concept of subjectivity.

In the following we are going to investigate two experiments in cog-

nitive and social robotics in order to evaluate if and to what extent

this relational concept of subjectivity can be computationally mod-

eled and implemented. This serves to narrow down and concretize the

quite abstract relational notion; at the same time, the framework of

subjective computing can be made more explicit; especially we hope

to clarify what it can mean for a robotic agent to behave subjectively.

2.2 Case study: coaching a robot based on human
affective feedback

Generally, interaction and henceforth social intelligence are regarded

as a constitutive part of intelligence at all [5]. Based on an interactive

learning algorithm reciprocal interaction between a robotic agent and

a human instructor is facilitated. This way of situated learning en-

ables the coach to scaffolding acts of providing feedback [23], while

the robot demonstrates its mastery of the task continuously by means

of improved behavior. In this kind of peer-to-peer human-robot inter-

action the robotic agent has to perceive emotions and learn models

of its human counterpart [11]. Hence the robot needs to be at least

socially receptive, i.e. socially passive in order to benefit from in-

teraction, or coaching respectively [1], and socially embedded, i.e.

situated in a social environment and interacting with humans. If the

agent is structurally coupled with the social environment, he will be

able to be partially aware of human interactional structures [7]. In

order to socialize robots have to be compatible with human’s ways

of interacting and communicating. On the other hand humans must

be able to rely on the robot’s actions and be allowed to have realistic

expectations about its behavior.

In the context of embodied cognition, we are able to model subjec-

tivity as an interactional (social) and therefore relational issue. This

means that subjectivity is realized in the course of social interaction

which is investigated in the field of social robotics. One core issue

in designing social robots consists in socially situated learning. New

skills or knowledge are acquired by interacting with other agents. Be-

side robot-robot interaction (so-called “swarm intelligence” or “col-

lective intelligence”), human-robot interaction displays another ma-

jor approach [6], [12]. We focus on the case of teaching a robot [28],

[29] by means of coaching. Unlike teaching the coaching process

does not depend on an “omniscient” teacher that guides the agent to-

ward the goal, but the instructor only gives hints and clues in terms



of a binary feedback, i.e. positive or negative. It is then the robot’s

cognitive task to process this feedback and control its actions au-

tonomously.

Our approach to subjective computing is based on two experi-

ments on coaching a robot. These experiments were conducted at

the Artificial Intelligence Laboratory (University of Tsukuba) previ-

ously to this investigation. The coaching process itself bears on two

relational aspects that are the focus in these experiments:

1. the cognitive process of autonomous interpretation of the feedback

by the agent [17]

2. the social interaction between the human instructor and the robot

[14]

In the following we will, firstly, describe the problem that under-

lies the implementation of the coaching RL agent and of affective

feedback, respectively. Secondly, we illustrate the experimental se-

tups and results.

The first experiment [17] was conducted by Hirokawa and Suzuki

and consists in a reinforcement learning (RL) agent with an imple-

mented coaching function so that the robotic agent is open to human

feedback during its behavior learning. While coaching had already

been implemented before [25], [26], RL offers a significant advan-

tage. A coaching RL agent is able to learn automatcially by its own

internal values. RL is a commonly used method for autonomous ma-

chine learning based on the idea that an agent autonomously adapts to

the specific constraints of an environment [27]. While often a learn-

ing algorithm is predefined regarding the parameters of an environ-

ment, an RL agent is able to adjust its learning process continuously

during acting. This is done by continuously updating the expected

reward of an action (state-value) by means of a reward function. The

agent learns automatically when it conducts an action that matches

the reward function and can subsequently shape its behavior in order

to increase future rewards. The feature that is most relevant for our

analyses is that the reward function defines which action can count

as a successful action and therefore as a learning progress.

Yet, one central problem consists in the initial reward as the RL

agent has to exploit a state space randomly by trial and error in or-

der to discover the first reward. To avoid a time-consuming random

search the reward function has to be carefully designed. However,

this limits the flexibility of the algorithm. In order to bypass an exclu-

sively trial-and-error search or a complicated design process, coach-

ing is implemented in the RL agent by adding an interface to the

RL agent that allocates a feedback signal [17]. RL then allows for

coaching in that the human trainer gives feedback, and the learning

agent adjusts its reward function and its action rules according to the

feedback. Thus, the behavior is not directly instructed or trained, but

the robot modifies its behavior by itself. At the same time the reward

function does not need to be designed in advance. This autonomous

estimation of the reward function then complements the standard RL

based on a direct interaction with the environment.

In the experiment an RL agent controls a robotic arm in order to

swing up and keep an inverted pendulum balanced. While carrying

out the task, the RL agent receives continuously feedback in terms of

human subjective cues, i.e. positive or negative [29]. The agent has to

interpret this feedback and adjusts the reward function and therefore

its actions accordingly. Thus, learning the reward function is based

on simple and abstract (binary) feedback that is delivered in social in-

teraction. The feedback itself does not determine the reward function

directly, but allows the robot to modify the latter based on an act of

interpretation that consists in an estimation of the input’s relevancy

to its own behavior. This interpretation depends on two successive

criteria. Firstly, in contingency or causality detection the “agent de-

termines specific states [of its behavior] that motivated the trainer to

give feedback” ([17], p. 5), i.e. the agent identifies the feedback’s tar-

get behavior that depends on a certain time range and a subsequent

time delay specifying the time between the action and the feedback.

This identification of target behavior is, secondly, complemented by

a consistency or error detection, i.e. checking to what extent a given

evaluation corresponds “to current and previous feedback to a simi-

lar behavior” ([17], p. 5f.). If the feedback is inconsistent (contradic-

tory), it is regarded as irrelevant and the reward function will not be

updated. In short, after assigning the feedback to a previous action

and verifying its consistency the evaluation function is updated and

action rules modified accordingly. In this way the robot exhibits an

internal and manipulable model of the trainer’s evaluation instead of

just executing correction commands. Hence, different kinds of feed-

back (coaching strategies) lead to different degrees of rates of learn-

ing and success.

The second experiment [14] was conducted by Gruebler, Berenz,

and Suzuki. At first it has to be noted that we draw on the second

experiment in order to exemplify the significance of social interac-

tion while the behaviorand learning algorithm differs from the RL

agent in the first experiment. However, due to the binary feedback in

both experiments the results can be complemented in the subsequent

investigation of subjective relations. Hence, the second experiment

concerns the it allocation of feedback [14]. Human feedback is de-

livered as a cue based on a binary (positive or negative) signal that

is interpreted as confirmation or correction. Continuous non-verbal

social cues are used as instructive input to help a humanoid robot to

modify its behavior. While the robot is conducting a task, the human

coach gives continuous feedback by means of smiling or frowning.

The facial expression was measured by a wearable device that rec-

ognizes these basal facial movements as expressions of confirmation

(smile) and correction (frown) [15]. In this way a binary feedback

resulted that enabled the robot to modify its behavior continuously

whilst conducting a task. No further specification of the signal is

necessary. In this way the robotic agent is open to human affective

feedback in direct interaction. The cognitive and interactional imple-

mentations of both experiments can be complemented to that effect

that a binary signal is sufficient to instruct a robot while at the same

time this signal can be allocated in a way very natural for humans.

2.3 Experimental layouts and results

Experiments on coaching a robot based on human subjective feed-

back form the ground for an analysis of a subjective agent. Both ex-

perimental setups that were introduced in the previously, are cases of

HRI. The RL agent of the first experiment [17] has been implemented

in a simulated and a real robotic arm whose learning task consisted

in swinging up and keeping an inverted pendulum balanced (see Fig.

1). Instead of predesigning the reward function, the human instructor

assists the RL agent by observing its behavior and giving a binary

(positive or negative) feedback. In the real and the simulational setup

a “significant improvement compared to the conventional RL with

the same reward function” ([17], p. 14) had been measured as the

conventional RL completely failed to achieve the task. The simula-

tional setup additionally showed that the RL agent reflects coaching

strategies of different instructors in that one instructor failed to assist

the RL agent as she gave too many negative feedbacks.

In the second experiment [14] a human instructor assisted a hu-

manoid robot in a sorting game. The goal was to give red balls to

the instructor and to throw green balls away. The affective feedback





Ri,j ⊆ LiLj , for 0 ≤ i 6= j < n, relating the observables of each

pair Li and Lj of distinct LoAs in such a way that:

(a) the relationships are inverse: for i 6= j, Ri,j is the reverse of

Rj,i

(b) the behaviour pj at Lj is at least as strong as the translated

behaviour PRi,j
(pi).” (p. 55)

The GoA applied in our analysis of the coaching RL agent will be a

nested GoA, i.e. its “non-empty relations are those between Li and

Li+1, for each 0 ≤ i < n − 1, and moreover the reverse of each

Ri,i+1 is a surjective function from the observables of Li+1 to those

of Li.” (p. 56)

Observations at one LoA can generally be related to observations

at another LoA, but there are different ways of relating LoAs. Most

prominently are hierarchical GoAs that propose one detailed LoA

that serves to explain the observations at a more abstract LoA. This

is for example the case in neurophysiological models of cognitive

abilities where the biochemical reactions form the basic LoA. Cog-

nitive abilities are modeled at more abstract or higher levels so that

the observables at a higher level (e.g. phenomenal experience) can

be translated to observables at a lower level (neurophysiological re-

actions). Whereas a hierarchical GoA can imply a reductionist ap-

proach, we make use of a net of abstractions, i.e. it is not our goal

to reduce mental abilities to computational processes. Hence, we do

not follow an ontological approach in order to determine the nature of

mental or subjective states. Instead, we follow a functional approach

in order to make explicit the functional organization of the coaching

RL agent’s information space [10], ch. 3.4.7. Accordingly, different

LoAs are related by simulation, i.e. one LoA simulates the behav-

ior of another LoA. The simulation relation connects different LoAs

by a mapping relation R that relates the observables of two LoAs

mutually. Unlike a hierarchical GoA or even a reductionist model

of explanation, there is no basic or foundational LoA that realizes

other LoAs unidirectionally. Instead, one system (here the coaching

RL agent) is considered in terms of different functional realizations

that are mutually related by a simulation relation. In a nested GoA,

for every single observable at one LoA, it can be shown how this

observable behaves at another LoA. In this way, different LoAs can

be connected and serve as mutual explanation of their behavior. Ac-

cording to this mutual explanation of behavior the GoA serves to link

different epistemic LoAs.

Our analysis of the coaching RL agent is placed in the broader

context of subjective computing that was used to solve a learning

task (see section 2.2 and 2.3). More precisely, we want to determine

to what extent the algorithmic implementation can be related to a

mental description of the agent’s behavior. As mental abilities pre-

suppose a subject that acts mentally, our analysis concerns the rela-

tional structure of the agent’s information space. By means of this

relational analysis, firstly, the kind of relations that hold between the

agent and its environment (relation to others) and within the agent

(self-referentiality) can be made explicit. By means of this relational

account, we can, secondly, decode mentalistic terms (observing, con-

sidering, interpreting) in terms of the other LoAs and finally deter-

mine to what extent the coaching RL agent can be accounted for as

exhibiting mental and therefore subjective abilities.

This way of analyzing subjective abilities of a robotic agent might

force the straightforward objection that mental or subjective abilities

are haphazardly imposed on a system that does not really possess

these. This objection is grounded in the method of LoA as every LoA

is based on an abstraction of the system under consideration: an ab-

straction of certain features is only possible if certain other features

are neglected. E.g., we can analyze a robotic system regarding the

mechanics of its components, the programming framework, the costs

of its production, or, as in our case, its relational structure. Taking

into consideration one perspective onto a system, implies neglecting

other possible perspectives. Regarding the coaching RL agent, we

neglect any phenomenal description of its behavior as we focus on

the relational structure. Accordingly, we may not expect to analyze

the agent’s (potentially) mental behavior in human-like psychologi-

cal terms. In the face of full-blown human subjectivity, it has to be

admitted that the ascription of mental or subjective states cannot be

completely justified by means of a relational GoA as its observables

are defined regarding the system under consideration (here the coach-

ing RL agent). To compare with a human subject we would have to

define observables that also cover human cognition. But a GoA is

always related to a certain system, and our goal is not to compare

the coaching RL agent with a human subject (a futile undertaking

in that the robot is without any doubt less subjectively and cogni-

tively equipped), but to investigate certain relational aspects that are

constitutive for subjectivity in general. If these relational aspects of

cognition are utilized for the design of an agent and this agent shows

a significantly improved and more intelligent behavior than without

these subjective features, the technical implementation of certain re-

lational aspects of subjectivity may be interpreted as a confirmation

for the underlying philosophical concept of subjectivity. The method-

ological presupposition that justifies this ascription of mental abili-

ties in favor of relational subjectivity, is based on a constructionist or

design approach in philosophy [10], p. 72, 76ff.: a theoretical con-

cept is validated and, at its best verified, if it is possible to design and

implement a technical system according to this concept. Or, as in our

case, if a technical implementation is shown to utilize this concept

successfully.5

4 LEVELED ANALYSIS OF THE COACHING
RL AGENT

Based on the method of LoAs we defined four LoAs in order to ana-

lyze the coaching RL agent:

1. Algorithmic level. This level depends on the algorithm that is im-

plemented in the coaching RL agent. Whereas the computational

level is fully covered by the original experiment [17], we focus on

the cognitive abilities that are facilitated by the algorithm.

2. Functional level. The basic algorithm instantiates certain func-

tions and therefore enables the agent to fulfill certain computa-

tional tasks; accordingly the agent determines, compares, and pro-

cesses given feedback.

3. Relational level. The agent’s information space depends on differ-

ent kinds of relations to given input. For the following analysis it

will be crucial to distinguish between a straightforward determina-

tion by direct world-coupling and a self-determination by means

of a social relation that allocates feedback.

4. Mentalistic level. This level comprises the mentalistic description

of the agent’s actions. The goal of this analysis is to investigate to

what extent the algorithmic, functional, and relational level allow

for a mentalistic and therefore subjective characterization of the

coaching RL agent.

Before we go into a formal treatment in order to bring forward a

nested GoA of the coaching RL agent, we offer an informal treatment

5 The constructionist approach asks for a continuative justification that ex-
ceeds the scope of this paper; see [10] for further discussion.



of coaching a robot. This serves to make clear at which levels we an-

alyze the agent and how we relate the cognitive and interactional ca-

pacities to the mentalistic description of the agent’s behavior. Based

on this informal and the subsequent formal treatment it will be pos-

sible to evaluate to what extent the ascription of mental abilities is

justified.

4.1 Instantiating a subjective agent in social
interaction

The task of coaching a robot offers an instructive way to study the

behavior of an autonomous agent that interacts with humans. One

special feature consists in the mutual exchange between the robotic

agent and the human trainer. The agent is not only supposed to deliver

a computational result as for instance in the case of search engines,

but its actions provoke the trainer’s feedback that itself serves the

agent to modify its actions. Even if the exchange between robot and

human does not take place on a linguistic level, the trainer’s feedback

is answered by the robot’s behavior whereas the behavior provokes

new feedback. To improve the learning abilities of the robotic agent

a RL agent was complemented with a coaching function (see sec-

tion 2.2). This functional follows two central purposes: By means of

the feedback the RL agent can adjust the learning parameter (reward

function) that defines the success of an action during the learning

process. On the other hand the coaching function enables a human

trainer to interact with a robotic agent in a very natural (i.e. affective)

manner. The trainer just gives positive or negative feedback that is

to be processed autonomously (interpreted) by the robotic agent. By

allocating the feedback by means of a facial emotion reader [15] the

mental workload for the human trainer decreases to a minimum level

that does not differ significantly from a human-human interaction.

Our case study [17] is based on a robot arm platform (see Fig.

1). The robot has to solve the task of keeping a pendulum balanced.

In order to accomplish this task the agent can modify the joints of

its arm to handle the pendulum. But it has to learn how to mod-

ify its joints. In the coaching framework a human trainer gives a

two digit feedback (positive or negative) while the agent is trying

to keep the pendulum balanced. Accordingly, the robot must be able

to process the feedback. The final goal is that the agent processes

the feedback and adjusts its actions autonomously. As we deal with

a robotic system we basically have to take into account the algo-

rithmic implementation of the cognitive abilities required to process

the feedback. So the basic LoA comprises of the algorithmic imple-

mentation.6 Accordingly, at this level we should not conceive of an

agent that acts, but of algorithmic processing. In our case study the

robotic agent is able to react to feedback in a twofold manner. The

algorithm enables the robot to determine which of its behavior refers

to a feedback. This step of determining the feedback’s target behav-

ior (causality detection) is crucial for the processing of the feedback

as the robot must be able to relate a feedback to its behavior. Even

in human-human learning we know the common misunderstanding

that the trainee sometimes allocates the feedback to a different be-

havior as the trainer aimed at. Furthermore, the algorithm allows the

coaching RL agent to compare a feedback with previous feedbacks

related to the same action. This test for consistency serves to iden-

tify contradictory feedback as an action cannot be conceived of as a

successful action based on positive feedback when at the same time

6 The study of a robotic system, or more generally, of an algorithm guar-
antuees that the system is controllable and implementable, i.e. we deal with
a white box so that all parameters and internal operations can clearly be
specified (cf. [13]).

the action was evaluated negatively earlier. Again, the consistency

of feedback is even crucial for human-human learning as a trainee

can benefit from unambiguous feedback whereas contradictory feed-

back already presupposes a certain level of expertise if the trainee is

supposed to profit in the same way as in the case of unambiguous

feedback. Finally, when a feedback was assigned to a certain target-

behavior and the feedback is consistent with previous feedbacks of

this behavior, then the algorithm leads to a modification of the reward

function and subsequently to adapted behavior. This final adaption of

behavior can count as a successful learning process as the robot’s be-

havior improved in order to accomplish the task to a higher degree

than before the learning process.

In our example the learning process goes like this: When trying

to balance the pendulum, the robotic arm platform starts with the

initial posture of the pendulum as vertically downward. The robot

decides how many degrees it moves its joint at every time step ac-

cording to the current situation. Furthermore, it remembers the his-

tory of its actions. While balancing the pendulum, a human trainer

gives positive or negative feedback. Via an interface this feedback is

allocated as a reward value for the RL agent. Then every single feed-

back is processed according to the algorithm, i.e. the robot, firstly,

determines the target behavior of a feedback. The target behavior of

the feedback is the movement of the robot’s joints within a certain

time range. Hence, when the feedback is given from the trainer, the

robot is able to estimate which of its actions the trainer actually eval-

uated by referring to a certain time range of the history of its actions.

Whereas this time range, which the feedback refers to, can in princi-

pal also be learnt. In the experiment the time range was defined based

on the measurement of human’s delay of cognition. How much time

passes before a human trainer gives feedback was measured: the re-

sults show that the minimum and maximum delay lies within 300 to

800[ms] (cf. [17], p. 11). According to this data, the coaching RL

agent mapped a feedback to its behavior 300 to 800[ms] ago. After

the determination of target behavior the agent, secondly, compares

the feedback to previous feedbacks of the same behavior. If the pre-

vious acceptance or denial of this behavior is confirmed, the robot

modifies its reward function accordingly. Based on this adjusted re-

ward function the agent prefers the actions that were evaluated pos-

itively and changes its action rules. Thus, when the feedback con-

firmed a certain modification of the joints, then the agent will mod-

ify its behavior in order to move its joints according to the confirmed

behavior. If, for example, the position of one joint within a certain

range provoked positive feedback, then the robot will not exceed this

range. Or if a certain joint angle provoked only negative feedback,

the robot will not move this joint any more to this degree.7

Obviously, the previous description of the algorithmic level does

not capture a mental or subjective ability. It entails the description

of data processing and the transformation of data into modified be-

havior. But when we conceive this algorithmic processing at a func-

tional level, we can take into account the functions instantiated by

the algorithm. The functional description refers to the causal role of

a component and specifies how an agent is empowered to act [4], [3].

The functional level allows to abstract from the algorithmic as com-

putational processes and conceive the latter as cognitive functions of

an agent. This shift of our investigation is crucial as on the algorith-

mic level there is strictly speaking no agent acting, but an algorithm

is processing data. The fact that the algorithm enables an agent can-

not be made explicit until we shift our attention to a functional level.

Here it is that the computational reward value becomes a feedback as

7 In the actual experiment, the ability of interpretation was limited to the
extent that the robot could not process prevailing negative feedback.



a feedback is only possible in the mutual exchange of agents, i.e. be-

tween the human trainer and the robotic agent. The trainer primarily

interacts with the robotic agent and not with the algorithm. Whereas

in a strictly computational perspective one might say that the human

trainer interacts with the algorithm, this does not make sense if we

investigate the coaching process from a cognitive perspective. Cogni-

tively speaking the computational reward is a feedback that has to be

translated into a computational format. But again, the human trainer

is not directly giving a computational reward value but an affective

feedback [15]. Thus, the whole importance of the difference between

function and algorithm lies in the transformation of an affective re-

action (positive/smile or negative/frown) into a binary reward value.

Or, correspondingly, i.e. seen from algorithm to function, in the em-

powerment of an agent to operate on affective feedback. Hence, in

a functional perspective we can actually conceive of a robotic agent

that receives feedback. Functionally speaking, it is an agent that de-

termines target behavior, compares and finally processes feedback.

We shifted from an algorithmic description of computational pro-

cesses to a functional characterization of an agent.

Whereas we proceeded from algorithmic processing to the capac-

ities of an agent, the functional characterization still does not allow

for a mental or subjective description of the coaching RL agent. Cer-

tain functions can be instantiated by many different systems that are

obviously far from being mental or subjective. A thermostat fulfills

the function of adjusting temperature or a search engine ranks data

according to some specified criteria. So we have to take into account

a further LoA that helps to identify if and to what extent the coaching

RL agent is supposed to act subjectively. This is the relational LoA

that models the agent’s relations to itself and others. When conceiv-

ing of mental abilities (implied in the use of mentalistic language),

we expect an agent that acts autonomously and is not just respond-

ing automatically to some input data. Hence, the agent’s relations to

some given input is crucial for evaluating its behavior [16].

Based on a relational analysis we can distinguish between differ-

ent kinds of relations between the agent and its environment. On the

one hand the agent’s behavior is forced by standard RL that is based

on direct world coupling. In standard RL, the behavior gets auto-

matically modified by environmental constraints. This modification

depends on the reward function as the criteria which actions count as

a success and which actions fail to accomplish the task. In fact, our

example displays an extreme case as when the pendulum fell down

no further adjustment or modification of behavior is possible. The

task inevitably failed. But in more flexible tasks, e.g. as in the case of

navigation, environmental constraints could force an agent to change

its direction when it encounters an obstacle. The crucial point here is

that the agent’s relation to an input (the obstacle) is determined, i.e.

the agent’s behavior changes automatically without that the agent

does have any control of this modification of its behavior. Further-

more, all modifications depend on the predefined reward function. In

the case of the coaching RL agent, this way of direct world-coupling

is complemented by an autonomous self-relation. The robotic arm

not only reacts automatically to external events (here that the pendu-

lum falls down). The agent is able to operate on the automatic learn-

ing process so that this process is not any more comletely determin-

ing the agent’s behavior. Based on the algorithmic causality and error

detection, or the functional capacity to determine target behavior and

compare feedback respectively, the agent is able to process a binary

feedback and decide by itself whether and to what extent its behavior

should be modified. Both relations, the direct world-coupling and the

interpretation of feedback, contribute to the agent’s performance.

One might object that the robotic arm does not engage in full-

blown decision making, but that is not the point here. Here it is

crucial that the agent’s behavior is significantly improved in that

the final modification of the behavior is left to the agent itself. The

agent operates autonomously on feedback and therefore relates au-

tonomously to its own internal model of the trainer’s evaluation.

Thus, autonomous self-referentiality comprises that an agent oper-

ates on its own internal states whereas these operations do not com-

pletely underlie any external constraints [16]. The underlying con-

cept of autonomy does not aim at complete self-determined behav-

ior. Instead, autonomous behavior can be generated in opposition to

determined behavior, i.e. the determination of the agent gets limited,

or, correspndingly, the agent’s autonomous capacity has to be con-

strained in order to bring forward successful behavior. The theorem

of ‘realization by means of restriction’8 clarifies the role of social in-

teraction. In our case, social interaction lies between the autonomous

interpretation and direct world-coupling, i.e. it is a partial determi-

nation of the agent’s information space as the agent is constrained by

the feedback values, but is autonomous regarding their further pro-

cessing. Due to the difficulties to define a suitable reward function

a priori (see section 2.2), the coaching function and the feedback

were introduced in order to assist the robot with updating the reward

function. Accordingly, the subjective momentum of the agent’s infor-

mational space depends on a mutual dependence of the autonomous

self-relation and the social interaction: in order to evaluate its behav-

ior autonomously the agent depends on a certain input (feedback)

that confines his capacity to interpret the feedback to some reason-

able options. Otherwise, the agent would have no criteria how to eval-

uate its actions, i.e. how to move its joints.

The autonomous and at the same time partially determined be-

havior lies at the ground of a subjective agent and serves to iden-

tify the final LoA. The coaching RL agent can be regarded as acting

mentally in that it interprets the feedback based on an autonomous

decision making: the agent considers contingency, observes the con-

sistency of given feedback which results in an interpretation. Mental

states of considering, observing, and interpreting that presuppose a

subjective agent are based on the mutual relationship of autonomous

self-referentiality and social interaction in that the straightforward

determination of behavior by direct world-coupling is interrupted.

We can call the agent’s interpretation ‘mental’ or ‘subjectiv’ as this

behavior is finally determined in the agent’s information space by

the agent itself and not primarily by some external constraints. The

robot, being socially receptive for direct interaction with a human and

its autonomous decision making, qualifies the coaching RL agent as

a basically subjective agent. Again, one might object that this kind of

subjectivity is less than what we usually ascribe to full-blown human

subjects. But despite these obvious restrictions, the leveled analysis

of the robotic agent offers us an account of subjectivity that does

not rely on intractable phenomenal or psycgological states. We can

instead follow the generation of a subjective agent from scratch. Fur-

thermore, we are forced to include social interaction, which easily

gets lost in phenomenal accounts. The main purpose of the following

formal treatment lies in the need to make explicit the relations within

and between every LoA, as subjectivity is here primarily seen under

a relational viewpoint.

4.2 Nested GoA of the coaching RL agent

According to the previous stated method of levels of abstraction and

the informal treatment, the RL agent is now to be analyzed formally

8 See the chapter on schematism in [20], and [10].



at four LoAs. Each LoA comprises three observables (interface, in-

terpretation, learning) with specific variables related to the observ-

ables. The relational LoA forms an exception, in that not the observ-

ables themselves but the relational structure of the agent’s processing

describes the behavior of this LoA. The following formalization does

not depend on any specific mathematical standard but merely seeks

to make clear the different levels of the agent’s cognitive activity and

especially the relations between the agent and the trainer’s feedback

at L2.

The nested GoA is based on the following levels (L), comprising

the observables interface, interpretation, learning, and corresponding

variables:

• L0: algorithmic level

– Interface: reward value V

– Interpretation: estimation of reward function EF

– Learning: updating reward function and action rules U

• L1: functional level

– Interface: feedback F

– Interpretation: estimation of relevance ER

– Learning: processing feedback Fp

• L2: relational level

– Agent’s self-referentiality: As

– Agent’s social relation (interaction): Ai

– Direct world coupling (standard RL): Ad

• L3: mentalistic level

– Interface: social receptivity S

– Interpretation: interpreting feedback Fi

– Learning: reflecting feedback Fr

These observables and corresponding variables form a nested GoA

of the coaching RL agent (see table 1). The GoA consists of four

LoAs specified in the first column and beginning with the algorithmic

level. Due to the epistemic foundation of LoAs, the epistemic regard

according to which the coaching RL agent is interpreted is given at

each level. Each LoA consists of three observables: interface, inter-

pretation, and learning. On L0 the system is analyzed regarding its

algorithmic processing. This computational level is fully covered by

the original experiment [17]. In the following analysis we therefore

solely focus on those aspects concerning the instantiation of an infor-

mation space which is computationally implemented as a continuous

state-action-space: a certain signal, the reward value V is delivered

by an interface and gets processed in the course of causality and error

detection. In the course of interpretation, these processes of detection

are regarded as an estimation of the reward function EF . Learning at

the algorithmic level consists of an updated reward function and cor-

respondingly updated action rules U . The system’s behavior can be

specified by the use of the following predicates: V delivers a binary

value corresponding to a positive (smile, V +) or negative (frown,

V −) evaluation of the instructor. EF delivers a value under or above

the current reward function and leads in the first case to an update

U of the reward function and the action rules so that U contains the

updated and modified reward function that will result in adapted be-

havior.

At the subsequent LoAs these processes remain the same, but are

analyzed differently. Considering the functionality of the algorithm

at L1, the algorithm enables an agent to fulfill certain computational

tasks: the agent determines, compares, and processes given feedback.

This functional mapping serves to identify the cognitive processes of

the agent (cf. section 4.1) as follows: The algorithmic observables at

L0 are mapped to L1 as follows: V functions as feedback and takes

the values of ’confirmation’ V + or ’correction’ V −, i.e. the function

of the computational values consists in allocating positive or negative

feedback. Hence, the meaning of the computational value V for the

agent’s behavior is identified by its function. The same counts for the

estimation of the reward function ER: EF fulfills the cognitive func-

tion of specifying the feedback according its relevancy for the agent’s

behavior. ER is the result of estimating V , i.e. ER = EF (V ). Fi-

nally the cognitive function of U is processing feedback by updating

the reward function and the action rules in order to increase learn-

ability, i.e. Fp = U(EF ).
L2 contains the crucial relational analysis. The agent’s informa-

tion space depends on two kinds of relations that hold between the

previous observables and the agent’s capacity to operate on them.

On the one hand the agent underlies two determining relations to

others: Based on the implementation of standard RL the coaching

RL agent depends on external and automatic determination of be-

havior through direct world coupling Ad and a subsequent adaption

to the environment. Secondly, in the course of social interaction Ai

the trainer allocates feedback F . Whereas the feedback contains a

fixed value (positive or negative) that cannot be altered by the agent,

the further processing of the feedback is subject to an interpretation

by the coaching RL agent that decides if its behavior gets modified.

Hence the degree of determination of the agent’s behavior decreases

significantly in the course of social interaction. The subjective mo-

mentum of the agent’s information space is generated by the sec-

ond kind of relation, i.e. the agent’s autonomous relation to its own

internal model of the trainer’s evaluation. The RL agent is able to

modify the reward function and action rules autonomously and there-

fore indirectly its behavior. This relation to the incoming feedback is

autonomous as the latter does not determine the agent necessarily

or immediately as is the case with standard RL. Opposed to exter-

nally determined behavior as the result of Ad, subjectively modified

behavior is instantiated by autonomous acts of interpretation by the

agent itself. Thus, the agent’s subjective information space depends

on these simultaneous relations as can be made explicit by mapping

the observables at L1 onto L2: According to standard RL the agent is

determined directly through direct world coupling Ad. At the same

time feedback is allocated by social interaction Ai[F ] that constrains

the autonomous modification of the reward function: F is processed

by ER to Fp depending on the agent’s own, i.e. subjective, inter-

pretation of the feedback As[ER(F ) → Fp]. The agent’s autonomy

consists in its ability to modify its own learning process by adjusting

the reward function by itself. From a relational viewpoint, the agent’s

subjective determination of the reward function is constituted simul-

taneously with an objective determination of its behavior by direct

world-coupling (see section 4.1).

The complete behavior of the coaching RL agent at L2 depends

on these parallel processes. Whereas determined behavior alone is

not a special characteristic of subjective behavior, autonomous self-

referentiality (As) and social interaction (Ai) are relevant for the

final LoA, the mentalistic level. The subjective ability to modify

the automatic learning process by autonomously processing feed-

back forms a necessary condition for subjective computing. At the

same time autonomous self-referential behavior can only be effec-

tively utilized in the course of social interaction as the agent has to

learn how to modify its learning process. Hence, autonomous self-



Table 1. Nested GoA of the coaching RL agent.

LoA Observables

Relations

L0: algorithmic Interface Interpretation Learning

(algorithmic process-

ing)

reward value V causality detection → error detec-

tion, i.e. estimation of the reward

function EF

updating reward function → up-

dating action rules U

R0,1: R0,1(V, F ) R0,1[EF , ER] R0,1(U,Fp)

mapping algorithm

to functions

F = V + ∨ V − ER = EF (V ) Fp = U(EF )

L1: functional Interface Interpretation Learning

(functions realized

by the algorithm)

feedback F agent determines target behavior

(contingency) → compares feed-

backs (consistency), i.e. specifies

feedback by estimating its rele-

vance ER

agent processes feedback Fp

R1,2: R1,2[(F,ER, Fp), (As, Ai), Ad]

mapping functions to

relations

As[ER(F ) → Fp] ∧Ai[F ] ∧Ad

L2: relational Self-referentiality Relations to other

Social relation Direct world coupling

(relational structure

of agent’s process-

ing)

agent relates (based on au-

tonomous acts of estimating)

to its own internal model of

the trainer’s evaluation, i.e.

an autonomous and subjective

self-relation As

trainer’s evaluation of the agent’s

behavior (feedback F ) is allocated

in social interaction Ai

determined and objective relation

Ad based on direct world coupling

(standard RL)

R2,3: R2,3(As, S) R2,3(As, Fi) R2,3(As, Fr)

mapping relations to

mental abilities

S = As(F ) Fi = As(ER) Fr = As(Fp)

L3: mentalistic Interface Interpretation Learning

(mental abilities) social receptivity S agent considers contingency,

carefully observes consistency

of given feedback, i.e. interprets

feedback Fi

agent learns autonomously, i.e.

agent reflects feedback or differ-

ences of coaching strategies by its

behavior Fr

referentiality and social interaction interdependently enable a sub-

jective agent. Again, subjectivity here means that the robotic agent

is able to modify an ongoing automatic process whereas this modifi-

cation is externally supported (here by feedback) but is finally left to

the agent’s decision. Those subjective and interactional issues arise

in scenarios where a robotic agent is supposed to adopt a task and

to accomplish this task autonomously (e.g. driving assistance, search

and rescue applications, or autonomous control in hybrid assistive

limb [?]). But due to the difficulties of defining the robot’s actions

in advance or to define a suitable reward function a priori, social in-

teraction (coaching) can be utilized in order to support the robot’s

autonomous modification of its behavior and therefore improve its

learnability.

The relational structure and the instantiation of a subjective rela-

tion in the agent’s information space finally allow for a mentalistic in-

terpretation of the coaching RL agent at L3. Usually, we ascribe acts

like considering and reflecting to a full-blown subject. This is, obvi-

ously, not the case here. Full-blown subjectivity depends on further

features like natural language and ethical addressability. But when

taking into account the social interaction of the coaching RL agent,

this agent acts as an autonomous counterpart of the human, i.e. the

agent exhibits a sufficient level of autonomy that we can ascribe men-

tal activity to it as follows: in operating on the instructor’s input, i.e.

autonomously relating to the feedback As(F ), the agent becomes so-



cially receptive S in the course of interaction. The RL agent shows

subjective behavior when individually and situation-dependently in-

terpreting feedback Fi = As(ER) and correspondingly learning

by updating the reward function and action rules according to its

interpretation, i.e. autonomously processing or reflecting feedback

Fr = As(Fp). The social interaction between the trainer and the

robotic agent is crucial for Ai and the mentalistic character of the RL

agent’s behavior as the feedback offers an additional input (binary

cues) opposed to strict world-coupling in standard RL. The subjec-

tive momentum, based on autonomous self-referentiality, occurs as

the RL agent’s non-deterministic consideration of contingency and

observation of consistency of feedback as well as in the subsequent

reflection of differences of coaching strategies by means of more or

less successful learning. There is no predefined reaction or develop-

ment of the coaching RL agent’s behavior, but subjective behavior

due to the internal indeterminacy of the modification of the learning

process. At the same time the agent’s autonomous ability relies on

social interaction that guides its ability to modify its learning pro-

cess. Without this guidance the agent would not be able to execute

its autonomous modification of the reward function as it has no in-

formation how and to what extent a modification might support to

accomplish its task.

5 CONCLUSION

We wanted to investigate what it can mean for a robotic agent to

behave subjectively. We approached this question by analyzing to

what extent mental abilities can be ascribed to a robotic agent. In

the course of analyzing a coaching RL agent at four LoAs we made

explicit a relational level (L2) that shows how mental abilities can

be ascribed to the agent: the coaching RL agent behaves subjectively

in that it is able to modify its own automatic learning processes by

means of feedback that is allocated in social interaction. At the same

time, the agent is still being determined by direct world-coupling.

Hence, the relational level confirms a relational notion of subjectiv-

ity.

On the other hand, this result underlies a certain caveat in that the

nested GoA of the coaching RL agent is based on an abstraction that

focuses on the relational structure of the agent, i.e. we analyzed to

what extent the agent’s actions are self-referential and related to oth-

ers as well as self-determined and externally determined. This rela-

tional account of the robot’s information space does not cover a com-

mon psychologically or phenomenally based description of human-

like cognitive processes as it is mainly decoupled from the concept

of consciousness and linked to intelligence. From a relational view-

point, consciousness is regarded as cognitive product. Hence, it is

necessary to go back to a level of abstraction that does not presuppose

any conscious states if conscious, or less difficult, mental abilities

have to come into reach of an explanation. By modeling relational

features of intelligence by means of a technical implementation, we

gained an analysis of cognitive abilities that is fully tractable and

implementable.

Based on a technical implementation that showed a significant im-

provement of an agent’s behavior by means of the coaching func-

tion, it was relationally justified to conclude that the coaching RL

agent acts subjectively as it makes effective use of autonomous self-

referentiality and social interaction. The agent’s subjectivity is gen-

erated in this course of action as the agent’s self-determined behav-

ior opposed to external determination by direct world-coupling. By

means of this relational abstraction of the coaching RL agent, we can

link the technical implementation with the conceptual foundation of

subjectivity and subjective computing, respectively. With regard to

the further development of subjective agents, the link of the technical

and theoretical domain supports the improvement of subjective abili-

ties. The theoretical framework of relational subjectivity can guide an

extension of self-referential processing in order to allow the coach-

ing RL agent to process ambiguous feedback. Another open ques-

tion concerns social interaction in other modes than binary feedback.

With regard to full-blown human subjectivity, the relational account

does not exclude modeling more complex cognitive abilities as the

use of natural language or ethical addressability. On the other hand,

the theoretical framework of relational subjectivity is being modeled

in the course of technical implementation. This allows us to test and

verify a relational modeling of subjectivity.
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Bill Gates is not a Parking Meter: Philosophical Quality
Control in Automated Ontology-building

Catherine Legg and Samuel Sarjant1

Abstract. The somewhat old-fashioned concept of philosophical

categories is revived and put to work in automated ontology building.

We describe a project harvesting knowledge from Wikipedia’s cate-

gory network in which the principled ontological structure of Cyc

was leveraged to furnish an extra layer of accuracy-checking over

and above more usual corrections which draw on automated mea-

sures of semantic relatedness.

1 PHILOSOPHICAL CATEGORIES

S1: The number 8 is a very red number.

There is something clearly wrong with this statement, which seems

to make it somehow ‘worse than false.’ For a false statement can be

negated to produce a truth, but

S2: The number 8 is not a very red

number.

doesn’t seem right either.2 The problem seems to be that numbers are

not the kind of thing that can have colours — if someone thinks so

then they don’t understand what kinds of things numbers are.3

The traditional philosophical term for what is wrong is that S1

commits a category mistake. It mixes kinds of thing nonsensically.

A traditional task of philosophy was to identify the most basic cat-

egories into which our knowledge of reality should be divided, and

thereby produce principles for avoiding such statements. One of the

first categorical systems was produced by Aristotle, who divided

predicates into ten groups (Substance, Quantity, Quality, Relation,

Place, Time, Posture, State, Action, and Passion). The differences

between these predicates were assumed to reflect differences in the

ontological natures of their arguments. For example, the kinds of

things that are earlier and later (Time) are not the kinds of things that

are heavy or light (Substance). Category lists were also produced by

Kant, Peirce, and many other Western philosophers.

We believe there is a subtle but important distinction between

philosophical categories and mere properties. Although both divide

entities into groups, and may be represented by classes, categories

arguably provide a deeper, more sortal division which enforces con-

straints, which distinctions between properties do not always do. So

for instance, while we know that the same thing cannot be both a

1 The University of Waikato, New Zealand, email: {clegg,
sjs31}@waikato.ac.nz

2 Some philosophers do take a hard line on statements such as S2, claiming
that it is literally true, but it does at least seem to have misleading pragmatic
implications.

3 There is the phenomenon of synaesthesia. But the rare individuals capa-
ble of this feat do not seem to converge on any objective colour-number
correlation.

colour and a number, the same cannot be said for green and square.

However, at what ‘level’ of an ontology categorical divisions give

way to mere property divisions is frequently unclear and contested.

This has led to skepticism about the worth of philosophical categories

which will now be touched on.

This task of mapping out categories largely disappeared from phi-

losophy in the twentieth century.4 The logical positivists identified

such investigations with the “speculative metaphysics” which they

sought to quash, believing that the only meaningful questions could

be settled by empirical observation [4, 19].

Following this, Quine presented his famous logical criterion of

ontological commitment: “to be is to be the value of a bound vari-

able. . . [in our best scientific theory]” [22]. This widely admired pro-

nouncement may be understood as flattening all philosophical cate-

gories into one ‘mode of being’. Just as there is just one existential

quantifier in first-order logic, Quine claimed, ontologically speaking

there is just one kind of existence, with binary values (does and does

not exist). Thus there are no degrees of existence, nor are there kinds

— rather there are different kinds of objects which all have the same

kind of existence.

This move to a single mode of being might be thought to reopen

the original problem of why certain properties are instantiated by

certain kinds of objects and not others, and why statements such as

S1 seem worse than false. A popular response — common in the

analytic tradition as a reply to many problems — has been to fall back

on faith in an ideal language, such as modern scientific terminology

(perhaps positions of atoms and molecules), which is fantasized as

‘category-free.’

Be that as it may, we will now examine a computer science re-

search project which recapitulated much of the last 3000 years of

philosophical metaphysics in a fascinating way.

2 THE CYC PROJECT

2.1 Goals and basic structure

When the field of Artificial Intelligence struggled in the early 80s

with brittle reasoning and inability to understand natural language,

the Cyc project was conceived as a way of blasting through these

blocks by codifying common sense. It sought to represent in a giant

knowledge base, “the millions of everyday terms, concepts, facts,

and rules of thumb that comprise human consensus reality”, some-

times expressed as everything a six-year-old knows that allows her to

understand natural language and start learning independently [8, 9].

This ambitious project has lasted over 25 years, producing a tax-

onomic structure purporting to cover all conceivable human knowl-

4 Notable exceptions: [5, 10, 11, 23].



edge. It includes over 600,000 categories, and over two million ax-

ioms, a purpose-built inference engine, and a natural language inter-

face. All knowledge is represented in CycL, which has the expres-

sivity of higher-order logic — allowing assertions about assertions,

context logic (Cyc contains 6000 “Microtheories”), and some modal

statements.

The initial plan was to bring the system as quickly as possible to a

point where it could begin to learn on its own, for instance by reading

the newspaper [8, 9]. Doug Lenat estimated in 1986 that this would

take five years (350 person-years) of effort and 250,000 rules, but it

has still not happened, leading to widespread scepticism about the

project.

2.2 Categories and common sense knowledge

Nevertheless, it is worth noting that the Cyc project did meet some of

its goals. Consider the following, chosen at random as a truth no-one

would bother to teach a child, but which by the age of six she would

know by common-sense:

S3: Bill Gates is not a parking meter.5

This statement has never been asserted into Cyc. Nevertheless Cyc

knows it, and can justify it as shown in Figure 1.

Figure 1. Justification produced in ResearchCyc 1.0, 2009

The crucial premise is the claim of disjointness between the

classes of living things and artifacts. The Cyc system only contains

several thousand explicit disjointWith6 statements, but as seen

above, these ramify through the knowledge hierarchy in a powerful,

open-ended way.

A related feature of Cyc’s common-sense knowledge is its so-

called semantic argument constraints on relations. For example

(arg1Isa birthDate Animal) represents that only animals

have birthdays. These features of Cyc are a form of categorical

knowledge. Although some of the categories invoked might seem

relatively specific and trivial compared to Aristotle’s, logically the

constraining process is the same.

5 Presenting this material to research seminars it has been pointed out that
there is a metaphorical yet highly meaningful sense in which Bill Gates
(if not personally, then in his capacity as company director) does serve as
a parking meter for the community of computer users. Nevertheless, in the
kinds of applications discussed in this paper we must alas confine ourselves
to literal truth, which is challenging enough to represent.

6 Terms taken from the CycL language are represented in TrueType

throughout the paper.

In the early days of Cyc, knowledge engineers laboured to input

common-sense knowledge in the form of rules (e.g. “If people do

something for recreation that puts them at risk of bodily harm, then

they are adventurous”). Reasoning over such rules required inferenc-

ing of such complexity that they almost never ‘fired’ (were recog-

nized as relevant), or if they did fire they positively hampered query

resolution (i.e. finding the answer). By contrast Cyc’s disjointness

and semantic predicate-argument constraints were simple and effec-

tive, so much so that they were enforced at the knowledge-entry level.

Thus returning again to S1, this statement could not be asserted into

Cyc because redness is represented as the class of red things which

generalizes to spatiotemporally located things, while numbers gener-

alizes to abstract objects, and once again these high level classes are

known to be disjoint in Cyc.

We believe these constraints constitute an untapped resource for

a distinctively ontological quality control for automated knowledge

integration. Below we show how we put them to work in a practical

project.

3 “SEMANTIC RELATEDNESS”

When ‘good-old fashioned’ rule-based AI systems such as Cyc

apparently failed to render computers capable of understanding

the meaning of natural language, AI researchers turned to more

brute, statistical ways of measuring meaning. A key concept which

emerged is semantic relatedness, which seeks to quantify human in-

tuitions such as: tree and flower are closer in meaning than tree and

hamburger. Simple early approaches analysed term co-occurrence in

large corpora [7, 17]. Later, more sophisticated approaches such as

Latent Semantic Analysis constructed vectors around the compared

terms (consisting of, for instance, word counts in paragraphs, or doc-

uments) and computed their cosine similarity.

Innovative extensions to these methods appeared following the re-

cent explosion in free user-supplied Web content, including the as-

toundingly detailed and organized Wikipedia. Thus [6] enrich their

term vectors with Wikipedia article text: an approach called Ex-

plicit Semantic Analysis. [14] develop a similar approach using only

Wikipedia’s internal hyperlinks. Here semantic relatedness effec-

tively becomes a measure of likelihood that each term will be anchor

text in a link to a Wikipedia article about the other.

In the background of this research lurk fascinating philosophical

questions. Is closeness in meaning sensibly measured in a single nu-

meric value? If not, how should it be measured? Can the semantic

relatedness of two terms be measured overall, or does it depend on

the context where they occur? Yet automated measures of semantic

relatedness now have a high correlation with native human judgments

[13].

4 AUTOMATED ONTOLOGY BUILDING:
STATE OF THE ART

Dissatisfaction with the limitations of manual ontology-building

projects such as Cyc led to a lull in formal knowledge representation

through the 1990s and early 2000s, but the new methods of determin-

ing semantic relatedness described above, and the free user-supplied

Web content on which they draw, has recently begun a new era in

automated ontology building.

One of the earliest projects was YAGO [20, 21], which maps

Wikipedia’s leaf categories onto the WordNet taxonomy of synsets,

adding articles belonging to those categories as new elements, then

extracting further relations to augment the taxonomy. Much useful



information is obtained by parsing category names, for example ex-

tracting relations such as bornInYear from categories such as 1879

birth.

A much larger, but less formally structured, project is DBpedia

[1, 2], which transforms Wikipedia’s infoboxes and related features

into a vast set of RDF triples (103M), to provide a giant open dataset

on the web. This has since become the hub of a Linked Data Move-

ment which boasts billions of triples [3]. Due to the lack of formal

structure there is however much polysemy and many semantic rela-

tionships are obscured (e.g. there are redundant relations from dif-

ferent infobox templates, for instance birth date, birth and born).

Therefore they have also released a DBpedia Ontology generated by

manually reducing the most common Wikipedia infobox templates to

170 ontology classes and the 2350 template relations to 940 ontology

relations asserted onto 882,000 separate instances.

The European Media Lab Research Institute (EMLR) built an

ontology from Wikipedia’s category network in stages. First they

identified and isolated isA relations from other links between cate-

gories [16]. Then they divided isA relations into isSubclassOf and

isInstanceOf [24], followed by a series of more specific relations

(e.g. partOf, bornIn) by parsing category titles and adding facts de-

rived from articles in those categories [15]. The final result consists

of 9M facts indexed on 2M terms in 105K categories.7

What is notable about these projects is that firstly, all have found

it necessary to build on a manually created backbone (in the case

of YAGO: Wordnet, in the case of the EMLR project: Wikipedia’s

category network, and even DBPedia produced its own taxonomy).

Yet none of these ontologies can recognize the wrongness of S1.

Although YAGO and EMLR’s system possess rich taxonomic struc-

ture, it is property-based rather than categorical, and does not enforce

the relevant constraints. A second important issue concerns evalua-

tion. With automation, accuracy becomes a key issue. Both YAGO

and DBPedia (and Linked Data) lack any formal evaluation, though

EMLR did evaluate the first two stages of their project — interest-

ingly, using Cyc as a gold standard — reporting precision of 86.6%

and 82.4% respectively.

Therefore we wondered whether Cyc’s more stringent categorical

knowledge might serve as an even more effective backbone for auto-

mated ontology-building, and also whether we might improve on the

accuracy measurement from EMLR. We tested these hypotheses in

a practical project, which transferred knowledge automatically from

Wikipedia to Cyc (ResearchCyc version 1.0).

5 AUTOMATED ONTOLOGY BUILDING: CYC
AND WIKIPEDIA

5.1 Stage 1: Concept mapping

Mappings were found using four stages:

Stage A: Searches for a one-to-one match between Cyc term and

Wikipedia article title.

Stage B: Uses Cyc term synonyms with Wikipedia redirects to de-

termine a single mapping.

Stage C: When multiple articles map, a ‘context’ set of articles

(comprised of article mappings for Cyc terms linked to the cur-

rent term) is used to identify the article with the highest semantic-

related score using [14].

Stage D: Disambiguates and removes incorrect map-

pings by performing Stage A and B backwards

7 Downloadable at http://www.eml-research.de/english/

research/nlp/download/wikirelations.php

(e.g. DirectorOfOrganisation → Film director →

Director-Film, so this mapping is discarded).

5.2 Stage 2: Transferring knowledge

Here new subclasses and instances (‘children’) were added to the

Cyc taxonomy, as follows.

5.2.1 Finding possible children

Potential children were identified as articles within categories where

the category had an equivalent Wikipedia article mapped to a Cyc

collection (about 20% of mapped articles have equivalent categories).

Wikipedia’s category structure is not as well-defined as Cyc’s col-

lection hierarchy, containing many merely associatively-related arti-

cles. For example Dogs includes Fear of dogs and Puppy Bowl. Blind

harvesting of articles from categories as subclasses and instances of

Cyc concepts was therefore inappropriate.

5.2.2 Identifying correct candidate children

Each article within the given category was checked to see if a map-

ping to it already existed from a Cyc term. If so, the Cyc term was

taken as the child, and the relevant assertion of parenthood made if it

did not already exist. If not, a new child term was created if verified

by the following methods:

Link parsing: The first sentence of an article can identify parent

candidates by parsing links from a regularly structured sentence.

Each link represents a potential parent if the linked articles are

already mapped to Cyc collections (in fact multiple parents were

identified with this method).

The regular expression set was created from the most frequently

occurring sentence structures seen in Wikipedia article first sen-

tences. Examples included:

• X are a Y

‘Bloc Party are a British indie rock band. . . ’

• X is one of the Y

‘Dubai is one of the seven emirates. . . ’

• X is a Z of Y

‘The Basque Shepherd Dog is a breed of dog. . . ’

• X are the Y

‘The Japanese people are the predominant ethnic group of

Japan.’

Infobox pairing: If an article within a category was not found to

be a child through link parsing, it was still asserted as a child if it

shared the same infobox template as 90% of the children that were

found.

5.2.3 Results

The project added over 35K new concepts to the lower reaches of the

Cyc ontology, each with an average of seven assertions, effectively

growing it by 30%. It also added documentation assertions from the

first sentence of the relevant Wikipedia article to the 50% of mapped

Cyc concepts which lacked this, as illustrated in Figure 2.

An evaluation of these results was performed with 22 human sub-

jects on testsets of 100 concepts each. It showed that the final map-

pings had 93% precision, and that the assignment of newly created

concepts to their ‘parent’ concepts was ‘correct or close’ 90% of the



Figure 2. A Cyc concept containing information added from Wikipedia.

time [18]. This suggests a modest improvement on the EMLR re-

sults, though more extensive testing would be required to prove this.

Work on an earlier version of the algorithm [12] also tested its accu-

racy against the inter-agreement of six human raters, measuring the

latter at 39.8% and the agreement between algorithm and humans as

39.2%.

5.3 Categorical quality control

During the initial mapping stage, Cyc’s disjointness knowledge was

put to work discriminating rival candidate matches to Cyc con-

cepts which had near-equal scores in quantitative semantic related-

ness. In such cases Cyc was queried for disjointness between an-

cestor categories of the rivals, and if disjointness existed, the match

with the highest score was retained and others discarded. Failing

that, all high-scoring matches were kept. Examples of where this

worked well were the Wikipedia article Valentine’s Day, which

mapped to both ValentinesDay and ValentinesCard, but

Cyc knew that a card is a spatiotemporal object and a day is a ‘sit-

uation’, so only the former was kept. On the other hand, the test al-

lowed Black Pepper to be mapped to both BlackPeppercorn and

Pepper-TheSpice, which despite appearances was correct given

the content of the Wikipedia article.

During the knowledge transfer stage an interesting phenomenon

occurred. Cyc was insistently ‘spitting out’ a given assertion and it

was thought that a bug had occurred. To the researchers’ surprise it

was found that Cyc was ontologically correct. From that time on, the

assertions Cyc was rejecting were gathered in a file for inspection. At

the close of the project this file contained 4300 assertions, roughly

3% of the assertions fed to Cyc. Manual inspection suggested that

96% of these were ‘true negatives,’ for example:

(isa CallumRoberts Research)

(isa Insight-EMailClient EMailMessage)

This compares favourably with the evaluated precision of asser-

tions successfully added to Cyc.

The examples above usefully highlight a clear difference between

quantitative measures of semantic relatedness, and an ontological

relatedness derivable from a principled category structure. Callum

Roberts is a researcher, which is highly semantically related to re-

search and Insight is an email client, which is highly semantically

related to email messages. Thematically or topically these pairs are

incredibly close, but ontologically speaking, they are very different

kinds of thing. Thus if we state:

S4: Callum Roberts is a research

we once again hit the distinctively unsettling silliness of the tradi-

tional philosophical category mistake, and a kind of communication

we wish our computers to avoid.

6 PLANS FOR FURTHER FEEDING

Given the distinction between semantic and ontological relatedness,

we may note that combining the two has powerful possibilities. In

fact this observation may usefully be generalized to note that in au-

tomated information science, overlapping independent heuristics are

a boon to accuracy, and this general principle will guide our research

over the next few years.

Our first step will be to develop strategies to automatically aug-

ment Cyc’s disjointness network and semantic argument constraints

on relations (where Cyc’s manual coding has resulted in excel-

lent precision but many gaps) using features from Wikipedia. For

instance, systematically organized infobox relations, helpfully col-

lected in DBPedia, are a natural ground to generalize argument con-

straints. The Wikipedia category network will be mined — with cau-

tion — for further disjointness knowledge. This further common-

sense categorical knowledge will then bootstrap further automated

ontology-building.

7 PHILOSOPHICAL LESSONS

Beyond the practical results described above, our project provides

fuel for philosophical reflection. It suggests the notion of philosophi-

cal categories should be rehabilitated as it leads to measurable im-

provements in real-world ontology-building. Just how extensive a

system of categories should be will of course require real-world test-

ing. But now we have the tools, the computing power, and most im-

portantly the wealth of free user-supplied data to do this. The issue

of where exactly the line should be drawn between categories proper

and mere properties remains open. However, modern statistical tools

raise the possibility of a quantitative treatment of ontological related-

ness that is more nuanced than Aristotle’s ten neat piles of predicates,

yet can still recognize that S1 is highly problematic, and why.
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Abstract.  Based on formal-theoretical principles about the sign 

processes involved, we have built synthetic experiments to 

investigate the emergence of communication based on symbols 

and indexes in a distributed system of sign users, following 

theoretical constraints from C.S.Peirce theory of signs, following 

a Synthetic Semiotics approach. In this paper, we summarize 

these computational experiments and results regarding 

associative learning processes of symbolic sign modality and 

cognitive conditions in an evolutionary process for the 

emergence of either symbol-based or index-based 

communication.
12

 

1 INTRODUCTION 

Following the motto ‘build to explain’, a synthetic approach 

(opposed to an analytical one) corresponds to a reverse 

methodology that builds creatures and environments describing a 

simple and controllable framework to generate, test and evaluate 

theories and hypothesis about the system being modelled.  

Diverse processes and systems are modelled and simulated in 

such synthetic experiments, including social, biological and 

cognitive processes [1, 2, 3, 4, 5, 6]. Particularly, we have been 

modelling and simulating semiotic systems and processes, 

following a Synthetic Semiotics approach.  

Based on formal-theoretical principles about the sign 

processes involved, we have built synthetic experiments to 

investigate the emergence of communication based on symbols 

and indexes in a distributed system of sign users, following 

theoretical constraints from C.S.Peirce theory of signs. In this 

paper, we summarize these computational experiments and 

results. We investigated the associative learning processes of 

symbolic sign modality and the relation between different sign 

modalities in the transition from indexical to symbolic 

communication. We also studied cognitive conditions in an 

evolutionary process for the emergence of either symbol-based 

or index-based communication, relying on different types of 

cognitive architecture.  

First, we review related work, then we describe our formal-

theoretical background, the sign theory by of C.S.Peirce. Finally 

we present synthetic experiments that modelled and simulated 

the emergence of communication processes, dealing with the 

learning process of symbolic sign modality and also with the 

evolution of indexical and symbolic interpretative behaviours. 

The notion of responsive environments is broad, encompassing 

essentially every space capable of sensing and responding 
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accordingly to entities that inhabit them (these entities can be 

people, animals, or any sort of identifiable objects). 

2 RELATED WORK  

There have been several different experiments concerning 

symbol grounding and also the emergence of shared 

vocabularies and language in simple (real or virtual) worlds [7, 

8, 9, 10, 11, 12, 13, 14, 15, 16, 17,  18] (for a review of other 

works, see [19], [20]). Despite the fact that sign processes are in 

the foundations of communication, little discussion about such 

processes can be found, such as the emergence of fundamental 

types of signs and their interpretative effects. 

There have been studies introducing theoretical foundations 

in reference  to Peirce’s work [11, 16, 17, 13, 8], but they just 

borrow Peircean definitions of symbol or of sign without 

generating any further consequences to the designed experiment. 

For example, in [17], [13] and [8], authors bring forth definitions 

of signs and symbols from Peirce’s general theory of signs, but 

they end up changing them, in such a way that it is not possible 

to conclude whether the experiments were actually based on 

Peirce’s theory or whether it contributed, validating it or not, 

some of the principles of Peirce’s theory. In [11] and [16], on the 

other hand,  presents Peirce’s theory through a second hand 

reading of Deacon’s work, which is at least a limited analysis of 

the Peircean  theory and, in special,  of his definition of a 

symbol. As a consequence, we can say that they were not able to 

recognize a symbol when it first occurred in their experiments. 

Deacon’s reading of Peirce’s theory is the most popular 

example at hand of such disconnection between theoretical 

framework and actual research [21]. His depiction of humans as 

the only ‘symbolic species’ is based on the assumption that 

symbols necessarily have combinatory properties, and that only 

the human prefrontal cortex could possibly implement such 

properties. However, this proposal is incongruent with Peirce’s 

theory and frontally collides with several empirical lines of 

evidence (for a discussion of this point, see [22],[23]). Poeppel 

[24] already recognized the ‘problematic’ and ‘speculative’ 

manner in which Deacon built his arguments using Peirce’s 

theory, comparative and evolutionary approaches to language 

and even linguistic theories. 

We claim that just bringing forward a definition from Peirce’s 

theory without deriving any consequence or constraint to the 

experimental setup certainly reduces the explanatory power of 

the proposed model. Recognizing the inter-dependence of 

Peirce’s concepts at different levels, such as the sign model and 

its derived sign classification, substantially enriches  

computational experiments willing to simulate communication 

and its relationship to meaning. 

 



3 THE THEORY OF SIGNS OF C.S. PEIRCE 

North-American pragmatist Charles Sanders Peirce, founder of 

the modern theory of signs, defined semiotics as a kind of logic: 

a science of the essential and fundamental nature of all possible 

varieties of meaning processes (semiosis). Peirce’s concept of 

semiotics as the ‘formal science of signs’, and the pragmatic 

notion of meaning as the ‘action of signs’, have had a deep 

impact in philosophy, in theoretical biology and in cognitive 

science (see [25]). Peircean approach to semiotic process 

(semiosis) is also related to formal attempts to describe cognitive 

processes in general. His framework provides: (i) a list of 

fundamental varieties of representations based on a theory of 

logical categories; (ii) a model to approach the emergence and 

evolution of semiotic complexity in artificial and biological 

systems. 

Peirce defined semiosis (meaning process) as an irreducible 

triadic relation between a sign (S), its object (O) and its 

interpretant (I). That is, according to Peirce, any description of 

semiosis involves a relation constituted by three irreducibly 

connected terms: “A sign is anything which determines 

something else (its interpretant) to refer to an object to which [it] 

itself refers (its object) in the same way, the interpretant 

becoming in turn a sign, and so on ad infinitum” [26, CP 2.303]. 

Semiosis is also characterized as a behavioural pattern that 

emerges through the intra/inter-cooperation between agents in a 

communication act, which involves an utterer, a sign, and an 

interpreter. Meaning and communication processes are defined 

in terms of the same “basic theoretical relationships” [27], i.e., in 

terms of a self-corrective process whose structure exhibits an 

irreducible relation between three elements. In a communication 

process, “[i]t is convenient to speak as if the sign originated with 

an utterer and determined its interpretant in the mind of an 

interpreter” [28, MS 318]. 

As it is well known, sign-mediated processes show a notable 

variety. There are three fundamental kinds of signs underlying 

meaning processes – icons, indexes, and symbols [26, CP 2.275]. 

They correspond to similar, reactive, and law relationship which 

can be established between a sign and its object. Icons are signs 

that stand to objects by similarity, without regard to any space-

time connection with existing objects [26, CP 2.299]. An icon 

stands to the object independently of any spatio-temporal 

presence of the latter; it refers to the object merely by virtue of 

its own properties. This is an important feature distinguishing 

iconic from indexical sign-mediated processes. Indices are signs 

that refer to objects due to a direct physical connection between 

them. Accordingly, spatio-temporal co-variation is the most 

characteristic aspect of indexical processes. Finally, symbols are 

signs that are related to their object through a determinative 

relation of law, rule or convention. A symbol becomes a sign of 

some object merely or mainly by the fact that it is used and 

understood as such. 

 

 

 

 

 

 

4 EXPERIMENTS IN SYNTHETIC 

SEMIOTICS  

4.1 Learning and the emergence of symbol-based 

communication 

Inspired by the vervet monkey alarm call ethological study case 

([29], see [23], for a neurosemiotic analysis), we have simulated 

an ecosystem for artificial creatures’ interactions, including 

intra-specific communication for predators’ presence. We 

investigated the learning processes (habit acquisition) of 

symbolic sign modality and the relation between different sign 

modalities in the transition from indexical to symbolic behaviour 

through associative learning.  

The creatures were autonomous agents inhabiting a virtual bi-

dimensional environment. This virtual world was composed of 

prey and predators (terrestrial, aerial and ground predators), and 

of things such as trees (climbable objects) and bushes (used to 

hide). Preys could produce vocalizations (alarm calls) indicating 

that a predator was seen. That vocalization could become 

immediately available to nearby preys by way of a hearing 

sensor. We proposed two scenarios: with apprentices and tutors 

[30], and with self-organizers [31]. Apprentices and tutors, as 

seen in the contrast between infant and adult vervet monkeys, 

defined a learning relation. Tutors, that had already established 

vocalizations for each predator, were the only ones to vocalize 

and as the preys heard them, they tried to establish the 

connections relations between the auditory and the visual 

stimuli. Self-organizer creatures were apprentices and tutors at 

the same time, but there was no initially established repertoire of 

alarms calls, and the group of preys had to create and share 

alarm calls for each predator, by vocalizing to and learning from 

each other. 

Associative learning was the mechanism used by preys to 

gradually acquire association rules between auditory and visual 

data necessary to interpret signs as symbols. It involved working 

memories and an associative memory. Working memories 

allows the persistence of spatio-temporal relations. Associative 

memory formation followed Hebbian learning principles [32] 

and allowed the creatures to, not only,  learn temporal and spatial 

relations from the external stimuli and the associations to be 

created, but also reinforced or weakened them (varying 

association strength between 0 and 1) according to the co-

occurrence of stimuli in the working memories (figure 1). 

After hearing a vocalization, preys initially responded with a 

sensorial scan for the utterer and co-occurring events, a typical 

indexical behaviour. As the strength of sign-predator 

associations reached a certain threshold, after multiples 

reinforcements, a new action rule was established, ‘flee with no 

scanning’. In this situation, the prey used an established 

association to interpret the alarm, and we can say that the sign-

object relation depended on the interpreter and no more in a 

physical, spatial-temporal evidence, and therefore the alarm 

became a symbol. 

 



 
(a) 

 
(b) 

 

Figure 1. Associative learning: reinforcement and weakening. 

(a) The co-occurrence of visual and auditory stimuli in working 

memories reinforces the association between them. (b) When 

sensory stimuli are dropped from working memories, 

associations involving them and that were are not reinforced, are 

weakened. 

 

During simulations, we observed the associative memory 

items and behaviour responses of the preys to alarm calls. 

Results showed that both apprentice and self-organizer preys 

were able to acquire symbolic competence. Preys initially 

exhibited an indexical behaviour to alarm calls, but a symbolic 

response emerged by means of communicative interactions. 

Apprentices were able to establish the same alarm-predator 

relations used by tutors (alarm 1 - terrestrial predator, alarm 2 - 

aerial predator, alarm 3 - ground predator). Even though 

apprentices, eventually associated alarms with the presence of 

elements such as trees and bushes, the associative learning 

mechanism was able to gradually reinforce the correct links, 

going up to its maximum value of 1.0 at the end of simulation, 

while weakening the other links, which went down the minimum 

value of zero (figure 2; see [30], for more detailed results). 

On the other side, self-organizers, starting with no a priori 

relation between alarms and predators, were able, at the end,  to 

converge to a common repertoire of associations between alarms 

and predators. As there were no predefined alarms for each 

predator, each creature could create a random alarm (from 0 to 

99) for a predator if it had not had one associated with that 

predator before. As a consequence, various alarms were created 

for the same predator, and even the same alarm could be used for 

different predators. And some alarms could also be associated 

with elements other than predators. Nevertheless, associative 

learning was responsible for a gradual convergence of the 

community of preys to use the same alarms for the same 

predators (figure 3; see [31], for more detailed results). 

 

 

 

 

 

  
 

 

 
 

 

 
 

Figure 2. Associations’ strength values for one apprentice, for 

each alarm, during simulation. 

 

 

 

 

 

 

 



 

 

 

 

 

 
 

 

 
 

 

 
 

Figure 3. Associations’ strength values for self-organizers, for 

each type of predator. 

 

 

 

 

 

 

4.2 Evolution and the emergence of different 

classes of sign processes 

Based on the fact that signs can be of different types and that 

communication processes rely on the production and 

interpretation of signs, we have modeled the emergence of 

indexical and symbolic interpretative behaviors in 

communication processes, when none of them was initially 

available, and we have studied how they emerge, and the 

cognitive conditions for the emergence of such interpretation 

processes. To model those interpretation-communication 

processes, we also followed the minimum brain model for 

vocalization behavior in from [23] and the biological 

motivations from animal communication, specifically, for food 

calls [33]. 

Indexical interpretation is a reactive interpretation of signs, so 

for our creatures to have this competence, they had to be able to 

reactively respond to sensory stimulus with prompt motor 

answer. But then again a symbolic interpretation undergoes the 

mediation of the interpreter to connect the sign to its object, in 

such a way that a habit (either inborn or acquired) must be 

present to establish this association. Also, in symbolic 

interpretation, an associative memory must be present as it is the 

only domain able to establish connections between different 

representation modes. Thus, our artificial creatures had to be 

able to receive sensory data, both visual and auditory, that could 

be connected directly to motor responses (Type 1 architecture), 

or else they should be connected to motor responses indirectly, 

through the mediation of an associative memory, that associates 

auditory stimulus to visual stimulus (Type 2 architecture) (see 

figure 4). 

 

 
 

Figure 4. Cognitive architectures for representations’ 

interpretations. Top: Type 1 architecture. Bottom: Type 2 

architecture. 

 

Lower quality resources were scattered throughout the 

environment and a single location received highest quality 

resources, where one creature (vocalizer) was placed. The other 

creatures (interpreters) were controlled by finite state machines 



(FSM) and had visual and auditory sensors and motor 

capabilities. These interpreter creatures could respond to visual 

inputs with one of the motor actions, and could also respond to 

auditory input with a direct motor action (a reactive, indexical 

process) (Type 1 architecture). Alternatively, before an input 

was sent to the FSM, they could also choose to establish an 

internal association between the heard stimulus and the visual 

representation domain (Type 2 architecture). This internal 

association linked what was heard with the view of a collectible 

resource, i.e. the creature could interpret the sign heard as a 

resource and act as if the resource was seen. 

At the start of the simulations, interpreter creatures were 

randomly defined, so creatures did not respond appropriately to 

sensory inputs. But an evolutionary process of variation and 

selection was applied, allowing the evolution of individuals to 

better accomplish the task of resource foraging. During the 

evolutionary process, for each start-up conditions, we observed 

the types of cognitive architecture used by creatures and their 

motor responses to sensory input. 

We performed two initial experiments to evaluate the 

emergence of either an indexical interpretation or a symbolic 

interpretation of vocalizations. Such experiments involved 2 

cycles, but only in the second cycle, the vocalizer was present. In 

the first experiment, creatures just had to have a specified action 

as output of the FSM to execute that action. We observed that 

the indexical interpretation was the competence acquired by 

creatures to deal with communication, with the direct association 

between auditory signs and motor actions. But, in a second 

experiment, for motor actions to be executed, the creatures 

needed to first output a null action before any movement action 

was done. In this case, learning motor coordination was harder. 

In this alternative scenario, symbolic interpretation was the 

emerging competence, instead of an indexical one. We asserted 

the hypothesis that acquiring symbolic competence would act as 

a cognitive shortcut, by reusing a previously acquired ability in 

cycle 1 to appropriately respond to visual data with motor 

actions. We proposed that a symbolic interpretation process can 

happen if a cognitive trait is hard to be acquired and the 

symbolic interpretation of a sign will connect it with another 

sign for which the creature already has an appropriate response 

(figure 5; see [34] for detailed results). 

Once symbolic interpretation needed a competence to benefit 

from, we investigated the availability and reliability of such 

previous competence in a subsequent set of experiments. We 

first proposed an experiment where this first cycle did not occur, 

therefore visual-motor coordination was not established before 

vocalizations started. From this single cycle experiment, it was 

possible to observe that even though the vocalizer was available 

from start, creatures did not use signs at all in a first moment. 

But, as trying to acquire visual-motor coordination and also a 

sign-motor coordination was a hard task route, the symbolic 

interpretation diminished this effort and became the dominant 

strategy (figure 6; see [35], for more detailed results). 

To go further in our investigation, we set up another 

experiment, in which cycle 1 was present but there was a failure 

chance in the visual-motor coordination after cycle 1, simulating 

a malfunctioning cognitive module. At first, with a 20% of 

motor action selection failure, symbolic processes were still 

established, with reuse of a degraded module, with a relative 

increase in foraging efficiency, however. A higher failure of 

50% proved to worsen the performance of the visual control 

module considerably more, and allowed indexical interpretation 

of sign to be established, as a way to avoid reusing it.  

At the end of our experiments, we confirmed our hypothesis 

that symbolic competence acted as a cognitive shortcut, and, as 

such, the cognitive module to which the symbolic interpretation 

was connecting to must be already established. Nevertheless, it 

does need to be fully functional, as minimal visual-motor 

coordination is sufficient to begin a symbolic interpretation 

process and even a moderately damaged module can also be 

reused. 
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Figure 5. Evaluation of the type of response to vocalizations 

along the generations for (a) the direct motor action experiment 

and (b) the previous null action experiment. 
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Figure 6. Evaluation of the type of response to vocalizations 

along the generations for (a) the one cycle only experiment, (b) 

20% failure experiment, and (c) 50% failure experiment. 

 

 

 

 

 

 

 

5 CONCLUSIONS 

 

The relation between simulations and theories is a ‘two-way 

road’ (see [36]). Simulations offer to the theory an opportunity to 

formalize and quantify, in terms of programming language. 

Following a synthetic approach, a computational model is built 

based on basic theoretical assumptions about the target-system. 

Here, we applied the sign theory of C.S.Peirce in building 

synthetic experiments to investigate the transition to symbolic 

communication by means of associative learning and cognitive 

conditions in a evolutionary processes for either symbol-based 

communication or index-based communication. 

Even though Peirce’s pragmatic approach have established a 

rigorous distinction between different classes of sign processes 

as well as between semiotic behaviour and brute reactive 

behaviour, he did not describe: (i) the dynamics responsible for 

the emergence of semiosis in an evolutionary scenario, and (ii) 

the dynamics responsible for the transition from iconic and 

indexical semiotic systems to symbolic and meta-semiotic ones. 

Synthetic Semiotics can define a methodology for better 

understanding the dynamics related to the emergence of 

indexical and symbolic-based semiosis. Formal-theoretical 

principles act not only as theoretical background but also as 

constraints in designing the artificial systems and as bridges for 

contributions to the sign theory that originally provided the 

principles. 

REFERENCES 

[1] V. Braitenberg, Vehicles - Experiments in Synthetic Psychology. 

Cambridge, MA: MIT Press, 1984. 

[2] C. Langton, editor. Artificial Life: an overview. MIT Press, 1995. 

[3] J. Noble, ‘The scientific status of artificial life’,  In Fourth European 

Conference on Artificial Life (ECAL97), Brighton, UK, (1997). 

[4] T. Froese and T. Ziemke, ‘Enactive artificial intelligence: 

Investigating the systemic organization of life and mind’, Artificial 

Intelligence, 173, 466–500, (2009). 

[5] R. Pfeifer, F. Iida, and J. Bongard, ‘New robotics: Design principles 

for intelligent systems’, Artificial Life, 11 (1-2), 99–120, (2005).   

[6] R. Brooks, ‘Intelligence without reason’, In Proceedings of the 12th 

International Joint Conference on Artificial Intelligence - IJCAI-91, 

pp. 569–595, San Mateo, CA: Morgan Kauffmann, (1991). 

[7] D. Roy, ‘Grounding Words in Perception and Action: Insights from 

Computational Models’, Trends in Cognitive Science, 9 (8): 389-96, 

(2005). 

[8] D. Roy, ‘Semiotic Schemas: A Framework for Grounding Language 

in the Action and Perception’, Artificial Intelligence, 167 (1-2): 170-

205, (2005). 

[9] L. Steels, The Talking Heads Experiment: Volume I. Words and 

Meanings. VUB Artificial Intelligence Laboratory, Brussels, 

Belgium. Special pre-edition, (1999). 

[10] L. Steels ‘Evolving grounded communication for robots’. Trends 

Cogn. Sci. 7, 308-312, (2003). 

[11] A. Cangelosi, A. Greco, and S. Harnad. ‘Symbol grounding and the 

symbolic theft hypothesis’. In A. Cangelosi and D. Parisi, editors, 

Simulating the Evolution of Language (chap.9). London:Sprinter, 

(2002). 

[12] A. Cangelosi and H. Turner. ‘L'emergere del linguaggio’. In A. M. 

Borghi and T. Iachini, editors, Scienze della Mente, pp.227-244, 

Bologna: Il Mulino, (2002). 



[13] P. Vogt. ‘The physical symbol grounding problem’. Cognitive 

Systems Research, 3(3), 429–457, (2002). 

[14] B. J. MacLennan, ‘Synthetic ethology: a new tool for investigating 

animal cognition’. In The Cognitive Animal: Empirical and 

Theoretical Perspectives on Animal Cognition, ch.20, pp.151-156, 

Cambridge, Mass.: MIT Press, (2002). 

[15] B. J. MacLennan. ‘The emergence of communication through 

synthetic evolution’. In Advances in the Evolutionary Synthesis of 

Intelligent Agents, pp. 65-90, Cambridge, Mass.: MIT Press, (2001). 

[16] D. Jung and A. Zelinsky. ‘Grounded symbolic communication 

between heterogeneous cooperating robots’. Autonomous Robots 

journal, 8(3), 269–292, (2000). 

[17] R. Sun, ‘Symbol grounding: A new look at an old idea’. 

Philosofical Psychology, 13(2), 149–172, (2000). 

[18] E. Hutchins and B. Hazlehurst. ‘How to invent a lexicon: the 

development of shared symbols in interaction’. In Artificial Societies: 

The Computer Simulation of Social Life. London: UCL Press, (1995). 

[19] M.H. Christiansen and S. Kirby. Language evolution: consensus and 

controversies. Trends in Cognitive Sciences, 7 (7), 300-307, (2003). 

[20] K. Wagner, J. A. Reggia, J. Uriagereka, and G. S. Wilkinson,  

‘Progress in the simulation of emergent communication and 

language’. Adaptive Behavior, 11(1):37—69, (2003). 

[21] T. Deacon. Symbolic Species: The Co-evolution of Language and 

the Brain.  New York: Norton, 1997. 

[22] S. Ribeiro, A. Loula, I. Araújo, R. Gudwin, R. and J. Queiroz 

Symbols are not uniquely human. Biosystems 90(1): 263-272, (2007). 

[23] J. Queiroz and S. Ribeiro ‘The biological substrate of icons, 

indexes, and symbols in animal communication: A neurosemiotic 

analysis of vervet monkey alarm calls’. In The Peirce Seminar 

Papers 5, pp.69–78, Berghahn Books, New York, (2002). 

[24] D. Poeppel. ‘Mind over chatter’. Nature 388:734, (1997). 

[25] J. Queiroz and F. Merrell. ‘On Peirce´s pragmatic notion of semiosis 

– a contribution for the design of meaning machines’. Minds & 

Machines 19, 129-143, (2009). 

[26] C.S. Peirce, The collected papers of Charles Sanders Peirce. 

Electronic edition. Vols.I-VI. C. Hartshorne and P. Weiss, editors. 

Charlottesville: Intelex Corporation. MA: Harvard University, 1931-

1935. (cited using CP followed by volume number and page number) 

[27]  J. Ransdell. ‘Some leading ideas of Peirce’s semiotic’. Semiotica, 

19, 157–178, (1977). 

[28] C.S. Peirce. Annotated catalogue of the papers of Charles S. Peirce. 

R. Robin, editor. Amherst: University of Massachusetts, 1967. (cited 

using MS followed by manuscript number) 

[29] D. L. Cheney and R. M. Seyfarth, How monkeys see the world: 

Inside the mind of another species. Chicago: University of Chicago 

Press, 1990. 

[30] A. Loula, R. Gudwin, and J. Queiroz, ‘Symbolic communication in 

artificial creatures: an experiment in artificial life’.   Lecture Notes in 

Computer Science, 3171, 336–345, Advances in Artificial 

Intelligence - SBIA 200,. (2004).   

[31] A. Loula, R. Gudwin, C. El-Hani, and J. Queiroz, ‘Emergence of 

self-organized symbol-based communication in artificial creatures’. 

Cognitive Systems Research, 11(2), 131–147. (2010). 

[32] D.O. Hebb The Organization of Behavior: A Neuropsychological 

Theory. John Wiley & Sons, New York, 1949. 

[33] M. D. Hauser. The Evolution of Communication. Cambridge, MA: 

MIT Press, 1997. 

[34] A. Loula, R. Gudwin, and J. Queiroz. ‘On the emergence of 

indexical and symbolic interpretation in artificial creatures, or What 

is this I hear?’ In Fellermann, H., et al., editors, Artificial Life XII, 

pages 862--868. MIT Press. (2010) 

[35] A. Loula, R. Gudwin, and J. Queiroz. ‘Cognitive conditions to the 

emergence of sign interpretation in artificial creatures’. In: Tom 

Lenaerts et al., Proceedings of the 11th European Conference on the 

Synthesis and Simulation of Living Systems, p. 497-504. MIT Press, 

(2011) 

[36] D. Parisi, Simulazioni - la realtà rifatta nel computer. Bologna: Il 

Mulino, 2001. 

 

 

 

 

 

 
 



Abstract. 1The theory of emergentism, in its main subdivision 

(i.e. epistemological and ontological emergentism), is arguably 

an useful example in order to explain the concept of antinomy of 

Kant’s Pure Reason (a problem that is current also in 

contemporary philosophy), that is a thesis an antithesis that are 

both reasonable but irreconcilable. In using a thought 

experiment concerning the new technology of computer 

simulation, I shall show that one case in which we can solve the 

antinomy posed by epistemological/ontological emergentism is 

when we take into consideration the domain of A-Life. 

1 ONTOLOGICAL AND EPISTEMOLOGICAL 

EMERGENTISM 
There are plenty of definition of emergentism. Some involves 

properties [7] [9], some phenomena [1], some objects [8] [10]. 

This is not of interest here to understand which ones we should 

use, whether phenomena, objects or properties. What we assume 

here is that there is a common way to characterize the problem 

of emergentism. The main problem is the nature of the relation 

between the parts of a system and the system taken as a whole, 

i.e. a parts-whole relation problem . After having highlighted 

this, it is worth to point out that there is a common 

characterization of the different varieties of emergentism: it is 

said that there are an epistemological emergentism and an 

ontological emergentism. 

In the ontological emergentism, the world is arranged in 

different levels. In the classical conception of ontological 

emergentism, (see Broad) at each level there are new entities, 

that are irreducible, inexplainable and unpredictable with respect 

to the lower level entities. One may argue that this is a kind of 

naïve levelism, and it is too much for ontological emergentism. 

Morgan [10] outlines a metaphysical model of emergentism 

whilst Kim [8], analyzes it from the point of view of 

contemporary philosophical problems. What emerges from this 

analysis is that the metaphysical model of emergentism is 

exactly a type of ‘levelism’, i.e. the world is characterized by 

different levels, hierarchically organized from the lowest to the 

highest, based on increasing complexity. This is not a metaphor; 

this a precise ontological top-down structure, so that these levels 

are not merely levels of description: 

“The world as portrayed in the new picture consists of an array 

of levels, each level consisting of two components: a set of 
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entities constituting the domain of particulars for that level and a 

set of properties defined over this domain”, [7, p.190]. 

The ‘array’ is given by mereological relations, i.e. the relation of 

‘being part of’ so that the entities at an higher level B are 

composed of the entities of the lower level A. But in ontological 

emergentism, there may be that entities of A are not sufficient in 

order to obtain the entities of B (it is not needed that this 

happens for each object of each level). 

 So, as I pointed out, ontological emergentism is a kind of 

levelism and at each level, there are entities that are composed 

by parts, in the sense that each of these entities is composed by 

entities of the lower level. It may happen that some of the 

entities of the higher level, even if they are composed by parts, 

they are more than the sum of these parts, in the sense that they 

are irreducible and they are ontologically novel (not merely 

novel at a level of description) with respect to the entities of the 

lower level. The entities of this lower level are wholes too, they 

are composed by entities of the subsequent lower level, but they 

may be novel too in respect with the entities of the subsequent 

lower level. We can go downward until we find the level of 

physics, in which the entities have no proper parts. In 

Silbertstein and McGeever’s words: 

“Ontologically emergent features are neither reducible to nor 

determined by more basic features. Ontologically emergent 

features are features of systems or wholes that possess causal 

capacities not reducible to any of the intrinsic causal capacities 

of the parts nor to any of the (reducible) relations between the 

parts. Ontological emergence entails the failure of part–whole 

reductionism in both its explicit and mereological supervenience 

forms. It should be noted that epiphenomenal features do not 

meet the definition of ontological emergence” [12, p. 187] 

On the other hand, epistemological emergentism may be defined 

as follow: 

“A property of an object or system is epistemologically 

emergent if the property is reducible to or determined by the 

intrinsic properties of the ultimate constituents of the object or 

system, while at the same time it is very difficult for us to 

explain, predict or derive the property on the basis of the 

ultimate constituents. Epistemologically emergent properties are 

novel only at a level of description” [12, p. 186] 

After this short outline of epistemological and ontological 

emergentism, in section 1.1 I shall discuss the ontological 

commitments of both kinds of emergentism, while in section 1.2 

I shall analyze their dichotomy. Finally, in section 1.3 I shall 
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show one case in which the dichotomy can be solved (that is, in 

the computer simulations of Artificial Life). 

1.1   The ontological commitment of the 

emergentism as a mereological theory 

I am not going to discuss here the informativeness and the 

coherence of both definitions outlined above. What I would like 

to discuss here is their ontological commitments. Considering 

that both contemporary epistemological and ontological 

emergentism try to solve the problem of the parts-whole relation 

in (complex) systems, they are arguably mereological theories. 

The ontological commitment of mereological theories is well 

studied by Achille Varzi [13] . Varzi puts the problem of the 

ontological commitment by saying that it is a matter of making 

‘an inventory of the world’, i.e. a list of the things that exist. 

One of the main question linked to this task is whether we need 

to consider the parts of an object as things that “do not quite 

have a life of their own” [13, p. 283] and, more important, 

whether objects composed by parts should be considered as 

objects to be included in the inventory of the world. In order to 

solve this problem, we need what Varzi calls ‘a count policy’. 

Emergentism is a type of count policy. Then Varzi continues by 

saying that there is minimal criterion that is able to state whether 

a count policy is plausible, but this not of interest here. What is 

important to highlight here, is that epistemological and 

ontological emergentism have two completely different count 

policies. They are not just different, they are opposite, i.e. they 

are irreconcilable. Let us see in details. 

 As I said above, ontological emergentism draws a 

layered-world imagery. At each level, there may be new objects 

(properties, phenomena), that are irreducible, unexplainable and 

unpredictable with respect to the lower level objects (properties, 

phenomena). What ontological emergentism tries to stress, is 

that there are sums of parts that are something (ontologically) 

new with respect to the parts they are composed of, so that we 

should not call these ‘sums of parts’, but rather ‘wholes’ because 

they are more than the sum of the parts they are composed of. 

We should count as existing in our inventory of the world every 

wholes (composed by parts that can be wholes too) at each 

level1. This is always true, until we meet the level of physics, in 

which the parts have no proper parts because this level is the last 

one in the layered model. We include also the basal objects 

without proper parts. Thus, even the consequences of this 

confused imagery are misleading, we can state that the count 

policy of the ontological emergentism (O) is the following one: 

(O) The inventory of the world is to include the entities that are 

wholes with proper parts, and also the ultimate constituents of 

reality, that have no proper parts2 

 The count policy of the epistemological emergentism 

is different. The facts that epistemologically emergent properties 

are reducible to the ultimate constituents of the system, and that 

they are novel only at a level of description, give us the features 

of its ontological commitment. If here the wholes are nothing 

more than the sum of their parts, and the wholes are reducible to 
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problem, then he can have a look at the article of Achille Varzi cited 
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their parts, and the ultimate constituents of the world (i.e. what 

we should count as existing) have no proper parts, then the 

epistemological emergentism has the following count policy, 

call it E: 

(E) The inventory of the world is to include the ultimate 

constituents of the world (whatever they are), so that no entity 

with proper parts should be count 

Epistemological emergentism, in this counting principle and in 

Silberstein-McGeever’s definition, is non-emergentist. The only 

reason why it is called ‘emergentism’ is because, in some sense, 

it explains the appearance of emergent stuff, i.e. there are some 

epistemological constrains so that we cannot reduce in practice 

the emergent phenomena to the basal ones even if in principle it 

is always possible. One may argue that epistemological 

emergentism can be also seen as completely uncommitted, in the 

sense that the arguing for more things to count (wholes, parts, 

etc) is not important, because for the purpose of the 

epistemological analysis of the epistemological emergentists, 

ontology is not relevant. Hence, you can argue in favour of 

epistemological emergentism without claiming that the supposed 

wholes that seem new are reducible to the entities of the basal 

level. In fact, you may merely make reference for the 

epistemological problems posed by the attempt to predict certain 

entities and their properties with respect to entities of the lower 

level. Bedau’s weak emergentism [1] leaves open this possibility 

of an epistemological emergentism uncommitted ontologically. 

However, in this context this cannot be an objection, because I 

am focusing on those kinds of epistemological emergentism [12] 

[4] that have explicitly an ontological commitment. In the 

definition of epistemological emergentism I used, it is clearly 

highlighted that emergent entities and their properties are novel 

only at the level of description you are using, and the inventory 

of the world is committed ontologically to the ultimate 

constituents. 

 Although, at certain extent, the two inventories 

overlap (in the sense that their sets of things seem to intersect), 

the two counting policies are incompatible. Let us see why. O 

and E both accept in their policies the ultimate constituents that 

have no proper parts (namely, x). However, they do this for 

different reasons. O accepts x because its aim is to ground, in a 

quite physical and concrete sense, its levelism: it must admit a 

bottom-end to reality understood as hierarchy of levels. Thus, O 

admits x in order to ground the ontological hierarchy of those 

wholes with proper parts because, without x, there would be an 

infinite regression to lower and lower levels generating a 

confusing and endless inventory of the world. I am not able to 

make sense of such an infinite regression in ontology. On the 

other hand, E admits x for other reasons. E justifies the fact that 

emergent phenomena are novel only at a level of description, by 

arguing that there is one level that it is not only a level of 

description, but also a level of reality (the level of x). Thus, in 

order to say that emergent phenomena are only novel at a level 

of description, and that ontologically are not novel, it has to state 

that they are not novel with respect to something else, i.e. that 

they are reducible to x, and x should be considered as existing 

(so, included in the inventory of the world). In summary, E and 

O they are not compatible even if they both admit x, because O 

does this in order to ground the wholes with proper parts, and E 

in order to exclude the wholes with proper parts. Thus, they use 

x in order to ground two things that are not compatible. 

I can provide an example of this incompatibility. For a 

taxonomist, the inventory of the world is composed mainly of 



organisms. Of course, if I ask him explicity to list his inventory 

of the world, he would include also such stuff as atoms 

(assuming for simplicity that atoms have no proper parts). 

However, he would do so only because the organisms he studies 

must be composed of some stuff, but he is not interest in atoms, 

rather in those particular features that can lead him to classify 

organisms in such and such a manner. Those features that he 

studies are considered ontologically new with respect to atoms 

and existing ontologically within the organisms (that they are 

new too) that bear them. A physicists will include in his list 

atoms, but not the organisms. He will say that organisms are 

entirely ontologically reducible to atoms, but of course the 

features of organisms, according to the context, may be 

considered at another level of description. Thus, they both 

include atoms in their inventories of the world, but for opposite 

reasons. 

1.2   Metaphysical assumptions in the theory of 

emergentism 

Ontological and epistemological emergentists hold, respectively, 

that O and E are not merely a way of modelling the system 

under scrutiny, but correspond directly to the structure of the 

system under analysis. Thus, it seems that reality is either O or 

E. This kind of dichotomy is classic in philosophy. For example, 

Floridi  [3] analyzes a similar case, i.e. the dichotomy between 

the digital ontology vs. the analogue ontology. These kinds of 

dichotomies, viz. analogue vs digital or O vs E, are similar to the 

antinomies of Kant’s pure reason , i.e. a thesis and an antithesis 

both reasonable and irreconcilable. Applying to these a 

trascendental methods [2], we shall show that the dichotomy E 

vs. O is misleading (of course when they both refer to the same 

objects), as Floridi shows for digital vs. analogue and Kant for 

the antinomies. So, we do not have to choose between O and E 

in this particular context. One case in which the ‘metaphysical 

question’ may have a reasonable answer is, as we will see, the 

case of a computer simulation considered as the system under 

scrutiny. But let us start with the trascendental method, i.e. the 

methods of levels of abstraction. 

      A trascendental method is a method that investigates the 

conditions of possibility of the experience (or, in this case, of 

modelling a system). Thus, we may analyze emergentism from 

this point of view in order to see whether we have some reason 

for stating that the inventory of the world of both 

epistemological and ontological emergentism corresponds 

directly to the structure of the world. Let us start with the notion 

of ‘level of abstraction’. Floridi defines a level of abstraction as 

“a finite but non-empty set of observables, where an observable 

is just an interpreted typed variable, that is, a typed variable 

together with a statement of what feature of the system under 

consideration it stands for” , [3, p. 20]. Thus, a level of 

abstraction is composed by a particular set of features, that are 

supposed to belong to the system, that we take into 

consideration in order to observe the system. We commit 

ontologically to the system with these ‘features’. Of course, the 

notion of level of abstraction is more complex than my 

simplification. For example, it is necessary to understand the 

relations that hold different observables, and there is also a way 

of putting together different levels of abstractions in order to 

make different kinds of observations. However, we want to 

show here only what happens when we conceive O and E as 

different ways of modelling a system, whether we have some 

reason to state that their manner of modelling the world 

corresponds to the structure of the world in itself. In order to do 

this, the notions of ‘level of abstraction’ and ‘observable’ are 

sufficient. A simple example may be the one about the 

differences between the analysis of a song made by a music 

reviewer and a sound engineer. The former shall look at the song 

through observables that are aesthetic categories, while the latter 

shall look at the song through the laws of physics. They look at 

the same system, but their analysis are completely different. So, 

the music reviewer, specifying that he is going to review a song 

from an aesthetic point of view, chooses a set of observables. In 

doing this, he (implicitly) specifies, as Floridi says in general for 

the levels of abstraction, “the range of questions that (a) can be 

meaningfully asked and (b) are answerable in principle” [3, p 

22]. Thus, if we analyze the system only from a particular 

position, through particular observables, the information we can 

‘extract’ from the system are limited, i.e. limited to the level of 

abstraction we use. This means that we cannot observe the 

system without specifying the position from which we are 

observing it, i.e. without specifying the level of abstraction we 

use. 

Generally, in the debate of emergentism, it is assumed that 

reality in itself may be either O or E. This is a typical case of 

what Floridi define “the strive for something unconditioned” , 

[2, p. 317] that “is equivalent to the natural yet profoundly 

mistaken attempt to analyse a system (the world in itself, for 

Kant, but it could also be a more limited system) independently 

of any (specification of) the level of abstraction at which the 

analysis is being conducted, the questions are being posed and 

the answers are being offered” [2, p. 317]. This is because 

committing oneself ontologically to a system means modelling a 

system, so that we try to elaborate a model of the system. The 

only way to do this is to choose a level of abstraction, which 

determines the set of observables we use in order to elaborate 

the model. The ensuing model identifies a structure, which is 

attributed to the system. The problem is that the structure is 

identified only through a level of abstraction. We cannot avoid 

it. The emergentists do not take into consideration this problem, 

and even if they did, they implicitly assume that the observables 

of the level of abstraction they choose are the only available for 

observation in the system in itself, but we have no reason to 

believe that O or E correspond directly to the structure of the 

world (consider the example of the taxonomist and the 

physicists). We do have nothing in order to state that the level of 

abstraction we use has exactly the same features of the world in 

itself. 

     This is apparent if we consider that there is not a count 

policy that states which is the structure of the system we are 

analyzing, i.e. the structure of the system independent from any 

level of abstraction. The reason is that, and Varzi agrees in this, 

the count policy we choose depends on the underlying 

mereological theory, so that it is only a matter of choice. In 

choosing the underlying mereological theory, we choose our 

level of abstraction. The consequent count policy clarifies the 

set of observables we apply to the system. ‘The strive for 

something unconditioned’ in emergentism is misleading, 

because, if we cannot avoid the choice of a level of abstraction 

(the choice of the underlying mereological theory), then we 

cannot ‘extract’ something unconditioned from the system. The 

information we can extract from the system depends on the 

position we choose with respect to the system, i.e. the level of 

abstraction we choose. 

1.3   Computer simulations and the noumenal 



We saw before that the emergentism may take for granted a 

direct correspondance between its mereological theory 

(whatever it is) and the structure of the system under analysis. 

This is something it is impossible to prove, we have no direct 

access to what Kant calls the noumenal. In Kant’s approach, 

only the creator of the noumenal may have access to it [5]. We 

shall show that the one case in which we can have access to the 

noumenal world is when we build the system under scrutiny (so 

when we build the noumenal), and this happens in the computer 

simulations, e.g. in the field of the artificial life (A-Life). It 

seems to be a trivial point, but it shows exactly in which sense 

there may be a direct correspondance between a level of 

abstraction and the noumenal world (that is what emergentists 

assume), and in which sense only the creator of the noumenal 

may have access to it. 

Let us show this through an example. In [11] Ronald, Sipper and 

Capcarrère (RSC) try a different and experimental approach 

with respect to emergentism. The three researchers work in the 

field of A-Life, and they propose an emergence test, i.e. a sort of 

criteria to state whether one can use the label ‘emergence’ in 

different cases. The experiment works in the following way. 

There are two persons: a system designer (that designs a 

computer simulation through the A-Life), and a system observer. 

There are three stages of the experiment. The first (1) is the 

design, i.e. the system is built by the designer through “local 

elementary interactions between components (e.g., artificial 

creatures and elements of the environment) in a language L1” 

[11, p. 229]. Then (2) the system observer observes the system, 

he is fully aware of the design, “but describes global behaviours 

and properties of the running system, over a period of time, 

using a language L2” , [11, p. 229]. Finally (3) there is the 

surprise. This is the “the cognitive dissonance between the 

observer’s mental image of the system’s design stated at L1 and 

his contemporaneous observation of the system’s behaviour 

stated in L2” [11, p. 229]. 

There is something ambiguous with (2). If the observer is fully 

aware of the design, so that he knows that the system features in 

themselves are such and such, then there is no reason why he 

has to adopt another kind of language or perspective. So, we can 

modify (2) stating that the observer is not aware of the system’s 

design, but he becomes aware at (3), and here comes the 

surprise: after having observed the system’s global behavior 

with L2, he is surprised (becoming aware of L1) of how the 

system is in itself. 

      The most interesting character here is the designer. 

RSC focus their attention on the observer, and on his surprise, 

but the designer for our purpose is more useful. In fact, when the 

designer designs a computer simulation (for example the 

emergence of a nest structure in a simulated wasp colony), the 

position from which he may observe the simulation after it is 

started, is a particular kind of level of abstraction. It is a 

particular level of abstraction because its observables are exactly 

the features of the simulation in itself. The designer of the 

simulation may have access to the ‘noumenal’ of the simulation 

because the simulation is built through the observables of the 

level of abstraction he decides to adopt. In the case of the 

emergence of a nest structure in a simulated wasp colony, we 

have a sort of operational epistemological emergentism because 

the designer tries to build the emergence, in this case the 

epistemological emergence. The point is that, in this example, E 

is not only the ontological commitment, but it is exactly the way 

by which the system is in itself. 

2   CONCLUSION 

In this article, after having clarified the nature and the 

ontological commitment of both epistemological and ontological 

emergentism, I have analyzed their assumptions that their 

metaphysical imageries correspond to the structure of the world. 

I have carried out this analysis with a transcendental method 

found in  and , and I have reached the conclusion that the 

dichotomy E and O is conceptually messy. Finally, I have 

argued that the one case in which the dychotomy can be solved, 

is when we build the system under scrutinty (using A-Life), so 

that the observables of the level of abstraction adopted 

correspond to the structure of the system itself. 
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