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The AISB’00 Convention

The millennial nature of current year, and the fact that it is also the University of Birmingham’s centennial year, made
it timely to have the focus of this year’s Convention be the question of interactions between Al and society. These
interactions include not just the benefits or drawbacks of Al for society at large, but also the less obvious but increas-
ingly examined ways in which consideration of society can contribute to AL The latter type of contribution is most
obviously on the topic of societies of intelligent artificial (and human) agents. But another aspect is the increasing
feeling in many quarters that what has traditionally been regarded as cognition of a single agent is in reality partly a
social phenomenon or product.

The seven symposia that largely constitute the Convention represent various ways in which society and Al can con-
tribute to or otherwise affect each other. The topics of the symposia are as follows: Starting from Society: The Appli-
cation of Social Analogies to Computational Systems; Al Planning and Intelligent Agents; Artificial Intelligence in
Bioinformatics; How to Design a Functioning Mind; Creative and Cultural Aspects of Al and Cognitive Science;
Artificial Intelligence and Legal Reasoning; and Artificial Intelligence, Ethics and (Quasi-)Human Rights. The Pro-
ceedings of each symposium is a separate document, published by AISB. Lists of presenters, together with abstracts,
can be found at the convention website, at http://www.cs.bham.ac.uk/~mgl/aisb/.

The symposia are complemented by four plenary invited talks from internationally eminent Al researchers: Alan
Bundy ("what is a proof?"- on the sociological aspects of the notion of proof); Geoffrey Hinton ("how to train a com-
munity of stochastic generative models"); Marvin Minsky ("an architecture for a society of mind"); and Aaron Slo-
man ("from intelligent organisms to intelligent social systems: how evolution of meta-management supports social/
cultural advances"). The abstracts for these talks can be found at the convention website.

We would like to thank all who have helped us in the organization, development and conduct of the convention, and
especially: various officials at the University of Birmingham, for their efficient help with general conference organi-
zation; the Birmingham Convention and Visitor Bureau for their ready help with accommodation arrangements,
including their provision of special hotel rates for all University of Birmingham events in the current year; Sammy
Snow in the School of Computer Science at the university for her secretarial and event-arranging skills; technical staff
in the School for help with various arrangements; several research students for their volunteered assistance; the Cen-
tre for Educational Technology and Distance Learning at the university for hosting visits by convention delegates; the
symposium authors for contributing papers; the Committee of the AISB for their suggestions and guidance; Geraint
Wiggins for advice based on and material relating to AISB’99; the invited speakers for the donation of their time and
effort; the symposium chairs and programme committees for their hard work and inspirational ideas; the Institue for
Electrical Engineers for their sponsorship; and the Engineering and Physical Sciences Research Council for a valu-
able grant.

John Barnden & Mark Lee

il



Preface

Following on from the successful AISB’99 Convention, whose theme was the
study of creativity in AT and Cognitive Science, the purpose of this symposium is
to bring together researchers interested in all Al and cognitive aspects of creativ-
ity and cultural enterprise. The aim of holding one unified meeting, instead of
several simultaneous smaller ones, is to promote communication between those
studying different aspects of creativity, and this has been mostly achieved: the
papers (and the corresponding presentations) are for the most part grouped by
their relation to creativity in general, rather than to a particular domain. The
exceptions to this are two papers on important low-level aspects of modelling
musical creativity.

The four sections which have naturally arisen, then, are headed Exploratory
Creativity, Modelling & Supporting Creative Processes, Techniques for Mod-
elling Musical Creativity, and Methodology & Evaluation.

The first of these, in Margaret Boden’s terminology, covers the modelling
of creativity by traversal of a defined search space. In this volume, we see
examples of mathematical and musical exploratory creativity (we see others,
too, elsewhere, but presented with a different emphasis).

The second section brings together papers which focus on the modelling of
particular aspects of creativity, such as metaphorical thinking. Here, we see
modelling both for its own sake, and also applied to computer-assisted learning.

Section three is substantially more specific than the other sections, and in-
cludes two papers about fundamental aspects of modelling musical creativity:
pattern matching in musical strings, and the exploration of pitch spaces.

Finally, and most lengthily, section four explores methodology and the ques-
tion of evaluation. Creativity research currently lacks standard methodologies,
and it is good to see some being developed and reported. The question of eval-
uation, highlighted in one sense by Margaret Boden at her AISB’99 conference
keynote, actually has two senses: how can a computer program evaluate its out-
put; and, how can we evaluate strategies for modelling creativity. Both senses
are represented here, sometimes in the same paper.

The papers presented here were carefully selected by multiple blind anony-
mous peer review. This, as always, entailed a lot of work for the symposium’s
programme committee, to whom I am very grateful. They were:

Kim Binsted, Sony CSL, Japan
Emilios Cambouropoulos, University of Vienna, Austria
Simon Colton, University of Edinburgh, UK
Costas Tliopoulos, King’s, London, UK
David Meredith, City University, London, UK
Peter Nelson, University of Edinburgh, UK
Francois Pachet, Sony CSL, France
Graeme Ritchie, University of Edinburgh, UK
Pierre-Yves Rolland, University of Paris VI, France
I am grateful also to the authors for their punctuality and cooperation in prepar-
ing this volume, especially given some difficult circumstances.
Geraint A. Wiggins
Department of Computing
City University, London
Programme Chair
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Cross-domain Mathematical Concept Formation
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University of Edinburgh, 80 South Bridge, Edinburgh, Scotland, EH1 1HN.
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Abstract

Many interesting concepts in mathematics are essentially ‘cross-domain’ in nature, relating objects from more than one
area of mathematics, e.g. prime order groups. These concepts are often vital to the formation of a mathematical theory.
Often, the introduction of cross-domain concepts to an investigation seems to exercise a mathematician’s creative ability.
The HR program, (Colton et al., 1999), proposes new concepts in mathematics. Its original implementation was limited
to working in one mathematical domain at a time, so it was unable to create cross-domain concepts. Here, we describe
an extension of HR to multiple domains. Cross-domain concept formation is facilitated by generalisation of the data
structures and heuristic measures employed by the program, and the implementation of a new production rule. Results
achieved include generation of the concepts of prime order groups, graph nodes of maximal degree and an interesting

class of graph.

1 Introduction

In previous work on automated mathematical discovery,
(Lenat, 1976), (Colton et al., 1999), and in this paper, a
mathematical concept is taken to mean a class of math-
ematical objects, such as prime numbers, square num-
bers, Abelian groups, complete graphs etc.'! Mathemat-
ical concept formation is the process of identifying new
classes of mathematical objects with interesting and/or
desirable properties. In human mathematics, this is typic-
ally pursued in one of two ways: it can be a free exercise,
in which a mathematician is looking for new things to in-
vestigate, or a more directed process, in which a mathem-
atician is looking for a concept satisfying certain require-
ments as part of an investigation or a proof, see Colton
(2000), chapter 3.

A mathematical domain is an area of mathematical
study. Examples include number theory, the study of ques-
tions about numbers (usually meaning whole numbers),
and graph theory, the study of sets of vertices, V/, and
edges, F, consisting of pairs of elements from E (or more

informally, the study of diagrams consisting of nodes joined

together with lines, see Figure 1). A cross-domain concept
is a set of objects in one domain that are identified as a
distinct class using information from at least one other
domain. Some examples illustrate this idea.

'A prime number is a natural number with exactly two factors, e.g.
2,3,5,7. A square number is one that is equal to an integer times itself,
e.g. 1,4,9,16. An Abelian group is a group in which, for all elements
a,b in the group, ab = ba. A complete graph is one in which every
node is joined to every other node.

The concept of even order nodes is cross-domain. It
is the set of nodes in a graph which are joined to an even
number of edges (see Figure 1). The order of anode is a
graph theory concept, and the concept of even numbers is
from number theory. Euler’s solution to the Konigsberg
bridge problem, (Euler, 1736), required the use of even
order nodes, and launched the field of graph theory.

The city of Konigsberg in East Prussia was divided by
a river containing two islands. Seven bridges connected
the islands to each other and to the banks of the river, and
the citizens of the city wondered if there was a way to tour
the city crossing every bridge exactly once. Euler proved
that this was in general possible if and only if every land
mass was connected to an even number of bridges, which
was not the case in Konigsberg.?

€

Figure 1: Illustration of even order nodes. Nodes a, b and
¢ are even-order nodes, but nodes d and e are not

2See http://www.cut-the-knot.com/do. you_know/graphs.html  for
more details.



The concept of prime order groups is another example
of a cross-domain concept. A prime order group is one
containing a prime number of elements. Sylow’s the-
orem, (Sylow, 1872), required the concept of prime or-
der groups. While not as easy to state and understand as
Euler’s result, it too was a breakthrough and forms per-
haps the most profound result in finite group theory.3

Some of the most common examples of cross-domain
concepts relate numbers to other domains, like the two
examples above. There are also others, such as sets of
matrices forming a group. A recent Fields medal winner
was awarded the prize for a cross-domain investigation:
Richard Borcherds proved the ‘Moonshine Conjecture’,
originally proposed by John Conway and others, (Con-
way and Norton, 1979). This theorem links elliptic mod-
ular functions with concepts from string theory and group
theory.*

Cross-domain reasoning also arises in the natural sci-
ences, most commonly when some mathematics is ap-
plied to experimental results. For example, Mendel foun-
ded the field of genetics when he applied some element-
ary combinatorics to the results of his famous pea experi-
ments.

In summary, we’ve seen that cross-domain concepts,
while not dense in the mathematical literature, often provide
the inspirational step leading to results of real importance.
These ideas represent what we think of as creative stages
in the development of a theory. An effective automated
mathematical discovery package should have the ability
to form cross-domain concepts, and therefore be able to
provide the inspiration for such creative steps.

1.1 Background

The first automated mathematical concept formation pro-
gram was Lenat’s AM, as described in Lenat (1976). AM
stored concepts as definitions in LISP, and modified old
definitions to create new concepts. It also made conjec-
tures about the concepts it had invented. Lenat provided
AM with 76 initial concepts, mostly referring to bags,
sets and set operations. When running, AM developed
set-theory based definitions of numbers. It then quickly
moved into number theory, and re-invented some famous
concepts such as highly composite numbers. Lenat fol-
lowed up AM with EURISKO, Lenat (1983), which was
given some number-theory and set-theory concepts to start
with. However, neither program had facilities for expli-
citly reasoning about the two different domains in order
to propose cross-domain concepts.

3For those interested, Sylow’s three-part theorem built on a result of
Cauchy, which stated that a group whose order is divisible by a prime p
has an element of order p. Sylow extended this to the following: If p™
is the largest power of the prime p to divide the order of a group G then
(i) G has subgroups of order p™ (ii) G has 1 + kp such subgroups for
some k, (iii) any two such subgroups are conjugate. Almost all work on
finite groups uses Sylow’s theorems. (O’Connor and Robertson, 1999)

4There is a good, short summary of the story of the moonshine con-
jecture at http://www.sciam.com/1998/1198issue/1198profile.htmi

GT?, Epstein (1988), was written by Epstein to per-
form concept formation, conjecture making and theorem
proving in graph theory. In GT, a graph type is repres-
ented by a seed, S, consisting of a set of base cases for
the type, a constructor, f, and a set of constraints for the
constructor, o. These last two together describe a correct
and complete construction of all graphs in the class. GT
formed new concepts by generalising, specialising and
merging old ones, performing heuristic search on a best-
first agenda basis. At least one of the conjectures pro-
posed and proved by GT involved cross-domain concepts:

There are no odd-regular graphs on an odd
number of vertices.

This theorem states that, given an odd number of points,
there is no way to join them up such that every point is
connected to the same odd number of other points. How-
ever, no other cross-domain conjectures are reported. GT
eventually succumbed to the size of the search space and
stopped producing concepts and conjectures that the pro-
gram'’s author considered interesting.

The HR® program, Colton et al. (1999), is an auto-
mated concept formation which also makes conjectures
about its concepts and calls on theorem proving and model
generation tools to settle them. At the start of an HR ses-
sion, a domain is chosen, some initial objects in that do-
main are provided, and axioms for that domain are spe-
cified by the user. All model generation and theorem
proving tasks are then carried out with respect to these
axioms. HR will then proceed to form concepts within
that domain, using general production rules such as ‘con-
junct’ (pick out objects satisfying the definition of two
previous concepts) and ‘common’ (pick out pairs of ob--
Jjects sharing a particular property) to make new concepts.
A weighted sum is taken of a variety of heuristic meas-
ures to evaluate the interestingness of a concept. HR will
then apply more production rules to the most interesting
concepts. However, the original version of HR could not
store objects from more than one domain at a time, so
could not reason about multiple domains in order to form
cross-domain concepts. The HR project is ongoing, and
a new version is being developed in Java, (Colton et al.,
2000).

1.2 Paper outline

In the rest of this paper, we describe the generalisation
and extension of the HR program to perform cross-domain
concept formation. In section 2, we describe the operation
and knowledge structures of the HR program, and how
they were altered to allow cross-domain concept form-
ation. In section 3 we discuss the results achieved by
the new version of the program looking for cross-domain

SGT stands for Graph Theorist
SHR is named after Hardy and Ramanujam, two famous mathem-
aticians who worked together for 2 period early in the twentieth century.



Table 1: Concept table for ‘group operation’ (rows for 2
groups shown)

Group | Element | Element | Element
c2 e e e
c2 e a a
c2 a e a
c2 a a e
c3 e e e
c3 e a a
c3 e b b
c3 a e a
c3 a a b
c3 a b e
c3 b e b
c3 b a e
c3 b b a

concepts in graph theory and number theory. These in-
cluded rediscovery of nodes of maximal degree, discov-
ery of an interesting type of graph and a generally high
yield of good quality concepts. In section 4, we draw
some conclusions and outline some suggestions for fur-
ther work.

2 Concept formation in HR

There follows a brief description of the HR program. Fur-
ther details can be found in (Bundy et al., 1998) or on the
HR project webpage’.

2.1 Representation

Designed initially to work with finite algebras, HR can
work in any finite mathematical domain. The user must
supply a set of axioms for the domain, and a set of initial
concepts to work with. Typically, these will consist of a
set of entities from the domain, together with a way of
breaking them down. So, for example, in group theory
the user might supply the Cayley table® for some small
groups, or in number theory, the breakdown of the first 10
integers into their divisors.

In HR, each concept is represented as a data table, and
each entity to which that concept is applicable will have
one or more rows in the table. The first column in the table
identifies the entity, and the other columns refer to prop-
erties of the entity or its components. For an example, see
table 1, the Cayley table for two cyclic groups.

2.2 Operation

HR functions on a best-first heuristic search basis. New

"http:/iwww.dai.ed.ac.uk/Simonco/research/hr
8A Cayley table fora group gives the result of applying the group’s
multiplication operation to any pair of elements.

concepts are generated by HR’s 9 production rules, and
evaluated using 7 heuristics. A weighted sum of the seven
scores is calculated for each concept, and the concepts
are sorted into order, the highest scoring concepts coming
first. The weights for each heuristic are set by the user.

2.3 HR’s heuristics and production rules

HR uses the following heuristics to measure the interest-
ingness of a concept:

Parsimony Concepts with small data tables tend to de-
scribe objects more parsimoniously, so these are
scored positively.

Discrimination and Invariance The user can supply a
‘gold standard’ categorisation, and these two heur-
istics will measure how close a concept comes to
achieving that categorisation.

Complexity This is a measure of how many production
rule steps were applied to build the concept. Sim-
pler concepts are preferred.

Applicability The proportion of entities known to HR which
are referred to by the concept is the applicability.

Novelty Ifthe categorisation produced by a concept hasn’t
been seen before, then it is a novel concept, and so
scores highly. Categorisations that have been seen
many times before yield lower novelty scores.

Provable facts Concepts relating to proved theorems are
scored highly.

The production rules used to form new concepts are:

Size Measures the size of a set, e.g. given a table of
integers and their divisors, it will produce a table
showing how many divisors each number has.

Split Picks out an integer value - usually 1 or 2. Given
a table showing how many divisors a number has,
the split rule can pick out integers with exactly 2
divisors (prime numbers).

Match Produces a table containing rows with matching
columns. So, given a table of integers decomposed
into their factors, it can pick out numbers which
decompose into two identical factors, i.e. square
numbers.

Forall Finds aset of entities, all of which have sub-objects
of a certain type. Given the concept of central ele-
ments in a group, it will produce Abelian groups
(i.e. groups in which all elements are central).

Conjunct Forms the conjunction of two previous con-
cepts, e.g. from square numbers and prime divisors,
it can form squares of primes.



Exists Removes a column from a data table. So, given
a table consisting of groups and their elements of
order 3, it will produce a table of all groups which
contain an element of order 3.

Compose Given two concepts representing a function,
this production rule will produce a data table rep-
resenting their composition. For example, given a
data table containing groups and their sizes, and a
data table containing integers and their prime factors,
the compose rule would produce a table containing
groups and the prime factors of their size.

Common Picks out entities with rows in common, e.g.
integers sharing the same prime divisors.

Negate Returns the entities and corresponding rows not
appearing in a previous concept’s table with respect
to the complete list of entities provided by the user.
For example, given the concept of even numbers,
this production rule will produce the concept of odd
numbers.

Note that none of the production rules are domain spe-
cific, and all perform only very basic operations.

2.4 Adapting HR for Cross-domain Work

We now look at the modifications made to HR in order to
allow it to form cross-domain concepts. As we mentioned
above, Colton’s HR program performs not only concept
formation but also conjecture making, theorem proving
and counterexample finding. In the work reported here,
however, only the concept formation capabilities of the
program were used. This was because HR currently lacks
the ability to interface with inductive theorem provers,
and so would be unlikely to be able to prove any conjec-
tures involving numbers or graphs. It was anticipated that
all the testing would involve number theory, so the the-
orem proving mechanism of the program was switched
off for this work.

The first stage of the development work involved mak-
ing some changes to the way HR stores concepts in order
to be able to distinguish between concepts from different
domains. HR stores a list of ‘entities’, e.g. a list of groups
or a list of numbers depending on the working domain.
This was changed to allow entities to be identified with
their domains.

Some small changes were required to the way HR
builds new concepts. For example, negate, returns a
table containing entities not satisfying a previous concept
definition. This was changed to test the domain of the
previous concept, and return a table containing only those
entities from the same domain which do not satisfy the
previous concept definition.

Certain aspects of the way HR measures the interest-
ingness of its concepts also required modification. One
heuristic HR employs measures the ‘applicability’ of a
concept, i.e. the proportion of entities to which it applies.

This had to be changed so that HR only measured how
many entities in the concept’s own domain were referred
to by the concept. The ‘complexity’ measure was also
changed so as to be more lenient towards cross-domain
concepts. The measures concerned with classifications
(discrimination, invariance and novelty) required changes
to allow meaningful measurements to be made with re-
spect to the applicable domain. These changes consisted
of directing HR to only refer to categorisations in the same
domain when making the measurements.

2.4.1 User settings to control cross-domain work

Some new settings were added to allow the user to control
the multi-domain aspects of an investigation. The first al-
teration was to set up a system whereby the user can pre-
scribe the amount of investigation to take place in each
domain presented. This was achieved by adding user set-
table optionsdomain_list anddomain.multiplier.
The user sets domain_list to be a list of domains, say
[group, integer],and domain.multipliertobe
a number, say 50, and then HR will produce 50 concepts
in graph theory, 50 concepts in number theory, and then
carry on pursuing whatever it finds most interesting. This
setting has no effect on the cross-domain aspect of the in-
vestigation, it simply specifies the domain that a concept
should refer to.

The second change was to add two more user options
to control the cross-domain behaviour of the program,
nocross_before and encourage.cross_after.
The user sets no.cross.before to a value, say 150,
and then no cross-domain concepts will be formed until
150 single-domain concepts have been formed.
encourage.cross.after is set to a value, say 200,
and then after 200 concepts have been formed, cross-domain
pairs will be chosen first by the two-table production rules.

A further change was to relax the complexity limits
for cross domain concepts. HR has a user settable op-
tion called complex.max which sets a depth limit for
the search. This was modified so that a concept relating
objects from n domains could be built on up to a depth of
n times the complexity limit set.

2.4.2 A new production rule: extreme

Although HR's existing multi-concept production rules
could be made to function across multiple domains (with
minor modifications), it was important to establish the ef-
ficacy or otherwise of production rules designed explicitly
to facilitate cross-domain reasoning. We decided to de-
velop a rule to introduce extremes of orderings into HR.
Several previously inaccessible concepts require the use
of an ordering. For example, in graph theory we may
be interested in the node of maximum degree, the largest
clique, or the longest path. In group theory, we might
be interested in the elements of maximal order or the
largest proper subgroup. In number theory, we might be
interested in the largest prime divisor or largest common



Table 2: extreme with parameters (1,3). Bold rows are
extracted

Group { Element { Number
GO a 1
GO b 2
GO c 3
Gl a 1
G1 b 2

Table 3: extreme with parameters (1,3). Bold rows are
extracted

Graph | Node | Number
GO a 4
GO a 5
GO a 7
GO b i
GO b 9

factor. We needed to keep the rule general, to allow HR
to use any ordering it has available, and to allow it to ori-
ent an ordering in either direction, in order to be able to
extract both maximal and minimal values.

This new production rule was called extreme. It
takes in two pre-existing concepts, and treats one of them
as an ordering. It then takes the other concept and extracts
only those rows whose entry in a specified column (first
parameter) are the ‘largest’ for a specified entity (second
parameter: graph, node, group member, etc.) with respect
to the ordering chosen. If several rows share the same
extremal value, they are all extracted. Tables 2, 3 and 4
show examples, using the ordering in table 5.

Note that no ordering properties such as asymmetry
or transitivity are assumed or checked for when choosing
a concept to use as an ordering for the extreme rule.
This was a deliberate decision, taken for several reasons:
firstly, checking that a table has the necessary properties
to qualify as a partial or total ordering would be computa-
tionally expensive. Secondly, it was anticipated that com-
pletely inappropriate ordering tables would tend to give
empty tables, i.e. would not have any extremal values,
and so HR would not form a new concept (it would in-
stead conjecture that such a value did not exist). This was
borne out by the results achieved. Thirdly by keeping the
rule as general as possible we were giving HR a chance to
come up with something truly novel using a table as an
‘ordering’ that a human mathematician had never previ-
ously considered using. The original HR project had fol-
lowed a pro-generality methodology, and we wanted to
preserve this in our extensions.

Table 4: extreme with parameters (2,3). Bold rows are
extracted

Graph | Node | Number
GO a 4
GO a 5
GO a 7
GO b 1
GO b 9

Table 5: Ordering - this concept is given to HR when
working in number theory

Number | Number

W W LW NN
N - O OO0

3 Results

We evaluated the final product with respect to several pre-
cise criteria, in the hope that all these measures together
would give an accurate account of the degree of success of
the project. The two main areas of testing were: an eval-
uation of HR’s ability to spot classically interesting cross-
domain concepts and evaluation of the quality of the new
concepts output by HR. There follows a description of the
testing criteria, the methods used for testing and the res-
ults. In this paper, for considerations of space and intelli-
gibility to non-mathematicians, we report only the results
obtained in graph theory and number theory. Details of
group theory and number theory testing, and further de-
tails of the graph theory testing including the complete
output from a run, can be found in (Steel, 1999).

3.1 Generating standard interesting concepts

To measure the ability to re-invent standard cross-domain
concepts, we compiled a list of target concepts for which
the original HR implementation was capable of finding the
individual single domain concepts required. Then we ran
HR in the two domains, and examined the output to see
how many of these concepts had been rediscovered. The
methodology used was the following: first set HR up with
the correct production rules to build the single domain
concepts that are required to form the cross-domain target
concepts. Then, set the weights for the concept measuring
heuristics, and set HR off to form 500 concepts.

Several 500 concept batches were run with different



Table 6: Graph theory and number theory target con-
cepts. The double line separates ‘core’ concepts from
‘peripheral’ concepts

Concept Reason for Inclusion

A result in the first graph

Eulerian graphs theory paper, Euler (1736).

Used in many inequalities

Maximal order nodes . .
of invariants.

Used in the greedy graph
factorization algorithrit and
several inequalities.

Minimal order nodes

A graph contains an
Eulerian path if it has 0
or 2 odd order nodes.

0Odd order nodes
No. of odd order nodes

Even order nodes Needed for Eulerian graphs.

Give an indication of the
structure of the graph.

Number of nodes of
max/min order

Order of a star

graph centre Identifies star graph uniquely.

Star graph with an Characterises symmetric

even order node star graphs.

weights assigned to the concept measures. After each run,
weights were altered to try to favour the root single do-
main concepts required to build the missing targets. The
idea behind this was that if the target concepts really were
representative of the kind of concepts we want HR to find,
then by adjusting the weights to perform well on these
concepts, we would not be ‘over-tweaking’ but rather de-
termining a set of weights well-suited to concept forma-
tion in that particular pair of domains. In the event, after
four 500 concept runs, we had found a set of weights that
gave our best performance on the target set.

3.1.1 What is a ‘classically interesting’ concept?

Cross-domain concepts, whilst vital to mathematics, are
not particularly dense in the literature. This is inconveni-
ent, as we need a significant number of target concepts
to get representative test results. Consequentially, a small
number of vital concepts were picked out and identified
as ‘core’ target concepts. Then, some slightly more ob-
scure concepts that could still be considered interesting
were identified, and labelled as ‘peripheral’ target con-
cepts. Table 6, gives the test concepts for the runs in
graphs and numbers, and the reasons for their inclusion.

3.1.2 Standard concepts reinvented

HR was able to reinvent 2 out of 3 of the core targets and 3
out of 5 of the peripheral targets in the testing undertaken.
The missed targets were traced to a particular step in the
investigation where HR applied its exists production
rule in such a way as to miss abstracting away the actual
order of the nodes. This can be easily fixed - a version

of HR is under development that will insist on applying a
production rule with all possible parameters before atten-
tion is switched to another concept, or another rule.

3.2 Inventing new concepts

We measured the interestingness level of all the concepts
produced in a 500 concept run on the following scale:

Type 1 - Concepts in the classical target set (core or
peripheral).

Type 2 - Concepts of a similar level of interest to those
in the peripheral target set, of interest but only in special-
ised areas of the theory. For example, non-regular graphs,
graphs with all nodes of order greater than one and nodes
of prime order were all found in one test run and classified
as type 2.

Type 3 - Concepts which may be of interest, but only
in a specialised situation. For example, graphs with more
than two nodes of order 1 and graphs where all nodes are
of order eithera orb,anda + 1 = b.

Type 4 - Anything not falling into the above three
types

To analyse thoughtfully and accurately the quality of
cross-domain concepts in a 500 concept run with respect
to our four-point scale was a time consuming process, and
only one run was completely analysed in this way. The
run chosen was the run in graph theory and number the-
ory that produced the most classical target concepts. A
complete list of the concepts evaluated, and their classi-
fications, is given in appendix 1 of (Steel, 1999).

HR’s own measures of interestingness were not re-
ferred to at this stage of the evaluation process. By de-
fault, HR re-evaluates all the concepts it has invented so
far every time it invents another 10 new concepts. After
this re-evaluation, the top ten concepts (ranked by inter-
estingness) are displayed on the screen. For this evalu-
ation run, the program was altered to prevent it from dis-
playing the top ten list, to ensure that the concepts were
categorised purely on their apparent mathematical merit.
This allowed us to compare HR’s measure of interesting-
ness with our own later (see section 3.3).

The proportion of concepts fitting into each of the four
categories are illustrated in the pie chart in figure 2. We
can classify a concept satisfying the criteria for a type 1,
type 2 or type 3 classification as being ‘acceptable’, in
that it must at the very least be plausible and of some in-
terest. Of the concepts in the run analysed, 56% were ac-
ceptable. This compares favourably with Lenat’s 125 out
of 300 (42%)‘acceptable’ concepts in AM, and 200 out
of 1000 (20%) for EURISKO. Few very interesting con-
cepts (i.e. type 1 or type 2) were found in the run (just 8%
of the total cross-domain concepts). This is comparable
with Lenat’s 25 out of 300 ‘really interesting’ concepts in
AM (8.3%). Of course, we must be wary of attaching ex-
cessive importance to subjective judgements of this kind
without knowing exactly what Lenat was classing as an
‘acceptable’ or a ‘really interesting’ concept.
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Figure 2: Overall concept quality
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Figure 3: HR's evaluation of concepts’ interestingness

3.3 Effectiveness of HR’s interestingness meas-

ures

An effective concept formation program should rate as in-
teresting the same concepts a human mathematician would
rate as interesting. We evaluated this by collating the
interestingness measures assigned to the concepts in the
fully evaluated run presented in figure 2. The maximal,
mean and minimal interestingness scores for each cat-
egory of concept are illustrated in bar chart form in figure
3. There is a significant fall in the mean level of interest-
ingness (the central, light coloured bar in the chart) from
type 2 to type 3 to type 4, but a smaller fall in the maximal
and minimal values. The spread of interestingness values
assigned between maximum and minimum for any given
concept type was more significant than the scale of the de-
crease in the mean value. This is unfortunate, as it means
HR can be misled: it could assess a type 4 concept to be
more interesting that a type 1 concept. HR cannot cur-
rently undertake any mathematical investigation of these
concepts as its proof tools are limited to first order logic.
HR has no background knowledge of the mathematical lit-
erature. Despite this, we are asking it to give an instant
evaluation of the mathematical worth of a concept. Given
the scale of this task, achieving a general correlation with
the human assessment of interestingness is a good result,
but the degree of mis-assessment imposes a limit on the
success of the program. Some suggestions for improve-
ments are given in section 4.

3.4 Discovery highlights

A good automated concept formation program should come
up with some new novel and interesting concepts. To
evaluate this, one interesting looking concept was extrac-
ted from the analysed graph theory run. It had the follow-
ing definition:

A Graph G with a node nl of order M such
that Vnodes n2 € G, order(nl) > order (n2),
and M = {I|3 a node n3 € G,order(n3)
=TI}

This corresponds to a graph with a node of order M
that is the maximal order node in a graph in which there
are nodes of M different orders. The definition is fairly
complicated, but a moment’s thought reveals that such a
graph must have at least one node of every order from
1 to M. What is the minimum number of nodes that a
simple graph® with such a property can be drawn on for a
particular M ? We managed to prove the following simple
theorem:

Theorem1 Ym € Nm > 1,3G, a graphonm + 1
vertices s.t. Vn,1 < n < m,3 a node of ordern in G

Proof The proof is by induction on m, details in
(Steel, 1999).

This type of graph was new to the authors, but it has
appeared in mathematical literature. In (Zeitz, 1999), a
problem is posed involving a host inviting 10 couples for
a party:

I ask everyone present, including my wife,
how many people they shook hands with. It
turns out that everyone shook hands with a
different number of people. If we assume
that no one shook hands with his or her part-
ner, how many people did my wife shake hands
with? (I did not ask myself any questions.)

9 A simple graph is one with no duplicated connections and no loops.



By drawing a graph, which turns out to be of the type we
rediscovered, and applying a little induction, Zeitz shows
that the hostess must have shaken 10 hands.

So, our graph theory concept is involved in at least
two simple but interesting pieces of mathematics. This
is a promising result. The concept was also a complete
surprise to the authors - it seems to be a characteristic
of HR that it is able to find a way of inventing concepts
which at first thought one would not expect it to have the
capacity to represent. HR finds them interesting because
it can evaluate qualities of the underlying data rather than
just the definition.

4 Conclusions and Further Work

The control structure of the cross-domain HR could be
modified so that cross-domain concepts are only formed
when they are needed to develop a theory further. HR
could have a pre-set interestingness limit, and attempt to
generate cross-domain concepts only when formationin a
single domain was producing concepts below that threshold
setting.

As highlighted by the bar chart in figure 3, there is
room for improvement in HR’s interestingness heuristics.
One easy way to improve performance would be to in-
crease the number of models HR is given in each domain.
This would make the applicability measure more accur-
ate, and so decrease the interestingness of concepts which
consist of a convoluted definition of one particular model.
However, it would also slow the program down.

The conjecture making and theorem proving aspects
of the HR project have not been extended in this pro-
ject. Allowing HR access to inductive theorem provers
would give it a chance to prove some cross-domain con-
jectures involving numbers. In particular, many graph
theory proofs are based on induction. Being able to prove
cross-domain conjectures would also allow HR to judge
the worth of cross-domain concepts more accurately, as it
does in the single domain version.

Designing and adding further production rules would
enhance HR's coverage of mathematics. A useful exercise
would be to pick some concepts, say from an index or
glossary in an undergraduate text, and analyse what kind
of rules would be required to build those concepts. This
would at least give a feel for the scale of the problem, i.e.
whether we need ten more production rules or a thousand
more production rules. It would be useful to carry out this
kind of analysis before embarking on further extensions to
the work.

The results achieved by the program were generally
encouraging. In particular, the ideas behind HR were seen
to generalise to a search space with a much larger branch-
ing factor without destroying the quality of the concepts
constructed. If the cross-domain conjecture making abil-
ities of HR can be extended similarly, and there is every
reason to believe that they can, then perhaps a future ver-
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sion of HR will be able to come up with a discovery of
real mathematical importance.
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Abstract

The HR program, Colton et al. (1999), performs theory formation in domains of pure mathematics. Given only minimal
information about a domain, it invents concepts, make conjectures, proves theorems and finds counterexamples to false
conjectures. We present here a multi-agent version of HR which may provide a model for how individual mathematicians
perform separate investigations but communicate their results to the mathematical community, learning from others as
they do. We detail the exhaustive categorisation problem to which we have applied a multi-agent approach.

1 Introduction

Automated theory formation in pure mathematics involves
the production of mathematical concepts, examples, con-
jectures, theorems and proofs. Various systems have mod-
elled different aspects of theory formation. The AM pro-
gram, Davis and Lenat (1982), worked in elementary num-
ber theory and modelled how an exploratory approach can
drive theory formation. It used heuristics to guide the
search towards more interesting concepts and achieved
some success re-inventing well known concepts. The GT
program, Epstein (1988) worked in graph theory and was
the first to model the use of theorem proving to help dir-
ect theory formation. The IL program, Sims and Bresina
(1989), constructed operators with given properties over
types of numbers such as complex numbers. This mod-
elled how theory formation can be goal directed.

The AM program stopped being productive after a
while in every session. AM’s author, Lenat, argued that
this was because it needed more heuristics and the ability
to invent its own heuristics. He implemented the Eurisko
program to do this, Lenat (1983), but it but wasn’t as suc-
cessful as AM and it is debatable whether it added to our
understanding of theory formation. In Furse (1990) sev-
eral other reasons are given why AM ‘ran out of steam’.
One reason based on arguments from Kuhn (1970) is that
AM does not model any social aspect of the mathemat-
ical community. That is, creativity in mathematical re-
search often arises from the interaction of several math-
ematicians, often collaborating on the same problem but
sometimes working on different problems, possibly even
in different domains.

To our knowledge, no theory formation program in
mathematics has modelled the communication of ideas
between mathematicians. We have extended the HR pro-
gram, Colton et al. (1999), to model limited interaction
between different copies of the program running concur-
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rently. This multi-agent approach has led to greater cre-
ativity in the system as a whole. In §2 we give neces-
sary background information about the HR system, fol-
lowed in §3 by details of the multi-agent implementation.
In §4 we discuss the exhaustive categorisation problem
to which we have successfully applied multi-agent theory
formation. In §5 we discuss further possibilities for this
approach, including an application to the problem of in-
teger sequence extrapolation.

2 The HR System

The HR system models the major activities of mathemat-
ical theory formation: forming concepts, calculating ex-
amples, making conjectures, proving theorems and find-
ing counterexamples. The version of HR discussed in
Colton et al. (1999) and Steel et al. (2000) is a Prolog
implementation which includes all of this functionality.
Java is a more natural language for implementing agent
based programs and the version of HR we discuss here is
are-implementation of HR in Java which is still under de-
velopment. The Java version does not yet have conjecture
making or theorem proving abilities, so theory formation
is limited here to the compilation of concepts. HR does
this by exploring a space of concepts using a best first
search based on measures of interestingness.

The user supplies a set of objects of interest for the
domain, eg. the numbers 1 to 10 in number theory. They
also supply a set of initial concepts by providing a defin-
ition in terms of a set of predicates, the conjunction of
which defines the concept, and an exhaustive datatable
of examples calculated for all the objects of interest. For
instance, the concept of multiplication in figure 1 is sup-
plied in number theory with a datatable of examples where
the first column contains integers, which the integers in
the second and third columns multiply to give. A defini-
tion is also supplied for multiplication as a set of six pre-



dicates describing the triples [n, a, b] in the datatable:

(i) n is an integer (ii) a is an integer (iii) b is an integer
(iv) a dividesn (V) bdivides n (vi)axb=n

Theory formation proceeds in theory formation steps:

HR takes a concept already in the theory and passes it
through a production rule (detailed below) along with
a parameterisation detailing exactly what the production
rule should do. The production rule will generate the
definition and datatable of a new concept. HR then checks
whether it has a concept in the theory already with exactly
the same datatable. If it finds a match, the definition for
the new concept is added as an alternative definition to the
old concept, and the new concept is discarded. In fact, if
the new concept is less complex (as defined below) than
the original, HR replaces the original concept with the
simpler new one. If the new concept does not match one
already in the theory, it is added to the theory.

Currently HR has uses just 7 production rules. The
types of concepts they produce is described briefly below.
It is perhaps easiest to imagine that the objects discussed
are integers and the subobjects are divisors.

® The exists rule produces concepts identifying objects
where there exists a subobject of a particular nature.

® The forall rule produces concepts identifying objects
where all subobjects are of a particular nature.

® The size rule produces functions which count the num-
ber of subobjects of a particular nature for each object.

® The split rule produces concepts identifying objects
with a particular number of subobjects.

¢ The match rule produces concepts identifying objects
with equal subobjects of a particular nature.

* The negate rule produces concepts identifying objects
which have the properties described by one old concept
but not the properties of another old concept.

* The compose rule produces concepts identifying ob-
jects which have the properties of two old concepts.

Note that the first five rules are called unary produc-
tion rules as they produce a new concept from only one
previous concept. The last two are called binary pro-
duction rules as they produce a new concept from two
previous ones. In figure 1 we see that to construct the
concept of square numbers from the concept of multiplic-
ation, two theory formation steps are required. Firstly, the
match production rule is used to construct the concept of
integers and their integer square roots. Secondly, the ex-
ists production rule is used to identify those integers for
which there exists such an integer square root, namely 1
and 4. For a more detailed description of the production
rules, please see Colton et al. (2000a).

The construction history of a concept is the set of
triples of (old concept, production rule, parameterisation)
which detail the steps used to build all the previous con-
cepts upon which the concept is based. Given the con-
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IR T |

2 1 2

2 2 1 ]

3 1 3| match 1 1 exists 1
3 3 1 = 4 2 = 4
4 1 4 .

4 2 2 integer square
4 4 1 square roots numbers

multiplication

Figure 1: The construction of square numbers

struction history of a concept and the user supplied con-
cepts upon which it is ultimately based, HR can com-
pletely re-construct the concept by following the steps in
order. We say the complexity of a concept is the size of
its construction history. Even with just seven production
rules, the size of the space HR searches when forming a
theory is very large. To limit the search, we usually em-
ploy a complexity limit of between S and 10, ie. no the-
ory formation steps involving concepts with complexity
greater than the limit are allowed.

Each new concept formed is added to the agenda. If
a concept reaches the top of the agenda, all theory form-
ation steps involving it are carried out until it is replaced
at the top. HR can perform a breadth first search which
puts every new concept to the bottom of the agenda, and
a depth first search, which puts them at the top. Al-
ternatively, HR can perform a unary first search which
combines the breadth first and depth first searches. In a
unary first search, HR uses the unary production rules in
a depth first manner, but the binary production rules in a
breadth first manner. This means that any new concept in-
troduced is explored thoroughly with the unary rules, but
not combined with other concepts until much later. -

To enable effective traversal of the space we have en-
abled HR to employ a best first search: after every step
it determines which is the most interesting concept and
moves this to the top of the agenda. HR has many differ-
ent measures available to estimate the interestingness of
a concept, as detailed in Colton et al. (2000b), and uses a
weighted sum of values calculated for a particular concept
to determine the overall worth of the concept.

We discuss only the novelty measure here. To define
this, we note that we can use the examples of a concept to
produce a categorisation of the objects of interest in the
theory. For instance, the square number concept in fig-
ure | categorises integers 1 to 4 as: (1, 4], [2, 3] because 1
and 4 are squares, 2 and 3 are not. For every concept in
a theory, HR can determine the categorisation it produces
for the examples supplied by the user. The categorisa-
tion for a particular concept may not be unique and we
define the novelty of a concept to be the reciprocal of the
number of other concepts which share its categorisation.
Therefore, concepts producing categorisations unique to
them score 1 as they are novel, but concepts producing
categorisations which also belong to 99 other concepts
score 1/100 = 0.01 as they are not novel.



3 Multi-Agent HR

Given a problem to solve, one approach is to employ a set
of autonomous programs, called agents, each with dif-
ferent abilities and tasks and each able to communicate
with the others. The set of agents forms an agency and it
is hoped that dividing tasks between the agents will im-
prove the overall efficiency of the system. Often each
agent runs on a separate processor, and improvements in
efficiency are observed as a result of the parallel attack
on the problem. For our purposes, using an agency al-
lows us to model a community of mathematicians each
performing individual investigations but communicating
their results to others.

Our implementation of an agency is fairly straightfor-
ward. Using the multi-threading capabilities in Java, we
run several copies of HR as individual threads. There-
fore our agency runs on the same processor, not on par-
allel processors, although this could easily be altered to
improve efficiency. Each agent has a different name to
identify the concepts they introduce, and each has differ-
ent settings which guide its theory formation. We also run
a ‘watcher’ program in another thread which determines
when the task set for the agency has been achieved, and
stops the agents when this is the case.

Communication between agents is limited to sending
and receiving concepts. Each agent has a set of inboxes
into which they receive concepts from the other agents,
with a different inbox for each other agent. There is no
global repository to which concepts are sent and taken,
and the user can customise each agent to control which
concepts from which inboxes it takes. It is hoped that
the communication of a concept will increase the number
of ways it is developed. For example, the binary rules
combine two concepts. As the concepts available to each
agent will be different, a concept read by one agent will
be developed differently to the way in which it will be
developed by the agent which sent it.

Each concept resides as an object of class Concept
in the Java program, and each object contains all relev-
ant information about the concept, including the inform-
ation representing the concept and the values calculated
to assess it. To communicate a concept, a pointer to the
concept is put in the inboxes of all the other agents. There-
fore, the receiving agent has access to all the information
about the concept. However, to actually read a concept
from the inbox, we force the receiving agent to recon-
struct the concept from scratch using the construction his-
tory of the concept. The disadvantage to this is the ad-
ditional time spent repeating constructions. However, as
each agent may be working with different examples from
the theory, the representation of a concept sent by an agent
may not convey all the information required by the receiv-
ing agent. For example, if one agent was working with the
fumbers 1 to 10, and received a concept -from an agent
working with 1 to 5, it would effectively have to construct
the concept from scratch to fill in the missing details.
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As each agent measures interestingness in a different
way, an agent receiving a concept will either have to ac-
cept the judgement of the sending agent, or re-assess the
concept on its own terms. For a heuristic search to per-
form correctly, the last option is preferable, and so each
agent assesses a communicated concept itself and places
it in the appropriate place in the agenda. As some of the
measures are built up as the concept is constructed, the
simplest way for a concept to be re-assessed correctly is
to build it from scratch. Therefore, another advantage to
reconstructing concepts is that each is properly assessed
and incorporated into the theory correctly.

Each agent passes all of its concepts to the other agents.
At present, whenever an agent sends its concepts, it takes
the opportunity to read the concepts in its inboxes. This
model may change in future, as we test whether the agency
is more efficient if agents send concepts more often than
they read them. Whereas all concepts are sent to inboxes,
agents are very selective about which concepts they take
from the inboxes. The selection procedure is dependent
on the task set for the agency, so we discuss this in the
context of the problem being addressed in §4.

There are only a few settings available to the user to
fine tune the action of the agency:

® The user can choose how many agents to use.

® They can set the search parameters differently for each
agent, so that they perform different searches.

® They can detail how each agent selects from its inboxes
- including specifying the agents it takes concepts from
and which concepts to take.

® They can specify when the sending and reading of con-
cepts takes place. This is specified in terms of how
many theory formation steps occur before the agent
communicates the concepts it has found (and reads the
concepts in its inboxes).

4 Exhaustive Categorisation

When HR is asked to explore a domain it must find out as
much information about that domain as possible. In this
mode it is difficult to assess how well the program is do-
ing. Certainly it is impossible to find all the concepts in
a domain and even in a depth limited search, there are of-
ten too many concepts for a program to conceivably find
in a reasonable time limit. Also, it is very difficult to as-
sess how creative a program has been in constructing a
particular theory. The exhaustive categorisation problem
discussed here provides ways to measure the success and
creativity of a theory formation program.

4.1 Problem Description and Motivation

We say that a set of examples has been exhaustively cat-
egorised by a theory if for any possible way to categorise
the examples, there is at least one concept in the theory



which achieves that categorisation. For example, given
the integers 1 to 4 as examples for number theory, the en-
tire set of categorisations for these integers is:

[1,2,3,4] 1,2,3,[4 [1,2,4},(3]
(1,2},3,4] [1,2},(3],[4 [1,3,4],(2]
(1,3],(2,4] 1,32, [4] [1,4],[2,3]
(1,4,(2,03) [[2,3,4 [1],(2,3],{4]
(1},12,4),8] [1},[2,(8.4 [1],(2],(3][4]

Once the objects of interest supplied by the user have
been exhaustively categorised, a milestone has been passed
because the program has learned an answer to any ques-
tion of the form “Why are z, y and z the same but different
to a, b and ¢”. For example, if we asked why 1 and 4 are
the same, but different to 2 and 3, any program which had
invented the notion of square numbers could answer that
1 and 4 are squares but 2 and 3 are not. At present, we
have achieved an exhaustive categorisation of the integers
1 to 5 using HR. This leads us to the problem description:
to exhaustively categorise the integers 1 to 6.

4.2 Measuring Success

The number of ways of categorising a set of n objects is
defined as the nth Bell number, Bell (1934). The Bell
numbers are: 1,2, 5,15, 52, 203, 877, 4140, . . . Therefore
to exhaustively categorise, say, the integers | to 5, HR
would need to find concepts which categorised them in 52
different ways. The number of categorisations achieved is
some measure of the usefulness of the theory formed and
hence of the success of the program.

We introduce the following way to compare two the-
ory formation systems:

Suppose systems A and B both start with the same set of
examples and perform the same number of theory forma-
tion steps. We say that A is more creative than B if the
theory it has produced has achieved more categorisations
of the examples than the theory produced by B.

There have been entire conferences devoted to understand-
ing creativity in humans and machines,! and we are still
far from an explanation which could be turned into con-
crete ways to measure the creativity of a computer pro-
gram. We believe that a program which produces 100
different categorisations of a set of objects in 500 steps
is more creative than one which produces only 10, and
this is how we choose to compare the creativity of agen-
cies. We certainly do not claim to have captured the very
essence of creativity with these measures. Note that be-
cause each agent must reconstruct any concept it decides
to read, these reconstruction steps count as theory forma-
tion steps. Therefore an agency does not get any steps for
free, and the creativity measure is valid.

IFor example the International Congress on Discovery and Creativ-
ity, Ghent 1998.
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We hypothesise that employing an agency will im-
prove the creativity of HR. We test this hypothesis in ex-
periment 1. In experiment 2, we assess whether we can
improve efficiency without losing creativity. In experi-
ment 3 we assess whether the increase in creativity of an
agency compensates for the loss of efficiency due to the
communication overheads.

4.3 Experiment 1 - Creativity
We used four agents named:
(H)ardy, (R)amanujan, (L)ittlewood and (W)right.2

Each agent worked with the numbers 1 to 6, and em-
ployed a different search strategy:

® Hardy - Unary first search

e Ramanujan - Depth first search

¢ Littlewood - Best first search based on novelty only
® Wright - Breadth first search

The only shared resource was the set of 203 categorisa-
tions of the numbers ! to 6 which are calculated before-
hand. Each agent removes a categorisation from the set
if it is the first to find a concept which achieves that cat-
egorisation. The watcher records which agent found each
categorisation first.

We experimented with the criteria by which an agent
chooses concepts from its inboxes. We first allowed each
agent to read every concept produced by every other agent,
but as expected, there was so much repetition of work that
the agencies fared much worse than HR running alone. A
better alternative is to only allow concepts into the theory
which are new to the agent. However, the only way to
tell that a concept is new is to test the datatable against all
those already in the theory, which is time consuming.

Finally, we realised that for this problem, the most
natural selection procedure is to only reconstruct concepts
which produce a categorisation which is novel for the re-
ceiving agent. Because all information about a concept is
available, and the agents are working with the same set of
examples, it is very quick to check whether a concept’s
categorisation has already been found by an agent. Fur-
ther, choosing concepts with novel categorisations guar-
antees the novelty of the concept itself, and combination
with other concepts in the theory is likely to lead to yet
more novel categorisations.

To test our hypothesis we compared the creativity of
every agency possible using the four agents. These in-
cluded all agencies with one agent, named H, R, L and W,
all agencies with two agents, named HR, HL., HW, RL,
RW and LW, all agencies with three agents, named HRL,
HRW, HLW and RLW and the agency with four agents,
named HRLW. For each of the agencies with two or more
agents, we tested two copies: one with no communica-
tion at all, and one with immediate communication -
ie. after every theory formation step, each agent reported

2Four highly collaborative number theorists.
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Figure 2: Number of categorisations achieved by agencies
after 3000 theory formation steps

new concepts and read those reported by others. We ran
each agency for a total of 3000 theory formation steps. In
agencies of n agents, each was allowed to perform only
3000/ steps. So, in agency HRL, agent H performed
1000 steps as did R and L. We chose 3000 steps because
it takes around a minute to perform this number and be-
cause 3000 is perfectly divisible by 2, 3 and 4. The search
was depth limited to complexity 6, and we ran all tests on
a Pentium S00Mhz processor.

Before detailing the results from the test, we report an
unexpected phenomenon which occurred when running
agencies which communicate. We noticed that the num-
ber of categorisations being achieved differed when the
program was run with exactly the same settings for the
same number of theory formation steps. We are still in-
vestigating this, and at present we believe that the Java
thread mechanism cannot be trusted to perform exactly
the same tasks in the same order. This is a problem be-
cause agent L uses a best first search by measuring con-
cepts in relation to the others in the theory. Suppose that
agent L read concept C just before it was going to invent
a very interesting concept of its own, X. If C was inter-
esting, it would be developed due to the best first nature
of the search. Only after C had been developed would
X be formed, which leaves less time to develop it. In a
different session, if L read concept C just after it invented
X, X would be developed before C, giving more time to
develop X and the concepts produced from it.

Thus, because our sessions are limited by the num-
ber of steps allowed, small changes in the timing of the
communication of concepts can make substantial differ-
ences in the theories produced. Without explicitly intro-
ducing stochastic processes, this models to some extent
the way in which luck and serendipity can influence the
development of mathematical theories. Imagine the ad-
vances which would have been made if Fourier had not
lost Galois’ manuscript and had saved him from the fatal
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expected number of categorisations
agency no immediate
size communication { communication
1 60.75 n/a
2 63.3 74.75
3 63.25 88.15
4 63 89.2

Table 1: Expected number of categorisations for agencies
of different sizes after 3000 steps

duel.?> However interesting the phenomenon is, it makes
testing difficult, and we were forced to average the res-
ults over 10 sessions to compensate for the difference in
theories produced when using a communicating agency.

Figure 2 shows the number of categorisations found
by each agency, with the grey boxes for agencies with no
communication, the black boxes for agencies with imme-
diate communication. These results are fairly conclusive.
In only two immediate communicating agencies contain-
ing a particular agent did the agency containing just that
agent perform better (agency HW performed worse than
H, and WL performed worse than L).

If we average the scores over agencies of the same
size, we can look at the expected number of categorisa-
tions for an agency of a given size. As portrayed in table
1, the most creative agency is the immediate communicat-
ing agency with 4 agents, which slightly outperforms the
average immediate communicating agency with 3 agents.
It is also clear that the increase in creativity is due to the
communication, not just the fact that the system is using
multiple search strategies which cover different areas of
the space. In every case the agency with communication
outperformed the agency without communication.

4.4 Experiment 2 -
Communication Intervals

One way to improve efficiency is to reduce the number of
times concepts are communicated and inboxes are checked.
With the agencies discussed above, after every theory form-
ation step, if a new concept had been produced it was
communicated to the other agents. Similarly, after each
step, every agent checked their inboxes for new concepts,
and read any which produced a new categorisation. Delay-
ing the reading and communicating of concepts until after,
say, every 10th step, will reduce some of the communic-
ation overheads. We tested whether delaying the commu-
nication would affect the creativity of the agency.

We took the best agency from the first experiment,
HRL, and ran it for 100 theory formation sessions. We
increased the waiting time for communication from 1 to
10 to 20, etc. up to 1000 steps and recorded the num-
ber of categorisations it produced after 3000 steps. Again
agents H, R and L each performed 1000 steps. We also re-
corded the number of categorisations which were multi-

3See Stewart (1989) for more details of this tragedy.
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agent. A categorisation is defined to be multi-agent if the
first concept which achieved the categorisation had con-
cepts from more than one agent in its construction his-
tory. As before, we repeated this experiment 10 times
and took an average to counteract the phenomenon de-
scribed above. Figure 3 shows the effect of lengthening
the communication intervals on the total number of cat-
egorisations formed and the number of multi-agent cat-
egorisations formed.

From figure 3, we see that increasing the communica-
tion interval will in general decrease the creativity of the
system, and that the total communication scheme outper-
forms the others significantly. The decrease in creativity
is not smooth, however, and we are presently studying the
theories produced to explain the peaks and troughs ob-
served in this experiment. The correlation between the
total number of categorisations and the number of multi
agent categorisations was more pronounced than we ex-
pected. Judging by the correspondence in the peaks and
troughs on the two graphs, if an opportunity to find multi-
agent categorisations is missed, this is not compensated
by increased time spent by agents searching on their own.

The decrease in quantity of categorisations is due to
our limitation of only 1000 theory formation steps for
each agent. For example, agents in the agency where
communication occurs after the 600th step only commu-
nicate their concepts once, and only those invented before
the 600th step. Any interesting concepts it finds after the
600th step are never communicated. This explains the
long horizontal sections of the graphs in figure 3 - con-
cepts are communicated too late to be used sufficiently to
find muilti-agent categorisations. As we see by the end of
the total curve, late introduction of the concepts actually
hinders the creativity of the agency, and when they are
introduced too late to be developed at all, the number of
categorisations increases.

The correlation between the number of categorisations
and the number of multi-agent categorisations, coupled
with the reduction in the number of concepts communic-
ated explains why the creativity of the system declines as
the communication interval increases. Therefore we hy-
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agency size | expected number of categorisations
1 96
2 114.7
3 110.35
4 116.6

Table 2: Expected number of categorisations for agencies
of different sizes after S minutes

pothesise that if a system only has a limited number of
steps to perform, the smaller the communication interval,
the more creative the system will be. More experimenta-
tion is required in different theories and with more theory
formation steps to confirm this hypothesis.

4.5 Experiment 3 - Efficiency

Having determined which agencies are the most creative,
we must assess whether this increases the overall effi-
ciency of the system - the ultimate aim of an agency. Due
to the increased overhead in communicating concepts, it
may be that agencies can produce more categorisations in
a given number of steps, but it takes them longer to carry
out those steps because the communication slows down
the process. Of course, it is certainly possible to run each
agent on a different processor which will give efficiency
gains more than compensating for the increased commu-
nication overhead. However, it was useful to test the effi-
ciency of the system as a whole.

We scaled the problem up by running each single agent
agency and each total communicating agency for a dura-
tion of five minutes and comparing the number of cat-
egorisations produced. As before, we averaged the results
for the communicating agencies over 10 sessions. Finally,
we averaged the results over agencies of each size and re-
corded the results in table 2. We see that the multi-agent
agencies are more efficient in general, and we hypothes-
ise that the additional overhead is compensated by the in-
crease in creativity. Again, we plan more experimentation
to further investigate this hypothesis.

4.6 Utility and Clarity

To end our investigation of the exhaustive categorisation
problem, we looked at the utility of each agent - whether
it found any novel categorisation before the other agents.
We found that in every run, each agent contributed at
least one categorisation to the theory. Figure 4 gives the
proportion of categorisations which were first introduced
by each agent for a sample 3000 step session using the
HRLW agency. It also details the proportion of the cat-
egorisations introduced first by each agent which were
multi-agent. We see that agent H introduces half of the
categorisations. This is due to the effectiveness of its
search strategy, and not because H collaborated the most,
as we see from the second pie chart that the number of
multi-agent categorisations introduced by the agents was
roughly equal.



Figure 4: Proportion of (i) all categorisations and (ii)
multi-agent categorisations found by agents in an ex-
ample session with agency HRLW

Agent W does not perform well on this problem and it
seems clear that some aspect of a depth first search needs
to be incorporated. Also, agent W puts concepts it reads
from other agents to the bottom of the agenda, which ex-
plains why it produces no multi-agent categorisations. We
affectionately call agent W the pedantic agent, as it at-
tempts to cover all possibilities thoroughly while its col-
leagues race off in many directions. However, agent W
performs an important function: it improves the clarity of
the theories produced. We can measure the clarity of a
theory as the average number of theory formation steps
required to form a concept from the theory.

A breadth first search will produce the simplest theor-
ies, as it will not build concepts of complexity three before
building all concepts of complexity two and so on. More
than this, as discussed in §2, if a concept is found which
matches one already in the theory and the new concept has
a more concise definition, the simpler definition is kept.
In this way, if agent W reads a concept from another agent
and later finds a more concise definition, the theory will
benefit from the pedantic approach as clearer definitions
for complicated concepts will be produced. We have not
compiled the statistics for the gain in clarity of theories
obtained when agent W is in the agency, but intend to do
so when we run further tests on these agencies.

5 Further Work

Improvements in efficiency could be made by sharing parts
of the agenda between agents, because presently an agent
sending a concept and an agent receiving the concept will
develop it in some identical ways. We also hope to use
agencies to improve the modelling of cross domain theory
formation as discussed in Steel et al. (2000). At present,
to produce cross domain concepts, HR must encourage
the combination of two concepts from different domains.
Considerations also have to be made in the assessment of
the cross domain concepts. We anticipate that using an
agent to produce a theory in each different domain, with
concepts being communicated between agents and hence
across domains will greatly improve the model for cross
domain theory formation.
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5.1 Extrapolating Integer Sequences

As described in Colton et al. (2000a), HR has been ad-
apted to perform theory formation in a goal based way
in order to perform machine learning tasks. It is used to
find a concept with examples which match the examples
given by the user. This can be applied to the problem
of extrapolating integer sequences, where the concept to
be learned is a sequence. HR performs a forward chain-
ing search and is equipped with a lookahead mechanism
enabling it to spot when it has found the concepts neces-
sary for the definition. For example, given the sequence
of odd primes, as soon as HR invents odd numbers and
then prime numbers, it looks ahead and notices that their
combination will produce the desired concept.

We are currently experimenting with an agency ap-
proach to sequence extrapolation, motivated by limita-
tions when extrapolating certain sequences. These se-
quences highlight some of the difficuities HR faces:

What is the next in these sequences?
®2,3,5,7,11

* 1,3,6,11,18,29

¢ 101,102,104,106,110

The first is identified by HR as the sequence of prime
numbers. The other sequences cause more difficulty.

If we calculate the difference between successive terms
of the second sequence, we get the prime numbers again:
2, 3,5, 7, 11. In IQ tests where sequence extrapola-
tion problems are common, knowledge of this difference
transformation is expected. This transformation is so com-
mon that it suggests tailoring HR’s forward looking mech-
anism to look for either the original sequence or the dif-
ference sequence. This caused many technical problems,
and was a messy solution. Moreover, in future versions of
HR we hope to make the search more goal directed, us-
ing the examples supplied to explicitly direct the search.
In this case, as the original and difference sequence are
often so different there will be a conflict in the search
strategies. Therefore, we are experimenting with a multi-
agent approach to sequence learning, where two agents
are employed, one to look for the original sequence and
the other to look for the difference sequence. The model
is certainly much neater and works well. We are still test-
ing whether multi-agent model is more efficient than the
single-agent model, but initial findings are encouraging.

If we now look at the third sequence and take 99 from
each term, we get: 2, 3, 5, 7, 11, which is the prime se-
quence for the third time. This is not, however, a common
transformation, and there are too many similar transform-
ation to reasonably dedicate an agent to the output from
each one. A better model is to take each concept pro-
duced and determine which, if any, transformation from a
family of transformations would produce the desired se-
quence. For example, when HR invents the concept of
prime numbers, it could look at the family of transform-
ations which add on a particular number to every term in



the sequence. To get from the first term of the prime se-
quence it has just invented to the first term of the target
sequence, it needs to add on 99. It would then determine
that adding 99 is the desired transformation.

We are presently testing whether it is more efficient
to have a single agent attempting to identify the correct
transformation. This agent takes the concepts from the
other agents which could possibly be transformed and
attempts to find the correct transformation. Again, the
model works well, and we are assessing whether this is
efficient. We cannot possibly hope to cover all possible
sequences which an inventive person could produce, but
we do hope to show that the agent based approach im-
proves the coverage of the system.

6 Conclusions

Adapting HR to employ a multi-agent approach is a nat-
ural way to extend its theory formation abilities. Agen-
cies equipped with a method for communication of con-
cepts and selection of concepts better model the way in
which collaborative research progresses in science than
single programs running in isolation. In Furse (1990), the
author proposes a network of theory formation programs
each communicating their most interesting concepts to the
programs on the network. This is a good model, and sim-
ilar to the one we have implemented. However, in our
model, each agent communicates all its concepts to the
others, but will assess a concept on its own terms rather
than accepting the assessment of the sending agent. In
this way, a concept which seems dull to one agent may be
picked up and fruitfully utilised by another.

Machine learning programs such as Progol, Muggleton
(1995), are asked to find a single concept which classifies
the examples supplied correctly. Therefore, among other
ways, success can be measured by the number of concepts
it can learn from a predefined set. It is more difficult to
perform a quantitative assessment of a theory formation
program, because the goal is to find many interesting con-
cepts and obtain some understanding of the domain. We
have chosen to measure the number of different ways a set
of examples can be categorised by a theory to determine
the quality of the theory and accordingly developed a way
to compare the creativity of different systems.

We have demonstrated that a multi-agent approach
can increase the creativity and efficiency of a system, even
before any advantage is gained from running each agent
in parallel. Autonomous intelligent agents have emerged
over the last decade as an important technique to solve
many interesting problems, and improve efficiency in many
areas, Jennings and Wooldridge (1997). We have shown
that theory formation programs can benefit from an agent
based approach. We also hope to demonstrate that the the-
ory formation agencies we plan to implement in the future
will apply fruitfully to other areas of artificial intelligence
such as machine learning and theorem proving.
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Abstract

Composition of piano minuets in early classical style takes an intermediate position between restricted and free prob-
lems of computerized composition. One of its distinct features is that microstructure (i.e. relations between notes),
macrostructure (i.e. relations between larger parts), and their interdependencies have to be dealt with. In this paper, we
describe a method for rule-based note by note composition of minuet melodies, which considers harmonic and structural
descriptions given as prerequisite. We also present 16-bar examples composed by the algorithm in the chord-based and
the scale-based melody type with different parameter settings. The algorithm uses explicit knowledge about the compo-
sition. The paper describes sources of knowledge such as literature (especially period (historic) literature) and human

experts.
1 Overview The vertical (synchronous) direction is described by
harmony. Voice leading rules (e.g. the forbidden paral-
This paper describes a knowledge based approach to com- lel fifth)-rule combine the vertical and microstructurally
position of minuets’ for piano in early classical style (that horizontal direction.
is the period of the young W.A. Mozart) by a computer. The process of classical minuet composition can be
The goal is, to approximate the style of this period as divided into several subtasks: Using a top-down-approach,
closely as possible. The system should only generate stylis- it starts with planning the macrostructure of the piece.
tically correct minuets, which are pieces an expert would The next step is planning the harmonic progression inside
accept as a classical minuet. On the other side, it is al- a phrase, defining the basic parameters of the melody, and
lowed to undergenerate, that means there are perfectly ac- composing it. Finally the minuet can be completed by
ceptable original minuets, which are not covered by the adding the bass (and other accompaniment).
systems knowledge. Here, these subtasks are described in a linear order.
The key problem is to get explicit musical knowledge, Though it might be possible to compose by strictly fol-
which is both formally represented and computationally lowing this order, human composers usually mix the sub-
useful. With this knowledge, the composition system can tasks. They revise decisions of earlier subtasks while work-
be built by using different Al programming techniques. ing on a later subtaks to avoid problems. Experienced
This paper describes work in progress. While some composers are able to work on one subtask and to con-
parts of the composition system are already realized, but sider the basic needs of the later subtasks (without really
have to be improved, others are still missing completely. doing them, i.e. figuring out all details). In spite of this,
The result of the composition process is music rep- literature describes the different subtasks separately.
resented in pitches and durations. It is the same infor-
mation, classical composers wrote down in staff notation,
neglecting the fact, that they sometimes added dynamic 2 Knowledge Sources
and articulatory signs. The interpretation of the music,
the sound synthesis, is also not dealt with here. The author of a knowledge-based Al system has to ac-
The composition of minuets can be discussed at two quire the domain knowledge, has to formalize it and has to
levels. On the level of microstructure, relations between provide an algorithm which the computer can use to find
notes in horizontal direction (melodic intervals) and in a solution. Often, it is helpful to look at the ways human
vertical (synchronous) direction (harmony) are discussed. experts codify their knowledge, e.g. their literature. Ex-
Macrostructure deals with the larger structural parts in plicit knowledge about composition is needed for teach-
horizontal direction, e.g. the length of phrases and their ing composition students or for scientific works —e.g. for
thematic and tonal relations. comparisons between styles or for classification of bor-

derline cases of works. Human composers learn the sub-

1 i . .
f d from the 17th and 18th centu tripl . A ‘,
? genre of dance music trom e " century In fripie tasks of composition part by imitation: “It should sound

meter
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likethis”, part by explicit rules (and doing exercises). The
mixture is different for different subtasks. Melody com-
position is learned more by imitation, voice leading more
by explicit rules.

For the field of classical minuets, the following knowl-
edge sources are considered:

1. The usage of period literature? like Riepel (1752)
and Koch (1782) or modern literature with an his-
toric approach Budday (1983) ensures a correct view
of the style.

2. Ahistoric theories such as theory of harmony de-
scribe properties universal to all tonal music. Ahis-
toric theories are usually more formalized and there-
fore easier to implement than knowledge from pe-
riod literature.

3. Asking experts (musicologists, composition teach-
ers, and composers) in the style can yield explicit
knowledge which might not have been written down.

4. Manual analysis can either give an abstract verbal
description of a minuet or it can search minuets for
evidence in favour or against a specific hypothetical
rule.

5. Computer analysis of works can help with the sec-
ond form of analysis described above: the search
for evidence for or against a rule.

6. Computer composition experiments: The composi-
tion algorithm is run with a ruleset including a hy-
pothetic rule and then with another ruleset without
that particular rule. The results are compared (or
judged by an expert).

7. Cognitive introspection. Ask someone, who has
just composed a minuet, how and why he made cer-
tain decisions.

The last four knowledge sources should give access to
implicit knowledge, which is not available in literature.

3 Principles

A typical feature of classical compositions is, that there
are a lot of relations between elements of the music. The
representation has to provide the possibility to express
them and has to make those relations accessible for the
composition process.

3.1 The Score Chart

The composition strategy is based on a representation of a
musical score in a score chart, which represents the infor-
mation classical composers wrote down. Notes are stored

2In musicology, period or contemporary literature (zeitgendssische
Literatur) is literature written in the same time period as the musical
period or style it describes.
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with pitch and duration. On top of this, the score chart
also stores abstract information for and about the compo-
sition process in form of structural elements.

One example for abstract information is the harmonic
base, which is stored by degree (as in degree theory) rel-
ative to the current key. The current key (which changes
during the piece, when the piece is modulating) is stored
relative to a base key, which is fixed for the whole chart.

Structural regions contain abstract descriptions about
a time interval (region, section) of the piece. Examples
are a cadence, a transition in a particular voice, or the
similarity between a region and another region. The chart
provides primitives to access this information. This al-
lIows the composition function to refer to all notes, which
are already composed and to consider the meta informa-
tion.
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The macrostructure of minuets is thouroughly discussed
in period literature. The basic unit of a composition is
the sentence® The bar order and tonal order * describes
the relations of the lengths of the sentences and the end
formulas of the sentences in a piece. The end formula of
a sentence can be either a full or a weak cadence and both
can be in the root or the fifth degree’.

Different combinations are possible. A prototypical
minuet Budday (1983) consists of four sentences with a
length of 4 bars each.

Macrostructure Descriptions

Bars 1-4 end with a weak cadence on the tonic.

Bars 5-8 modulate to the key of the dominant and close
the first half of the piece with a full cadence on the
fifth (relative to base key).

Bars 9-12 have to lead back to the base key and frequently
have more distant harmony.

Riepel (1752) describes two popular harmonic and
melodic patterns for this sentence. The base of both
is a two bar motive, whose harmonic base is an in-
termediate dominant® with its resolution. The sen-
tence consists of the motive and its real sequence.
A sequence of a motive means moving it to a higher
or lower pitch while keeping the intervals. In a real
sequence, the exact interval size is adjusted to har-
mony, e.g. a major third can become a minor third
if it is necessary to fit into harmony (as opposed
to a chromatic sequence, where interval sizes stay
exactly the same).

3Original: Satz. Another english term is phrase. Period is sometimes
used for one sentence, sometimes for a group of sentences.

4Qriginal: Taktordnung and Tonordnung

50riginal: Grund- und Quintkadenz, Grund- und Quintabsatz

61t is a dominant (fifth degree) relative to the chord, which is fol-
lowing directly. In classical style, the dominant seventh chord with its
higher tension was popular as intermediate dominant.



In the Monte’-sequence, the first occurence of the
motive ends on the fourth degree. It is then se-
quenced a second up and the sentence thus closes
with a weak cadence on the fifth degree. In G-
major, the harmonic base for a Monte is G7 — C-
- A"—D.

In the Fonte®-sequence, the motive is sequenced a
second down. The first occurrence of the motive
ends on the second degree and is sequenced down
to close the sentence with a weak cadence on the
root. In G-major, the harmonic base for a Fonte is

E"—a~-D"-G
Bars 13-16 close the minuet with a strong cadence on the
root.

In the current state of the composition system, the
macrostructure description consists of a set of parameters
for the piece and a sequence of sentence descriptions. A
sentence description contains elements such as: the end
formula of the sentence, the harmonic base for the sen-
tence, and those parameters, which differ from the default
parameters of the piece. Another important element of a
macrostructural description is a correspondence (similar-
ity, relation) between a section of the sentence — the corre-
spondent section — and a preceding section of the piece (in
the same or a previous sentence), the model. The monte-
and fonte-sequences are represented as a correspondence.

A systematic collection of possible end formulas in
different meters can be found in Budday (1983). There,
the end formula patterns are written down in notes as
melody and bass. The harmony is indicated by figura-
tion of the bass. The end formulas in Budday (1983) are
not expected to occur verbatim in pieces, but each pattern
is an abstract description for a class of end formulas. The
patterns are written down in C-major, but they can occur
transposed to any key. Thus they are meant as degrees in
respect to a key, not as absolute pitches. A pattern for 2/4-
meter can be applied to a piece in 2/8 meter and a two bar
pattern in 2/4 meter can match fit to one bar in a piece in
4/4 meter. That means, the pattern represents relative lev-
els of metric stress rather than absolute durations. Middle
voices might be present in a piece. The figuration of the
bass in the pattern specifies the harmony, into which the
middle voices have to fit.

The information described by an end formula pattern
in Budday (1983) is the sequence of harmonies, their re-
spective metric weight, and the basic leading of outer voi-
ces (still allowing embellishments or other notes without
structural importance). The end formula patterns in the
composition system also represent this information.

3.3 Rule-based Melody Composition

A macrostructural sentence of the melody is composed
note by note. Base of the note-by-note composition is the

TMonte: ital/lat. up the hill
8 Fonte: ital/lat. down into the well
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alternative function, which computes the set of alterna-
tives to continue the melody by one note. To allow more
flexibility at experimenting, this function has been split
up into a sequence of rules where each rule deals with a
certain musical phenomenon.

A rule is applicable, if its precondition is satisfied. If
the rule is applicable, the consequence of the rule adds,
removes, or modifies alternatives from a set of alternatives
according. The precondition and the consequence of a
rule have access to the score chart containing the current
state of the composition and the current set of alternatives.
The alternative function applies one rule after the other in
the given order.

To facilitate programming the precondition and con-
sequence of a rule, an alternative is represented as a com-
bination of interval, duration of the note to be added, and
a list of new structural elements. The latter is necessary
to express the fact, that this alternative is only correct, if
the notes following later satisfy certain conditions. The
structural element in the chart ensures that the composi-
tion process considers those conditions when it composes
the following notes.

There are two basic types of classical melodies:

Scale-based melodies consist mainly of seconds. Lead-
ing notes must be observed: a note of degree 7 must
be led a second up, a note of degree 4 on a domi-
nant harmony (the seventh of the chord) must be
led a second down. Experiments with differerent
larger intevals werde made. The rulesets used for
the examples in this paper allow thirds, if they do
not follow each other immediately.

In addition to ordinary melody notes, which are
members of the current harmonic chord, some non-
harmonic tones are possible. They have to be pre-
pared and resolved in a specific way and must there-
fore be represented as structural elements to ensure
proper treatment. Currently only passing tones are
implemented.

Chord-based melodies were quite popular in classical
style because they put more emphasis on harmony.
They consist of steps to the next note of the har-
monic chord. Chord sections can be joined in dif-
ferent ways. Currently only a join by a second is
implemented.

In both melody types, repetitions (two notes with the same
pitch) are allowed. Because repetions have some kind of
emphasizing effect, two repetitions must not follow im-
mediately and there are rhythmical restrictions in order to
avoid a weird distribution of stress.

As described in the last section, structural elements
can be determined top-down by the macrostructure de-
scription, e.g the type of end formula for a sentence. But
they can also be “found” bottom up during melody com-
position and inserted via the structural element slot of the
alternative like the passing notes. Another case, where



a structural element overrides the default rules is the 3-
quarter-bar. It allows a bar, which consists of three quar-
ters of the same pitch in spite of the default repetition lim-
its. A 3-quarter-bar is typical for the genre of minuets and
can be frequently observed in original compositions.

The correspondence mentioned above is required top-
down by the macrostructure description. The correspon-
dence is represented as a structural element for the corre-
spondent section and has the location of its model sec-
tion and the variation operator as arguments. Similar-
ity and variation can be frequently observed in classical
melodies. The varied correspondent section keeps most
properties of its model (in case of a sequence: intervals
and durations) and modifies others (in case of the sequence:
start note and therefore the absolute pitch).

3.4 Composition Strategy

The melody composition rules constitute a search prob-
lem as described by Russell and Norvig (1995), chap-
ter 3. The state is the current state of the composition.
The successor function, which determines the set of pos-
sible successor states, is the combination of the rules. A
goal predicate for successful melodies and a fail predicate
are defined. When the problem is defined in those terms,
it is possible to switch between different search strategies
without reprogramming the operators.

There have been experiments with different search stra-
tegies, including a chronological backtracking strategy with
random selection of the successor state and a random shot
strategy. With the current ruleset, a sentence-wise com-
position using a random-shot strategy for the sentences,
was most suitable. With the random shot strategy the suc-
cessor state is selected by random. In case of a fail or
no successor states, the next attempt starts with the start
state (the beginning of the sentence) again. The random
shot strategy works well, if the percentage of solutions
in the search space is not too small. The backtracking
strategy becomes inefficient, if an early wrong decision
can be recognized as wrong (leading to a fail) only much
later. In this case, the backtracking strategy does a com-
plete search on branches, which do not contain a solution.

Following the macrostructural description, the sentences
are composed from front to end. For the first sentence,
the random shot strategy composes the desired number
of solutions. For the next sentence, the given number of
solutions is composed for each solution of the previous
sentence. The composition functions have access to the
macrostructure description and to the sentences already
composed.

The composition system has been implemented in Com-
mon Lisp, using CLOS classes for score chart elements
such as notes, structural elements, harmonic elements,
and other musical entities. Other concepts of the program
e.g. the search states of the melody composition, the alter-
native, and the rules are also represented as CLOS classes.
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4 Experiments

1a. chord-b. Fonte-seq. to weak cad. on root in bar 12.
best solution
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Figure 1: Computer composed minuets

Figure 1 shows examples of computer composed min-
uets. They all use the prototypical 16-bar, 4 sentence
macrostructure described in section 3.2 with different pa-
rameters for the melody composition. For each sentence,
two alternatives were composed. Therefore, each exper-
iment yields 16 minuets, from which one was selected.
Example 1a and Example 1b are results of the same ex-
periment. Nr. la was judged by an expert® as best of the

9Thanks to Georg Woetzer from the Staatliche Hochschulefiir Musik



16 minuets in the result set, Nr. 1b was judged as worst.
Both melodies contain passages, which are perceived as
clumsy or aimless without being really wrong. In melody
1a the repetition in bar 5 sounds aimless. The second line
of la is simple, but quite good, because it outlines har-
mony well and many of the bars follow a common pattern.
They have the same note on beat 1 and on beat 3, while
jumping a third up or down on beat 2. Having common
structural roots is good for a classical melody.

Melody 1b (judged as worst) contains just more of
the clumsy passages than la. The difference between
good and bad solutions in a solution set composed by this
system is rather small. For the best known approach to
style-imitating composition by a computer — the system
of David Cope — the best results are really good, but a
much larger difference in quality between the best and
worst solutions is reported [Cope (1995)].

The following examples show different combinations
of the fonte- and the monte-sequence with the scale based
and the chord based type of melody. For some sentences
of the chord based melody type, scale based end formulas
were allowed. The last two examples make use of the
3-quarter-bar structural element (Nr. 1 to 4 do not). In
the current state of the system, the chord-based melodies
tend to be better than the scale based, because chord based
melodies with their well perceivable harmonic tensions
are more robust against the aimlessness and clumsiness
caused by the random decisions.

A statistic of the search process has been made for ex-
periment 1a/1b, which has a chord based melody and for
experiment 2, which is scale based. The statistic should
give more information about the structure of the search
space.

Example number 1a/1b 2
(asinFig 1)

Based on chord scale
Solutions (comp.sent.) | total 30 30
Random shots total | 9294 3956
Shots per solution avg. 309.80 131.86
Length of solution avg. 12.43 13.10
Length of shots avg. 6.77 5.64
Search states total | 67477 25843
Branching factor avg. 3.19 3.09

The number of solutions is the total number of sen-
tences composed for the 4 sentences of the macrostruc-
ture. They are the successful attemps, while the number
of random shots contains both successful and unsuccess-
ful attempts. An unsuccessful attempt has either died out
— i.e. there were no successor states — or it has failed
(early or at the end of the specified length of 4 bars) be-
cause the fail-predicate of the search strategy detected an
error. The average number of shots per solution (i.e. at-
tempts per success) shows how difficult composition with
a certain parameter set and a certain macrostructural de-

und Darstellende Kunst, Stuttgart (Stuttgart State Conservatory)

23

scription is. Separate statistics for the 4 sentences of the
macrostructure show, that the third sentence, which con-
tains a Fonte or Monte sequence, needs a higher number
of attempts per solution than the other 3 sentences.

The length of solution is the average number of notes
in a solution while the length of shots is the average num-
ber of notes for all attempts (successful and unsuccessful).
The total number of search states is an indicator for the
asymptotic complexity caused by the ruleset. Looking at
one call to the successor function, the difference between
two rulesets is just a constant factor. An difference in
asymptotic complexity can be caused by the influence of
the ruleset on the search space. This difference can be ob-
served through the number of search states. The branch-
ing factor is the average number of successors for each
state.

5 Summary

Being work in progress, there are many possibilities for
improvement. The composed melodies can be made more
interesting by defining more types of non-harmonic tones
and by analyzing and selecting melodies for qualities be-
yond harmonic and melodic composition rules e.g. musi-
cal tension.

The other subtasks have still to be realized. They in-
clude the generation of macrostructural descriptions and
harmonic progression schemes, which both are currently
written by hand, and the composition of the bass, which
is still missing completely.

In the past, one class of approaches to automated tonal
composition have focussed on composition problems on a
microstructural level with firm restrictions such as chorale
harmonization Ebcioglu (1986) or 16th century counter-
point Schottstaedt (1989). On the other side, there are sys-
tems for algorithmic composition such as Taube (1994),
which can be used to compose on different structural lev-
els, but which do not deal with tonal restrictions. The
sonata composition system Berggren (1995) considers fo-
cusses on macrostructure because it starts with predefined
building blocks.

The distinct features of minuet composition are its
middle position between free and restricted tasks, the in-
tegration of different structural levels and the fact that it
produces tonal music. The early classical style and the
genre of minuets is defined by an extensive cultural con-
text. The system therefore needs a lot of musical knowl-
edge. It is also a goal of the research, to document the
sources for each element of the system’s knowledge.
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Abstract

The aim of the work described in this paper is to provide a basis for addressing two pedagogical agent design issues:
(1) the need to detect and diagnose the users current needs, and (ii) the need to establish the most appropriate form that
a pedagogical agent intervention should take. We describe a taxonomy of effects, referred to as ‘reciprocal models’
that address both of these issues. This is illustrated using examples of creative, cooperative problem-solving in musical
composition using the MetaMuse system. The implications for the design of intelligent computer-based agents is then

discussed.

1 Introduction

This paper is a contribution to research into design of
pedagogical agents in educational software. The intention
is to extract lessons from the study of human-human and
human-computer dialogue in order to inform design.
Design of agent-based systems faces two distinct issues.
One is the need to detect and diagnose the users current
needs, by reasoning about their behaviour. The other is
the need to establish the most appropriate form that an
educational intervention should take. The latter issue is
critical given the risks involved when the system inter-
venes in creative or constructive task performance. This
paper describes work towards providing an analysis
framework that can address these difficult design issues.

The study of cooperative problem-solving dia-
logues is used here to analyse the type of effect that the
mentor or agent’s contribution may have on the user(s).
It describes a taxonomy of effects, referred to as ‘recip-
rocal models’ (RM). These describe reactions to dialogue
turns observed during empirical studies. The aim is to
provide a basis for addressing the two issues described
above. This analysis contributes to the detection of user
needs through linking intervention to types of user be-
haviour. The seven types of RM identified as results in
this paper add to our understanding of the leaming proc-
esses involved in a creative, cooperative problem-solving
situation. Furthermore, our study also serves as a pre-
liminary analysis that can inform design of actual repre-
sentations in the pedagogical agent.

Whilst there is a sizeable body of literature on
leamning and cognition, less is known about the cognitive
effects of cooperative learning in a creative context. Un-
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like more formalised domains, e.g. physics and mathe-
matics, the nature of dialogues that result from coopera-
tive learning in open domains remains unclear. However,
when we learn the ability to solve a creative problem,
dialogue with a teacher or with other learners can play an
important role as part of an interactive learning mecha-
nism (Lipman, 1991).

2 Reciprocal Models

The authors of this paper were particularly interested in
developing models that can be used as a basis for the
design of pedagogical agents. In the paper we briefly
describe a pedagogical agent called MetaMuse (Cook,
1999) that was designed to ‘structure interactions’ in
such a way that would, it was predicted, facilitate crea-
tive problem-solving dialogues. The main result pre-
sented in this paper is a detailed elaboration of *“Recipro-
cal Models” (RM), which is a taxonomy of effects. RM
can have different types. These types can have an influ-
ence (both positive and negative) on the nature of a
situation in which two individuals are involved in coop-
erative problem-solving. In one example of reciprocal
models, given in Cook (1998), post-experimental inter-
views revealed in one case that once the teacher’s ex-
pectations had been inferred by the learner (i.e. beliefs
about a partner’s beliefs), the approach taken by that
learner seemed to be one of trying confound those ex-
pectations, to surprise. This paper concludes with a brief
discussion of how our model of RM can be generalised
to a re-implementation of MetaMuse.



3 Example of a cooperative problem-
solving dialogue

In order to illustrate more fully what we mean by coop-
erative problem-solving, Table 1 gives an example. Ta-
ble 1 shows dialogue which is taken from Session 4 of
the study described below. This pair (who are equal part-
ners engaged in solving a creative problem) have just
finish a whole cycle of explaining their creative idea (two
musical phrases). The pair are discussing whether to
leave their current idea behind. Subject 7 makes a sug-
gestion that they could build on what they already have
(i.e. refine it) and makes some concrete suggestions of
either ‘tying their two phrases together’ or even ‘playing
the high phrase in a different manner’. Subject 8 picks up
on the second idea (a creative intention) of changing the
‘rising part’ (i.e. the high phrase). Subject 7 ends the
extract shown in Table 1 by confirming that their crea-
tive intention “would make sense”.

Table 1: Example of cooperative problem-solving

Utterance

Subject 8: ... and [TYPES: “REPEAT THAT MOTIF
TO”] to metamorphose into something slightly differ-
ent.

Subject 7: And good. Yeah hard to get some sort of
Subject 8: [CONTINUES TO TYPE: “METAMOR-
PHOSE INTO SOMETHING”] I think that’s what
we’re saying [MORE TYPING BY SUBIECT 8:
“SLIGHTLY DIFFERENT.”, CLICKS RETURN,
SOME COMMENT TO EXPERIMENTER ] Shall we
just leave it. I’ll just leave that yeah [CLICKS ON
‘CANCEL’ AND THEN ‘MOVE ON’] analyse-
diagnose the phrase that’s

Subject 7: Where does it actually ask you to do that,
you could either try to tie the two bits together. With
that you could actually try to make the high phrase
played in a slightly different manner.

Subject 8: Yeah. I think you, you're kinda making the
most of the rising part in the, in the bottom in the
Subject 7: Hum.

Subject 8: Lower end and

Subject 7: Yeah that would make sense.
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4 Metamuse and ealier study

MetaMuse (Cook, 1999) is a pedagogical agent that has
been designed to structure interactions between pairs of
cooperating learners. MetaMuse can only deal with a
small task revolving around the chromatic transposition
of a four note phrase. The pedagogical agent is capable
of certain types of symbolic reasoning based on its
knowledge. For example, the pedagogical agent ‘knows’
that ‘an interval leap of 23 or more may indicate a musi-
cal phrase boundary’. MetaMuse has been subjected to
preliminary evaluation with six pairs of cooperating
learners (Cook and Smith, 1999). This initial evaluation,
which involved the use of a questionnaire and post-
experimental interviews', obtained a favourable results.
However, the initial evaluation of the teaching agent did
not give us any insight into the interactive means by
which learning agents engage in cooperative problem-
solving. The remainder of this paper describes empiri-
cally based dialogue analysis and modelling that ex-
plored the above question.

5 The Study

Six sessions were conducted that involved pairs of coop-
erating learners interacting with each other and Meta-
Muse. The twelve participants ranged from undergradu-
ate students, postgraduate students, research fellows and
members of staff (teaching and support). Seven students
were male and five female. Each learner-learner-
MetaMuse session lasted between 30 and 40 minutes and
was recorded on two video cameras. One camera focused
on the computer monitor and the second camera was
pointed at the study participants (dyads).

Each session involved the participants being asked
to work together in order to carry out a small composi-
tion task. Briefly, the compositional task was for the par-
ticipants to attempt, using MetaMuse, to create a phrase
by the repeated chromatic transposition of an initial four
note motive (C C# F# G). Participants were not given
any instructions on how to cooperate on the task other
than being requested to “work together on the task”.
Following each session the observers of the session com-
pared notes and decided on which post-experimental
cues to use. Each participant was then individually inter-
viewed for 10 to 15 minutes. Approximately three hours

! Ericsson and Simon (1993, p. xlix) have suggested that fol-
lowing the completion of a task, cueing distinct ‘thought epi-
sodes’ is a useful way to approach the gathering retrospective
verbal reports. This involves constraining the retrospective
report by the subject to the recall of distinct thought episodes.



of learner-learner interactions were gathered. Three
hours of post-experimental interview data was also col-
lected and extracts incorporated into the analysis. The
dialogue analysis described below was performed with
the assistance of computer-assisted qualitative methods
{(NVivo). If a dialogue interaction appeared to involve
RM, then that segment of interaction was coded using
NVivo. This is an evolutionary approach to dialogue
analysis, i.e. the results described below evolved as the
analysis progressed.

6 Result and interpretations

The main result is reported below with a brief discussion
given in the context. The main empirical result was the
seven types of RM. The seven types are characteristics of
that educational process, and can have an influence on
the nature of a situation in which two individuals are
involved in cooperative problem-solving.

The total column in Table 2 shows that on 69 occa-
sions (in the six sessions AND the interview data) evi-
dence was found to support the existence of RM.

Table 2: Reciprocal Model dimension scores by session

Session

Category SI S2 53 S84 S5 S6 Toul
Affect 0 i 3 0 0 0 4
Attention 0 1 0 0 1 1 3
Creative 0 1 2 6 2 6 17
intention

Experi- 4 1 1 0 0 1 7
ment

Knowl- 4 1 5 0 1 0 11
edge level

Social 0 2 3 0 0 0 5
status

System 11 1 5 0 4 1 22
Total 19 8 19 6 8 9 69

Indeed, as we undertook the process of dialogue analysis
our definition of RM (given in the Introduction) was
extended to include the building of ones own intemal
model and the building of models of external agents.
Each model (internal and external) can potentially pos-
sess seven types. The external model will consequently
have an impact on ones own internal model and on ones
actions. Following an examination of the dialogue data
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we found evidence of seven rypes Ui run \vavi o p-
potentially related to other types). The seven types of
RM that were identified in the corpus were: affect, atten-
tion, creative intention, experiment, knowledge level,
social status and system. Below we briefly describe each
type of RM and provide selected examples of the types
of RM from the corpus.

6.1 Affect

Affect is the disposition one brings to learning (Ashman
and Conway, 1997) and includes motivation and emo-
tion. The dialogue extract shown in Table 3 was taken
from the interview with subject 5 following the third
session.

Table 3: Example of RM affect

Utterance

Subject 5: So sometimes I feel that it’s nice to try things
and not feel watched by the system it’s still atest ..........
in terms of the system that it’s forcing you to make these
decisions and you cancel but you think that that would
be the wrong thing to do.

Interviewer: Did you feel a slight tentativeness a slight
nervousness.

Subject 5: Yeah, possibly, but you do feel that you have
to make a response, that it’s your duty to make a re-
sponse to the system because.

Interviewer: Is it because your in an experimental set-
ting or is it the system you are talking about the system.
Subject 5: No, I think it’s the system.

Here the learner has an external model of the system
(RM system, which we will describe in Section 6.7) as a
figure of authority that was pushing subject 5 to make a
full response. This pressurised subject 5 (internal model
of RM affect in terms of emotion). This exftract demon-
strates how the different types of RM may be related.
(Note that “.......... * in Table 3 denotes dialogue that the
transcriber could not understand.)

6.2 Attention

Attention involves the sustaining of interest and selectiv-
ity in learning (Ashman and Conway, 1997). One conse-
quence of RM attention could be, for example, that if
learner A has a model of learner B that suggests B is not
paying attention, then A may adopt the tutor’s role. Table
4 shows a small example of RM attention from Session
5. Subject 9 is doing a bit of tutoring here. Subject 9




seems to have realised that Subject 10 is not showing
enough interest. Subject 9 is taking on the role of the
tutor here by asking a question like: “what would we
expect?” (Note that ‘=[* denotes that the utterances above
and below it start at the same time, ‘//° indicates an
overlap, which is shown on the next line). It is interesting
to note that subject 9 is in fact mimicking the kind of
interventions that MetaMuse has been making (i.e. ask-
ing open ended questions).

Table 4: Example of RM attention

Utterance

Subject 10: Okay.

Subject 9: So

=[

Subject 10: So

Subject 9: Umm, okay, what // would we expect?
Subject 10: What would we expect umm?
Subject 10: It would repeat the thing.

Modelling another agent’s attention can have other posi-
tive dimensions. In Session 6 we seemed to have an un-
cooperative session. However, during Session 6, subject
11 made at least two separate comments that indicated
that some vicarious learning (McKendree et al., 1998)
had took place (where an agent learns by observing an-
other agent’s learning activities). For example, at one
point in the interactions subject 11 articulated what may
have been an important self-realisation: namely that per-
haps he had jumped in too quickly and did not read some
of the help information provided by MetaMuse (i.e. sub-
ject 11 was being too selective). Subject 11 seemed to
achieve this realisation by referring back to his past ac-
tions and by sitting back and watching subject 12 take his
turn. Subject 11 even diagnoses himself as being a habit-
ual offender in this respect.

6.3 Creative intention

In a cooperative context, creative intention can be char-
acterised by the question: are we in agreement about the
creative artefact that we have in mind, or not? This di-
mension of cooperative problem-solving can potentially
have a big impact on the creative product. With a score
of 17 occasions (Table 2) when RM Creative intention
was observed in the sessions and the interview data, this
RM dimension is the second highest scoring RM dimen-
sion. Working with another person to be creative is
problematic. Some very positive interactions were ob-
served in most of the sessions. However, cooperative
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problem-solving did not seem to go too well in Session
6. Interview data, for subject 11, that was obtained fol-
lowing Session 6 showed that he appeared to believe that
he and his partner should work alone, that they should
stick to their own ideas. Furthermore, in the interview
following Session 3, subject 6 had clearly built up an
image of the other learner’s creative intentions, but ex-
pressed the view that she felt that she was being too in-
fluenced subject 5°s ideas: “I think 1 was perhaps influ-
enced by the way he was thinking”.

6.4 Experiment

By RM experiment we mean that a learner may build up
a'model of what he or she thinks the purpose of the ex-
periment is. In the interview following Session 1, subject
2 made the comments shown in Table 5 with respect to
his interactions with the computer. Interestingly, Subject
2 is modelling the computer and the experiment. He is
using his RM experiment as the basis of a critique of the
experiment (in fact the objectives were perhaps new to
him — i.e. making predictions — rather than being un-
clear; also the terms he is referring to would make sense
to many musician).

Table 5: Example of RM experiment

Utterance

Subject 2: T would think something was talking to me
if it respond in a more real manner ... And as I suppose
part of my experience with this, and this is also my ex-
perience with computers, is trying to think what’s
wrong with it and what’s right with it as a piece of
software. As well as what we were trying to do. I was
trying to do, I think I was like doing experiments on the
experiments [LAUGHTER FROM SUBJECT 2}
Interviewer: You were looking down on the experi-
ment, is that what you’re saying, and thinking about
what was going on here.

Subject 2: That’s right yeah. I think the umm the ob-
jective wasn’t quite clear and the terms weren’t very
clear. And I mean if I was an actual musician errm
maybe these terms would have made sense to a musi-
cian I was guessing whether that was supposed to be the
case as well.

6.5 Knowledge level

Knowledge can be declarative, procedural or entrenched.
In Table 6 we see subject 1 declaring his own knowledge



level and asking a question to ascertain subject 2's
knowledge level (in general terms). Furthermore, in the
interview following Session 1, subject 2 suggested that
subject 1’s musical knowledge may have been limiting
subject 1’s openness to new ideas. This is what we are
calling entrenched knowledge: where an agent seems set
in one way of seeing knowledge, they do not seem to be
able to break out and see knowledge from another view-
point. Knowledge entrenchment may limit an agent’s
ability to problem-seek.

Table 6: Example of RM knowledge level

Utterance

Subject 1: Then it would be back [ADDS 0 TO LIST]
again so I know what that’s going to sound like because
I'm a musician myself, but are you, do you know what
it’s going to sound like.

Subject 2: No not really, I have a rough idea but it’s
very rough I think. Maybe you can help me. [LAUGH-
TER FROM BOTH SUBJECTS] See whether we hit or
miss?

6.6 Social status

This is where a model is built up of the social status of
another learner. A good example was provided by ses-
sion 2, subject 4 made the following comments:

“Well to be honest I thought she [subject 3] might
have been a new Ph.D. student so I would have
thought she would have been (more able) in coming
forward. But when we were outside [following the
session} and she said she’s on the second year of her
degree I thought, maybe she thought I was going on
and on and on and it would be really rude to inter-
rupt me. I thought she was shy at the time ...”.

Subject 3 was aware that subject 4 was a member of aca-
demic staff. However, for the duration of the session
subject 4 did not know that subject 3 was an undergradu-
ate (although she may have had her suspicions; subject 4
thought subject 3 may have been a “new Ph.D. student”).
The above modelling of subject 3 by subject 4 (which my
also be related to affect) had a bearing on the manner in
which cooperation took place (subject 4 decides not to
say something at one point). This gives a good example
of the care and consideration that may come into play

when cooperating partners realise that there is a possible
imbalance in social status between them.

6.7 System

This is where learners build up a model of the computer-
based system that they are using. Users are likely, in
some sense, to try to elicit designers’ models during
learning. Bullock et al. (1982) refer to this as the
‘mechanism principle’. The principle claims that causal
attribution is more plausible if there is a mechanism that
could mediate the causal connection between two events.
Empirical study by Pazzani (1987) suggests that this
strongly influences human reasoning. A machine offers
the user a chance to infer causal and procedural connec-
tions through implicit representation of dialogue.

With a score of 22 occasions (Table 2) when
RM System was observed in the sessions and the inter-
view data, this RM dimension is the highest scoring RM
dimension. An interesting example of this RM dimension
was given above in Table 3. The system (RM system)
was seen as a figure of authority that was pushing subject
5 to make a full response. This induces some small pres-
sure to answer in subject 5.

7 Summary

The taxonomy of reciprocal model types provides an
analysis framework for describing the influence of third
party intervention (e.g. the agent) on cognition during
problem-solving tasks. Evidence suggests that reciprocal
models have a considerable influence on user behaviour.
Any attempt by a pedagogical agent to engage a user in a
meta-dialogue, where the user problem-solving behav-
iour in effect becomes the ‘conversational object’, should
take into account the fact that the user’s model of the
system-in-operation will be mediated through a model of
the agent’s intentions. The taxonomy of reciprocal mod-
els presented above represent a basis upon which the
design of our pedagogical agent can be improved so that
it is better able to engage in such meta-dialogues.

8 Conclusions and future work

In this paper we have described MetaMuse, a pedagogi-
cal agent that was designed to ‘structure interactions’ and
hence facilitate problem-solving dialogues. We then went
on to describe the results from a detailed analysis of the
interactions that took place between cooperating students
when engaged with MetaMuse. The main empirical re-
sults presented in this paper was the seven types of recip-



rocal models (RM) which revealed that RM played an
important part in shaping learner interaction and cogni-
tion. This result give us a much more detailed picture of
the interactive means by which leaming agents engage in
cooperative problem-solving. Future work will focus on
making use of our empirical results in a re-
implementation of MetaMuse with the aim of enabling
our pedagogical agent to be better able to support coop-
erative problem-solving.

Because computational resources are finite, we
need to target future areas of re-implementation of
MetaMuse to areas that will maximise learner coopera-
tion. Consequently, a focus will be placed on detecting
the above occurrences of RM (e.g. social status) that lead
to ‘limited cooperation’ and attempting to improve the
situation. Ndiaye and Jameson (1994) address the issue
of making their natural language processing system,
called PRACMA, ‘transmutable’, i.e. where the system is
able to take on either of two possible roles in a dialogue.
Transmutability would, the authors claim, enhance the
system’s ability to anticipate and interpret a dialogue
partner’s reasoning and behaviour. PRACMA models
non-cooperative dialogues between a buyer and a seller
and includes a module that makes use of Bayesian meta-
networks for reasoning about the dialogue partner’s be-
liefs and evaluations. Clearly, such an approach would be
useful because, as we saw above, a student may engage
in ‘limited cooperation’. A priority in the re-
implementation of MetaMuse will therefore be given to
implementing Bayesian meta-networks that are capable
anticipating and interpreting limited cooperation. We
anticipate that a re-implementation of MetaMuse along
these lines will put our pedagogical agent in a better po-
sition to support learner cooperative problem-solving.
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Abstract
The paper recasts the Re-Representation Hypothesis (RRH) in a social design context that allows the de-
signers to leverage on the collective experience of the community they belong to, taking as an example an
evolving shared design memory which has been implemented to support the students of an Information
Systems (IS) design course. The paper not only discusses how the cognitive value of the re-representation
hypothesis may be preserved even in a social context, but also demonstrates how a distributed memory
embedding this cognitive process can be built and used for both supporting design solutions by adapting
precedents and generating novel knowledge schemas (ontological and representational abstractions) that

become an asset for the community.

1 Introduction

Available models of the design process have been de-
veloped following disparate approaches, diversified
along dimensions such as: the collaborative modalities
by which the design is carried out (e.g., individual,
collaborative design, participatory design, social de-
sign); the adopted constructivistic approach (e.g., ob-
jects, functions, activities), or the cognitive processes
involved (e.g., stepwise refinement, analogical reason-
ing, metaphorical blendings). In the paper we are inter-
ested in the relationship between cognitive processes in
design and the representations used to describe the
system specifications, e.g., drawings and denotational
systems, or notational, non-notational and discoursive
representations (Willats, 1997; Goel, 1995). This rela-
tionship has received great attention to explain, respec-
tively, the exploration of relevant concepts in the pre-
liminary phase of design (see the role of ill-structured
representations in Goel (1995)), and in detailing the
chosen concept until the final design is achieved (see
the role of the re-representations in (Karmiloff-Smith,
1993)). In particular, the Re-Representation Hypothesis
(RRH) is currently accepted as the individual cognitive
process (or cognitive strategy) that guides the produc-
tion of a new solution starting from relevant precedents
(Oxman, 1997). RRH involves a continuous re-coding
of an initial tentative solution, constrained by the appli-
cation of multiple representational abstraction levels
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(e.g., functional relations, topological grid systems,
layering systems).

The paper recasts RRH in a social context that allows
the designers to leverage on the collective experience of
the community of designers they belong to. In particu-
lar, we consider the development of a design solution
starting from relevant precedents drawn from an
evolving shared design memory which has been im-
plemented to support the students of an Information
Systems (IS) design course. The designers have to con-
tribute their design to the case base so that it incorpo-
rates precedents that may be at the cutting edge of the
knowledge available to the community. This could be
achieved, in the tradition of case-based reasoning
(CBR) systems (Kolodner, 1993), by simply inserting
the new cases according to the indexing scheme of the
base. However, this way of proceeding implies that the
individuals can access the new cases but do not have
any explicit suggestion on how the creative process
develops at the social level, neither about what repre-
sentational abstraction levels, sometimes called
“knowledge schemas™, are being applied by the com-
munity. This could be achieved only by devising some
means to access to the creative process emergent at the
social level.

To do so we have to tackle two main issues: a) to ex-
tend the re-representation hypothesis (RRH), and b) to
build a distributed memory that embodies this mecha-



nism. The main problem in extending RRH is that the
available studies on this issue do not grant a natural
extension of RRH to our target environment for several
reasons:

a) the most explored design activities regard architec-

fural or industrial design, with intermediate draw-
approaches are usually downplayed, wnereas cu-

tural differences in design solutions have to be en-
couraged (especially in the IS field) so that the vari-
ety of available solutions may support innovation;

c) the intermediate representations are mainly sketches
and drawings, whereas other visual techniques and
multimedia environments can be used in design ac-
tivities;

d) design is mostly investigated as an individual activ-
ity, though admitting that it can explicitely take ad-
vantage from external sources, e.g., from precedents
(Kolodner, 1993 and Oxman, 1997), whereas de-
signs are more productively developed by design
teams operating in a much richer social context, not
only when they deal with highly complex artifacts
but also in common professional practice.

Thus the aim of the paper is twofold: a) to discuss how
the cognitive value of the re-representations hypothesis
may be preserved even in a wider design context, i.e. a
social and distributed one, with a practical illustration
in the field of Information Systems design, and b) to
demonstrate how a distributed memory embedding this
cognitive process can be built. The paper is organized
as follows. Section 2 starts from the obsolescence of
individualistic approaches to IS design - and of support
environments based on this philosophy, to emphasize
the importance of the social dimension and the key role
of the shared design memory. Section 3 illustrates how
re-representations productive for an evolving design
may be supported by the distributed memory. Section 4
points out the special role played by aesthetics (all too
often underrated in IS design) as a generalized language
ensuring mutual intelligibility to the designers and also
suggesting relevant dimensions to the implementors.
Empirical evidence of the relevance of the revisited re-
representation hypothesis in social contexts and of the
role of the aesthetical dimensions in widening the ex-
ploration of the design spaces in the preliminary design
and in suggesting non notational, but effective, design
solutions carried through the final design phase is dis-
cussed in section 5.
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2 Social approach to design and
shared design memories

Modern theories of knowledge point out that knowl-
edge is distributed in networks of social actors, re-
sources and artifacts and that cognition is fundamen-

-u'-'*--wfu-nnﬂ,onﬂ enltiral - process (Suchman, 1988;
culturation, of being introduced to the modes of dis-

course of a particular community, of participating in a
social process of making sense and negotiating under-
standings, mostly through narrative construction
(Brown & Duguid, 1991). In taking seriously the idea
that, in some sense, cognition can be «socially shared»
or «distributed» one must consider, as pointed out by
Cole (1996), that "much of what is meant by social in
the notion of socially shared cognition is rather cultural,
meaning by culture the full set of resources for con-
structing contexts, i.e., combinations of goals, tools
shaped by the cultural past, and current circumstances,
which constitute the text and con-text of behavior and
the ways in which cognition can be said to be distrib-
uted in that context”. This perspective leads us to con-
sider that in understanding design cognition and crea-
tivity the community of practice and the social envi-
ronment to which the designers belong must be part of
the picture. This is obviously true of situations in which
design, as a matter of professional practice is naturally
carried out in teams (e.g. Bucciarelli (1993) account of
designing engineers), but we would favour a view in
which the social and distributed perspective is founda-
tional and also accounts for activites that only in a very
restricted sense can be considered to be carried out "in-
dividually".

A viable approach to support design activities in a so-
cial context is to resort to a "shared design memory"
that is not simply a collection of design precedents but
rather is a growing and evolving resource tracing the
design experiences in which the designers of a specific
community are engaged. Several approaches to support
designers in the wider contexts of a team or of a whole
corporation have been proposed, mostly devising forms
of organizational memory to make design knowledge
more resilient and more easily accessible, or to de-
crease the cost of re-considering design decision, e.g.,
by recording design rationale. In general, these inter-
ventions are aimed at increasing the cost-effectiveness
of the design action and are not particularly concerned
with the support of creativity. In particular, they do not
favor new solutions by pointing out as many design
aspects as possible that are relevant for the task at hand



and may come from both similar cases and apparently
unrelated fields. On the contrary, the considerations
advanced in this paper stem from the observation of the
contents and their evolutionary dynamics in a shared
design memory that was intentionally deployed to sup-
port learning and creative design, in the above sense, in
a community of IS design students. Deployment of the
system was accompanied by contextually establishing
the culture of making use of the shared design memory
and attempting design innovations.

Dealing with IS design has various consequences con-
cerning the key problems of case representation and of
indexing the contents of the memory, this latter typi-
cally being task-specific. In fact, the shared design
memory must favour multiple traversal paths and sup-
port various search options. In IS design, ontologies
concerned with the use-cases of the system are of
paramount importance, thus one way of searching for
relevant cases in the shared memory is according to the
ontologies specification. This is demonstrated by the
observed behaviour of the community of novice de-
signers who often request not only precedents belong-
ing to similar business activities but also precedents
that contain similar use-cases, independently on the
specific business activity. Thus, as an example, when
designing the IS use-case of managing the enrolment to
a university course it is not so important for the stu-
dents to consuit a precedent coming exactly the univer-
sity domain, but they are fairly satisfied from consult-
ing a precedent of similar kind, such as the one related
to what happens in joining a gym. Of course it is also
important that they are advised todeal with the com-
monalities of the use-cases as general schemas to be
adapted for their needs, while specific implementations
(such as the use of Internet for registering from home)
should be regarded as possible innovations.

For supporting an effective remembering or retrieval of
precedents respectively from personal and shared
memories and following also the underlying methodo-
logical approach to design, these specifications are
couched in terms of a template based on categories
(i.e., WHAT, WHO, HOW, WHY etc.) that discour-
sively structure the specification of the activity streams
that must be supported by the information system.
These descriptions (story-episodes templates) are
among the key design representations that are contained
in the shared memory. To supplement the template are
also the diagrammatic specifications that formalize and
substantiate the template whose narrative structure fa-
vors the construction of understanding. These are Data
Flow Diagrams (DFDs) aiming at specifying user and
system processes and their interactions, and Entity Re-
lation Models (ERMs) aiming at describing and opti-
mizing data structures. Also attached to the template
are representations dealing with the dynamics of the
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system: Entity Life Histories (ELH) aiming at describ-
ing diagrammatically what processes at any given time
may access the data and for what reason, and Automata
or Petri Networks aiming at describing how users and
system processes should concurrently behave for in-
creasing as much as possible both effectiveness in user-
system interactions and efficiency in system imple-
mentation.

One constructive assumption for the shared design
memory (which corresponds to an implicit cognitive
hypothesis) is that such a social resource is effective to
the extent that the contributions are linked in a network
of influences that trace how a new design has evolved
from the already available precedents (Faro&Giordano,
1998). This is to say that the meaning of an ontology
and the value of a particular design solution is evident
in the context where the case is embedded. We assume
that this way of structuring the content is more power-
ful than what could be accomplished with broad asso-
ciation links or with notions of similarity based on ad-
hoc indexing scheme (e.g., as in issue-based systems or
the problem-form-concept triple proposed in Oxman
(1999)) with respect to the fundamental issue of de-
tecting the unexpected and the emergent in the commu-
nity. This can be accomplished by endowing the shared
design memory with a mechanism of neural classifica-
tion that operates on the space of the links

(Faro&Giordano, 1998). In fact, unsupervised neural

classification originates classes that can provide re-
fined, reinforced or new ontological schemas based on
the cases that are flexibly aggregated in each class. Ex-
amining such classes is an additional way of looking at
the contents of the memory. This amounts to provide a
socially emerging supplementary indexing scheme that
reflects the issues that are of importance to the commu-
nity. As an example, fig.1 shows a 3D space of this N-
dimensional topology where small nodes represent use-
cases whose position Px, Py, Pz in that space represents
how much (from 0 to 1) a case P belongs to the classes
Cx, Cy and Cz, respectively dealing with Medical Visit,
Service Advertising, Course Enrolment. The interpre-
tation of this topological representation is as follows: a)
the more the cases belong to only one axis and the more
they carry out only one aspect, b) a case is influenced
by another case if it is connected to the other by an arc
whose arrow is in the direction of the influential one,
and c) the arcs are characterized by a pair weight-
comment to describe how much and why the case at
one end of the arc was influenced by the one at the
other end.

Thus, with respect to fig.1, if a designer is interested in
specifying the enrolment to a gym she\he could limit
her\himself to consulting only the cases belonging to
the kernel of the “Course Enrolment” ontology (i.e., the
ones contained in the bigger black node drawn in axis



x). However, she\he may follow a more creative strat-
egy by analyzing the aspects other cases suggest to be
relevant too, i.e., the medical visit to verify the client
condition before accepting the enrolment request and
the advertising action to increase the number of enrol-
ments. Of course if no case exists like cases P1 and P2
in fig.1, then analysis of new aspects depends on the
culture and background knowledge of the designers.
But it suffices that one member of the community in-
serts such a case for making the innovative aspects de-
veloped in the new case available to be considered by
the community for increasing the effectiveness and
efficiency of the already existing enrolment ontology.

Medical Visit

Service Ad-
vertising

Course Enrolment

Travel Agency Medical Studio ® Gym

@ Aggregate of highly interconnected cases

Fig.1 — Use cases arranged in a 3D ontological topology
created by a neural agent in the shared memory.

3 Re-representation revisited

In this section we focus on design creativity, i.e., the
cognitive processes we want to support for creative
design to take place. To this aim we assume, as a first
approximation, that at both the team and the social level
the design process develops following four main subse-
quent phases, as proposed in (Goel,1995) for explaining
individual design activities, i.e.: i} problem structuring,
ii) preliminary design, iii) revision and iv) detailed de-
sign. With respect to this model, creative activities oc-
cur as "lateral transformations" in search of an initial
tentative drawing and relevant aspects, and "vertical
transformation” of the drawing chosen as a starting one
until the final solution is achieved. A comparison with
the re-representation hyphotesis discussed by Oxman
(1997) would suggest that Goel is actually claiming
more than one cognitive mechanisms to explain crea-
tivity in design, since re-representation might be appro-
priate to explain how designers think in the detailed
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design phase, but not in the preliminary one, in which
the representations taken into account are not obtained
one from the other, as RRH requires. However, a closer
look tells a different story, given that RRH implies that
the designer needs to use some knowledge schema to
produce a new representation from a previous one. Pre-
liminary design seems to serve exactly to this aim, i.e.,
to select, or more generally, to discover useful schemas
that can guide the RRH process.

Thus a generalized creative behavior might assume that
not only the starting representation but also the knowl-
edge schemas cannot be defined in advance. Rather,
they should be situationally identified or activated, de-
pending on the expertise level, among the ones already
available or emergent from the individual designer’s
memory. Experimental evidence of this generalized
hyphotesis can be found in both the etnographic studies
from Goel (1999) and Oxman (1999), even if neither of
these two authors enlarges his hypotesis to comprise the
point of view of the other.

However, if RRH and generalized RRH had this for-
mulation one couldn’t avoid the criticism presented by
Carassa & Tirassa (1994) in which RRH is seen as a
strategy for creative behavior rather than a cognitive
mechanism. In fact, all the above mentioned authors do
not have illustrated neither hypothesized how this
mechanism can be implemented in a cognitive archi-
tecture.

One could be tempted to discount the relevance of this
criticism, but it is reasonable to think that the cognitive
load in following a strategy (i.e., exploring personal
design experience and expliciting personal knowledge
schema) is greater than the one needed to do this ac-
cording to some internal cognitive mechanism. Actu-
ally, this issue is at the outset of approaches that postu-
late modular connessionistic cognitive architectures
aimed at better exploiting achieved representations vs.
engaging in expensive computation (Clark & Thornton,
1997) or even in more radical positions that completely
exclude the existence of representations in the brain,
favouring an increasingly refined classification of the
problem that allows one to "see" the solutions (Dreyfus,
1998).

For this reason in conceiving of the distributed memory
of a community of designers we have always been in-
terested in a memory structure that incorporates a gen-
eralized RRH or re-classification mechanism as a na-
tive re-representation facility to understand what as-
pects are relevant and how they can be couched in a
novel solution. This has been obtained by the neural
agent introduced in the previous section where the
mentioned mechanisms work as follows:



1) Exploration of the memory in search of relevant
schemas (design aspects or concepts) to be taken into
account during the design process may be easily done
by first selecting (e.g., by a lexical query) a relevant use
story S in the memory space, then by exploring the
class Cs to which this story belongs to and finally by
exploring the use-stories belonging to the neighboring
classes of class Cs or the use stories belonging to the
intersections between class Cs and the neighboring
ones. With respect to fig.1 this means that to start the
re-representation process of the “course enrolment in a
gym” it is preliminarly necessary to choose what on-
tologies should be taken into account in addition to the
ones believed fundamental for the case at hand. It is at
this stage that a creative designer could decide to incor-
porate in her\his use-case the medical visit and the ad-
vertising. Of course if the future cases will reinforce
this choice, the ontology will evolve towards a new
schema that stably incorporates the above new aspects,
otherwise the proposal could disappear or be accepted
simply as a significant variant.

2) Exploration of the memory reclassified or "re-
framed", respectively, according to the following sim-
ple mechanisms:

a) neural reclassification of the part of memory in
the surround of the initial relevant use stories;

b) neural reclassification of the memory after hav-
ing relaxed the links interconnecting the nodes
of the class Cs.

Both these operations could let emerge new classes
obscured by the original classification. Re-classifying
the cases of a class will let further internal aspects
emerge. On the contrary, decreasing the weights of the
internal links will let potential ontologies emerge. As
an example, fig.2a shows a possible result of re-
classifying the cases belonging to the axis x of fig.1 by
taking into account only their interconnections with the
other cases of the 3D space. As a consequence, class Cx
will be subdivided in some classes such as Cx1 more
linked to Class Cz, and Cx2 to class Cy. These sub-
classes deal with aspects of the original one. Fig.2b
shows what happens if the weights of the internal links
of classes Cx! and Cx2 are furtherly decreased: some
cases {class C’x) will disappear, whereas the other
cases will be subdivided in two classes: C’x1 and C’x2
that will let potential ontologies emerge.

3) Adapting a solution of the memory (i.e. a relevant
precedent) by taking into account: the re-representation
trace that has detemined the evolution of the precedents
and the aspects emerged in the exploration phase. The
linkage of the new solution to the ones that have been
re-used in the creation process increases the re-
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representation path and may reinforce the schema the
designer has used in deriving the new solution from the
existing relevant ones.

Service Ad-
vertising

Course Enrolment 2a

Medical Visith Z

Service Ad-
vertising

Course Enrolment

@5 Use cases

@ Aggregate of highly interconnected cases

Fig.2 Re-framing case topology

Let us note that the first two points above are in accor-
dance with Goel’s hypothesis dealing with the necessity
of selecting the knowledge schemas preliminarly to
start the design process by using non notational dia-
grams such as sketching, with the difference that we
assume that designers may take into account new
schemas during the design process too. On the contrary,
the last point (3) is partially in accordance with Ox-
man’s model of the design process since in our model
the re-representation process may result not only in a
new solution but also in reinforcing a new schema.

This means that the knowledge schemas are not fixed
but that they socially evolve, whereas re-representation
at both the individual and shared memory levels does
not differ significatively since in both cases it is a path
towards a final solution, with the difference that the
final solution for the individuals is an intermediate
solution at the social level. In fact re-representation in
distributed memory can be interpreted as a path towards
some stable ontology (i.e. the final solution that social



supports an effective representation of concurrent proc-
esses. An example of style linked to a specific ontol-
ogy and suggested by the shared memory is the one
consisting of videos, organizational charts and photos
that characterize the introductive section devoted to
describe the main scenarios of the office automation
support system. An example of representations initially
considered as an unusual combination is the colored
global data flow diagrams where globality means the
representation in the same diagram of all the system’s
processes and their interactions, whereas coloring is a
technique created by the community with the aim of
differentiating the interactions according to the use-case
to which they belong to. An example of a completely
new representational technique is the actor-story matrix
that aims at verifying that an actor should be present at
least in a story and, viceversa, that a story should be
enacted by some actor. Some of these new representa-
tional styles will be furtherly discussed in the next sec-
tion.

5 Empirical evidence

This section briefly presents, with the help of the dia-
grams shown in fig.3 and fig.4, some empirical evi-
dence that justifies why the above mentioned findings
modify the models proposed by Goel and Oxman in
two main senses:

a) initial exploration regards both ontological and
aesthetical schemas; these schemas are partially
owned by the designers but may also be discovered
during the exploration of both the informal and ar-
tificial distributed memory. IS design doesn't
evolve according to a linear sequence of phases
neither as the feedback evolution proposed by Ox-
man, but according to an impredictable interleav-
ing of exploration and re-representation.

b) the necessity of suggesting a form to the imple-
mentors and of adjusting the user requests to the de-
sign notation determines mixed represent-ations
starting from the structuring of the problem until the
final solution is achieved. In particular, a certain
degree of notational representation is always pres-
ent, whereas discoursive representations are mainly
present in the early design, and drawings in both the
preliminary and detailed phases of the design.

Fig.3b shows a DFD dealing with the IS of a gym that
has been inspired by a former DFD shown in fig.3a
dealing with the IS of an airport. Influences mainly
concern the representational dimensions as clearly
emerges from the comparison of the two diagrams.
Interestingly, some aspects dealing with managing the
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clients have been “imported” from the precedent to the
new project too.

Data Flow Diagram Finale

ey

= . g A Jl %

< volo

Persoraie ds
9dp

@ Episadio 1

@ typrode?
@ Cpicadio 3
@ Fpisolio 4

Cliente

Clanina
Visitn
Ralastia centificarm

Fig. 3 — Some re-representations of former cases

Both projects in fig.3b and fig.3c deal with the same
subject and have been produced in the same period. Of
course they share a common kernel related to managing
the clients and the gym courses. However, the case
shown in fig.3b deals also with the gym maintenance,
whereas the other specifically treats another important
aspect concerning the medical visit for accepting the
client in the gym. They are a good example of re-
representing a prior ontology by adding two different
aspects that may become stable points in the future
projects. From the representational point of view the



only similarity is that both diagrams point out the ac-
tions (and related roles) played by the identified proc-
esses in the use-episodes to which they take part.

4a

cliente

Fig.4 — Re-applying a representational schema

Fig.4a is another example of gym management. Let us
note a completely different stylistic schema with re-
spect to the one shown in fig.3b. This is because the
design aims at pointing out especially the data base
organization. In this respect the latter DFD is very close
to the style of the diagram shown in fig.4b aiming at
structuring the data base of an astrophysical center
which was used as a precedent.

6 Concluding remarks

The above DFDs are in a certain sense in the middle of
the design process. They represent the point from
which the use of discoursive part is abandoned in favor
of diagrammatic representations enriched by colors,
iconography and animation. The textual part, if any,
concerns only some comments to better animate the
simulation (e.g., the Petri Network) or to explain the
rational of some choices concerning the system struc-
ture. This result is less surprising if one thinks that
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relevant examples exist in the art in which both denota-
tional and drawing systems coexist, e.g., in Van Gogh’s
Jardin de fleurs (1888) as noted in Willats (1997), to
express both the inner contents and the observer point
of view.

References

Brown J, & Duguid P. Organizational learning and
communities of practice, Organization Science, 2,1, 40-
57,1991

Bucciarelli, L. Designing engineers, MIT Press, 1994

Carassa, A., and Tirassa M. Representational rede-
scription and cognitive architectures, Behavioral and
Brain Sciences. Vol.17. pp. 711-712, 1994

Clark,A. & Thornton, C. Trading spaces: Computation,
representation, and the limits on uninformed learning”,
Behavioral and Brain Sciences, 20:1, 57-67, 1997

Cole, M. Conclusions in Perspectives in socially shared
cognition, L. Erlbaum Associates, 1996

Dreyfus H.L. Intelligence without representation, Cog-
nitive Science Humanities and the Arts, url:
http:\\www.hfac.uh.edu\cogscilindex.htm! 1998

Faro A., & Giordano D. Concept formation from design
cases: why reusing experience and why not. Knowledge

Based Systems Journal N.7-8, Elsevier, 1998

Faro A., & Giordano D. Ontology, aesthetics and crea-
tivity at the crossroad in information systems design.
ACM Proc. on Creativity and Cognition, Loughbor-
ough, UK 1999

Goel V. Sketches of thought, MIT Press 1995

Goel V. Cogritive role of ill structures representations
in preliminary design, Proceedings on Visual spatial
reasoning in design, MIT, Boston, 1999

Hutchins, E. Cognition in the wild, MIT Press, 1996

Karmiloff-Smith A. Constraints on representational
change: evidence from children’s drawing, Cognition
vol.34 pp 57-83, 1993

Kolodner, J. Case Based Reasoning San Mateo, CA:
Morgan Kaufmann, 1993

Lave, J. Cognition in practice. Cambridge University
Press, 1988

Oxman R. Design by re-representation: a model of vis-
ual reasoning in design, Design Studies, vol.18 N.4,
Elsevier, 1997

Willats J. Art and representation, Princeton University
Press, 1997



much on the quality of the concept maps involved, this be-
ing the motivation leading to the development of Clouds
(Pereira, 2000), a module now integrated in Dr. Divago,
aiming at helping the user in building her own concept
maps by means of machine learning techniques.

In the present work, within Dr. Divago, we want to
extend the generation of cross-domain links such as those
based on the metaphor theory of Veale and Keane (1993),
to cope with the transfer of operational/procedural knowl-
edge from one domain to another. In such cases, particu-
larly when negative information is bought into the arena,
inconsistency is a reality that has to be dealt with, as
shown by the following example:

Example 1 Consider the rule “objects aren’t big when
they are in the background”, extracted from Clouds in the
domain of Visual Arts, represented in the clausal form as:

not big(X) « object(X), background(X). (1)

which, if we were to map it to the music domain according
to the following translation:

big — long object — motif

background — accompaniment
would correspond to:
notlong{X) «+ motif(X), accompaniment(X). (2)

This can easily be proven inconsistent, at least for some
instances (it is not difficult to find accompaniment motifs
that are long, eg. isometric motets from ars nova). °

Each metaphorical mapping will lead to the transfer
of a set of rules from the Vehicle to the Tenor of which:
some are redundant because equivalent rules already ex-
ist there; some, of particular interest to the creative pro-
cess, yield new knowledge to the Tenor; some are contra-
dictory with the knowledge already present in the Tenor.
Although contradiction is not necessarily evil, this being
more evident in creative processes, we nevertheless have
to detect and deal with it.

The need to detect and deal with contradiction
in knowledge transfer lead us to consider the recent
paradigm of Dynamic Logic Programming (Alferes et al.,
1998, 2000) as a formal, while at the same time intuitive,
vehicle to a solution.

The paradigm of Dynamic Logic Programming
(DLP), supported by the notion of Logic Program Up-
dates (Leite, 1997; Leite and Pereira, 1997, 1998, Alferes
et al., 1998, 2000), is simple and quite fundamental. Sup-
pose that we are given a set of theories (encoded as gener-
alized logic programs) representing different states of the
world. Different states may represent different time peri-
ods or different sets of priorities or, in our case, different
domains. Consequently, the individual theories contain
mutually contradictory as well as overlapping informa-
tion. The role of Logic Program Updates is to use the
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mutual relationships existing between different states to
precisely determine the declarative as well as the proce-
dural semantics of the combined theory, composed of all
individual theories. Cross-domain inconsistencies are de-
tected and solved due to the application of the principle
of inertia to the individual rules of the theories. This prin-
ciple of inertia, applied to the individual rules of a theory,
states that a rule from the initial knowledge should only
persist in time, after an update, if it does not lead to a con-
tradiction by means of a new rule. In our case, the rules
from the Vehicle, after the metaphorical mapping, should
only persist if they do not lead to a contradiction by means
of a rule from the Tenor.

Going back to the example above, let us suppose that
we learn, in the music domain, the following rule:

long(X) « motif(X),accompaniment(X),
isometric.motet_element(X).

3

stating that “the accompaniment element of an isometric
motet is long”'. If we were simply to consider the union
of both rules, we would obtain a contradiction for all ac-
companiment elements of an isometric motet. If we were
to simply consider rule 3, we would loose valuable in-
formation from rule 2 concerning accompaniment motifs
not belonging to isometric motets. Our goal is to be able
to conclude that “accompaniment elements of an isomet-
ric motet are long”, and that “accompaniment elements
of non-isometric motets aren’t long”. That is, we would
like to use rule 2 for those instances that do not generate
a contradiction by means of rule 3. This is precisely the
behavior of Logic Program Updates: to exert inertia on
those rules (in this case obtained by the mapping) that are
not contradicted by rules from the new domain. In Ex-
ample 3, we will return to this problem and show how to
obtain the desired result.

The non-monotonic behavior of DLP, together with its
modular characteristic shows to be quite important when
dealing with metaphors.

This paper presents a symbiosis of the two above men-
tioned theories (DLP and Metaphor) towards the goal of
Computational Creativity. It is being implemented as part
of the above mentioned Dr. Divago (Pereira, 1998), where
interesting results are to be expected.

Enjoying the advantages of employing a theoretically
sound formalism to the problem of Metaphorical Reason-
ing, DLP has also been implemented as a meta-interpreter
(DLP System, 1998) running under the XSB System
(1999), allowing for not only theoretical but also practical
reasoning.

The paper is structured in the following way: in Sect.2
we elaborate on Metaphor Theories; in Sect.3 we intro-
duce the reader to the notions of Logic Program Updates
and DLP; in Sect.4 we set forth the notion of Metaphori-
cal Reasoning by means of DLP; in Sect.5 we draw some
properties and illustrate with examples; in Sect.6 we con-
clude and give hints about future developments.

! Also known as Talia



2 Metaphor Theory

Metaphor is a constantly used resource of communica-
tion, be it as an embellishment for discourse or as a nec-
essary device to assess concepts unexplainable in other
ways. Since in any Natural Language, lexicon is not
static or exhaustive, Metaphor has a constructive role in
the evolution of communication. Words or expressions
like “software”, “e-mail” or “search engine” are recent
examples of metaphors that are becoming entries in our
dictionaries. Furthermore, some researchers advocate that
Metaphor is a central device for Learning (Winston, 1980)
and is an irreducible and irreplaceable function at the ba-
sis of our creative faculties (Richards, 1936; Black, 1962).

There seems to be general agreement that metaphor
involves two objects or situations and some kind of trans-
ference from an object or situation to the other. One
object is referred to as the tenor or the target domain,
and the other object as the vehicle or the source domain.
For example, the expression “Your claims are indefensi-
ble” follows the metaphor “Argument is War”’(Lakoff and
Johnson, 1980), in which an argument (the tenor) is par-
tially defined, understood, performed and talked about in
terms of a war (the vehicle). Here, we can observe the
Systematicity of Metaphor: it is not limited to a single,
static, association between two concepts (Argument and
War). Instead, other associations emerge dynamically as
one explores further in both domains, i.e., “Argument is
War” is the underlying metaphor for “He attacked every
weak point in my argument”, “His criticisms were right
on target”, “1 demolished his argument”, “If you use that
strategy, he'll wipe you out”, and others that appear in
everyday speech.

An interesting and subtle property of a metaphorical
interpretation is that it is directional, i.e., each domain or
object has a different role and its interchange, although
possibly yielding an equally valuable metaphor, will not
lead to the same meaning. For example, if we have the
metaphor ‘“War is Argument”, things turn quite different.
It is somewhat unconventional to talk about a war as be-
ing an argument (then, it would be natural to say “the gen-
eral exposed his claims quite aggressively” or “thousands
of soldiers perished from that discussion’) because this
metaphor is not so deeply rooted in our common sense
reasoning.

While it is natural of metaphor to be associated with
creative thought and freedom of association, it is con-
strained by deep rules of coherency. Although it is not
expected, in a metaphor, to find a mapping for every sin-
gle concept in a domain, those that are mapped should be
coherent among themselves (this phenomenon is called
Local Coherency in Indurkhya (1992)). Some research
on metaphor interpretation consist precisely in finding
the largest mapping function that avoids inconsistencies.
One example is Veale and Keane’s metaphor interpreta-
tion framework, called Sapper (Veale and Keane, 1993).
It uses a hybrid model of semantic memory that consists
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of a connectionist structure in which each unit (or node)
or fixed cluster of units is assigned to a concept, and an
activation-carrying inter-unit linkage is assigned to each
inter-concept relation. Also known as a localist network,
this organization receives all domain knowledge Sapper
uses to interpret metaphor. It applies 3 operational princi-
ples:

1. Metaphor is a means of learning new conceptual
structure by linking existing diverse schemata in
novel ways. This linkage of domains is achieved by
augmenting the network with conceptual bridges
that link the fenor and vehicle schemata of the
metaphor (Veale, 1995).

2. Metaphor comprehension involves explicit struc-
tural changes to the semantic memory network;
these changes, essentially the conceptual bridges of
(1) above, are explicit inasmuch as they are recog-
nizably the trace residue of a novel metaphor, and
as such may be built upon (elaborated) at a later
time (Veale, 1995).

3. A metaphoris a dynamic conceptual agency, which
may continue to grow as more conceptual structure
is acquired regarding either the tenor and the vehi-
cle domains.

In Sapper, metaphor interpretation takes two major
cyclic steps:

1. In the symbolic mode of processing, it searches for
potentially inter-concept relations between the two
different domains (tenor and vehicle). These re-
lations, to which Veale calls dormant bridges, are
obtained from the application of the following two
rules:

e The triangulation rule: “Whenever two con-
cepts share an association with a third con-
cept, this association provides for a plausible
dormant bridge™.

e The squaring rule (second order similarity): If
two concepts share an association with other
two concepts that are connected by an awaken
bridge (as described below), this association
provides for a plausible dormant bridge.

2. The conceptual bridge awakening phase is per-
formed in the connectionist mode of processing,
in which dormant bridges, as laid down in the
symbolic mode, are recognized to represent do-
main crossover points between the tenor and vehi-
cle schemata, and are thus awakened or burnt in.

We are adopting these ideas to develop our cross-
domain links generator, which allows to obtain metaphor-
ical program mappings, described later in this paper.

Other works related to metaphor are also meaning-
ful, such as Barnden (1997); Gentner et al. (1989); Martin
(1990).



3 Dynamic Logic Programming

The idea of dynamic program updates, inspired by Leite
(1997), is simple and quite fundamental. Suppose that
we are given a set of program modules P;, indexed by
different states of the world s. Each program P; con-
tains some knowledge that is supposed to be true at the
state s. Different states may represent different time pe-
riods or different sets of priorities or, in our case, dif-
ferent domains. Consequently, the individual program
modules may contain mutually contradictory as well as
overlapping information. The role of the dynamic pro-
gram update @ {P, : s € S} is to use the mutual rela-
tionships existing between different states (and specified
in the form of the ordering relation) to precisely deter-
mine, at any given state s, the declarative as well as
the procedural semantics of the combined program, com-
posed of all modules.

Consequently, the notion of a dynamic program up-
date supports the important paradigm of dynamic logic
programming. Given individual and largely independent
program modules P, describing our knowledge at dif-
ferent states of the world (for example, the knowledge
acquired at different times), the dynamic program up-
date @ {Ps : s € S} specifies the exact meaning of the
union of these programs. Dynamic programming signif-
icantly facilitates modularization of logic programming
and, thus, modularization of non-monotonic reasoning as
a whole.

In this section we start by recalling the definition of
the so called generalized logic programs and their stable
semantics (Alferes et al., 1998) which extend the stable
semantics of normal logic programs (Gelfond and Lifs-
chitz, 1988). We then recall the definition and semantic
characterization of the update of a generalized logic pro-
gram by means of another such logic program P; @ P;.

Since we have that the notion of dynamic pro-
gram update @{ P, : s € S} over an ordered set P
= { P; : s € S} of logic programs is a generalization of
the notion of single program updates P, & Ps, through-
out the remainder of the paper, we will restrict ourselves,
without loss of generality, to the case of single program
updates P @ U.

For a formal and detailed presentation of dynamic pro-
gram update and dynamic logic programming, the reader
is referred to Alferes et al. (1998, 2000).

3.1 Generalized Logic Programs and their
Stable Models

In order to represent negative information in logic pro-
grams and in their updates, we need more general logic
programs that allow default negation not A not only in
premises of their clauses but also in their heads. We call
such programs generalized logic programs.

It will be convenient to synractically represent gener-
alized logic programs as propositional Horn theories. In
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particular, we will represent default negation not A as a
standard propositional variable (atom). Suppose that X is
an arbitrary set of propositional variables whose names do
not begin with a “not”. By the propositional language £
generated by the set K we mean the language £ whose set
of propositional variables consists of:

{A:AeK}lu{notA: A K}.

Atoms A € K, are called objective atoms while the atoms
not A are called default atoms. From the definition it fol-
lows that the two sets are disjoint.

By a generalized logic program P in the language
Lx we mean a finite or infinite set of propositional Horn
clauses of the form:

L(—Ll,...,Ln

where L and L; are atoms from L. If all the atoms L
appearing in heads of clauses of P are objective atoms,
then we say that the logic program P is normal. Conse-
quently, from a syntactic standpoint, a logic program is
simply viewed as a propositional Horn theory. However,
its semantics significantly differs from the semantics of
classical propositional theories and is determined by the
class of stable models defined below.

By a (2-valued) interpretation M of Lx we mean any
set of atoms from L that satisfies the condition that for
any A in K, precisely one of the atoms A or not A belongs

to M. Given an interpretation M we define:
Mt = {AeK:Ae M}

M-

il

{notA:notAe M} =
{notA:A¢ M}.

i

Definition 1 (Stable models of generalized logic progs.)
We say that a (2-valued) interpretation M of Lx is a
stable model of a generalized logic program P if M is the
least model of the Horn theory P U M~

M = Least{PU M™)o

Following an established tradition, from now on we
will often be omitting the default (negative) atoms when
describing interpretations and models.

3.2 Program Updates

Suppose that K is an arbitrary set of propositional vari-
ables, and P and U are two generalized logic programs
in the language £ = Lx. By K we denote the following
superset of K:

K=KU{A~, Ap, A5, Ay, Ay : A€ K}

This definition assumes that the original set XC of proposi-
tional variables does not contain any of the newly added
symbols of the form A~, Ap, Az, Ay, Aj; so that they
are all disjoint sets of symbols. If K contains any such



symbols then they have to be renamed before the exten-
sion of K takes place. We denote by £ = L the exten-

sion of the language £ = L generated by K.

Definition 2 (Program Updates) Let P and U be gener-
alized programs in the language L. We call P the original
program and U the updating program. By the update of
P by U we mean the generalized logic program P @ U
, which consists of the following clauses in the extended
language L:

(RP) Rewritten original program clauses:

Ap « By,..., By, C1,...,C; G)
Ap + By,...,Bn,Cr,...,C; (5)
Jor any clause
A+ By, ..., By, notCy, ..., notCy,
respectively
notA + By, ..., By, notCy, ..., notCp

in the original program P. The rewritten clauses
are obtained from the original ones by replacing
atoms A (resp. not A) occurring in their heads by
the atoms Ap (resp. Ap)and by replacing negative
premises not C by C~.

(RU) Rewritten updating program clauses:

Ay « B1,y...,Bn,Cr,...,C; (6)
Ay + By,...,Bn,Cr,...,Cy @
for any clause
A < By, ..., By, notCy, ..., notC,
respectively
notA + By, ..., By, notCy, ..., notCy

in the updating program U. The rewritten clauses
are obtained from the original ones by replacing
atoms A (resp. not A) occurring in their heads by
the atoms Ay (resp. A(;) and by replacing negative
premises not C by C'~.

(UR) Update rules:

A« Ay A« Ap (8)
for all objective atoms A € K. The update rules
state that an atom A must be true (resp. false) in
P & U ifitis true (resp. false) in the updating

program U.

(IR) Inheritance rules:

A« Ap,not Ay A« Ag not Ay (9)
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for all objective atoms A € K. The inheritance
rules say that an atom A (resp. A")in P U is
inherited (by inertia) from the original program P
provided it is not rejected (i.e., forced to be false) by
the updating program U. More precisely, an atom
A is true (resp. false) in P @ U if it is true (resp.
false) in the original program P, provided it is not
made false (resp. true) by the updating program U.

(DR) Default rules:

notA « A~
(10)

Jor all objective atoms A € K. The first default
rule states that an atom A in P ® U is false if it
is neither true in the original program P nor in the
updating program U. The second says that if an
atom is false then it can be assumed to be false by
default. It ensures that A and A~ cannot both be
true. o

A~ + notAp,not Ay

3.3 Semantic Characterization of Program
Updates

Follows a semantic characterization of update programs
P @ U by describing their stable models. This character-
ization shows precisely how the semantics of the update
program P @ U depends on the syntax and semantics of
the programs P and U.

Let P and U be fixed generalized logic programs in
the language L. Since the update program P @ U is de-
fined in the extended language £, we begin by first show-
ing how interpretations of the language £ can be extended
to interpretations of the extended language L.

Definition 3 (Extended Interpretation) For any inter-
pretation M of L we denote by Mits extension to an in-
terpretation of the extended language L defined, for any
atom A € K, by the following rules:

A~ eM iff notAeM

Ape M iff 3A+« Body € PAM = Body

As € M iff 3not A+ Body € PAM = Body
Ay € M iff 3A +« Body € UAM [= Body

Ay € M iff 3not A+ Body € UAM = Body.o

We will also need the following definition:

Definition 4 For any model M of the program U in the
language L define:

Defaults[M] =
{not A: M |= ~Body,¥(A < Body) € P U U};
Rejected[M] =
{A+ Bodye P:3(notA « Body')eU
and M |= Body'}

U
{not A+ Body € P:3(A « Body')eU
and M |= Body'}; o



The set Defaults[M] contains default negations
not A of all unsupported atoms A, i.e., atoms that have
the property that the body of every clause from P U U
with the head A is false in M. Consequently, negation
not A of these unsupported atoms A can be assumed by
default. The set Rejected[M] C P represents the set of
clauses of the original program P that are rejected (or
contradicted) by the update program U and the interpre-
tation M.

Now we are able to describe the semantics of the up-
date program P @ U by providing a complete characteri-
zation of its stable models.

Theorem 1 (Stable models of update programs) An
interpretation N of the language L = Lg is a stable
model of the update P & U if and only if N is the
extension N = M of a model M of U that satisfies the
condition:

M = Least(P UU — Rejected[M]U Defaults[M])o

4 Metaphorical Reasoning and DLP

In this section, we will show how the ideas behind Dy-
namic Logic Programming can be used in the context of
Metaphorical Reasoning.

As we have seen before, a metaphorical framework
can be seen as consisting of two theories (tenor and ve-
hicle), defined in two different languages, together with a
function mapping part of the language of the vehicle into
the language of the tenor. For simplicity we will con-
sider that the mapping function is defined for all elements
of the vehicle language. Although this is usually not the
case, we could, without loss of generality, extend the lan-
guage of the tenor with those unmapped elements from
the language of the vehicle, and extend the mapping func-
tion accordingly.

The two theories will be represented by generalized
logic programs. The mapping function between the two
languages will allow the construction of a function map-
ping theories of one language into theories of the other
language. Formally we have:

Definition S (Metaphorical Program Mapping) Let

K1 and K; be two arbitrary set of propositional vari-
ables whose names do not begin with a “not”. Let
P1,2:K1 = K3 be a function, mapping elements from K,
into elements of K. Let L1 (resp. L3) be the language
obtained from Ky (resp. Ka). Let Py (resp. Ps) be the set
of generalized logic programs in the language £, (resp.
Ly). We define the metaphorical program mapping as
the function U, 2Py — P, such that for every P, € Py,
W, 2(P1) is obtained by replacing every objective atom
A (resp. default atom not A) appearing in a rule of P,
by 1 2(A) (resp. not P, 2(A4)). o

Example 2 Let K; be:
{big, object, background}
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and K be:

long, motif, accompaniment,
i1sometric.motet_element

corresponding to the example from the introduction. Let
P1 [)62.'

not big(X) + object(X), background(X).
and Py be

long(X) «+ motif(X),accompaniment(X),
isometric.motet_element(X).

Let ;1 2:K1 = K2 be defined by:

Y1,2(big) = long
U 2(object) = motif
1, 2(background) = accompaniment

If we apply ¥, 2 to P, we obtain ¥ 5(P,):
notlong(X) « motif(X), accompaniment(X).o

Now that we have a process to transform a theory in
one language (vehicle) into a corresponding theory in the
language of the renor (possibly extended with new ele-
ments), we need a way to combine this transformed the-
ory with the theory representing the renor to obtain a final
theory.

This final theory will consist of the tenor theory to-
gether with those rules from the transformed vehicle the-
ory that are not contradicted by the rules from the tenor.
This can be seen as a process of accommodation where
the rules from the transformed vehicle are combined with
those from the tenor, provided they do not generate con-
tradictions. This process is essentially equivalent to the
inertia exerted on the rules of the initial program during
an update. With this in mind, the definition of Metaphor-
ical Program Update is:

Definition 6 (Metaphorical Program Update) Ler K,
and Ky be two arbitrary set of propositional variables
whose names do not begin with a “ not™. Let L, and L,
be the languages obtained from K, and Ky respectively.
Let Py, and Py be two generalized logic programs in the
languages Ly and Ly respectively. Let 1y 2 be a func-
tion mapping elements from K into elements of Ky. The
metaphorical program update of P, by P; given 1y 3, de-
noted by P, ® P, is given by ¥ 5(P,) @ Ps. o

Example 3 With Py, P, and 11 3 as in the previous ex-
ample, the program Py © Ps is:
long(X)p + motif(X),accompaniment(X).
long(X)p, + motif(X), accompaniment(X),
isometric.motet_element(X).

2Where, as usual, rules with variables stand for the set of their ground
instantiations.



AT + Ap ,not Ap,
A + not Ap,, not Ap,
A+ Ap,,not Ap,

A7« A;,2
A+ Apz
not A « A~

where A is a proposition from Ko and rules for A
stand for their ground instances. Note that if we were
to simply join the two programs, i.e. ¥y (P1) U P,
the two rules would produce a contradiction for X :
isometric.motet_element(X). If we, on the other hand,
perforn a metaphorical program update of P, by P,, this
contradiction no longer exists. From Py © Py, we are able
to conclude long(X) for

X :isometric_motet_element(X), moti f( X},
accompaniment(X)

and not long(X), otherwise, as intended. o

We go on by describing the semantics of the
metaphorical program update P, @ P, by providing a
complete characterization of its stable models.. This will
be done by means of a fixed-point equation defining the
set of rules from the transformed vehicle that are rejected
by the tenor, yielding the set of rules from the transformed
vehicle that carry over to the final theory due to inertia.

Proposition 2 (Stable models of P, © P,) An interpre-
tation N of the language L, is a stable model of the
metaphorical program update Py © P; if and only if N
is the extension N = M of a model M of P, that satisfies
the condition:

M = Least(¥,2(P,) U P, — Rejected[M]U
U Defaults{M])

where Rejected[M] and De faults{M) are as in Def 4,
replacing P with ¥, o(P;). °

The set Defaults[M] contains default negations
not A of all unsupported atoms A, i.e., atoms that have
the property that the body of every clause from ¥ 5(P;)U
P; with the head A is false in M. Consequently, negation
not A of these unsupported atoms A can be assumed by
default. The set Rejected{M] C¥; »(P;) represents the
set of transformed clauses of the vehicle program P; that
are rejected (or contradicted) by the tenor program P
and the interpretation M.

5 Examples and Properties

In this section we will present a more elaborate example,
based on the running example, and discuss some impor-
tant characteristics of metaphorical program updates. We
end the section with some considerations about the pos-
sible sources of contradiction within the presented frame-
work.

Example 4 Consider the following generalized logic
program, representing some knowledge about the domain
of Visual Arts3, Py:

not big(X) « object(X), background(X). (ry)
tension(X) + unbalanced(X). (r2)

contrast(X,Y) « colour(X), colour(Y),
high_value dif ference(X,Y). (r3)

Now consider another generalized logic program, repre-
senting some knowledge about the domain of Music, Py:

long(X) « motif(X),accompaniment(X),
isometric.motet_element(X). (rg)
tension(X) + dissonant(X). (r5)

Let the metaphorical mapping be defined by the function
Y1,2:K1 = Ko such that:

¥1,2(big) = long

11,2 (object) = motif

¥ 2(background) = accompaniment
1,2 (tension) = tension

¥1,2(unbalanced) = dissonant

1,2(colour) = note

1,2(highvalue_dif ference) = large_interval
11,2(contrast) = contrast

If we apply U, 5 to Py we obtain ¥ 2(Py):

notlong(X) + motif(X),accompaniment(X).

(re)

tension(X) + dissonant(X). (r7)
contrast(X,Y) « note(X),note(Y),

large_interval(X,Y). (rs)

Looking at the rules from U, 2(P,) and those from Py, we
can intuitively distinguish several paradigmatic cases:

o rule rg will be a valid rule for those instances that
are not covered by rule rq as explained during the
running example;

o rule ry will not add anything to the metaphorical
update for it is the same as rule rs. This represents
those cases where the translated rules from the ve-
hicle are already present in the tenor,

e rule rg will bring not only new relations but also
new concepts to the tenor. This represents the most
interesting case with respect to creative reasoning.

3The languages in which the programs are written are left implicit.
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The program Py © Py is:

long(X)p,  motive(X), accompaniment(X).

(11)

tension(X)p, + dissonant(X). (12)
contrast(X,Y)p, + note(X),note(Y),

large_interval(X,Y). (13)

long(X)p, + motif(X),accompaniment(X),

isometric.motet_element(X).
(14)

tension(X)p, + dissonant(X). (15)

plus the corresponding UR, IR and DR. Note that rules
(11) through (15), alone, are meaningless because they
only have auxiliary literals ( L;l,Lpz, ...) as their con-
clusions and there are no rules for the literals in their
premisses. It is through UR, IR and DR that we are able
to determine the semantics of Py ® P, with respect to the
relevant literals. In the semantics of P; ® P, we have:
long(X) for

X :isometricomotet_element(X),
moti f(X), accompaniment(X)

notlong(X) for

X : notisometric_motet_element(X),
motif(X), accompaniment(X)

contrast(X,Y) for

X,Y :note(X),note(Y),
large_interval(X,Y)

tension(X) for
{X : dissonant(X)}o

We believe it is interesting to draw the reader’s at-
tention to some properties emerging from the definition
of metaphorical program updates, and their relation to
known metaphor theory characteristics. The first one
is related to the very basic intuition whereby metaphors
bring new knowledge into the target domain. In fact, it is
easy to see that in general we have that*:

(16)
a7

SM(P, © P) # SM(P,)
SM(Py) # SM(P, © Pr)

The second and very important characteristic is that of
directionality which, as explained before, means that each
domain has a different role and its interchange, although
possibly yielding an equally valuable metaphor, will not
lead to the same meaning. If we have a bijective mapping

4Where by SM (P) we mean the set of stable models of the program
P, restricted to the relevant language (£ or £ depending on the case).
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function 93 2 such that ¢o ; = 1111",%, then, in general, we
have that

SM(PLOP) # SM(¥12,(P, 0 P))  (18)

If we consider, for example, P; to represent a set of

rules from the domain of Painting, and P; to represent a

set of rules from the domain of Music, we could have an

informal interpretation of the above properties reading as:

o a painter that becomes a musician would compose
music different from that of a musician (16);

¢ a painter would paint differently from a musician
that became a painter (17);

e a painter that becomes a musician would compose
music different from that of a musician that be-
comes a painter (if he was to map his painting rules
to music composition rules) (18).

It would be easy to check all these properties in the
previous example.

In what contradiction is concerned, it is important to
mention that the metaphorical program update (P, ® FP,)
only detects and deals with inconsistencies arising from
rules from different domains. Other sources of inconsis-
tencies can exist: P, can be contradictory, and so can be
P,; evenin cases where P, and P, are not contradictory,
P, © P, can be so, this happening when the contradiction
is ‘latent’ in one of the domains, and is ‘brought alive’ by
the metaphorical update, such as in the following exam-
ple:

Example 5 Consider the Jollowing program P :

not hot(X) « blue(X)
hot(X) « red(X)

the metaphorical mapping 11 »:

1,2 (blue) = blues
Y12(red) = jazz
Y1 ,2(hot) = hot

and the program P,

jazz(Miles) + blues(Miles) «

the metaphorical program update P, ® P is contradic-
tory because both hot(Miles) and not hot(Miles) are
derivable. °

Nevertheless, be they important or not for our pur-
poses, all contradictions can be detected by inspecting the
truth value of the literals A=, Ap, Ap, Ay, Ay, etc. of
the program P; ©® P, and dealt with either by the se-
mantics of P; © P, itself or by other known contradiction
removal techniques, e.g. Alferes et al. (1995).



6 Conclusions and Future Work

Being Metaphor a common device for communication
that uses interrelationships between different domains to
assess new enriched mixed concepts, it is, as we believe,
a powerful source for modelling Creativity. The ability to
search for solutions in distant domains, apparently unre-
lated to the actual problem, is determinant for our creative
abilities (Guilford, 1967; De Bono, 1970). Metaphor the-
ories, such as Veale and Keane (1993), can be used as
cross-domain bridge establishment methods, fundamen-
tal for knowledge integration within different domains.

In this paper we have explored the application of
Dynamic Logic Programming to the problem of knowl-
edge integration in metaphorical reasoning. The problem
of resolving inconsistencies that may arise when knowl-
edge from two different domains is combined, given a
metaphorical mapping, is crucial, be it at the stage where
we want to evaluate the appropriateness of the mapping
function, or at a subsequent stage when we want to rea-
son with the combined knowledge.

Quite interestingly, this combined knowledge be-
comes a new third domain which is not a crude sum of
the original ones, but a blend of concepts and relation-
ships among them which, in some cases, can yield poten-
tially creative outcomes, much in the line of Turner and
Fauconnier (1995).

We have proposed, in a formal and rigorous manner, a
transformation that, by employing the principle of inertia
on the rules of the vehicle, solves the problem of inter-
domain inconsistencies. We have also characterized the
models of the combined theory, all of this by means of the
notions of Dynamic Logic Programming. Since DLP has
also been implemented as a meta-interpreter (DLP Sys-
tem, 1998) running under XSB System (1999), this allows
for not only theoretical but also practical reasoning.

This work is part of an ongoing larger project, Dr. Di-
vago, whose final goal is to develop a system to perform
automatic creative metaphorical reasoning.

In what future work is concerned, besides the inte-
gration of this framework within Dr. Divago, we are ex-
ploring some changes in the inertia rules to allow more
flexibility and expressiveness, namely by permitting pre-
dominance of the vehicle over the tenor, among other
possibilities. We are also exploring the development of
this framework to enable for several distinct simultane-
ous metaphors, possibly with some preference relations
amongst themselves. The mappings associated with these
metaphors could be represented by generalized logic pro-
grams and the preferences could be refined by a combina-
tion of Updates with Preferences such as in Alferes and
Pereira (2000).
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Abstract

A general framework for defining distance functions for monophonic music sequences is presented. The distance func-
tions given by the framework have a similar structure, based on local transformations, as the well-known edit distance
(Levenshtein distance) and can be evaluated using dynamic programming. The costs of the local transformations are
allowed to be context-sensitive, a natural property when dealing with music. In order to understand transposition invari-
ance in music comparison, the effect of interval encoding on some distance functions is analyzed. Then transposition
invariant versions of the edit distance and the Hamming distance are constructed directly, without an explicit conversion
of the sequences into interval encoding. A transposition invariant generalization of the Longest Common Subsequence
measure is introduced and an efficient evaluation algorithm is developed. Finally, the necessary modifications of the

distance functions for music information retrieval are sketched.

1 Introduction

The translation-invariant representation of integer se-
quences is useful in some application domains of string
matching algorithms. In music retrieval, for example, it is
often natural to require that the retrieval results are invari-
ant with respect to pitch level transposition. In geometric
shape detection the contour of a geometric object should
be represented as a sequence that is invariant under rigid
motions of the object.

Such an invariance can be achieved by convert-
ing the original ‘absolute’ sequence into relatively en-
coded form where each element of the sequence is en-
coded relative to its predecessor. The differences be-
tween successive elements are perhaps the simplest form
of such an encoding. As an example, the absolute
sequence 3,7,5,5,8,7,7,5,3 is relatively encoded as
4,-2,0,3,-1,0,-2,-2.

In general string matching, the edit distance with its
many variations is the most common measure to expose
the (dis)similarity between two strings. The edit distance
can be calculated by using dynamic programming; see
e.g. (Crochemore and Rytter, 1994; Gusfield, 1997). The
concept has also been adapted to music retrieval with rel-
ative encoding; see e.g. (Mongeau and Sankoff, 1990;
Crawford et al., 1998).

The paper presents, in Section 3, a general frame-
work for defining distance functions for monophonic mu-
sic comparison and retrieval. In our framework one can
use context-sensitive costs for the local transformations,
that is a useful novel property when dealing with mu-
sic. Analyzing the context of music usually requires a
preprocessing phase which executes intelligent context
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analyzing programs. The result of such a preprocessing
phase can be stored into some internal representation; see
e.g. (Lemstrém and Laine, 1998).

In Section 4, we study the effect of the relative encod-
ing on the values of some well-known and novel sequence
distance functions. It turns out that typically there is no
strong relation between distances measured using either
absolute or relatively encoded sequences.

In Section 5, we find out, that an explicit relative en-
coding is not necessary. Transposition invariant distance
functions can be constructed directly, by adopting trans-
position invariant cost functions for the local transforma-
tions used in the distance function. The cost functions
now become context sensitive.

Section 6 introduces a new distance function for com-
paring music. It is a generalization of the classical longest
common subsequence measure for comparing strings of
symbols. One could call it as a ‘Longest Common Hid-
den Melody’ measure. An efficient evaluation algorithm
is developed for this distance measure, improving the
O(m?n?) running time of the straightforward solution
into O(mn).

Finally in Section 7, we comment on using our dis-
tance functions in music information retrieval, that is, in
finding the (approximate) occurrences of a short piece of
music in a large music database.

2 Encodings of Music

We use a simplified representation of monophonic music
that gives only the pitch levels of the notes, but not their

durations. The pitch levels in semitones are given as inte-



ger numbers. Hence a piece of music containing n notes
is represented as a sequence of n integers.

More formally, the integers that can be used in the
sequences, form our alphabet ¥.. In practice, we could
for example have ¥ = {0,1,...,127} (as in MIDI) or
r ={0,1,...,11} (which reduces all notes into one oc-
tave). Any sequence A = (ay,as,...,0,) where each
a; is in ¥ represents a piece of monophonic music. For
simplicity, we will write such sequences in the sequel as
a1as - - - @, instead of (ay, ag, ..., an). The set of all se-
quences over ¥ is denoted £*. Hence ajaz -+ -an, is a
member of ¥*. The length of A is denoted | A|.

Two equally long sequences A =a;---am and A’ =
ay ---al, are transpositions of each other if there is an
integer ¢ such that a} = a1 + ¢,a) = a2 +¢,..., and
al, = am + c. Then we write A’ = A +c.

The interval representation of a sequence A =
aj-- -0, in L is a sequence

A=(az—a1,a3—0a2,...,8m —Am_1) =81 Cn—1.

Each symbol @; in 4 is a difference between two integers
in . Hence 4 is a sequence in & where & = {a —
b|a,b e L} is the interval alphabet.

A reduced interval alphabet is often sufficient and
useful in music information retrieval. For example, the
so-called octave equivalence is achieved by using inter-
val alphabet {a mod 12 | a € T}. If the intervals are
known to be imprecise, like in query-by-humming sys-
tems, a rough classification of the intervals into possibly
overlapping classes such as small, medium, and large up-
wards and downwards intervals might be sufficient (Ghias
et al., 1995; Lemstrom and Laine, 1998).

The crucial property of the interval representation is
that it is transposition invariant. This means, that if A
and A’ are transpositions of each other, then, obviously,
they have the same interval representation, i.e.,

A=A

In music comparison and retrieval, it is often natural
to have transposition invariant measures for the distance
between sequences. Formally, a sequence distance func-
tion D is transposition invariant if

D(A,B)=D(A+a,B+b)

for any sequences A, B in ¥* and any possible a, b in Z.

Naturally, if the note durations are to be consid-
ered as well, an invariance under different tempiA can
be obtained by using a sequence A, such that A =
(%f, tﬁ;}, ceey ;.—"lf_hl), that consists of the ratios of the orig-
inal durations.
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3 A Framework for Sequence Com-
parison

3.1 The General Scheme

We will introduce several different distance functions to
measure the dissimilarity between sequences. All are
variations of the well-known edit distance (also known
as Levenshtein distance or evolutionary distance) widely
used in approximate string matching. The underlying
general framework for sequence distance functions is as
follows; c.f. (Ukkonen, 1985).

To define a distance between sequences in L*, one
should first fix the set of local transformations T C
¥* x ¥* and a cost function w that gives for each trans-
formation ¢ a cost w(t) which is a non-negative integer
(or a real). Note that each ¢ in T is a pair of sequences
t = (o, B). It is convenient to extend w to all pairs (c, )
in Z* x £*: if (o, B) € T, then we define w(a, 8) = oco.

We usually write sucha ¢ = (¢, ) as (@ — ) to
emphasize another view on ¢: it can be seen as a rewriting
rule that allows one to replace a by 3 inside a sequence
that contains c.

The actual definition of the distance is based on the
concept of trace. A trace gives a correspondence between
two sequences. Formally, let A = a;---a,, and B =
by --- b, be sequences in L*. A trace between A and B
is formed by splitting A and B into equally many, say p,
parts some of which may be empty sequences. Hence a
trace can be written as:

. 1ﬁp)a

such that A = ajap -0y, and B = B152 -+ Bp, and
each a;, B; is a possibly empty sequence over . The
trace suggests a transformation from A to B: part a; is
transformed to 81, a2 to Ba,..., and ap to Bp. Stated
otherwise, sequence B is obtained from A by local trans-
formation steps oy — B1, gz — Ba,...,ap — Bp.

Now the cost of the trace 7 is w(7) = w(a; — B1) +
-+ +w(ap — Bp). Note that if some o; — [; is not in
T, then w(r) becomes oo.

Finally, the distance between A and B, denoted
Dr (A, B),is defined as the minimum cost over all pos-
sible traces:

T= (a1)a27"')ap;:611ﬂ2)"

Dt (A, B) = min{w(7) | 7 is a trace between A and B}.

3.2 Functions D and Dy

As an example, this scheme gives the familiar unir-cost
edit distance (Levenshtein distance) if the local transfor-
mations are of the formsa — b, a — A\, and A — a
where e and b are any members of ¥, and X\ denotes the
empty sequence.! The costs are given as w(a — a) = 0
for all a, and w(a — b) = 1 for all @ # b, and

IThe local rules @ — b,a — X, and A — o are often called ‘re-
placement’, ‘deletion’, and ‘insertion’.



w(la — A) = w(A — a) = 1 for all a. We denote
this edit distance function as Dy,.

The Hamming distance is obtained exactly as Dy, but
the allowed local transformations are only a — b where a
and b are any members of X, with costw(a — a) = 0 and
w(a — b) = 1,a # b. We denote the Hamming distance
as DH.

3.3 Distance Evaluation and Transforma-
tion Graph

Distances Dr (A, B) are useful in practice, because
they can efficiently be evaluated using dynamic program-
ming. Such a procedure tabulates all distances d;; =
Dry(ay---ai by ---b;) between the prefixes of A and
B. The distance table (d;;), where 0 < ¢ < m and
0 < j < n, can be evaluated by proceeding row-by-row
or column-by-column and using the recurrence

doo =0
dij = min{d,-_l,,_l + w(ar ceeqp =
bs"'bj) I(ar"'ai—)bs-..bj) eT}

(H

Finally, dmn, equals the distance D, (A4, B).

It is not difficult to see that the- evaluation of
Dr .,(A, B) in this way may in the worst case take time
at least proportional to m2n? which is relatively slow?.
In practice, fortunately, T is often very sparse which can
be utilized to speed-up the dynamic programming. For
example, the edit distance Dy, (A, B) can be evaluated in
time proportional to mn (in time O(mn), for short) from
the well-known recurrence

dgo = O

di-1,; +1

dij_1+1

di-1,j-1 + (if a; = b; then O else 1).

dij = min

An alternative view which sometimes is very useful,
is given by interpreting (d;;) as a weighted graph as fol-
lows. The d;;’s form the nodes of the graph. Moreover,
there is a weighted arc from any node d,_; s—; to node
dij if (ar---a; — bs---b;) belongs to T. This arc
has weight w(a,---a; — bs---b;). Then Dr (A, B)
equals the smallest possible total weight of a path in this
graph from doo to dpmn; formal proof is a simple in-
duction. We call such a path a minimizing path. The
weighted graph is called the transformation graph and de-
noted Gt (4, B).

3.4 Context-Sensitive Cost Functions

In our distance scheme as described above the cost
w(a — B) of each local transformation is independent of
the context in which « and 8 occur in A and B. Transfor-
mation a — [ has always the same cost. When compar-
ing musical sequences, however, a context-sensitive cost

2Depending on the representation for T and w, the run time can be
much slower.
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function seems sometimes useful. The cost of @ — S
should depend on the (tonal, harmonic, thythmic) context
around « and 3; see e.g. (Rolland and Ganascia, 1996;
Coyle and Shmulevich, 1998).

This can be formalized by including the context in the
definition of the cost function w. There are several possi-
bilities as regards limiting the size of the context that can
influence the cost. We can imagine that sometimes the to-
tal context of o and S, that is, the whole sequences A and
B are relevant.

We suggest a parameterized limitation of the context.
Assume that A can be written as A = ppay’y’ where
lo| = uand |¢'| = v. Then « has (u, v) context (@, ¢’).
Now we say that w is a cost function with (u,v) context
if w is an integer valued function defined on T' x X% x
¥?¥ x &* x X¥; here X denotes the set of sequences
of length = over £¥. When using such a function w for
evaluating the cost of a trace, the (u,v) context of each
local rule is taken into account. If o — @ occurs in a
trace such that the (u, v) context of & and 8 is (i, ') and
(0, 0'), respectively, then w(a — B,9,¢',0,0') is the
cost associated with this particular occurrence of o — .

The (u,v) context of each candidate transformation
a — 3 can easily be retrieved during dynamic program-
ming when evaluating each d;;. Hence using a cost func-
tion with (u,v) context is possible in the dynamic pro-
gramming algorithm. The run time obviously gets slower
but the overall architecture of the evaluation process re-
mains the same.

It will turn out later in this paper that our transposition
invariant sequence distance functions use cost functions
with (1, 0) context.

4 Absolute vs. Transposition Invari-
ant Distance

The sequence distance functions given by our framework,
such as D, and Dy, can be applied as such both for com-
paring sequences in 2* (‘absolute’ sequences) and com-
paring their interval encoded versions in T (‘relative’ se-
quences). The functions induce two distances in this way.
We say for sequences A, B in £*, that Dy (A4, B) is the
absolute edit distance and Dy, (4, B) is the transposition
invariant edit distance between A and B. When com-
paring music, the transposition invariant distance seems
more natural except when we know a priori that A and B
belong to the same key.

In this section we present some basic results, mostly
on the relation between the absolute and the transposition
invariant versions of distances Dy, and Dy. However, let
us start by introducing a modulation function. Let A =
aj---am. Forany [,1 <! < m, and any integer valued
¢, sequence

Mf(A):(al,...,al_l,al+c,...,am+c)

is called a modulation of A by c at [.



Note that transposition is a special case: If B is a
transposition of 4, B = M$(A).

The following theorem illustrates a strength of the in-
terval encoding. Although one single modulation in the
original sequences can change any number of notes, the
(edit of Hamming) distance of the interval encoded ver-
sions stays small.

Theorem 1 If B is a modulation of A then D1.(A, B) =
Du(A,B) =1

Proof Let B = M{(A). Hence b; = a;, for 1 <i< l,
and b; = a; + cforl <i< |A|. Then obviously, b; = @;
forl <i<l—-1,b_1 =a-1+e¢ and b; = @; for

I<i<]Al
Sequences A and B differ in one position, hence the
theorem follows. |

We continue with a technical lemma that points out
the local configurations in the transformation graphs in
which the transposition invariant distance can locally be
larger than the corresponding absolute distance.

Distances Dy and Dy, have similar properties, hence
we analyze them together. Let Dg denote Dy or Dy, We
need to compare the paths in Gg(A, B) andin Gg(4, B).
Denote the nodes of Gg(A, B) as (di;),0 <1 <m,0 <
j < n. Note that as A and B are one element shorter
than A and B, the first row and column are missing in
Gg(A, B) as compared to Gg(A, B). The subgraph of
Gg(A,B) with nodes (di;),1 < i < m,1 < j <
n, has the same topological structure as Dg(4, B) but
some arc weights may differ. Let us denote this sub-
graph as G (A, B). Consider some directed path p in
GEg(A, B) from doo t0 dmyn. Let p/ be the restriction of
p to G%z(A, B). Hence p' is a path from d, to dp, for
some r and s such thatr = 1 ors = 1. Lete and f be
two consecutive arcs of p’. We say that f starts a 0-block
of p/, if e has weight 1 and f has weight 0.

Lemma 2 Let g be an arc of p’ such that g has weight 0
while the corresponding arc g in Gg(A, B) has weight 1.
Then g starts a 0-block in p'.

Proof. If g does not start a O-block then the arc g’ just
before g on p’ must have weight 0, too. The only lo-
cal transformations with weight O that are available for
distance D are the identity transformations of the form
a — a. But this means that for some 7 and 7, g is an
arc from d;—y j—; to di; and g’ is an arc from d;_ j_o
to d;_1;-1, and a; = b; and a;_; = b;_;. Hence
e; — ai—1 = b; — b;j_; which means that g has weight
0 in Gg(4, B). Hence, if g has weight 1, g must start a
0O-block in p'. O

Theorem 3 Dg(A,B) < 2-Dg(4,B).
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Proof. Let p be the minimizing path in Gg(A, B) from
doo t0 dmn, and let p’ be its restriction to G’ (A, B). Path
p’ can contain at most Dg (A, B) 0-blocks because there
must be before each block an arc with weight 1. Then by
Lemma 2, path p’ that corresponds to p’ in Gg (4, B) can
have at most Dg (A, B) l-arcs more than p’.

Moreover, let p” be the path in Gg(4, B) from dy;
to the start node of p’. A simple case analysis shows that
the total weight of p” is at most the weight of the sub-
path of p that leads from dgg to the start node of p’. In
summary, this means that the weight W of path p” p’ in
GE(Z, F) from di1 to dpn is < 2 - Dg(A, B). The the-
orem follows as p” p’ is not necessarily the minimizing
path in Gg (A, B) and hence Dg(4,B) < W. a

The following theorem gives bounds for the difference
D(A,B) — D(A,B) when D is Dy, or Dy. We also
consider a distance Dy which is the Hamming distance
augmented with a novel local transformation ab — cd
(called compensation), where a, b, c, and d are members
of ¥ such that a+b = c+d. Moreover, w(ab — cd) = 1.

To understand the intuition behind the compensation

. rule, consider the effect of a single replacement. Let A

and B differ only by one replacement (also called a mis-
match) which we denote B = V;(A) where [ refers to
the mismatching position. Then Dy(A, B) = 1 while
Dy (A, B) = 2 because a mismatch changes two inter-
vals. By adding the compensation rule this antisymmetry
is at least partially relieved, because Dg+ (4, B) = 1.

Theoremd4 a) Let|A|=|B|=n.
Then —|251| < Dy(A,B) — Di(A,B) < n.

b) Let |A} = |B| =n. Then L
—|251] < Du(A,B) - D:(A,B) < .

c) Leem = |A| < |B| =n. Then _
1-m < Dp(A,B)—DL(A,B) < n

Proof. To prove the upper bounds in all the cases, we
note that, clearly, the bound cannot be larger than n be-
cause the distances between A and B as well as be-
tween A and B always belong to the range 0, ...,n.
To show that the bound is tight, let A = aa---a and
B = bb---b for some a # band {A] = |B| = n.
Then Dy(A,B) = Di(A, B) = n while Dy(A4,B) =
Dy (A, B) = D1(4,B) = 0. Hence the bound cannot
be smaller than n.

The lower bound follows from the fact that the num-
ber of O-blocks of Lemma 2 is at most | 252 | in the case
of Hamming distance Dpy; at most | 252 | in the case of
modified Hamming distance Dy-; and at most m — 1 in
the case of Levenshtein distance Dy.

All the bounds are again tight. For Dy consider se-
quences A = (0,1,0,1,...) and B = (0,2,0,2,...);
for D sequences A = (0,0,1,0,0,1,...,0,0,1) and
B =(0,0,2,0,0,2,...,0,0,2); and for Dy, sequences
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Figure 1: Dy(A, B) vs. Dy(4, B) in music comparison. The sequences below A and B correspond to A and B,

respectively.

A=(0,0,...,0)and B = (1,0,1,0,...,1,0) such that
|Bf=2-1A]. (]

Example 1 In Fig. 1, the absolutely encoded A and B
are comprised of MIDI values. The two sequences are al-
most identical: there is only one mismatch and two mod-
ulations (B = Mg*(MZE(V2(A)))). We have enclosed
in brackets the locations where an editing operation is
needed. In Dy (A, B), the mismatch is detected by a
compensation (Gy + @3 = by + by = 4) and the modu-
lations by a replacement, thus Dy (A, B) = 3. However,
D(A,B) = 5 because the mismatch is detected by a re-
placement, but the first modulation has shifted all the val-
ues until the other ‘normalizing’ modulation. Note, that
after being lost ‘B catches’ immediately the correct tune
at the second modulation (ag = bg), while ‘B realigns’
itself one step later. O

S Implicit Interval Encoding

We noticed in Section 4 that each distance function for ab-
solute sequences also gives a transposition invariant dis-
tance. This is achieved simply by at first converting the
sequences into interval encoding. We now complement
this by observing that an explicit conversion is not neces-
sary. The cost function for local transformations can be
defined such that the resulting distance becomes transpo-
sition invariant.

Since the conversion is not needed anymore, some
shortcomings of the relative encoding are avoided. When
the intervals are calculated ‘on-the-fly’ from absolute se-
quences, a deletion or an insertion does not transpose the
rest of a sequence as in the case when working with rela-
tive encoding.

We restrict the consideration to distances Dy and D,
only. The transposition invariant unit-cost edit distance
Dy (A, B) uses the local transformations a — b, a — A,
and A — a as the distance D1,(A4, B). The costs are given
as W(a — A) = W(A — a) = 1. The cost for a — b will
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now be context-sensitive. Let a’ be the symbol of A just
before a and b’ the symbol of B just before ', that is,
the (1, 0) contexts of a and b are (a’, A) and (¥, ). Then
define

0,ifa—a' =b—bor
a’ or VY is missing,
l,ifa—a' #b-V.

wl(a — b,a’, \, b, A) =

The recurrence for evaluating the prefix distance table
(dij) for D (A, B) becomes

do = 0

di1;+1

dij-1+1

di—1,j-1+ (ifai —ai_1 = bj ~bj—1
then O else 1).

dij = min

Obviously, this table can be evaluated in time O(mn).

Similarly, the transposition invariant Hamming dis-
tance EH(A, B) uses local transformations a — b whose
cost is defined exactly as for D (A, B) above.

By induction over the corresponding prefix distance
tables (di;) one easily proves the following theorem
which implies that D, and Dy really are transposition
invariant distance functions according to the definition
given in Section 2.

Theorem §

D—L(A» B) =

DL (Xv --g)
Du(A,B).

This also includes that the prefix distance table (d;;)
for D, is of the same general form as the table for the
standard unit-cost edit distance. Hence the very fast bit-
parallel algorithms designed for the edit distance can be
used for evaluating the transposition invariant unit-cost
edit distance as well.

Finally we remark that using both the absolute and
relative costs of local transformations simultaneously is
possible and seems to give useful distance functions. For
example, in the standard unit-cost edit distance we could



give cost 0 to a — b if a = b, as usual, but also ifa — b
occurs in a context in which the interval for a equals the
interval for b. The recurrence becomes

di—1,; +1

dij-1+1

di1j-1+(@{fa; =bjora; —a;—1 =
bj — bj_1 then 0 else 1).

dij =

min

We denote the resulting distance function as Dy. As
Dy has the same local transformations as Dy, and Dy,
with possibly smaller costs, it follows that Dy (A, B) <
Dy(A,B) and Dy(A,B) < D1(A, B) forall Aand B.
On the other hand, Dy is not transposition invariant.

6 Transposition Invariant LCS

The longest common subsequence LCS(A, B) of two se-
quences A and B can be used for measuring the similarity
of A and B: the longer is LC'S(A, B), the more similar
are the sequences A4 and B.

To define LCS(A, B), we say that sequence C is a
subsequence of a sequence A if C can be obtained from
A by deleting zero or more symbols. Then LCS(A, B)
is the longest sequence that is a subsequence of both 4
and B. For music comparison and retrieval we need a
transposition invariant generalization of this concept.

We say that a sequence C in * is the longest common
transposition invariant subsequence of two sequences A
and B in ¥* if C is the longest possible sequence such
that C = A7 and C = B’ and A’ is a subsequence of
A and B’ is a subsequence of B. Then we write C =
LCTS(A, B). Note that LCTS(A, B) is unique only up
to arbitrary transposition: if C = LCTS(A, B) then any
C +cis LCTS(A, B).

The sequence C = LCTS(A, B) can be seen in mu-
sical terms as the longest common melody that is hidden
in both A and B. To obtain C, we must delete the smallest
number of elements from A and B such that the remain-
ing two sequences are identical after some transposition,
that is, their interval encoded representations are identi-
cal. This seems like a natural concept in the context of
music comparison. We can think, for example, that the
deleted elements are musical decorations used differently
in the two variations A and B of the same melody C 3.

Let Dpcs{A, B) denote the total number of deletions
needed to obtain LCS(A, B) from A and B. Then it is
well-known that

|A| +1{B| — Drcs(4, B)

|LCS(A, B)| = .

where Drcs(A, B) is a distance function that is given by
our general scheme by using local transformations a —

3To really achieve this goal needs further elaboration of the LCTS
model that goes beyond the present paper.

58

A A — a,and a — a with costs w(a — A) = w(\ —
a)=1,and w(a — a) = 0.
‘Similarly, it turns out that

Al +1B| -

Dicrs(A, B)

ILCTS(A, B)| = =

where DycTs(A, B) is a distance function again given
by our scheme. Now any rule « — 8 where a, 3 are
non-empty sequences in £* is a local transformation. The
associated cost function wrcrs has (1,0) context. Let
a be the last symbol of « and b the last symbol of 3 and
let the (1,0) context of a and 3 be (a’, A) and (V', A),
respectively.
Then we define

, ; vy JE=141-1,ifa—a’ =b-¥
wrers(a — B,a',A,0,) = {k—l—l,ifa—a’ #b—b,
where k = |a] and | = |3].
The recurrence for tabulating (di;) to get
DLCTS(A, B) is
doo = 0
dj = 1<kLHIKI<) Adickg—i +

wLCTS(a i ﬂv Ai—k, Aa bj—l, A)})

where a == a;_g41 - -a;and B = bj_py; - - b;. To eval-
uate d;; directly from the recurrence needs O(ij) opera-
tions, hence the total time requirement becomes as high
as O(m2n?). We show next how to reduce the compu-
tation of Dycrs(A, B) to a repeated computation of the
distance Dy cs.

The key observation is, that LCTS(A, B) must be
equal to a LC'S(A, B +c) for some suitably selected con-
stant c.

This gives the following solution: For all ¢in X, com-
pute Dycs(A, B + ¢) with the standard O(mn) algo-
rithm. Then |Drcrs(4, B)l = max.{|Drcs(A, B +
c)|}. This method takes time proportional to [X| - mn
which is O(mn) because |X| is independent of m and n.
Hence we have:

Theorem 6 Dircs(A,B) and hence |LCT S(A, B)|

can be computed in time O(mn).

In Fig. 2 we give an example of calculating an LCTS
between two musical sequences (the sequences are ob-
tained from (Cambouropoulos et al., 1999); the lower se-
quence is transposed from the original key of C major to
D major).

7 Music Retrieval

In the content-based information retrieval problem for
monophonic music we are given a long database § =
5183 - - - s, of monophonic music and a relatively short
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Figure 2: An example of finding LCTS(A, B). The ap-
plied (a — a + c¢) rules are illustrated by lines. In this
case |[LCTS(A,B)| =5,and ¢ = 2.

‘key’ P = p; - pm. Formally, both S and P are se-
quences in ¥*. The problem is to find the locations in
S where P occurs as a subsequence. One might be in-
terested in finding for example exact occurrences, trans-
posed occurrences or maybe somehow approximate oc-
currences.

The framework of Section 3 is for comparing entire
sequences. It is, however, easy to modify it using a well-
known trick, originally presented by Sellers (1980), for
our retrieval problem. Now P should basically be com-
pared against all subsequences of S to find the best match.
The dynamic programming algorithm almost as such will
do this, only a slight change is needed in the initialization
of the table (d;;).

More precisely, let Dt ,, be a distance function given
by the scheme of Section 3. Evaluate table (d;;),0 < i <
m,0 < j < n, as in the recurrence (1) but use initializa-
tion

dOj =0

for 0 < j < n. Then the music retrieval results can
be read from the last row d,;,0 < j < n, of the ta-
ble (di;). Value dr,; gives the smallest possible value of
Dz (P, P’) where P’ is any subsequence (substring) of
S that ends at location j. The sequence P’ can be uncov-
ered using (d;;), too.

The length n of the database S can be very large.
Therefore it is of crucial importance to find fast imple-
mentations for the evaluation of (d;;). The fastest al-
gorithms currently known are based on so-called bit-
parallelism (Baeza-Yates and Gonnet, 1992). Bit-
parallelism can give a speed-up up to by factor W where
W is the length (in bits) of the computer word used. Un-
fortunately, such algorithms have quite limited applica-
bility: strong restrictions on the set T of local transforma-
tions and on the cost function w, seem necessary.

The unit-cost edit distance Dy, is an example of a dis-
tance function for which bit-parallel implementation is
possible. The fastest such algorithms currently known are
due to Myers (1998), and Navarro and Raffinot (1998). It
turns out that Myers’ algorithm can be modified (at least)
to the distance function Dy and D, defined in Section 5.
We have implemented these in our prototype MIR system
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under development (Lemstrém and Perttu, 2000). The al-
gorithms can reach a scanning speed exceeding 107 notes
per second on current Pentium II computers.

8 Conclusion

We have considered the problem of measuring the dis-
tance between two sequences A and B in the context of
monophonic music comparison and retrieval. The encod-
ing that we have used is a simplified representation of
monophonic music; only the pitch levels are present in
the encoding.

We have presented a general framework for sequence
comparison. The framework deals with variations of the
well-known edit distance measure. Moreover, in our
framework one can use context-sensitive cost functions,
which we believe that is a very important property in
this application area. We also introduced the concept of
a transposition invariant distance function and presented
some examples of such functions.

Currently we are working on various bit-parallel algo-
rithms for music information retrieval, based on the dis-
tance functions presented in this paper.
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Abstract

Lerdahl (1988) suggests a model of 'Pitch Spaces' that treats pitches, chords and regions in a single framework. In
this paper we will both summarise Lerdahl's arguments for the relative strengths of the model over previous cogni-
tive models of harmonic knowledge, and we will present an extension to the model facilitating the design and imple-
mentation of a computer-based tool for harmonic analysis and composition for musical novices. We describe the
current prototype of our computer music tool, and present plans for further development and evaluation of the tool
with musical novices.

1 Introduction

Lerdahl (1988) suggests a model of 'Pitch Spaces' that treats pitches, chords and regions in a single framework. In this
paper we will both summarise Lerdahl's arguments for the relative strengths of the model over previous cognitive models
of harmonic knowledge, and we will present an extension to the model facilitating the design and implementation of a
computer-based tool for harmonic analysis and composition for musical novices. Lerdahl's model, and the work pre-
sented in this paper are based around the Western Tonal Music system of harmony.

11 Motivation for another pitch space framework

Lerdahl's pitch space framework is not based on a SYMMETRICAL topological model - unlike those such as Longuet-
Higgins (1962) and Shepard (1982). Lerdahl's states that a weakness of topological models is an over emphasis on sym-
metry - therefore misrepresenting the non-symmetrical aspects of the diatonic system. The pitch space framework is con-
structed with to be able to model the same asymmetry as the chords and keys it is modelling. Another strength of
Lerdahl's model is that it is able to model more than one level of pitch representation in a single framework - previous
systems have modelled either pitch classes (such as Balzano 1982 or Shepard 1982), or tonal regions (for example Weber
1824 and Schoenberg 1911/1978). Although one existing tonal framework does model multiple levels of pitch descrip-
tion - Longuet-Higgins (1962) - that system is applied to tonal regions (derived from pitch classes) and cannot be used to
describe pitch proximity.

Previous work cited by Lerdahl as influential on the development of Pitch Spaces providing descriptions of pitch classes,

chord spaces and tonal regions included Krumhansl (1979 & 1983), Krumhansl, Bharucha & Kessler (1982) and Krum-
hansl & Kessler (1982).

2 Description of Lerdahl's pitch space framework

Suggested by the chromatic, diatonic and triadic 'overlearning’ ideas of Deutsch & Feroe (1984) and Deutsch (1982).
Lerdahl's framework is a hierarchy of five spaces. The hierarchy is such that each level is made up of a subset of those
pitch classes from the level immediately below. The five spaces are shown in Table 1.

Table I: Names of pitch spaces

Level Name
a Octave space
b Open fifth space
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c Triadic space

d Diatonic space

e Chromatic space

Important points Lerdahl makes about the spaces are as follows:

q except for the chromatic space, the spaces describe the asymmetric patterns appropriate for diatonic music

q the diatonic space is DIRECTLY represented in the framework (unlike the symmetrical frameworks mentioned earlier)
q the pitch space framework allows unified treatment of pitch class, chord and regional proximity

Lerdahl uses the Roman-numeral notation of chord / region - where we shall represent the region numeral in parentheses.
For example. I/(I) is the pitch space for the tonic chord (say C major), in the region of the tonic (the C major diatonic

region).

The choice of the tonic as C is arbitrary, and could be any other pitch class. The numeric forms for the pitch space U/(I) is
shown in Table 2.

Table 2: Pitch space for I/(T)

S Pitch Class
| Y

a

c

e

a0

b 7

=R

The final row, ED, is the 'embedding distance' - this is a measure of how far from the octave space a given pitch class is
for a given pitch space. This distance shifts for a given chord and region. The shallower the embedding (such as 0 and 7
in I/(I)) the more important the pitch class harmonically for a given space.

Lerdahl explains this vertical embedding distance measure in terms of 'skip’ and 'step":

"In traditional usage a STEP occurs between adjacent members of the chromatic or diatonic scales (a chromatic or dia-
tonic step), and an ARPEGGIATION takes place between adjacent members of a triad. It is more illuminating, however,
to thing of an arpeggiation as stepwise motion in triadic space [space c]. A leap of two octaves, on the other hand, is a
skip in octave space [space a]. In sum, a step is adjacent motion along any level of the hierarchy, and a skip is non-adja-
cent motion -- two or more steps -- along any level."

(Lerdahl, 1988, pp. 321-322)

Therefore, using Lerdahl's definition of step and skip, the proximity of two pitches in a given pitch space (e.g. I/(I)) can
be measured as a 'step distance' by the number of steps left or right at a given levei to get from one pitch to another - e.g.
in I/(I) from pO to p4 is one step in triadic space, two steps in diatonic space and four steps in chromatic space. Chord
proximity can be calculated using two factors: the diatonic circle of fifths and the number of common tones between the
two chords. Lerdahl describes how each of these factors can be modelled via his pitch spaces. He presents the ‘chord cir-
cle rule', defined as instruction to "move the pcs [pitch classes] at levels a-c four diatonic steps to the right of left (mod
12) on level d" (p. 322). Thus there is no change to the diatonic or chromatic spaces when modelling the chord circle.
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The circle of fifths
[pcO (I} - pc7 (V) - pc2 (i) - pc9 (vi) - pe4 (iii) - pcb )IV) - pcO (I) and so on] appears as a sequence of pitch spaces when
the chord circle rule is successively applied as shown from I/(V) to I/(ii) in tables 3 and 4.

Table 3: Pitch space for V/(T)

Pitch Class

e 0 LT W

[¢]

(e}
[\*]
~
o

Table 4: Pitch space for ii/(I)

S Pitch Class

| Y

a

c

e

a 2

b 2 9

c 2 5 9
d|o 2 415 7 9 b
e |0 1}2}31415|6]7]|8(9]a}b

Lerdahl goes on to define a common tone distance between any two chords based on the number of distinct PCs and the
shortest number of steps on the circle of fifths. He goes further, and defines a measure of chord proximity across regions
using a rule that gives a chromatic circle of fifths, and a measure of region proximity and how seventh and minor chords
can be modelled in the framework.

The hierarchical and numerical nature of the pitch spaces, and the simplicity of the measurement of pitch, chord and
region proximity suggest the use of this framework for computational modelling. The pitch space formalism has strong
explanatory power, and as Lerdahl goes on to discuss, appears to correlate with experimental results investigating pitch
class stability (see Krumhansl 1979, and Krumhansl & Shepard 1979), multi-dimensional scaling of diatonic triads
(Krumhansl, Bharucha & Kessler, 1982) and abstract region spaces (Krumhansl & Kessler, 1982).
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Figure 2: I/(I) as C/(C)

Figure 3: V/(I) as G/(C)

As you can see from the difference between Figure 1 and Figure 2 (and full versions in the web browser in Figures 9 and
10) the prototype allows the user to choose whether to see pitch class numbers (0..b or 0..11) or the note letters assuming
pitch class 0 is C.

The user currently has simply facilities such as stepping (rotating) the major chord circles (levels a, b and ¢), and/or step-
ping the diatonic region circle (level d). The chromatic circle is left unchangcdl.

5 Proposed experimental evaluation

We are in the process of extending our prototype for use in experiments with novice musicians for the support of simple
harmonic analysis and composition tasks. If Lerdahl's claims are correct, and the asymmetry of his model provides a
good cognitive fit with human harmonic problem solving, we expect to find positive results from our trials, in compari-
sons with alternatives such as Holland's (1989) "Harmony Space" interactive computer tool.

In the next few sections we shall present some examples of the kinds of questions musical novices might be asked, and
how they might be able to answer them using the tool.

1. Although it might make sense, and be more consistent, to allow the chromatic circle to be rotated to indi-
cate when region 1 is associated with a note other than C.
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51 Chords in a region

The musical novice might be presented with the system set up with Cmaj chord in the region Cmaj (as in Figure 2). They
could be asked the following question:
In addition to Cmaj what are the other major chords likely to sound nice in this region?

A likely way to try to answer this question would be to keep the chromatic and diatonic circles (spaces ‘d’ and ‘e’) as
they are, and to rotate the chord circles (‘a’, ‘b’ and ‘c’) to find chords which have common pitch classes with the current
diatonic region (t.e. Fmaj and Gmaj).

Rotating clockwise from Cmaj, the student would first come to C#/(C) (see Figure 4). Clearly this chord does not share
all notes with the region Cmaj, since neither C# nor G# as in Cmaj. Continuing to step the major chord shape (rotate the
outer three circles) around the chromatic or diatonic circles the student would first come to chord Fmaj (see Figure 5)
then Gmaj (see Figure 3) and find that they, in addition to Cmaj, are the only three major chords that have all notes com-
mon with the Cmaj region.

Figure 4: C#/(C)

Figure 5: I'V/(I) as F/(C)

5 2 Regions for which a chord will fit

Another question we might ask a student might be given a chord, in which regions the chord would share all three notes.
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For example if, once again, the musical novice is presented with the system set up with Cmaj chord in the region Cmaj

they could be asked the following question:
In addition to the region Cmaj what are the other regions in which the chord Cmayj is likely to sound nice?

Rotating the diatonic region circle clockwise from Cmaj, the student would first come to C#maj (see Figure 4). Clearly
the chord Cmaj only shares one note with the region C#maj (note C, see Figure 6).

Figure 6: C/(C#)

Continuing to step the region around this way the student will come across the 2 diatonic regions in which chord Cmaj
does shall all notes — region Fmaj (see Figure 7) and region Gmaj (see Figure 8).

Figure 7: C/(F)
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Figure 8: C/(G)

5 3 Regions that only different by one pitch class

In a similar fashion we could ask the student to derive the cycle of fifths:
Which are the closest regions to Cmaj — i.e. which regions shall all but one pitch class.

6 Conclusions & Further work

Initial, informal experiments with musical novices have been encouraging. Clearly the extended circular model main-
tains the features and strengths of Lerdahl’s original, tabular pitch space model. Once the prototype implementation is
complete stand along and comparative experiments as suggested above will be conducted. The fact that the model and
computer program represent the asymmetry of the diatonic system may be important to help students move more easily
from theory to practice on physical instruments where such asymmetry is unavoidable.

Extensions to the prototype being worked on include the following:

g A unified way to enable users to step and skip at any level

q The development of the tool to allow two (or more) different chords and/or regions to be visually compared (so to pro-
vide a graphical representation of Lerdahl’s metrics)

q (related to above) the plotting of melodies on a circle, whereby users can choose a new set of circles each time a chord
or region changes

q at present it is not possible to change the default that pitch class 0 is associated with C — although a trivial change it
will enable more sophisticated and region-independent testing while still allowing students to refer to note letters if
they wish

References

G. J. Balzano, The pitch set as a level of description for studying musical pitch perception, In Music, Mind and
Brain: the neuropsychology of music, M. Clynes (Ed.), Plenum, New York, USA, 1982.

D. Deutsch, The processing of pitch combinations, in D. Deutsch (Ed.): The Psychology of Music, Academic Press,
NY, USA, 1982.

D. Deutsch & J. Feroe, The internal representation of pitch sequences in tonal music, Psychological Review,
88:503-522, 1984.

S. Holland, Artificial Intelligence, Education and Music, Unpublished PhD thesis, IET, Open University, UK, 1989.

C. Krumhansl, The psychological representation of musical pitch in a tonal context, In Cognitive Psychology,
11:346-374, 1979.

C. Krumbhansl, Perceptual structures for tonal music, In Perception, 1(1):28-62, 1983.
68



C. Krumbhansl, J. J. Bharucha & E. Kessler, Perceived harmonic structure of chords in three related musical keys,
In Journal of Experimental Psychology: Human Perception and Performance, 8:24-36, 1982.

C. Krumhansl & E. Kessler, Tracing the dynamic changes in perceived tonal organisation in a spatial representa-
tion of musical keys, In Psychological Review, 89:334-368, 1982.

C. Krumhansl & R. Shepard, Quantification of the hierarchy of tonal functions within a diatonic context, Presented
at the Conference on Music and the Cognitive Sciences, 17-21 September, Cambridge, UK, 1979.

Fred Lerdahl, Tonal Pitch Space, Music Perception, 5 (3):351-350, 1988.

H. Christopher Longuet-Higgins, Two letters to a musical friend, In The Music Review, November 1962, 23: 244-
228 & 271-280, 1982.

Arnold Schoenberg, Theory of Harmony, originally published 1911. Translated by R. Carter, University of Califor-
nia Press, Berkly, CA, USA, 1978.

R. N. Shepard, Mental images and their transformations, The MIT Press, Cambridge, MA, USA, 1982.

Ben Shneiderman, The future of interact systems and the emergence of direct manipulation, In Behaviour and
Information Technology, 1:237-256, 1982.

G. Weber, Versuch einer Geordeneten Theorie, Mainz: B. Schotts Sohne, 1824.

69



3 pstest_htm! - Microsoft Internet Explorer - [Working Offline]

Figure 9: Prototype tool in web browser window, numeric notation mode — I/(I)
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Abstract

In pursuit of the long-term goal of developing a general theory of humour, it is reasonable to study certain limited forms
of humorous artefact in detail. One obvious class of humour to consider is verbally expressed humour, and in particular
jokes. We propose a methodology for exploring this subarea. The central idea is to devise detailed symbolic descriptions
of the internal linguistic structure of classes of jokes, at a suitable level of abstraction. These descriptions are intended
to make explicit the semantic and pragmatic factors (broadly interpreted) that are relevant to the humorous effect of the
subclass of joke in question, and also to contribute an accumulation of analysed data over which more general theorising
may occur. An analogy is drawn with established practice in linguistics.

1 Motivation

The ability to comprehend, appreciate and produce hu-
morous artefacts such as jokes is central to human cul-
ture and social interaction, and hence the area of humour
(including both humorous activities and the artefacts in-
volved) merits scientific study. Exploring humorous activ-
ity and objects in rigorous detail may throw light on (and
interact with the study of) a variety of aspects of human
behaviour, such as cognition, physiology, social conven-
tions, means of communication. Artificial intelligence is

well placed to pursue such an enquiry, as its methodolo- °

gies and techniques have been developed to assist with
the detailed symbolic modelling of complex human beha-
viour. The work here is an attempt to lay the foundations
of such an investigation.

Although there is no accepted theory of humour, there
have been numerous observations and proposals regard-
ing the nature of humour, and these are often clustered
into a tripartite division of incongruity, superiority, and
relief “theories” (Raskin, 1985). Attardo (1994) general-
ises these labels to cognitive, social, and psychoanalytical
(Figure 1). Another perspective would be to say that cog-
nitive/incongruity approaches concentrate on the humor-
ous stimulus, social/hostility approaches consider the in-
terpersonal effects, and psychoanalytical/relief proposals
emphasise the audience’s reaction. All of these are inter-
esting and valid, but distinct, aspects of the phenomenon
of humour. If we are develop a complete theory of hu-
mour and its use, all of these facets must be considered.
In particular, it will be necessary to have a good account

| Cognitive |  Social Psychoanalytical
Incongruity Hostility Release
Contrast Aggression Sublimation
Superiority Liberation
Triumph Economy
Derision
Disparagement

Figure 1: Types of “theory” (Attardo, 1994)

of the types of humorous stimulus that exist, how they are
structured and how they function. It is this question —
the nature of the stimulus — that is addressed here. This
does not constitute a complete theory of humour, but it
is certainly a necessary step towards a full investigation,
since it would be difficult to seek empirical support for
a theory of humour use without some properly detailed
analysis of the data. If we are, for example, to find cor-
relations between types of stimuli and human reactions,
then we require an account of the stimuli, to structure and
guide our experimentation. The work here makes a start
on dissecting the humorous stimuli, in one particular sub-
area of humour, namely verbally expressed humour. The
term verbal humour (Raskin, 1985) is avoided here, as it
is sometimes used in a narrower sense, roughly denoting
plays on words (Attardo, 1994).

That is, the focus is restricted to humour conveyed
in language, as opposed to physical or visual humour,
but not necessarily playing on the form of the language.



This restriction makes the task slightly more manageable,
while still leaving a wide and rich range of phenomena to
be considered.

A further simplification is choosing to study individual

Jokes in isolation from the context of use or the speaker/hearer

involved. (Jokes could be loosely defined as short texts
deliberately designed to elicit humorous response, often
in a manner unrelated to a specific context; however, noth-
ing here depends on having an initial definition of jokes
in general.) Starting by tackling jokes out of context does
not embody a claim that humorous effects are not depend-
ent on factors such as context, personal opinions, and cul-
ture. Rather, it is an attempt to make some progress by
(at least initially) not attempting to study simultaneously
all the factors involved in a complex phenomenon. There
is also a deliberate claim here that there will be regular-
ities in the stimuli involved in humour (the joke texts)
which should be documented and described before we can
proceed to correlate these with anything else, or to de-
vise more elaborate hypotheses about the whole humour
mechanism. This is again analogous to descriptive lin-
guistics, in which there has been a great deal of effort de-
voted to analysing the structural properties of sentences,
which are in a sense the counterpart of jokes here. The
hope is that if we can develop a good account of how jokes
operate, then we can proceed to apply a similar methodo-
logy to other forms of verbally expressed humour.

It is important to note at the outset that this paper does
not propose a theory of humour, not even of verbally ex-
pressed humour, nor even of jokes. What it does is to
outline a methodology for approaching the construction
of a theory of jokes, thence a theory of verbally expressed
humour, and eventually a theory of humour. Of course,
any methodological approach implicitly embodies some
theoretical hypotheses, but the assumptions adopted here
are relatively minimal (see Section 12 below).

2 Description and theory

If we are to develop a general theory of verbally expressed
humour, it must be based on data. However, it is not
feasible to proceed from raw data (e.g. a large and unana-
lysed collection of jokes) to a complete theory in one step.
Some preliminary analysis of the data is required first.
An analogy can be made here with generative linguist-
ics, where (within the Chomskyan paradigm at least) there
is a quest for a theory of universal grammar. Linguists
rely, in their theory development, not on undifferentiated
and unannotated data (sentences). Instead, universal the-
ories build on previous analyses of language: fragments
of grammar, or comparisons of particular constructions
across languages. A large amount of pre-theoretical sort-
ing out and dissecting of the data must occur before pro-
ceeding to highly abstract and over-arching theories of
language. The position taken here is that humour research
can usefully proceed in an analogous fashion (Figure 2).
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Before we can construct a genuinely empirical general

| Linguistics Humour research |
Strings Grammatical texts
Sentences Jokes
Grammaticality Being a joke
Sentence type Subclass of jokes
Structural description Description of a joke
Grammar rule(s) Pattern for class of joke
Theory of grammar Theory of jokes

| Theory of language use | Theory of humour use |

Figure 2: Analogy with linguistics

theory of (verbally expressed) humour, we must carry out
a significant amount of groundwork which involves ana-
lysing our primary data. Below, we make some sugges-
tions about how such descriptive work could proceed, with
some illustrative analyses of simple jokes.

3 What is an analysis?

The overall idea behind the framework here is simple: in
order to make clear and explicit the various factors that
contribute (or might contribute) towards the humorous ef-
fect of a piece of text, one should specify in some detail
the various abstract objects that are posited as underlying
the texts (e.g. symbolic representations of meaning), the
various properties that these objects have (e.g. denoting
a taboo subject) and the various interrelations which hold
between them (e.g. one meaning being more obvious than
another, one word sounding similar to another). An ana-
lysis of a joke is then a precise listing of this information
for the joke, at a suitable level of abstraction. This last
point is important: we have to rely (at least at this stage of
methodological development) on the intuition and judge-
ment of the analyst to propose abstract entities which are
relevant to the humorous effect, while ignoring irrelevant
details. For the moment, the assessment of the suitabil-
ity of the components of the joke analysis will be left to
the informed opinion of other humour researchers, but in
time we should evolve a more sophisticated methodology
in which independent criteria can be brought to bear. Ap-
pealing again to the analogy with generative linguistics,
when a syntactic rule is posited for a particular class of
sentences, there are various non-subjective criteria that
can be applied to argue for or against the adequacy or
elegance of the rule. In describing verbally expressed
humour, analogous criteria must be developed, for ex-
ample by arguing that the joke analysis offered will delin-
eate some natural class of jokes (cf. Ruch et al. (1993)).
Classes of joke can then be characterised by abstracting
from individual descriptions to form more general pat-
terns, in a manner analogous to creating grammar rules
which define the structure of classes of sentences.



4 Basic objects

We shall start from a few basic data types, and build from
there, introducing new primitives only as particular types
of joke seem to demand them.

Most discussions of jokes do not make it explicit what
their assumed primitive alphabet is. Since jokes are con-
veyed sometimes in speech and sometimes in writing, either
phonetics or orthography could be chosen. For many jokes,
the choice is immaterial. For some jokes, the spoken de-
livery is essential in order to create some form of ambigu-
ity. Only very rarely is it necessary to use a written form
in order to create the desired effect. In general, it is up
to the analyst to define which alphabet is to be the formal
representation for a joke, but here we shall assume that
there is such an alphabet, and that any string over that al-
phabet constitutes a text. That is, we will use the technical
term “text” to cover any sequence of symbols, whether a
complete joke (or well-formed sentence) or not. We shall
also assume that there is a similarity measure which in-
dicates how similar two texts are, in some primitive sense.
(identity of texts will simply be identity within the set of
strings over the alphabet). This will be useful in analysing
jokes involving puns or ambiguity. It will then be possible
to define various kinds of near-equality relation between
texts, based on degrees of similarity (cf. the “paraphony™
and “hahaphony” of Dienhart (1999)).

Our initial set of object-types is then:

(a) ALPHABET: a set of basic symbols from which
jokes are (at the simplest level) made up; the ana-
lyst should make it clear whether written or spoken
symbols are intended.

(b) TEXT: a TEXT is a sequence of elements from the
chosen alphabet. Hence any substring of a TEXT is
a TEXT. There is a similarity measure which indic-

ates how similar two TEXTs are.

(c) MEANING: a MEANING is what might be termed
the literal meaning or semantic structure of a TEXT.
It takes no account of any inference or contextual
information which might flesh out or interpret the

meaning of the actual words used.

(d) INTERPRETATION: A TEXT may also have an as-
sociated INTERPRETATION, which will be depend-
ent upon (but not identical to) the MEANING of the
TEXT (or its parts). It can be thought of as an in-
terrelated and consistent set of propositions, with
more content than the bare MEANINGs. This is in-
tended to be a broader kind of meaning (of a pas-
sage of text or of some sequence of events, for ex-
ample), which may involve much reasoning, filling
in of implicit information, unwarranted addition of
assumptions, etc.

DESCRIPTION: This is a semantic structure which
encodes some attributes which could be true of an
entity; it can describe a MEANING.

(e)

73

These classes of object are primitive in the sense that
they are defined solely in terms of the relationships they
enter into with other primitive objects. MEANINGs, IN-
TERPRETATIONs and DESCRIPTIONSs are all SEMANTIC
ITEMS, sometimes abbreviated below to “Semltem”. All
of the above entities are linguistic or abstract representa-
tional forms. There will also be entities denoting objects
or situations within some world (real or imaginary); see
Section 10 for two simple examples.

5 Properties and relations

In addition to some directly linguistic relationships between
our basic objects, there will be a large set of attributes
which are relevant to recording the humorous mechan-
isms within a joke. Thus our conceptual repertoire will
range from the relatively straightforward (e.g. one TEXT
is a substring of another), through conventional linguistic
notions (e.g. a TEXT may have zero or more MEANINGS),
to quite difficult and non-trivial properties (e.g. a MEAN-
ING is absurd, or an INTERPRETATION conveys a taboo
idea). This paper will not attempt to give full and precise
definitions of these predicates, although we will provide
informal glosses of those which we use, in order to make
the examples intelligible. Supplying detailed definitions
for all the predicates involved in descriptions of jokes con-
stitutes a central and substantive part of developing a the-
ory of jokes, and thence a theory of humour (cf. (Ritchie,
1999, Section 4.5)). The first step in our methodology
is to postulate a range of these constructs, and see if we
can account for joke structure by using them consistently.
This decomposes the research into stages, with the fi-
nal definitions of these conceptual building blocks being
postponed unti]l we have an idea of the set of primitives
that we need.

Two illustrative and typical examples might be as fol-
lows:

absurd({(SemItemn)) : This is true if (SemItem), a
SEMANTIC ITEM, is in some way odd or bizarre.

conflicts((Meaning), (SemlItem)) : (Meaning) will
not merge with (SemItem) to form a coherent IN-
TERPRETATION.

6 Structural descriptions

To set out a description of the linguistic content of a joke,
we need to state exactly what abstract objects we are pos-
iting and what the relationships are between them. Many
authors have remarked on the way in which certain jokes
use the final line (punchline) to reveal an unexpected mean-
ing for the initial text, in a way that implies, evokes, or
describes an image that is odd in some way ((Raskin,
1985), (Attardo, 1994, Chapter 2), (Ritchie, 1999)). To
illustrate the descriptive approach here, we can borrow



this informal idea and state it in our terminology. (Notice
that the examples in this paper are mostly chosen for their
brevity and simplicity rather than the excellence of their
wit.)

(1) Why do birds fly south in winter?
It’s too far to walk.

The relevant workings of this joke could be summarised
thus:

There is a TEXT T = “Why do birds fly south
in winter? It’s too far to walk.”” There are
subsequences 71 = “Why do birds fly south
in winter?”, T5 = “It’s too far to walk”, and
MEANINGs My, M2, M3 such that M; is a
more obvious MEANING than M, for T, M3
is the MEANING of T3, M; conflicts with
M; (or perhaps an INTERPRETATION derived
from M;), M3 is compatible with M5, and
there is an INTERPRETATION [ of My+ M3
which is absurd.

(where words in bold font indicate properties or relations
which this description relies on).

7 Structural patterns

The above summary describes the content of one particu-
lar example joke. However, a necessary next step is to
abstract from such itemisations to create more general
patterns, which will describe classes of jokes which are
similar in their internal workings. Here we will call these
structural patterns. For the sake of a simple notation, we
will adopt a sorted version of first order predicate logic
(FOPL).

The above example can be seen as an instance of a
broader class characterised by the following (where T is
the text of the joke):

3N, T : text; My, My, M3 : meaning;

I : interpretation

such that

substrings(T, T1,T2) A meaning(T2, M3)

A obviousmeaning(Ti, M1, M) A
conflicts(Ms, M1) A compatible(M3, M) A
form_interpretation(Ms, M3, I} A absurd(I)

Here we have introduced further predicates:

obviousmeaning((Text), (Sem1), (Semz)) : Thisis true
if (Sem, ) is a more obvious interpretation of (T'ext)
than (Semz).

compatible({Meaning), (SemItem)) : (Meaning)
can merge with (SemItem) to form a coherent IN-
TERPRETATION.

form_interpretation((Sem,), (Sem,), (Sems)) :
(Sem,) merged with (Sems) forms (Sems).
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8 Notation

Although we have adopted FOPL as our notation for ex-
pressing the information about a joke, this in no way im-
plies that the content of jokes is “logical” in any ordinary
sense of the word; the FOPL notation is merely acting
as our metalanguage: a convenient and concise way of
writing down statements which involve abstract objects,
properties and relations (see the summary of assumptions
in Section 12 below). The use of a logical representation
should facilitate the detection of classes and subclasses of
jokes, as such inclusions (or similarities) will be reflected
in logical expressions which subsume or overlap with one
another.

FOPL has its merits as a meta-notation, but it could
be rather verbose if used to state structural patterns in the
manner shown above. For example, the existence of sub-
strings has to be stated every time, and will not usually be
very complex, so it may not be necessary to have the full
expressive power of logic merely to state this information.
Also, patterns will always be of a form in which some
existentially quantified variables are introduced, and then
some constraints are placed on them. Moreover, there are
some recurring interrelations (e.g. that a meaning is as-
sociated with a particular stretch of text). Therefore, it
is worthwhile developing a more succinct and perspicu-
ous notation (which could in principle be expanded into
FOPL).

Firstly, we can indicate the segmentation of the text
into parts using brackets and subscripts:

[1 Why do birds fly south in winter?],
[2I’s too far to walk.],

The subscripts can be used in terms indicating the vari-
ous objects involved, so that M(1) is the MEANING of
TEXT labelled 1 (which in turn is notated as 7(1)). Where
there are more than one possible MEANING for a par-
ticular TEXT 7(IV), these will be indicated by M(N,),
M(Np), etc. An INTERPRETATION formed from the MEAN-
INGs M(1), ... M(n) will be written Z(1, ..., n). Also,
we can assume that all variables mentioned (or implicitly
used) in the logical expressions are existentially quanti-
fied. The properties of items, and relationships between
items, can still be written using the notation of FOPL.. The
example description can then be given as:

obviousmeaning(7T (1), M(1,), M(1,)) A
con flicts(M(2), M(1,)) A
compatible(M(2), M(1p)) A absurd(Z(1,,2))

This has the merits of building the more basic lin-
guistic relations into the notation, thus rendering the more
substantive and humour-related predicates more promin-
ent. That is, the notation is not being used to express in-
teresting theoretical claims (as is sometimes advocated in
early Chomskyan linguistics); instead, it is introduced to
push the less interesting structure into the background and
let the potentially significant predicates appear clearly.



To extend this notation to structural patterns as well
as descriptions of individual jokes, we can indicate the
decomposition of the text into substrings by a diagram
of labelled brackets showing the relative positioning of
the segments. That is, each pattern will have a “header”
which shows the shape of the text, numbering its subparts;
for example:

1. hife o )2
indicates a text made up of two substrings. The above
example (1) is then an instance of the following pattern:

h---lile--- e

obviousmeaning(T(1), M(1,), M(1s)) A
con flicts(M(2), M(1,)) A
compatible(M(2), M(1s)) A absurd(Z(1s,2))

In this case, the application of the pattern to the specific
example is encoded entirely in the binding of the text seg-
ments 1, 2, etc.

9 Descriptive jokes

Some very brief examples may help to demonstrate the
approach advocated here. These make central use of the
DESCRIPTION data type introduced earlier.

(2) Why is coffee like the s0il?
It is ground. (Pepicello and Green, 1984)

This example could be described as:

Lh---hfz---]2

compares(T (1), M,N) A
yields_description(M(2), D) A
describes(D, M) A describes(D, N)

providing that we have the following predicates:

yields_description({Meaning), {Description)) : This
is true if the (Description) can be extracted from
the (Meaning).

describes({Description), (Meaning)) : This is true if
(Description) describes (M eaning).

compares({Text), (Meaning:), (Meanings)) : Thisis
true if (T'ext) implies or states that (Meaning;)
and (Meaning;) are similar.

To describe example (3)

(3) What is grey, has four legs, and a trunk? A mouse
on vacation. (Rothbart, 1977)

we require the following predicate:

obviousdescription({Desc), (M eaning; ), (Meaning:))

: This is true if both (Meaning; ) and (M eaning,)
are described by the DESCRIPTION (Desc), but this
is more obviously the case for (Meaning;) than
for (Meaning,).

The structural pattern is then:

1-- 2. )2
ytelds_description(M(1), D) A absurd(M(2))
A obviousdescription(D, M, M(2)))

Example (4)

(4) Whatdo you call a strange market? A bizarre bazaar.
(Binsted, 1996)

can be described as:

l-.-hl2fs- - Jala- - Ja)2
yields_description(M(1), D) A
describes(D, M(2)) A soundalike(T (3), T (4))

where the definition of soundalike can be based on the
similarity metric for TEXTs.

10 Narrative jokes

A large class of more complex jokes are those which rely
on narrative (i.e. “funny stories”). To describe the internal
workings of such jokes, particularly those which have a
“butt” or “target”, we need to introduce data-types denot-
ing entities (concrete or abstract) within the world of the
story. For the moment, we will restrict ourselves to an
EVENT-SEQUENCE, which a TEXT narrates, and a data-
type CHARACTER for denotations of individuals within a
story.
For example, consider (5).

(5) Russian officers in an Eastern European country go
to a tavern. They order beer. The waiter places
coasters on the table and serves the beer. Later
they order another round. The waiter returning with
the beer finds no coasters. ‘OK, he tells himself,
‘these are collectors,” and puts down another set
of coasters. When the third round is ordered and
brought out, there are again no coasters. Angry, the
waiter puts the beer down on the table, but places no
more coasters. One of the Russian officers protests:
‘What'’s this? No more crackers?’ (Hetzron, 1991,
p.62)

This could be approximated with the pattern:

- - hlee. ]2

narrates(T (1), E) A
obviousinterpretation(E, ) A

con flicts(M(2), 1) A adopts(Z(2),C, I, E) A
dif ferent(I,, ) A absurd(l>)

assuming we use the following predicates:

narrates((Text), (Events)) : (Text) recounts the EVENT-

SEQUENCE (Events).



obviousinterpretation({Events), (Interp)) : Thenat-
ural INTERPRETATION for (Events) is the INTER-
PRETATION (Interp).

adopts({InterpA), (Char), (InterpB), (Events)) : In

INTERPRETATION{InterpA), the CHARACTER {Char)
adopts the INTERPRETATION(InterpB) for (Events).

along with some notion of “distinctness” of INTERPRET-
ATIONS.

This emphasises the difference between MEANINGS
and INTERPRETATIONs. The idea that the coasters have
been consumed by the soldiers, is part of the INTERPRET-
ATION of the narrative, although it is not stated as literal
meaning. Also, the idea (imputed to the soldiers) that the
coasters are crackers is an interpretation of the waiter’s
actions (within the world of the story), and is not a literal
meaning of any fragment of text.

Although the analyses given above suggests that the
relevant property of the soldiers’ interpretation is that it is
absurd, the pattern could perhaps be generalised to cover
more jokes in a fairly natural way. Consider (6), the cent-
ral example from Raskin (1985).

(6) ‘Is the doctor at home?” the patient asked in his
bronchial whisper. ‘No,’ the doctor’s young and pretty
wife whispered in reply. ‘Come right in.’

This broadly follows the same pattern as (5). It could
be argued that the amusing interpretation adopted by the
character in this story is not so much absurd as taboo
(with its implication of adultery). We could generalise the
structural pattern by replacing absurd with inappropriate,
which we would define to be a disjunction of absurd,
taboo, and perhaps other properties found to render inter-
pretations amusing. Notice that some property is essen-
tial, otherwise the stories would be simple tales of misun-
derstandings, with no humorous effect. Raskin argues (in
keeping with his semantic script-based theory of humour)
that in (6) the important ingredient is not located in the
mistaken interpretation alone, but in a form of compar-
ison (script opposition) with the more obvious and nat-
ural interpretation. If we were to accept this idea as being
a possible ingredient in making tales of misunderstand-
ing funny, then the last term in the above pattern could
be changed from absurd(l;) to (inappropriate(Iz) V
contrast(ly, I;)) where contrast embodies the appro-
priate form of opposition.

(Notice that we have not yet covered the satirical or
mocking aspect of (5), as our structural patterns give no
indication that this joke casts a slur on Russian officers.
Such indirect or inferred content goes beyond the current
paper.)

It is interesting to see how this pattern can also cover
some apparently simpler jokes, such as (7) and (8).

(7) ‘Mr Fields, do you believe in clubs for young people?’
‘Only when kindness fails.” (Shultz, 1976) and else-
where.
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(8) A lady went into a clothing store and asked ‘May I
try on that dress in the window?’
‘Well,’ replied the sales clerk doubtfully, ‘don’t you
think it would be better to use the dressing room?’
(Oaks, 1994), citing from Clark (1968)

It might seem natural to focus on the fact that these
examples rely on linguistic ambiguity (lexical ambiguity
in (7), syntactic structural ambiguity in (8)), and to posit
a pattern such as:

[1. . .]1[2. . .]2
obviousmeaning(T (1), M(1,), M(1s)) A
conflicts(M(2), M(1,)) A
compatible(M(2), M(1p)) A absurd(Z(1s,2))

However, this would miss a generalisation. In these
very short stories, the utterances attributed to specific char-
acters (the questioner in (7) and the lady in (8)) are in fact
events — linguistic in nature — which are being narrated,
and the ending of the joke involves some other charac-
ter imposing an interpretation on these linguistic events
which is not the obvious interpretation, and which is in-
appropriate in some way. Hence they both fall under the
more general pattern given for (5) (as amended to go bey-
ond absurd in its last line). The linguistic ambiguity in
(7) and (8) is then viewed solely as a means to an end,
since it is the ambiguity which allows the different pos-
sible interpretations of the linguistic events.

Taking this perspective is different from some more
traditional humour analyses (cf. (Attardo, 1994, Chapter
2)), in which a major dividing line is drawn between jokes
which depend for their effect on the language in which
they are expressed (verbal jokes) and jokes which are more
easily translatable into other languages because the exact
phrasing is not crucial (referential jokes). In such a tax-
onomy, (7) and (8) would be verbal, while (5) and (6)
would be referential. That would obscure the generalisa-
tion, which we conjecture is a useful one, that all these
four stories share a common mechanism which is signi-
ficantly involved in their status as jokes.

11 Possible implementations

The work reported here is very preliminary, and does not,
at present, involve computational implementation. How-
ever, the emphasis on formalisation and detail is intended
to lead towards fuller symbolic models which could be
implemented and tested. There are various ways in which
this work could lead to implementation.

A rule tester. In the same way that a linguist could make
use of a grammar testing program to check their rules
(e.g. Friedman (1971)), software could be constructed to
apply rules to data (much as was done with the JAPE sys-
tem (Binsted et al., 1997)). If every output item is deemed
to be a joke (by a suitable set of human subjects), our
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Abstract

In this paper we describe the difficulties of poetry generation, particularly in contrast to traditional informative natural
language generation. We then point out deficiencies of previous attempts at poetry generation, and propose a stochastic
hiliclimbing search model which addresses these deficiencies. We present both conceptual and implemented details of
the most important aspects of such a model, the evaluation and evolution functions. Finally, we report and discuss results

of our preliminary implementation work.

1 Motivation

Poetry is a unique artifact of human natural language pro-
duction, with the distinctive feature of having a strong
unity between its content and its form. The creation of
poetry is a task that requires intelligence, expert mastery
over world and linguistic knowledge, and creativity. Al-
though some research work has been devoted towards cre-
ative language such as story generation, poetry writing
has not been afforded the same attention. It is the aim
of this research to fill that gap, and to shed some light on
what often seems to be the most enigmatic and mysterious
forms of artistic expression.

Furthermore, poetry possesses certain characteristics
that render traditional natural language generation (NLG)
systems, which are geared towards a strictly informative
goal, unsuitable due to architectural rigidness.

Lastly, although not readily obvious, there are poten-
tial applications for computer generated poetry, such as
the increasingly large industry of electronic entertainment
and interactive fiction, the commercial greeting card po-
etry genre, and perhaps even the odd pop music lyric or
two.

2 Poetry Generation

2.1 What Is Poetry?

Regarding poetry the artifact, Levin (1962) states that “In
poetry the form of the discourse and its meaning are fused
into a higher unity.” This definition highlights the point of
a strong interaction between semantics, syntax and lexis.
Boulton (1982) reiterates this point, claiming that it is
misleading to separate the physical and intellectual form
of a poem so far as to ask, “What does it mean?”. The
poem means itself.
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These are rather esoteric quotations, and one would
expect these quotes to be referring to “high-brow” poetry.
However, we claim that this unity is inherent in simpler
forms of poetry, for example, Hillaire Belloc’s The Lion
(Daly, 1984):

The Lion, the Lion, he dwells in the waste,

He has a big head and a very small waist;

But his shoulders are stark, and his jaws they are grim,
And a good little child will not play with him.

Essentially unity here means that the poem *“works”
due to a combination of features at the surface level (the
rhyming of waste and waist, grim and him, the repetition
of The lion, the lion to fit the rhythm), and semantics (de-
scription of a lion as told to a child).

Of the many special characteristics that poetic form
possesses, among the most essential are: rhythm, rhyme,
and figurative language.

As for the process of writing poetry, it is often claimed
to proceed in a much more flexible manner than other
writing processes. There is often no well-defined com-
municative goal, save for a few vague concepts such as
“wintery weather™ or “a scary lion”. Furthermore, a hu-
man could begin writing a poem inspired by a particular
concept, or scenario, but end up writing a poem about an
altogether different topic.

This specification of loose constraints fits with (Sharples,
1996) and (Boden, 1990), who claim that while a writer
needs to accept the constraints of goals, plans, and schemas,
creative writing requires the breaking of these constraints.
Yet these constraints are still necessary, as they allow for
the recognition and exploiting of opportunities.

Sharples (1996) models the writing process as that of
creative design, involving a cycle of analysis, known as
reflection, and synthesis, known as engagement. This pro-



cess is analogous to our iterative process of evaluation and
evolution, and ties in with the concept of unity between
content and form: during the refiection phase, when look-
ing at an intermediate draft of the poem on paper, a poet
may come to realize the opportunities of surface features
that can be exploited, which enables further content to be
explored upon subsequent engagement phases.

2.2 Previous Attempts

Most previous attempts at poetry generation are “hob-
byist experiments” that are available on the World Wide
Web, such as The Poetry Creator, ELUAR, and Pujangga,
with the two exceptions that exist in publication being
RACTER and PROSE (Hartman, 1996). RACTER is also
the only computer program with a published poetry an-
thology, “The Policeman’s Beard is Half Constructed” in
1984.

All of these attempts were essentially “party trick™-
type programs, in the mould of ELIZA (Weizenbaum,
1966). Typically, the generation process simply consisted
of randomly choosing words from a hand-crafted lexicon
to fill in the gaps provided by a template-based grammar.
However, several clever tricks and heuristics were em-
ployed on top of the randomness to give the appearance
of coherence and poeticness, such as: (1) assigning ad-
hoc “emotional categories”, e.g. {ethereality, philosophy,
nature, love, dynamism} in ELUAR, and {romantic, pat-
riotic, wacky, moderate} in Pujangga, (2) choosing lexical
items repetitively to give a false sense of coherence, e.g.
RACTER, (3) constructing highly elaborate sentence tem-
plates, often to the point that the resulting poetry would
have to be attributed more to the human writer than to the
program.

This is a representative output from ELUAR:

Sparkles of whiteness fly in my eyes,

The moan of stars swang branches of trees,
The heart of time sings in the snowy night.
Seconds of Eternity fly in grass,

The Clock of rain turns,

Death of the Apples,

The Equinox penetrates the words.

The two great deficiencies of these attempts were that
they took no account whatsoever of semantics (the sys-
tems were not trying to convey any message) nor of poetic
form, e.g. thythm, rhyme, and figurative language.

2.3 What Makes It Difficult?

If we are to develop a poetry generation system which
overcomes the fwo deficiencies mentioned above, what
difficulties do we run into, particularly in comparison to
conventional NLG systems?

1. Inconventional,informative NLG systems, the start-
ing point is a given message, or communicative goal,
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and the goal is to produce a string of text that con-
veys that message according to the linguistic re-
sources available. In poetry, however, there may
not be a well-defined message to be conveyed (see
section 2.1).

2. The generation process is commonly decomposed
into stages of content determination, text planning,
and surface realisation (Reiter, 1994). We claim
this approach is unsuitable for the task of poetry
generation because it introduces problems of archi-
tectural rigidness (cf. De Smedt et al. (1996)) which
are exacerbated by the unity of poetry, where inter-
dependencies between semantics, syntax, and lexis
are at their strongest.

3. If our poetry generator is to create texts which sat-
isfy the muititude of phonetic, syntactic and semantic
constraints, it must have a very rich supply of re-
sources, namely: a wide coverage grammar which
allows for paraphrasing, a rich lexicon which sup-
plies phonetic information, and a knowledge-base
if we hope to produce coherent poems.

4. One of the main difficulties lies in the objective
evaluation of the output text. The question of meas-
uring text quality arises for existing NLG systems,
but is much more pronounced in evaluating poetry:
how does one objectively evaluate if something is a
poem or not.

When writing about Masterman’s haiku producer,
Boden (1990) states that readers of poetry are pre-
pared to do considerable interpretative work, and
the more the audience is prepared to contribute in
responding to a work of art, the more chance there
is that a computer’s performance may be acknow-
ledged as aesthetically valuable. Hence readers of
computer-generated text will be more tolerant in
their assessment of poetry than of prose.

This sounds encouraging for doing work in poetry
generation. However, this observation also implies
that it could be too easy to program the computer
production of poetry: precisely because poetry read-
ers are prepared to do interpretative work, it would
be all too easy to pass off random word-salad output
as Truly Genuine Poetry (whatever that may be).

The first three points mentioned above are of a more
technical nature, while the last one is more conceptual,
perhaps even philosophical. Currently, we do not have
much to say on this last point, except that we hope to
adopt an objective and empirical evaluation methodology
similar to that of Binsted et al. (1997).

2.4 Limiting our Poetry

The main characteristics which we look for in our target
generated poetry are a highly regular occurrence of syn-



tactic and phonetic patterns, such as metre, rhyme, and al-
literation. These are easily identifiable, and one could say
we are adopting a “classic” view of poetry. Furthermore,
we will only offer a relatively simple and straightforward
treatment of semantics (see section 4.3) and of construct-
ing the poem’s content. The verse in section 2.1 typifies
these attributes.

3 A Stochastic Hillclimbing Model

In an attempt to address the difficulties raised in Sec-
tion 2.3, we propose to model poetry generation as an ex-
plicit search, where a state in the search space is a possible
text with all its underlying representation, and a “move”
in the space can occur at any level of representation, from
semantics all the way down to phonetics. This blurs the
conventional divisions of content determination, text plan-
ning, and surface realisation, and.is actually readopting
what De Smedt et al. (1996) call an integrated architec-
ture, which goes against recent developments in NLG, but
seems a necessary decision when considering poetry.

The problem, of course, is navigating the prohibitively
large search space. Our proposed solution is to employ
a stochastic hillclimbing search, not merely for its relat-
ively efficient performance, but especially since the cre-
ative element of poetry generation seems perfectly suited
to a process with some element of randomness to it.

Our stochastic hillclimbing search model is an evolu-
tionary algorithm, which is basically an iteration of two
phases, evaluation and evolution, applied to an ordered set
(the population) of candidate solutions (the individuals).

This approach is quite analogous to (Mellish et al.,
1998), an experiment in using stochastic search for text
planning, but in our research we extend it to the whole
NLG process.

3.1 Evaluation

Arguably the most crucial aspect of a stochastic search is
the evaluation scheme which lets the system know what
a desirable solution is. Below we present an informal de-
scription, not necessarily exhaustive, of the features that
our evaluation functions must look for in a poem. A de-
scription of the actual evaluators in our currently imple-
mented system can be found in Section 4.5.

1. Phonetics: One of the most obvious things to look
for in a poem is the presence of a regular phonetic
form, i.e. rhyme, metre, alliteration, etc. This in-
formation can be derived from a pronunciation dic-
tionary.

One possible evaluation method is to specify a “tar-
get phonetic form” as input, i.e. the ideal phon-
etic form that a candidate solution should possess,
and to then score a candidate solution based on how
closely it matches the target form.
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For example, we could provide the system with the
following target form (here w means a syllable with
weak stress, s a syllable with strong stress, and
(a) and (b) would determine the rhyme scheme,
e.g. aabba), which effectively means we are re-
questing it to generate a limerick:

wW,S,W,w,s,w,w,s{a)

w,S,W,w,s,w,w,s(a)
w,s,w,w,s(b)
w,s,w,w,s(b)

w,S,W,w,s,w,w,s(a)

Alternatively, we could specify a set of these target
forms, thus feeding the system with knowledge of
existing poetry forms: the quintain, haiku, rondeau,
sestina, etc., and allow the evaluation function to
reward candidate solutions that are found gravitat-
ing closely towards one of those patterns. This is
a more fiexible alternative, but would probably not
be as informed a heuristic, as the definition of the
goal becomes less focussed.

2. Linguistics: Aside from phonetic patterns, there
are other, more subtle, features to look for in a poem:
lexical choice, where the evaluation could reward
the usage of interesting collocations and words marked
as “poetic”, syntax, where reward could be given
to usage of interesting syntactic constructs, e.g. in-
verse word and clause order, topicalization, and rhet-
oric, where evaluation would score the usage of fig-
urative language constructs such as metonymy.

3. Semantics: Even more abstract would be a mech-
anism for evaluating the semantics of a certain can-
didate. Again, we could specify a “target semantics”
and score a candidate’s semantics relative to this
target. Unlike conventional NLG, though, this tar-
get semantics is not viewed as a message that must
be conveyed, but rather as a “pool of ideas”, from
which the system can draw inspiration. The system
could choose to convey more or less than the given
semantics (cf. approximate generation in Nicolov
(1998)).

Story generation issues such as narrative structure
and interestingness are beyond the scope of this re-
search.

Having analysed the three points above, it seems that
to devise an evaluation function, the following 3 issues
must be tackled:

¢ How to identify the presence of a feature: with
the possible exception of figurative language, it is
reasonably straightforward to observe the features.
Most of them are represented directly in the data
structure, e.g. phonetic form, lexical choice, syn-

tactic structure, semantic interpretation.



¢ How to quantify a feature: yielding a numerical 3.2 Evolution
measure for the occurrence of a poetic feature sounds
like a very naive idea. Nonetheless, we believe that
it is the only way to mechanically and objectively
guide the stochastic search to producing poem-like
texts.

Above we have mentioned a score-relative-to-target
strategy for both phonetics and semantics. This
seems to be the most concrete method of evalu-
ation, and is what we have chosen to implement in e Add: “John walked”—“John walked to the store”
our current system. Certain features, however, most
notably those considered to be preferences as op-

After evaluating a set of candidate solutions and choosing
a subset of candidates with the best score, we must then
create new variations of them through “mutation”. This
process can be seen as applying a collection of operators
on the chosen candidates. We introduce here three con-
ceptual types of operators, before describing our currently
implemented operators in Section 4.6:

¢ Delete: “John likes Jill and Mary”—“John likes Jill”

posed to constraints, do not lend themselves easily e Change: “John walked”—“John lumbered’

towards this strategy. Furthermore, as mentioned

above, we would sometimes like the flexibility of Due to our integrated architecture, these mutations
allowing the system to operate unguided by such a may occur at different underlying levels of representa-
specific target. tion of the text. Because these different levels are ali

interdependent, the operators must take special care to
preserve consistency when performing mutation. For ex-
ample, if the addition of “fo the store” is viewed mainly
gorithm search heuristic. For example: applied to as a syntactic addition of a prepositional phrase, the op-
the feature of alliteration, if we scored positively for erator would have to update the semantics to reflect this,
each word that appeared in a line starting with the for instance b}' addlng.desf:ination (w, shop) . In con-
same phoneme, the final output could become ri- trast, if it is viewed primarily as a semantic addition, the
diculously riddled with redundant repetitions of re- operator would have to realize these semantics, one op-
wordings. This might be good for generating tongue- nor'x being tpe use of a .prepgsinonal~phrase. Our Practice
twister-like sentences, but any literary critic would of mtroducmg‘ semantics via a flexible “semantic pool”
baulk at these results. However, at the moment this addresses this issue (see Section 4.3).

is how we implement evaluation of such features, Another issue is that these operators can perform non-
and although we do not intend to go deep into liter- monotonic modifications on the structures of the candid-

ary theory, we hope to develop a more sophisticated ate solutions, hence our grammar formalism must allow

approach. for this.. ' o
As it is probably too optimistic to rely on pure ran-

dom mutation to lead us to a decent poem, we would also
like to introduce several heuristic-rich operators. These
heuristics would be the encoding of "how to write poetry”
guidelines, such as "use ’little’ words to 'pad’ sentences
when trying to fit the metre”, and “don’t use words with
few rhymes at the end of a line”. These *smarter’ oper-

A naive alternative scoring method is to maintain
a tally of points for every occurrence of a feature
encountered in a text. This resembles a greedy al-

For now our aim is to facilitate a modular approach
to the evaluation of features, so that each partic-
ular type of feature will have its own correspond-
ing “evaluator function”. This will allow for more
sophisticated approaches and techniques to be eas-
ily added in the future.

Apart from a modular approach, we also aim to ators, however, seems to go against stochastic search tra-
parameterize the behaviour of these evaluation func- ditions wherein the operators are deliberately knowledge-
tions, e.g. allow a user to set the coefficients and poor, relying on the stochastic nature to lead us to the
weighting factors that determine the calculation of solution. Here, we are adding informedness of heuristics
a certain score. A very interesting prospect is the to the whole stochastic process, somewhat analogous to
interfacing of these coefficients with empirical data sampling bias in stochastic search.

obtained from statistical literary analysis, or stylo-

metry.

4 Implementation

¢ Weighting across features: assuming we have ob-
tained numerical scores for each of the features we
are considering, how do we combine them? As
in the previous point about parameterizing coeffi-
cients of a particular evaluator, we propose to treat
the weighting across features in a similar fashion.
This parameterization could possibly allow a choice
between, say, a preference for rigidly structured po-
etry and apreference for a more contemporary content-
driven poem.

We are currently in the process of implementing our stochastic
search model in Java. In this section we will first briefly
discuss our choice of representation for grammar, lexicon
and semantics, before describing properties of the archi-
tecture and the current implementation of our evaluation
and evolution functions.
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4.1 Grammar Formalism

Our choice of representation is Lexicalized Tree Adjoin-
ing Grammar, or LTAG. For reasons of space, however,
we will not explain this formalism in depth. See Joshi
and Schabes (1992) for details.

In Tree Adjoining Grammar, a derivation tree is a kind
of meta-level tree that records operations performed on
elementary trees. In particular, nodes of a derivation tree
do not signify phrase structure in any way, but rather
the process of adjoining and substitution of elementary
phrase structure trees. Nodes of a derivation tree are la-
belled by references to elementary trees, and edges are
labelled by the address at which the elementary tree of
the child node substitutes or adjoins into the elementary
tree of the parent (see Figure 1).

The root node of the derivation tree would introduce
the verb, and its two siblings would introduce the sub-
ject and object noun phrases. The edges would signify at
which NP node the child gets substituted into, effectively
informing which is the subject and which is the object.

The common way to deal with TAG trees is by re-
peatedly performing adjunction and substitution, while
having a derivation tree as a record-keeping *roadmap’ of
how the tree is derived. However, since we can change
and delete portions of our text, the derived tree is prob-
lematic since there is no way to “un-adjoin” subtrees. We
must always refer back to the derivation tree. . In effect,
there is no point in maintaining the derived tree through-
out the generation process. Instead, the derivation tree
becomes our primary data structure, and everything else
can be derived from it on demand.

When our operators are said to perform adjunction
and / or substitution, they are simply recording the op-
eration in the derivation tree, not actually performing it.

Detivation Tree:
Derived Tree:
VP
walked
walk(w,x}
g1~ A02] AGT~_
VP
hall LN P s
b oy Surtace F
fohnG) dest(w,c) fagi(w) ol etekly wodked 1o campus.
1022]
Samantics:
“xu. walk(w,x}, john(x), dast{w,c),
campus(c), fast(w)
campus(c)

Figure 1: Making the LTAG derivation tree our main data
structure

LTAG has the following advantages for our work:

e The adjunction operation in LTAG allows flexible
incremental generation, such as subsequent inser-
tion of modifiers to further refine the message. This
is required as the system builds texts incrementally
through an iterative process.
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o LTAG provides an extended domain of locality which
allows for predicate-argument structures and fea-
ture agreements over a structured span of text that
need not be contiguous at the surface. This poten-
tially allows for the coupling of poetic features such
as rhyming across lines.

e We also adopt an extension to the formalism, Syn-
chronous Tree Adjoining Grammar (STAG), which
has been proven useful for paraphrasing purposes
Dras (1999).

¢ LTAG provides an elegant mechanism for our non-
monotonicity requirement through the use of the
derivation tree. It keeps all syntax and semantics
locally integrated at each node, and allows non-
monotonic modification of content simply by de-
leting or replacing the corresponding node.

4.2 Linguistic Resources

At the moment we are still using a very small hand-crafted
grammar and lexicon. Like most TAG-based systems,
the grammar is a collection of elementary trees, and the
lexicon is a collection of words that specify which ele-
mentary trees they can anchor. The lexicon also provides
phonetic information and lexicon stress, which is extrac-
ted from the CMU Pronunciation Dictionary.

A typical lexical entry looks something like this:
Orthography: fried
Elementary Tree(s) :ITV
Signature:F,Frier,Fried
Semantics:fry(F,Frier,Fried)
Phonetic Spelling:f,r,ayl,d

whereas a typical grammar entry looks something like
this:

I_I_l]xuvuzn Nfim

Figure 2: Grammar entry ITV: Intransitive Verb

When binding a lexical entry to an elementary tree, ar-
gument structure is preserved by unifying the signature of
a lexical entry with the signature of its preterminal node.
In the above case: (X=F, Y=Frier, Z=Fried).

4.3 Semantics

For our semantics, we follow Stone and Doran (1997) in
using an ontologically promiscuous flat-semantics (Hobbs,
1985). The semantics of a given individual is simply the



conjunction of all the semantics introduced by each lex-
ical item, given adjustments for unification of argument
structure.

Each individual is associated with a “semantic pool”,
which is simply a collection of propositions. Unlike the
communicative goals of a traditional NLG system, the
generator is under no commitment to realize these se-
mantics. The relationship between an individual’s semantic
pool and its derivation tree’s semantics is very flexible. In
particular, there is no subsumption relationship either way
between them.

Furthermore, in the beginning (the initialization phase)
all semantic pools are initialised with a copy of the target
semantics. This is ultimately what we hope our resulting
poem to “be about”. But as time progresses, each indi-
vidual in a population can evolve and mutate its own se-
mantic pool. Therefore each individual not only differs in
form, but also in content.

4.4 Integrated, Incremental Generation

As mentioned above, unity of poetry demands that se-
mantic, syntactic, and lexical information are available at
every step of decision making. This calls for an integrated
architecture, where there is no explicit decomposition of
the process. In our implementation, this is reflected by the
fact that individuals are complete structures which main-
tain all this information, and the semantic, syntactic and
lexical operation functions can be applied in any order.

Like most stochastic search algorithms, the process
starts with an initialisation phase. Provided with the input
of a target semantics and target phonetic form as men-
tioned in Section 3.1, it then creates a collection of indi-
viduals, each corresponding to a minimally complete ut-
terance that more or less conveys the target semantics.

What follows is a process of incrementally modify-
ing the utterance to satisfy the target phonetic form while
simultaneously attempting to maintain an approximation
of the target semantics, as follows:

o During the evaluation phase, a collection of separ-
ate evaluators will analyse each individual for its
surface form, phonetic information, and semantics,
and assign a score (see Section 4.5).

o After every individual has been scored, the set is
sorted. The higher ranked individuals spawn “chil-
dren”, copies of themselves which are mutated dur-
ing the next phase. These children replace the lower
ranked individuals, thus maintaining the set size.

o During the evolution phase, a collection of separate
operators will be applied randomly on the afore-
mentioned children (see Section 4.6).

84

Semantics Surface
john(), walkiw,), sieap(s.) john walked.
John slept.

Oparator: Semanlic addition
destination of walk: store
Samantics Surface
john(j}, walk{w.j), stsep(s.)} john walked 1o the slore,
slore(st).destination(w.st}  john skepl.
Operalor: lexical choica
per-nym: walk -> run, lumber, march, ...

Semantics Surtace
john(), watk(w.j), sieep(s.j) John lumbered to the store.
store(st).destinalion(w.st)} john sicpt.

]o;m-lor. pronominalization
iohn > he

Semantics Surtace
jotn(). watk(w,). sleep(s,)) John lumbered 1o the store.
slora(st),destination{w,st) e slepl.
Qparalor. cause re-ordering
topicalization
Semantics Surface

fohn(j), walkiw,), sleap(s,j) To the store John lumbered.
slora(st).destination(w,st) He slept.

A long, long seties of operations...

into the bookshop john did slowly lumber,
inside he fell into a peaceful stumber.

Figure 3: Idealized diagram of a stochastic search

4.5 Evaluators

Unfortunately, at the moment we have only implemented
an evaluator for rhythm: the metre evaluator. It works
by first dividing the stress pattern of a given utterance
into metrical feet of descending/falling rhythm. For in-
stance, the line “There /once was a /man from Ma/dras”,
has a stress pattern of (w,s,w,w,s,w,w,s). This can
be divided into feet as (w), (s, w,w), (s,w,w), (s).In
other words, this line consists of a single upbeat (the weak
syllable before the first strong syllable), followed by 2
dactyls (a classical poetry unit consisting of a strong syl-
lable followed by two weak ones), and ended with a strong
beat.

The evaluator compares the metrical configuration of
an individual with the target phonetic form by first com-
paring their number of feet, penalizing those that are either
too short or too long. Since each foot, with the exception
of the upbeat, contains exactly one strong syllable, this
effectively evaluates how close they match in number of
strong syllables. It then compares the number of weak
syllables between each corresponding foot, once again
penalizing the discrepancies, but the penalty coefficient
we impose here is less than that of the strong syllables.
This provides a natural formalization of the heuristic that
strong syllables dominate the effect of a line’s metre, and
a surplus or missing weak syllable here and there is quite
acceptable. For example, (2) sounds more like (1) than
(3) does:

(1) The /curfew /tolls the /knell of /parting /day
(2) The /curfew /tolls the /knell of the /parting /day
(3) The /curfew /tolls the /knell of /long /parting /day

4.6 Operators
‘We have currently implemented the following operators:

¢ Semantic explorer: this operator works with the se-
mantic pool of an individual. Currently it just intro-



duces random propositions into the pool, but with
the help of a knowledge-base, it could introduce
propositions that are conceptually related to what
is already existing in the pool.

¢ Semantic realizer: This operator is one of the most
important ones: it interfaces between the semantic
pool and the actual built structure. The semantic
realizer will randomly select a proposition from the
pool and attempt to realize it by:

— Selecting all lexical items that can convey the
proposition,

~ For each lexical item, selecting all elementary
trees that can be anchored by it,

— For each elementary tree, selecting all nodes
in the derivation tree where it can be applied
(either adjoined or substituted),

~ Building a list of all these possible nodes and
choosing one at random, and inserting the new
lexicalized elementary tree at that position.

e Syntactic paraphraser: This operator works by ran-
domly selecting an elementary tree in an individual’s
derivation tree and trying to apply a suitable para-
phrase pair in the manner of Dras (1999). Since all
adjunction and substitution information is kept rel-
ative to one’s parent node in the derivation tree, ad-
justing for paraphrases (i.e. changing an element-
ary tree at a certain derivation tree node) is a simple
matter of replacing the elementary tree and updat-
ing the addressing of the children.

For example, if paraphrasing a sentence from active
to passive form, this would involve exchanging the
“Active Transitive Verb” elementary tree at the root
to “Passive Transitive Verb”, and updating the sub-
stitution addresses of the subject and object noun
phrases so that the subject now moves to the end of
the verb and the object moves to the front.

5 Examples and Discussion

While our system is still in a very early stage of imple-
mentation, particularly in terms of evaluators, operators,
and linguistic resources, we already have some sample
output to present.

For comparison, we first describe our previous attempt
at implementing poetry generation, reported in Manurung
(1999). This was not a stochastic search model but ex-
haustively produced all possible paraphrases using chart
generation, while simultaneously pruning portions of the
search space which were deemed ill-formed from an early
stage. It also worked with the target specification of both
phonetic form and semantics.

As an example, given the target semantics {cat(c),
dead(c), bread(b), gone(b), eat(e,c,b), past(e)} and the tar-
get form shown in Section 3.1, but disregarding the rhyme
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scheme, the chart generator could produce, among others,
the following “limerick’:

the cat is the cat which is dead;

the bread which is gone is the bread,
the cat which consumed

the bread is the cat

which gobbled the bread which is gone

Since this system does not have the equivalent of a
semantic explorer operation (Section 4.6), the output se-

mantics is always subsumed by the target semantics. Moreover,

because the chart generator rules out ill-formed subscontitu-
ents during the bottom-up construction, the output form
always matches exactly the target form. There are no par-
tial solutions or imperfect poems.

In Example 1 below of our stochastic model, there is
an appearance of Luke, despite not being mentioned in the
target semantics. This is due to the semantic explorer op-
erator, which randomly introduces new predicates into the
semantic pool. By and large, though, the output does ap-
proximate the target semantics. Unfortunately, predicate
argument structure and agreement is currently not con-
sidered, and this limits the treatment of semantics to a
rather trivial account.

The target metre is not precisely followed, but the res-
ulting form is arguably comparable with what a human
might produce given the same task.

The resulting score is obtained from the metre evalu-
ator (Section 4.5), and is out of a maximum 1.0.

Example 1:
Input
Target semantics: Target form:
{john(l), mary(2), dog(3), bottle(4), | w,s,w,w,s,W,w,s,
love(5,6,7), slow(8), smile(9,10)} W,S, W, W,5,W,W,S
Output (Score: 0.893)
Surface: Stress:

the bottle was loved by Luke W,5,W,W,S,W,S,

a bottle was loved by a dog W,S, W, W,5,W,W,S

In Example 2, given no semantic input at all, the system
will still produce output, but since the semantic explorer
operator is still purely random, it resembles word salad.
Furthermore, the second sentence is the ungrammatical
“ran”. This is because this generation effort was termin-
ated prematurely by manual intervention, and at the last
iteration before termination the semantic realizer chose to
introduce the verb “ran”, leaving its subject empty.

Example 2:
Input
Target semantics: Target form:
none W,S,W,5,W,8,W,S,W,S,

W,S,W,S,W,5,W,S,W,S

Output (Score: 0.845)

Stress:
w’ SQW’S7 WQS’W?S,W,S,
W,8,W,S,W,W,S,W,S

Surface:
a warm distinctive season humble mel-
low smiled refreshingly slowly. ran.




Although these results can hardly be called poems,
nevertheless they succeed in showing how the stochastic
hillclimbing search model manages to produce text that
satisfies the given constraints, something very difficult for
arandom word-salad generator to achieve.

6 Related Work

The work reported in this paper is similar in some sense to
the work of, among others: NITROGEN (Langkilde and
Knight, 1998), a generator that employs a generate-and-
test model, using a knowledge poor symbolic generator
for producing candidate solutions and ranking them based
on corpus-based information for preferences, and SPUD
(Stone and Doran, 1996), a TAG-based generator that ex-
ploits opportunity arising between syntax and semantics,
allowing it to generate collocations and idiomatic con-
structs.

7 Conclusion

Poetry generation is different from traditional informative
generation due to poetry’s unity, which essentially means
the satisfying of interdependent constraints on semantics,
syntax and lexis. Despite our implementation being at a
very early stage, the sample output succeeds in showing
how the stochastic hillclimbing search model manages to
produce text that satisfies these constraints.

References

Kim Binsted, Helen Pain, and Graeme Ritchie. Children’s
evaluation of computer-generated punning riddles.
Pragmatics and Cognition, 5(2):309-358, 1997.

Margaret A. Boden. The Creative Mind: Myths & Mech-
anisms. Weidenfeld and Nicolson, London, 1990.

Marjorie Boulton. The Anatomy of Poetry. Routledge and
Kegan Paul, London, 1982.

Audrey Daly. Animal Poems. Ladybird Books, Lough-
borough, 1984.

Koenraad De Smedt, Helmut Horacek, and Michael Zock.
Architectures for natural language generation: Prob-
lems and perspectives. In Giovanni Adorni and Mi-
chael Zock, editors, Trends in Natural Language Gen-
eration: An Artificial Intelligence Perspective, num-
ber 1036 in Springer Lecture Notes in Artificial Intelli-
gence, pages 17-46. Springer-Verlag, Berlin, 1996.

Mark Dras. Tree Adjoining Grammar and the Reluctant
Paraphrasing of Text. PhD thesis, Macquarie Univer-
sity, Australia, 1999.

Charles O. Hartman. Virtual Muse: Experiments in Com-
puter Poetry. Wesleyan University Press, 1996.

Jerry Hobbs. Ontological promiscuity. In Proceedings of
the 23rd Annual Meeting of the Association for Com-
putational Linguistics, pages 61-69, Chicago, Illinois,
1985. The Association for Computational Linguistics.

Aravind K. Joshi and Yves Schabes. Tree adjoining gram-
mars and lexicalized grammars. In Maurice Nivat and
Andreas Podelski, editors, Tree Automata and Lan-
guages. Elsevier Science, 1992.

Irene Langkilde and Kevin Knight. The practical value
of n-grams in generation. In Proceedings of the Ninth
International Workshop on Natural Language Genera-
tion, Niagara-on-the-Lake, Ontario, 1998.

Samuel R. Levin. Linguistic Structures in Poetry. Num-
ber 23 in Janua Linguarum. ’s-Gravenhage, 1962.

Hisar Maruli Manurung. A chart generator for rhythm
patterned text. In Proceedings of the First International
Workshop on Literature in Cognition and Computer,
1999.

Chris Mellish, Alistair Knott, Jon Oberlander, and Mick
O’Donnell. Experiments using stochastic search for
text planning. In Proceedings of the Ninth International

Workshop on Natural Language Generation, Niagara-
on-the-Lake, Ontario, 1998.

Nicolas Nicolov. Approximate Text Generation from Non-
Hierarchical Representations in a Declarative Frame-
work. PhD thesis, Department of Artificial Intelligence,
University of Edinburgh, 1998.

Ehud Reiter. Has a consensus on nl generation appeared?
and is it psycholinguistically plausible? In Proceedings
of the Seventh International Natural Language Gener-
ation Workshop, 1994.

Mike Sharples. An account of writing as creative design.
In Michael Levy and Sarah Ransdell, editors, The Sci-
ence of Writing: Theories, Methods, Individual Differ-
ences and Applications. Lawrence Erlbaum, 1996.

Matthew Stone and Christine Doran. Paying heed to col-
locations. In Proceedings of the Eighth International
Workshop on Natural Language Generation, pages 91—
100, Brighton, 1996.

Matthew Stone and Christine Doran. Sentence planning
as description using tree adjoining grammar. In Pro-
ceedings of the 35th Annual Meeting of the Association
for Computational Linguistics, pages 198-205, Mad-
rid, Spain, 1997. The Association for Computational
Linguistics.

Joseph Weizenbaum. Eliza - a computer program for the
study of natural language communication between man
and machine. Communications of the ACM, 9(1):36-
45, 1966.

86



Towards a Theoretical Framework for Sound Synthesis'
based on Auditory-Visual Associations

Kostas Giannakis, Matt Smith
School of Computing Science
Middlesex University - Bounds Green
London N11 2NQ - United Kingdom
T: (+44) (0)181 362 6727

v F: (+44) (0)181 362 6411
k.giannakis@mdx.ac.uk; m.r.smith@mdx.ac.uk

Abstract

In this paper, we provide a critical review of research efforts that attempt to identify the high-level perceptual dimen-
sions of two distinct sensory percepts, musical timbre and visual texture. These dimensions are tested against a num-
ber of evaluation criteria in order to define appropriate sets for further empirical investigation of auditory-visual asso-

ciations.

1 Introduction

Our age is characterised by a growing interest in the
application of computers in arts. Computer technology
has become an everyday tool for creative expression in
almost every area of human activity. As a result, tradi-
tional ways of expression have been transformed and
most importantly new forms of electronic art have been
introduced. Music, both as a form of art and a field of
science, has undergone significant changes due to the
application of computers in areas such as sound analy-
sis and synthesis, composition, performance, etc.

Computers can generate sounds either for the imitation
of acoustic instruments or the creation of new sounds
with novel timbral properties. Almost 50 years of re-
search in computer music laboratories worldwide has
resulted in the development of a large body of diverse
sound synthesis techniques, e.g. additive synthesis,
subtractive synthesis, physical modelling, granular
synthesis (see Roads, 1996). Usually, a synthesis tech-
nique comprises a set of low-level parameters related
to Digital Signal Processing (DSP) modules (unit gen-
erators in computer music jargon) such as oscillators,
filters, etc. A common characteristic of synthesis tech-
niques is that a sound is represented as an object con-
sisting of a large number (hundreds or thousands) of
short sub-events that can be controlled by numerous
time-varying parameters. Inevitably a vast amount of
musical data must be defined and modified (ideally in
real time) making the process of creating a sound ob-
ject a very complex, non-musical and tedious task.
Therefore, although it is theoretically possible to create
almost any sound using one or more techniques, the
main problem with current computer sound synthesis is
how the composer interacts with the system in order to
create and manipulate sound. This problem becomes
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even more apparent and complicated when we consider
the auditory dimension of timbre and its significance as
a compositional tool. Traditional music compositional
processes have focused mainly on pitch and duration,
and treated timbre as a second-order attribute of sound
(Wishart, 1996). However, the development of com-
puter-based sound synthesis tools paved the way for a
more tractable exploration of musical timbre. Although
current sound design tools provide very sophisticated
control of the low-level parameters of sound, there is
very little investigation on how a perceptual model of
timbre can be incorporated in the design process.

In this paper, we argue that recent developments in the
understanding of our auditory mechanisms as well as
studies related to our sensory experience can provide a
useful theoretical framework for the design of sounds
in ways that have a strong cognitive basis. Our research
focuses on the mapping between perceptual dimensions
of auditory and visual percepts. We propose a meta-
phor for sound design and representation in computers,
which is based on auditory-visual associations.

First, we set out to find an appropriate set of perceptual
dimensions that can be used for the intuitive control
and manipulation of timbre. Second, we argue that a
similar set of dimensions can be constructed on the
basis of results from studies in the perception of visual
texture. Finally, we outline the design of an experiment
for the empirical investigation of the cognitive associa-
tions between timbre and visual texture.

1.1 A Visual language for Sound Synthesis

The significant role of visual communication in com-
puter applications is indisputable. In the case of music
it seems that it is very natural for musicians to translate



non-visual ideas into visual codes (see Walters (1997)
for examples of graphic scores from J. Cage, K. Stock-
hausen, 1. Xenakis, and others). In the past, associa-
tions between auditory and visual elements (e.g. Isaac
Newton’s colour-pitch associations) inspired a new
artistic movement under the title of visual music (e.g.
Wells, 1980; Goldberg and Schrack, 1986; Peacock,
1988; Whitney, 1980; Pocock-Williams, 1992). In the
domain of sound synthesis, modern systems incorpo-
rate graphical editors (e.g. for the drawing of wave-
forms') and/or on-screen interconnections of graphical
objects (e.g. oscillators, filters, etc.). However, the
utilisation of a visual language for sound synthesis is
still based more on low-level acoustic information (i.e.
time-domain and frequency domain representations)
and less on how composers actually conceive and ex-
ternalise compositional ideas that are primarily based
on high-level perceptual experiences.

It is useful here to distinguish between two modes of
conception: low-level and high-level. In the low-level
mode, a composer conceives and plans compositional
actions in terms of DSP instruments using one or more
sound synthesis techniques. Subsequently, the com-
poser may use either a low-level (e.g. Csound (Vercoe,
1986)) or a combination of low and high-level inter-
faces (as in the case of ARTIST (Miranda, 1994) where
users first design a DSP instrument and then control it
using a natural language interface). In the high-level
mode of conception, the internal musical idea may be
completely abstract (e.g. a velvety sound). Again, this
idea may be externalised by using a low-level interface,
a high-level interface, or a combination of both. How-
ever, there is no direct high-level interface to match the
composer’s abstract musical idea. In between musical
ideas and sound generated by computers lies the con-
trol of a synthesis technique. As a result, the focus of
composers has shifted from the high-level musical task
of sound design to the low-level and cumbersome
process of understanding and controlling the sound
production mechanism idiomatic to each synthesis
technique. In this study, we argue that a visual lan-
guage that is based on an investigation of auditory-
visual associations can provide a direct high-level in-
terface for the control and manipulation of sound.

As an introduction to auditory-visual associations we
present research efforts on colour-sound associations.
Previous attempts to model sound using colour (e.g.
Padgham, 1986; Caivano, 1994) were based on corre-
spondences that may exist between the physical dimen-
sions of sound and colour. For example, in Caivano’s
approach, hue is associated with pitch since both these
dimensions are closely related to the dominant wave-
lengths in colour and sound spectra respectively. In the
same manner, pure (or high-saturated) colours are as-
sociated with pure (or narrow bandwidth) tones

' E.g. the UPIC system by Xenakis (1992)
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whereas low-saturated colours (those that involve
wider bandwidths of wavelength) are associated with
complex tones and noise. Finally, colour lightness is
associated with loudness (black and white represent
silence and maximum loudness respectively with the
greyscale representing intermediate levels of loudness).
In further studies to empirically investigate the validity
of these associations, Giannakis and Smith (2000) sug-
gested that pitch and loudness can be predicted by col-
our lightness and saturation respectively (see Figure 1).
This latter study was only concerned with pitch and
loudness and involved the use of pure tones in order to
neutralise the effect of timbral richness.

Colourfulness
Weak » Strong

Ahigh -pitched  quiet
sound ¢ arresponds to a
light colour weak in
colourfulness.

Piich

Dark

Quiet » Loud

Loudness

Figure 1: Proposed space for the associations between
pitch-lightness and loudness-colourfulness based on
Giannakis & Smith (2000).

A natural extension of the above-described studies is
the empirical investigation of the associations between
dimensions of timbre and dimensions of other visual
percepts such as shape, texture, etc. Pitch and loudness
are well understood auditory dimensions and both can
be ordered on a single scale. In contrast, the perception
of timbre is a more complex and multidimensional
phenomenon. Recently, visual texture has been proven
effective when used in the visualisation of multidimen-
sional data sets (e.g. Ware and Knight, 1992; Healey
and Enns, 1998). We have also identified a number of
important similarities between timbre and visual tex-
ture that suggest further investigation of the potential
cognitive associations between these sensory percepts.
These similarities will be discussed in more detail in
the remaining sections of this paper.

1.2 The Perception of Timbre

Timbre has been defined by the American Standards
Association (1960) as "that attribute of auditory sensa-



tion in terms of which a listener can judge that two
sounds similarly presented and having the same loud-
ness and pitch are dissimilar”. This definition has been
strongly criticised (e.g. Bregman, 1990; Slawson,
1985) for being too general and ill-defined. In fact, the
term 'timbre’ is used in a variety of contexts and it is
extremely difficult to agree on a single definition. For
example, timbre may refer to a class of musical instru-
ments (e.g. string instruments as opposed to brass in-
struments), a particular instrument in this class (e.g.
violin), a particular type of this instrument (e.g. Stradi-
varius), the various ways of playing this instrument in
order to change the resulting timbre, and so on. There-
fore, any attempts to investigate the dimension of tim-
bre should clarify which aspect(s) of timbre are ad-
dressed. In this study, timbre is defined as that percep-
tual attribute which pertains to the steady-state portions
of sound. Although temporal characteristics are equally
important and necessary for a complete description of
timbre (see Grey, 1975), they are more related with the
identification of sound sources and their intrinsic be-
haviour rather than the qualitative characteristics of
timbre that are hidden in the steady-state spectrum of
sounds.

Many studies attempted to identify the prominent di-
mensions of timbre (e.g. Bismarck, 1974a,b; Grey,
1975; Plomp, 1976; Ehresman and Wessel, 1978;
Slawson, 1985; McAdams, 1999). These studies sug-
gest that there is a limited number of dimensions on
which every sound can be given a value, and that if two
sounds have similar values on some dimension they are
alike on that dimension even though they might be
dissimilar on others. However, there is no agreement
(with the exception of the dimension of sharpness) on
the dimensions of timbre that these studies proposed.
This is mainly due to the different sets of sounds that
were used as stimuli in the experiments (e.g. instru-
ment tones as opposed to synthetic tones) and the dif-
ferent time portions of the sounds that were investi-
gated (e.g. attack transients as opposed to steady
states). As a result, these findings hold very well for
the limited range of sounds that they refer to but they
lack generality of application (see also Bregman,
1990). Nevertheless, these studies suggest that timbre
depends on certain characteristics of the sound spectra.
Based on the above we can suggest that spectral mod-
els for sound synthesis can form the basis for a more
intuitive approach to sound design. Spectral models are
based on perceptual reality, can be controlled by per-
ceptual parameters, and they provide a general model
for all sounds in an analysis/synthesis form (Serra,
1997a). However, research in this area is still young
and there is no definite set of appropriate perceptual
parameters that can be used effectively in sound syn-
thesis systems.
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In the remainder of this section, we first describe di-
mensions® of timbre that have been proposed by the
above-described studies and then test them against a
number of evaluation criteria. Qur goal is to define a
set of perceptual dimensions that can be incorporated
in further investigations. These criteria can be summa-
rised as follows:

*  Empirical support. This criterion tests whether a
proposed dimension is supported by experimental
work.

* Independence. This criterion tests whether a per-
ceptual dimension is orthogonal (i.e. independent
of changes in other dimensions) or it is somehow
correlated with other dimensions {(in which case,
we can talk of composite dimensions).

*  Measurability. This criterion tests the existence of
concrete measurement methods for perceptual di-
mensions.

*  Synthesisability. This is related to the criterion of
measurability and refers to existing or potential
models of synthesis algorithms that control per-
ceptual dimensions.

1.2.1 Sharpness

Sharpness (other terms include auditory brightness,
spectral centroid, etc.) is the most prominent dimension
of timbre suggested by the above-described studies.
For pure tones, sharpness is determined by the funda-
mental frequency, i.e. the higher the fundamental fre-
quency, the greater the sharpness. In the case of com-
plex tones, the determining factors for sharpness are
the upper limiting frequency and the way energy is
distributed over the frequency spectrum, i.e. the higher
the frequency location of the spectral envelope cen-
troid, the greater the sharpness (Bismarck, 1974b).

1.2.2 Compactness

Compactness is a measure of a sound on a scale be-
tween complex tone and noise, i.e. the difference be-
tween discrete and continuous spectra. However, the
formulation of such a scale has been proven difficult
(e.g. Bismarck, 1974a). Compactness is also related to
the concept of periodicity. An ideal periodic (or har-
monic) spectrum contains energy only on exact integer
multiples of the tone’s fundamental frequency. Malloch
(1997) suggested that cepstrum analysis as a method to
measure the periodicity of a sound could also be used
in the measurement of compactness.

? Dimensions of timbre that refer to temporal char-
acteristics (e.g.) have been excluded from this discus-
sion for the reasons stated earlier.



1.2.3 Spectral Smoothness

Spectral smoothness is a dimension of timbre discussed
in McAdams (1999). It describes the shape of the
spectral envelope and it is a function of the degree of
amplitude difference between adjacent partials in the
spectrum of a complex tone. Therefore, large amplitude
differences produce jagged envelopes, whereas smaller
differences produce smoother envelopes. A formula for
the measurement of spectral smoothness can be found
in McAdams (1999).

1.2.4 Roughness

Roughness is related to the phenomenon of beats.
When two pure tones with very small difference in
frequency are sounded together, then a distinct beating
occurs that gives rise to a sensation of sensory disso-
nance (Sethares, 1999). In a series of experiments with
pairs of pure tones, Plomp (1976) found that roughness
reaches its maximal point at approximately 1/4 of the
relative critical bandwidth. For complex tones, rough-
ness can be estimated as the sum of all the dissonances
between all pairs of partials (see Sethares, 1999).

1.2.5 Discussion

As far as the criterion of empirical support is con-
cerned, the above-described dimensions are the results
of rigorous empirical investigations involving musical
and/or non-musical subjects within the limitations of
their sound stimuli. Usually, two experimental tech-
niques have been employed: multidimensional scaling
(e.g. Grey, 1975; Plomp, 1976; Ehresman and Wessel,
1978; McAdams, 1999) and semantic differential
scales (e.g. Bismarck, 1974a). The former is based on
subjects’ judgements of similarity or dissimilarity be-
tween sets of stimuli. These similarities and dissimi-
larities are then represented in the form of a geometric
configuration. In semantic differential techniques,
subjects are asked to rate sounds along bipolar scales
such as sharp-dull, hard-soft, etc. Based on the above,
we can argue that all the presented dimensions of tim-
bre satisfy the criterion of empirical support. However,
not all dimensions appear to be independent of each
other. For example, roughness has been studied as an
individual perceptual dimension and has not been part
of a larger set of orthogonal dimensions that is usually
produced by multidimensional scaling techniques. The
dimension of sharpness has been found orthogonal to
compactness in studies by Bismarck (1974a) and or-
thogonal to spectral smoothness in studies by McAd-
ams (1999). Therefore, further investigation is needed
to tell whether compactness and spectral smoothness
are orthogonal themselves or correlated in some way.
These studies have proposed ways of measuring per-
ceptual dimensions of timbre and the reader is referred
to the individual studies for more detailed information
on computational issues. Finally, these studies have
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been mainly concerned with the analysis of sounds and
there is no explicit discussion about the synthesisability
of these dimensions. However, it seems feasible to cre-
ate synthesis algorithms that are based on the meas-
urement formuli.

1.3 The Perception of Visual Texture

Even though texture is an intuitive concept, an exact
definition of texture either as a surface property or as
an image property has never been adequately formu-
lated. In this study, texture is considered as a visual
percept.

In vision research, there are two main computational
approaches to the analysis of texture: the stochastic
approach and the structural approach. The stochastic
approach relies primarily on pre-attentive viewing (i.e.
when textures are viewed in a quick glance) and is
based on statistics and the theory of probability. In the
structural approach, a texture is composed of a primi-
tive pattern that is repeated periodically or quasi-
periodically over some area. The relative positioning of
the primitives in the pattern are determined by place-
ment rules. In a different attempt, Francos et al. (1991)
describe a texture model which unifies the stochastic
and structural approaches. This model allows the tex-
ture to be decomposed into three orthogonal compo-
nents: a harmonic component, a global directionality
com?onent, and a purely non-deterministic compo-
nent".

There are a small number of studies that attempt to
identify the perceptual dimensions of visual texture. An
early study by Tamura et al. (1978) suggested coarse-
ness, contrast, and directionality as the most prominent
perceptual dimensions of texture. The same study also
constructed mathematical models for the above dimen-
sions based on extensive psychometric studies. How-
ever, the proposed dimensions were based on the
authors’ subjective views and therefore the question of
whether humans use these dimensions in texture
judgements was not adequately answered. In another
study, Ware and Knight (1992) proposed a visualisa-
tion method based on a set of texture dimensions com-
prising orientation, size, and contrast. Again, the se-
lected dimensions were not empirically derived. In
order to address this problem Rao and Lohse (1996)
performed a series of experiments that tried to identify
the high-level dimensions of texture perception by hu-
mans using a variety of experimental designs and sta-
tistical methods (e.g. multidimensional scaling, hierar-
chical clustering, principal components analysis) to
analyse and support their results. This latter study con-
firmed some of the dimensions proposed by earlier

? Note the similarity of this approach with a sound
synthesis model proposed by Serra (1997b) based on a
deterministic plus stochastic model.



studies as being prominent in texture perception. The
perceptual space proposed by Rao and Lohse (1996)
comprises the following three orthogonal dimensions:

*  Repetitiveness. This dimension refers to the way
primitive elements are placed and repeated over a
texture image. The degree of repetition (e.g. peri-
odic, quasi-periodic, random) can be specified and
controlled by placement rules.

*  Contrast and Directionality. This is a composite
dimension due to a high correlation coefficient.
Contrast is related with the degree of local bright-
ness variations between adjacent pixels in an im-
age (i.e. sharp vs. diffuse edges). The directional-
ity of a texture is a function of the dominant local
orientation within each region of texture.

*  Granularity, Coarseness, and Complexity. These
dimensions are very similar to each other (this is
supported by high correlation coefficients) and re-
fer to the size (small vs. large) and structure (fine
vs. coarse) of the texture grains.

Based on the above discussion and using the same cri-
teria as for the perceptual dimensions of timbre we can
suggest that the model proposed by Rao and Lohse
(1996) satisfies all the criteria and therefore consists a
suitable set of dimensions for the description of visual
texture. '

1.4 Conclusions and Further Work

In this paper, working towards a theoretical framework
of auditory-visual associations, we attempted to com-
bine the findings of various studies in the perception of
timbre and visual texture. Timbre and visual texture
have been shown to share some very important char-
acteristics. First, timbre and visual texture are both
multidimensional perceptual phenomena that can be
described by a small set of prominent dimensions. Sec-
ond, studies in both fields are based on a similar re-
search methodology, i.e. rigorous empirical investiga-
tions of how humans perceive and describe sensory
percepts. The findings of these studies were evaluated
using a number of important criteria. Table 1 summa-
rises the two sets of perceptual dimensions we propose
as suitable for further investigation.

Table 1: l1dentified perceptual dimensions of musical
timbre and visual texture.

imbr S Textur

Sharpness Repetitiveness
Compactness Contrast, Directionality
Spectral Smoothness Granularity, Coarseness,
Roughness and Complexity
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The next step in our research is to design and conduct
an experiment based on these sets of dimensions for
timbre and visual texture. The objective of this experi-
ment is the identification and investigation of associa-
tions (if any) between these auditory-visual dimen-
sions. Based on our discussion, a number of initial hy-
potheses for such associations can be made. For exam-
ple, sharpness may be related with contrast, periodicity
with repetitiveness, roughness with granularity and
coarseness, and finally compactness with complexity.
In this experiment, the sound stimuli will consist of
steady-state timbres varying systematically in one or
more dimensions. Similarly, a collection of textures
with varying dimensions will be used for a timbre-
texture association task. These textures can be either
generated by computer-based texture synthesis algo-
rithms or they can be selected from larger texture data-
bases that are extensively used in texture perception
research (e.g. Brodatz textures). The results will pro-
vide significant evidence on the analogies between the
dimension sets proposed in this paper and will contrib-
ute towards the development of a cognitively useful
visual language for sound synthesis.
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Abstract

WASP is a forward reasoning rule-based system that takes as input data a set of words and a set of verse patterns and
returns a set of verses. Using a generate and test method, guided by a set of construction heuristics obtained from
formal literature on Spanish poetry, the system can operate in two modes: either generating an unrestricted set of verses,
or generating a poem according to one of three predefined structures (romance, cuarteto, or terceto). Five different
construction heuristics are tested over different combinations of two sets of initial data, one obtained from a classic
poem and one obtained from a paragraph of a doctoral thesis in linguistics. A set of numerical parameters are extracted
from each test, and evaluated in search of significant correlations. The aim is to ascertain the relative importance of size
of initial vocabulary, choice of words, choice of verse patterns and construction heuristics with respect to the general

acceptability of the resulting verse.

1 Programs that Write Poetry Auto-
matically

The creation of programs that write poetry automatically
has been a recurring dream within the Al community, but
it has always been assigned a very low priority. Practi-
cal applications in the area of natural language process-
ing, such as natural language database interfaces, infor-
mation retrieval and extraction, automatic translation, and
dialogue systems provide more immediate rewards.

On one hand the automatic generation of poetry in-
volves advanced linguistic skills and common sense, two
of the major challenges that face Al in general. On the
other hand it involves an important amount of creativ-
ity and sensibility. These ingredients are very difficult to
characterise formally, and very little is known about how
they might be treated algorithmically.

On the positive side, poetry has the advantage of not
requiring exaggerate precision. If one accepts that the
main aim of a poem is to be pleasing rather than convey-
ing a meaningful message, the general problem becomes
tractable. The present paper considers how the different
parameters that can be controlled by the generating pro-
gram affect the acceptability of the resuit. The set of pa-
rameters to be monitored are: size of initial vocabulary,
choice of words, choice of verse patterns, and construc-
tion heuristics. The elusive concept of acceptability of
a verse is determined by resorting to hand evaluation by
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a team of volunteers. By searching for correlations be-
tween the strategy and initial data used to generate a verse
and the positive or negative evaluation of the resulting
verse, information is obtained about the relative relevance
of these parameters to the end result.

1.1 Guiding Heuristically the Random Gen-
eration of a Verse

Poems written by combining randomly a given set of words
rate very poorly with discerning readers. For the words to
make sense together, they must be organised according to
particular patterns. A possible course of action would be
to provide the system with adequately rich lexicon, syntax
and semantics for the language involved. Results obtained
with inadequate formalisms are too rigid and tend to have
a mechanical ring to them. The system presented in this
paper resorts to a radical simplification of the underlying
linguistic skills. The exhaustive knowledge approach is
abandoned in favour of a heuristic engineering solution.
Only the barest outline of a grammatical outline is pro-
vided (in the form of a verse pattern) to ensure syntac-
tic correctness. Semantic correctness is not enforced, on
the understanding that creativity in poetry relies to a cer-
tain extent on daring transgressions (such as imaginative
metaphors). The aim of the paper is to establish whether
acceptable verse may be obtained by controlling other
parameters within these initial restrictions. The hope is



to identify whether the elementary ingredients considered
can be manipulated smartly enough to produce a pleasing
phrase.

1.2 The Effect of the Selection of Initial Data

Under these restrictions, Spanish has been chosen as a test
language. The phonetics of Spanish are quite straight-
forward to obtain from the written word. Most letters in
Spanish sound the same wherever they appear in a piece
of text, so the metrics, or the syllabic division, of a verse
can be worked out algorithmically (1). Spanish scholars
have a love for rules, and there is a good set of formal
rules (2) describing the conditions that a poem must fulfil
in order to be acceptable.

Given such a set of rules, the challenge becomes a
simple problem of transforming the given evaluation rules
(designed to be applied to an existing poem in order to as-
certain its acceptability) into the corresponding construc-
tion rules. These rules have to be applied to an initial set
of data consisting of:

e a given vocabulary (given a set of words, the poet
will choose only some of them, this process of se-
lection must surely play a role in the quality of the
final result), and

¢ a particular choice of ways of combining the chosen
words (word order, frequency of adjectives, length
of verse...) represented as a set of verse patterns.

The selected vocabulary is a set of words that includes
extra information about part of speech roles, number of
syliables of each word, position of stressed syllables, and
rhyme. The system cannot handle morphological varia-
tions, so it considers the singular and plural, masculine
and feminine forms of a word as totally distinct (and dif-
ferent tenses of a verb also). This decision reduces the
complexity of the generation process to pattern match-
ing between word categories and verse patterns, but it has
consequences on the quality of the resulting verses.

The set of valid words is stored as facts of the form:

(word (cual luz)
(numsil 1)
(acento 1)
(emp 0)
(term 0)
(cat susfem)
(rima uz))

where:

e the field cual is the word itself, to be used as key
when retrieving the rest of the information

o the field numsil shows the number of syllables of
the word

o the field acento shows the position of the stressed
syllable from the beginning of the word
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¢ the field emp indicates whether the word starts with
a vowel (required to scan a verse)

¢ the field t ermindicates whether the word ends with
a vowel

o the field rima contains the rhyme of the word

Each verse pattern is a list of tags, and each tag acts as
place keeper for a possible word of the verse. The tag is
actually a string that represents information about part of
speech, number, and gender of the word that would stand

in that particular place in the pattern.
This information is stored as facts of the form:

(patron prep artmas adjmas susmas adjmas adjmas)

where patron is the generic fact name and the following
items are tags for the categories of the words in a particu-
lar verse.

Patterns act as seed for verses, therefore a pattern de-
termines the number of words in a verse, the particular
fragment of sentence that makes up the verse, and the
set of words that can be considered as candidates for the
verse. By following this heuristic shortcut, WASP is able
to generate verses with no knowledge about grammar or
meaning.

1.3 Comparing Different Strategies

This paper presents the results of several experiments de-
signed to determine the relative merits of different strate-
gies for generating verses. These strategies are considered
with respect to several parameters.

A first group of strategies plays a role in determin-
ing simply the number of verses generated from a given
set of initial data. These strategies can be tested by gen-
erating simple lists of independent verses and evaluating
the acceptability of the results. The analysis of the results
should determine optimal choices for: (1) the method used
to avoid having repeated words in a given verse or poem,
and (2) the specific definition used to validate each suc-
cessive draft of a verse.

A second group of strategies is expected to affect the
quality of complete poems generated by the system. These
strategies are tested by attempting to generate a number of
poems for each strophic form and evaluating the results.
Conclusions should provide information about: (1) effect
of length of vocabulary, (2) effect of number of patterns,
(3) effect of ’informed’ assignment of verse borders (4)
effect of interaction between patterns and words in the
vocabulary (5) effect of extending the words of the vo-
cabulary beyond those present in the initial data

2 A Brief Introduction to Spanish Po-
etry

This section outlines a few concepts related to Spanish
poetry and metric that play a role in the definition of the



WASP system. For more extensive treatment, see (2). A
good summary in English is available at (3).

2.1 When and Why a Verse is Valid

Formal analysis of poetry considers the position of stressed

syllables over a verse. For the verse to sound pleasing, the
prosodic accents must be distributed according to precise
patterns. This distribution of prosodic patterns provides
the quality of being pleasant to the ear.

For instance, for an eleven syllable long verse to sound
pleasing, it needs some of the stressed syllables of its
words to fall on certain specific positions. It is not neces-
sary for the stressed syllables of every word in the verse
to be in specific positions. It is enough for certain strate-
gic syllabic positions within the verse to have a stressed
syllable. The literature (2) requires stressed syllables to
fall either on positions 1, 6 and 10; 2, 6 and 10; 3, 6 and
10; 4,6 and 10; or 4, 8 and 10. In the following examples,
stressed syllables falling in key positions are underlined:

en verdes hojas vi que se tornaban 2,6, 10
nunca fue corazén,; si preguntado 3,6,10
De tan hermoso fuego consumido 4,6,10
soy lo demds, en lo demds soy mudo 4,8,10

2.2 Synaloepha: Counting the Number of
Syllables

A metric syllable does not always match the correspond-
ing morphological syllable. When a word ends in a vowel
and the following word starts with a vowel, the last syl-
lable of the first word and the first syllable of the follow-
ing word constitute a single syllable. This is known as
synaloepha (see (2), or (3) for an overview in English),
and it is one of the problems that we are facing. For in-
stance, the following verse

bastete amor lo que ha por mf pasado
13 syllables

turns into:

bdstete - amor lo que - ha por mi pasado
11 syllables

because it shows two instances of synaloepha (marked
in bold).

2.3 Building Poems

A poem may be an unstructured sequence of verses, but
this paper is concerned specifically with poems that make
use of known strophic forms or stanzas (particular pat-
terns of structuring the verses of a poem according to
verse length, metre, and rhyme). In such cases, the formal
rules that govern the chosen strophic form can be used to
guide the generation process.
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A poem may consist of a single stanza or several stan-
zas together (in which case the different stanzas are usu-
ally separated by an empty line).

For the present purposes, only three of the simplest
strophic forms need be considered:

1. romances, a stanza of several verses where all even
numbered verses rhyme together and the rhyme of
odd verses is free

2. cuartetos, a stanza of four verses where the two
“outer verses rhyme together and the two inner verses
rhyme together

3. tercetos encadenados, a longer poem made up of
stanzas of three verses linked together by their rhyme
in a simple chain pattern ABA BCB CDC...

The following are elementary examples of these stan-
zas:

Type 1: Romance

Por el Val de las Estacas
pasé el Cid a mediodia.

En su caballo Babieca

muy gruesa lanza trafa.

Va buscando al moro Abdala
que enojado le tenia.

The rhyme of each verse is marked in bold.

Type 2: Cuarteto

Muérome por llamar Juanilla a Juana,
que son de tierno amor afectos vivos,
y la cruel, con ojos fugitivos,

hace papel de yegua galiciana.

The different rhymes of each verse are marked in bold and
italic.

Type 3: Tercetos encadenados

Alma a quien todo un dios prisién ha sido,
venas que humor a tanto fuego han dado,
medulas que han gloriosamente ardido

su cuerpo dejar4, no su cuidado;

serdn ceniza, mas tendrdn sentido;

polvo serdn, mas polvo enamorado.

These three types have been chosen because each shows
a different structural characteristic that may affect the over-
all result. Type 1 presents a recurring rhyme that flows
all along the poem. It uses only one rhyme, so many
words that rhyme together are required for an acceptable
result (our starting data have proven to be poor choices
in this respect). Type 2 presents a very simple but rigid
structure. It stands for the simplest possible stanza with
enough complexity to be distinguishable from prose (the

simplification employed with respect to syntax/semantics



makes it difficult for shorter poems to sound acceptable).
Type 3 presents a simple structure that recurs throughout
the poem, but with the rhyme changing slowly as it moves
down.

3 System Description

WASP (Wishful Automatic Spanish Poet) is a forward
reasoning rule-based system that takes as input data a set
of words and a set of verse patterns and returns a set of
verses. Since the aim of the experiment is to compare
different methods of generation, WASP is in fact a set of
programs, each one applying a different strategy to gen-
erate verses. The different programs that integrate WASP
are written in CLIPS (4), a rule-based system shell devel-
oped by NASA.

WASP operates over a data structure defined as the
draft of the current verse. This structure is a list of words
that is built incrementally. The algorithms used by WASP
follow a generate and test pattern. At each stage of the
generation process the draft is tested to ensure that the
metric conditions are being met. The moment conditions
are violated, the draft of the current verse is rejected and
the system starts a draft for a new verse.

3.1 Initial Data

The system requires a set of initial data to start the gen-
eration process: a vocabulary and a set of patterns. The
choice of vocabulary greatly determines the tense and the
topic of the poem. The set of verse patterns can be con-
sidered as a set of descriptions of past cases, in the sense
that it encodes information about important parameters
(number of words per verse, rate of adjectives per noun,
tense...) while allowing a certain leeway in terms of spe-
cific content (particular words) of the present solution.

The set of initial data is obtained as follows. Given a
block of text, it is split into fragments of shorter length.
All the words in the poem are included in the vocabulary.
The resulting fragments of the original text are used to
produce the reference patterns. This is done by checking
each word of the fragment in the vocabulary and substi-
tuting for it the corresponding category.

When an actual poem is used as the original block of
text, the existing division into verses can be used. Alter-
native divisions can be used to test whether this particular
decision of the poet plays a significant role in the quality
of the results.

In order to compare the effect of the choice of vocab-
ulary and the choice of verse pattern, two distinct set of
data are used to test the programs. The first set of data is
obtained from a classic Spanish poem, a Sixteenth Cen-
tury sonnet by Garcilaso de la Vega (5). The second set of
data is taken randomly from an academic work in the field
of linguistics. A certain paragraph (6) of equivalent size is
chosen, all the words in the paragraph are included, and a
set of reference patterns is built by splitting the paragraph
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into chunks of roughly the required size and encoding the
necessary information.

3.2 Basic Algorithm

Generation starts with the selection of an appropriate verse
pattern, based on criteria designed to ensure that there is
a minimum of coherence across verse boundaries. From
this pattern an empty draft of the current verse is gener-
ated.

The elementary generation cycle can be described as
follows:

1. randomly choose from the given vocabulary a word
that matches the first category of the current verse
pattern

2. append it to the draft of the current verse

3. eliminate the corresponding category from the cur-
rent verse pattern

4. test whether the resulting verse draft satisfies the
conditions of the strategy being used — and the re-
quired length of verse in syllables

5. if the conditions are satisfied, iterate from 1.

6. verses that either violate the conditions, or over-
shoot or fall short of the given number of syllables
are rejected

3.3 Strategies for Single Verse Generation

In order to appreciate more clearly the effect on single
verse generation, the relevant experiments are carried out
without the additional restrictions that determine poem
generation. In practical terms, this means that the verse
pattern used for each verse is chosen at random from the
initial data.

3.3.1 Avoiding Word Repetition

Three different possibilities are considered:

1. simple random combination of the given words into
the given patterns

2. ensure no word appears twice in the same poem by
eliminating words that have already been used

3. ensure no word appears twice in the same poem
by noting down words that have already been used
(this allows a rough procedure of garbage collec-
tion to avoid losing words used in failed attempts)

Strategy 2 simply deletes used words from the set of
available data. If the current draft is subsequently re-
jected, the words used so far are lost and cannot be used
elsewhere.

Strategy 3 makes a note of words that have been used
in the current draft and returns them to the set of available
data if the draft is rejected.



3.3.2 Validating Successive Drafts of a Verse
Three different possibilities are considered:

1. simply test that the number of syllables is yet smaller
than the required length

2. make sure stressed syllables of the words chosen at
each step fall into the positions deemed acceptable
by the formal rules

3. implement the previous strategy (make sure stressed
syllables of the words chosen at each step fall into
the positions deemed acceptable by the formal rules)
but taking into account the possibility of synaloepha
occurring between words

WASP aims for a generic verse length of eleven syl-
lables. For strategies 2 and 3 that apply formal rules for
acceptability in terms of position of stressed syllables, we
require that the stressed syllable of any word added to a
partially completed verse falls either on positions 1, 2, 4,
6, 8 or 10.

3.4 General Strategy for Generating Poems

The generation of poems requires two additional issues
to be solved, both related to the restrictions imposed on
each verse by the previous verses of the poem. One con-
cerns the choice of verse pattern to use for the next verse.
This issue is independent of the particular strophic form
sought. The other concerns the rhyme to use for the next

verse, and is governed by the particular rules of each strophic

form.

3.4.1 Selecting Verse Pattern for the Next Verse

The selection of a verse pattern for the next verse of a
poem must take into account the need for coherence be-
tween verses across verse boundaries. When operating
in the complete poem mode, WASP stores all the verses
generated so far, numbered according to their order in the
poem. The verse pattern for the next verse is chosen ac-
cording to the following criteria: the first word category
of the selected pattern must occur in some verse pattern
of the initial data immediately after the last word category
of the previous verse. For instance, if the pattern used
for the previous verse was (patron adjmas),
any verse pattern of the form (patron susmas...)
is acceptable provided there is a third verse pattern of the
form (patron adjmas susmas...).

Because verse patterns are produced with no discrimi-
nation between patterns that correspond to beginning, end,
or middle sections of a sentence, the system must allow
the selection of a verse pattern at random if this condi-
tion is not met. This solution is an important source of
errors in the final results, and it is an obvious candidate
for refinement in subsequent versions of the system.
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3.4.2 Selecting Rhyme for the Next Verse

The selection of a rhyme for the next verse imposes an
additional restriction on the set of verse patterns that are
acceptable candidates for continuing a given poem. As
well as fulfilling the condition outlined above, the verse
pattern for the next verse must end in a word category for
which there is a word in the vocabulary with the required
rhyme. The simplest method of achieving this is to se-
lect the required word and then find a verse pattern that
matches the restrictions imposed on its initial word cate-
gory (by the previous verse) and on its final word (already
chosen at this stage).

The system is designed to generate poems using three
different strophic forms: romances, cuartetos, and terce-
tos encadenados.

For all three cases, the first rhymes are fixed by two
initial random choices (selection of a verse pattern to start
with, and selection of an end word for that particular pat-
tern). This is because there is no initial reference. Once
the first verses have been established, WASP ensures that
the following verses fit the corresponding stanza (if the
starting data and the verse construction strategies will al-
low it).

In the case of romances and tercetos encadenados the
conditions are formulated using a modulo operation on
the verse number, therefore the system has the theoreti-
cal potential of generating poems of any length of verses.
The actual restrictions faced by the system are imposed
by the initial vocabulary (both by the number of rhymes
included and by the sheer number of words, since no word
repetition is accepted within the same poem).

For cuartetos, the system can only generate a single
stanza of four verses.

4 Evaluation of Results

Three different sets of experiments were carried out.

In each experiment of the first set, the versions of the
system corresponding to different strategies for avoiding
word repetition were compared.

The experiments of the second set were designed to
evaluate which of the strategies for validating the current
draft of a verse gave better results.

For both the first and the second sets of experiments,
each competing version of the system attempted to gener-
ate a thousand verses, operating in single verse mode. A
classic Spanish poem was used to provide initial data, and
division of the poem into verses was respected.

The third set of experiments was carried out using
only a version of the system that combined the strate-
gies that had obtained better results over the previous sets.
Comparisons were established between results obtained
for different combinations of initial data. In this set, each
competing version attempted to generate twelve poems
for each one of the possible strophi¢ forms.



4.1 Avoiding Repetition over Single Verses

Table 1 shows the average percentage results for each
strategy. In each case, the program was allowed to carry
out 1000 iterations, using a generate and test method. For
this part of the evaluation, verse correctness was evaluated
automatically using a logic programming application for
the analysis of Spanish verse (7). The evaluating applica-
tion applies strictly the formal rules found in the literature,
and validates a verse if it fulfils the required conditions.
As such, it constitutes an impartial judge of the correct-
ness of each verse.
The following strategies are compared:

1. simple random combination
2. eliminate used words

3. annotate and replace used words

Table 1: Avoiding Verse Repetition

Version | % Generated { % Correct { % Corr. Gen.
1 35.50 12.90 36.34
2 0.30 0.20 66.67
3 38.40 15.40 40.10

The results for strategy 1 show that, under the mini-
mum of restrictions, only 35 % of the attempts actually
generate a verse. This implies that, if strategy 2 is ap-
plied, 75 % of the times words are being used up in vain.
This matches up with the observed results, where genera-
tion drops drastically after the first few attempts. Strategy
3, providing a reasonable solution to word repetition, im-
proves the results of strategy 1 both in terms of number
of verses generated altogether and in terms of number of
correct verses generated.

For the rest of the experiments, strategy 3 is used.

4.2 Validating Current Draft of a Verse

Table 2 shows results to the second set of experiments.
This set was carried out in a similar manner as the above,
and evaluated in the same way.

The strategies compared in this case were:

1. simply count the number of syllables

2. count number of syllables and check position of
stressed syllables

3. count number of syllables and check position of
stressed syllables taking synaloepha into account

Strategy 3 referred to in this table is actually the same
as strategy 3 of table 1, and results for it are given again
only for ease of reference. The table shows that impos-
ing additional restrictions on the validation of the current
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Table 2: Validating Verse Draft

Version | % Generated | % Correct | % Corr. Gen.
3 38.40 1540 40.10
4 38.90 18.80 48.33
5 46.60 33.60 72.10

draft does not result in a smaller number of verses be-
ing generated. In fact, the number of verses generated
increases steadily as more restrictions are applied. Fur-
thermore, the increase is noticeable greater when the com-
plete set of restrictions is applied. This can be attributed
to the fact that the initial data correspond to a poem that
actually fulfils these conditions strictly. The given vocab-
ulary, and the given patterns perform optimally for the
complete set of restrictions.
For the rest of the experiments, strategy 5 is used.

4.3 Poem Generation and Initial Data

Exhaustive tests were carried for different combinations
of the initial data, using generating strategy S on all cases.
The following parameters were combined:

o different sources for initial data (poetic or academic
text)

o extensions of the vocabulary beyond the original
text

¢ allowing repetitions of words other than nouns, ad-
jectives, adverbs or verbs

o different division of text into patterns

¢ providing two possible ways of dividing the origi-
nal text into patterns as part of the initial data

e mixing the vocabulary from one text and the pat-
terns of the other

A total of 504 trials were carried out (14 combina-
tions, and 36 poems, 12 for each strophic form). Many
of the resulting poems were either syntactically incorrect,
or too short to be considered as poems. For this reason,
evaluation took place in two stages.

During the first stage every resulting poem was as-
signed three numbers: (1) number of verses of the poem,
(2) a value for its syntactical correctness, and (3) a value
for its esthetical rating. These values are used as a first
stage of filtering to avoid wasting evaluation effort on
verses that are too short or nonsensical verses unless they
have a certain redeeming feature in an esthetical sense.
Values were assigned on first inspection by the author.

Syntactical correctness was evaluated using the fol-
lowing scale:

1. the poem is mostly nonsense



2. the poem contains syntactic nonsense

3. the poem can be parsed as a weakly connected frag-
ment of a sentence

4. the poem can be parsed as a strongly connected
fragment of a sentence

5. the poem can be parsed as a connected whole

A fragment is considered weakly connected if it can
be parsed in some way as a set of independent sentences.
A fragment is considered strongly connected if at least
some of the verses join together into sentences that make
syntactic sense.

Esthetical rating was subjectively evaluated on the fol-
lowing scale !:

1. ugly
2. mediocre
3. acceptable
4. pleasing

5. very pretty

Table 3 shows the average results for each combina-
tion over the three different types of strophic form.

Poems rating lower than 3, 3, 3 on such a scale were
not considered for the second stage of evaluation. This
left a total of 45 poems to evaluate.

The second stage of evaluation was carried out by a
team of volunteers. Evaluators were given a list of the
45 poems and they were asked to select the best five, and
to assign them an order of preference. Each poem was
assigned five points if rated first by some evaluator, four
if rated second, three if rated third, two if rated fourth and
one if rated fifth. The totals were added and the poems
were ordered according to the resulting rating.

4.4 Discussion of the Results

The results contain an enormous amount of information,
only part of which has been mined at this stage. However,
some very interesting conclusions can be drawn from the
resulting facts.

Since it had been assumed from the start that if the
choice of words and/or the choice of patterns play an im-
portant role in determining the quality of a poem, then
there should be considerable differences between WASP
poems obtained from one or the other set of data (poetic
or academic). This hypothesis is validated by the fact that
only six of the 45 acceptable poems were generated using
the academic set of initial data.

! Allowances were made for the fact that verses were the result of a
computer program. The scale of 1 to 5 is taken as the bottom end of a 1
to 10 scale for human-generated poems.
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Table 3: Validating Verse Draft

Combin. | Rating | Romance | Cuarteto | Terceto
1 Num
Synt
Aesthet
2 Num
Synt
Aesthet
3 Num
Synt
Aesthet
4 Num
Synt
Aesthet
5 Num
Synt
Aesthet
6 Num
Synt
Aesthet
7 Num
Synt
Aesthet
8 Num
Synt
Aesthet
9 Num
Synt
Aesthet
10 Num
Synt
Aesthet
11 Num
Synt
Aesthet
12 Num
Synt
Aesthet
13 Num
Synt
Aesthet
14 Num
Synt
Aesthet
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Overall, only nine of the combinations that were tried
managed to produce a poem that went into the final se-
lection. Of these, only one of them was not using an ex-
tended version of the original vocabulary. However, that
very one did produce the top scoring poem according to
the evaluators. This suggests that in general terms the
gystem performs better with a wider choice of vocabu-
lary, unless the random factor in the generation process



actually comes up with a poem that closely mirrors the
original one (which is what happened in this case). While
it is clear that recovering the original poem is bound to
give an acceptable result, this is hardly a desirable solu-
tion.

Two of the combinations that produced most top scor-
ing poems were working with vocabularies that had been
extended with extra copies of words other than nouns,
adjectives, adverbs or verbs (prepositions, articles, pro-
nouns...). These words tend to appear more often than
others in poems, and, being usually short, play an impor-
tant role as cohesive element for longer words that are
more difficult to fit into the metric.

Different divisions of the original text into patterns
has no great influence on the result once the vocabulary
has been extended. This is because an extended vocabu-
lary contains words of different sizes for the same cate-
gories. With limited vocabularies, altering the length of
verse patterns may result in the desired length not being
achievable by combinations of the given words into the
shorter patterns.

Mixing data from two different pieces of text (patterns
of one, vocabulary of the other) can have drastic negative
effects if there is no match between the categories that
appear in the verse patterns and the categories represented
in the vocabulary. However, it produces very interesting
results from an aesthetic point of view. While no way
has been found yet to evaluate this fact numerically, it has
been observed informally by many of the evaluators and
it should be taken into account for further analysis.

4.5 Further Word

The present experiment is intended as preliminary work
in a long term project of developing a knowledge based
poem generator in Spanish. The results obtained will help
to discriminate between the different possible strategies.
Additional knowledge and heuristics governing the selec-
tion of appropriate verse patterns to follow a given verse
might be used either to guide poem construction or to
eliminate poor results.

Several interesting insights have been obtained from
the analysis of the results presented here. Such cases
have been mentioned in the body of the paper wherever
appropriate. Better heuristics must be developed for the
selection of appropriate pattern for the next verse. Verse
patterns should be distinguished in some way according
to whether they are beginning, middle or end sections of
a sentence. The evaluation procedures are still subject to
a great deal of improvement. In a matter where subjec-
tive opinion of the reader, special effort must be made to
devise an evaluation procedure that provides a rigorous
rating without interfering with the natural attitude of the
evaluator as reader of a poem.
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Abstract

The use of Evolutionary Computation approaches to create images has reached a great popularity, leading to the appearance of a
new art form — Evolutionary Art — and to the proliferation of Evolutionary Art Tools. In this paper we present and make an assessment of
one of these tools: NEvAr. We also systematise and describe the work methodology currently used to generate images. When working
with NEvAr we focus on the reuse of useful individual, which we store in an image database. The size of this database, and the importance
of its role, led us to the development of automatic seeding procedures, which we also describe.

1 Introduction

In the past few years, a new Al area has begun to emerge,
usually named Creative Reasoning. Several aspects con-
~ tributed to the growth of interest in the study of computa-
tional creativity: artificial creative systems are potentially
effective in a wide range of artistic, architectural and en-
gineering domains where conventional problem solving is
unlikely to produce useful solutions; their study and de-
velopment may contribute to the overall understanding of
the mechanisms behind human creativity; in some ways,
the study of creativity can be viewed as the next natural
step in Al, considering that we already can build systems
capable of solving tasks requiring intelligence, can we
build systems that are able to solve tasks that require
creativity?

Models of the human creative process (e.g. Dewey -

(1910), Guilford (1968), Wallas (1926) and De Bono
(1986)) may constitute an important source of inspiration
to the development of artificial creative systems. Human
creativity, however, isn’t the only source of inspiration
available. When looking at nature, we can see all living
species in a permanent struggle for life. Long term sur-
vival is connected with the capability of adapting to envi-
ronmental changes. The survival of the fittest individuals
and the recombination of their genetic material is the key
element of the adaptation process. The recombination of
“good pieces” of different individuals can give rise to
new and better ones. Furthermore, the slight modification
of individuals’ genetic code, can also increase the quality
of the individuals.
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Over the time, natural selection was capable of producing
an incredible amount (and variety) of solutions, species,
to a common problem, survival. Thus, there is no doubt
that the evolutionary process is a way of producing inno-
vative solutions (Goldberg, 1998). Whether these solu-
tions can or cannot be considered creative, is a different
question, and the answer depends on the way we define
creativity. Therefore, and since no uncontroversial glob-
ally accepted definition exists, we can consider this to be
an open question. However, our current standing is that
these solutions can be considered creative.

In the past few years, two Evolutionary Computation
(EC) approaches (Genetic Algorithms (GA) and Genetic
Programming (GP)) have been used as a mean to imple-
ment computational creativity, resulting in the appearance
of a set of new applications in areas such as music and
image generation, architecture and design.

GA are the most common EC approach in the musical
field, some examples are the works of Horowitz (1994),
Ralley (1995), Biles (1994), Jacob (1995). However, and
in spite of the numerous applications, Wiggins et al
(1999), which have studied the performance of this type
of systems, defend that these approaches are not ideal for
the simulation of human musical thought. In the field of
image generation, GP is the most used approach. Exam-
ples of works in this field are: Dawkins (1987), Sims
(1991), Todd (1993), Rooke (1996), which resort to GP to
evolve images, and Baker (1993), where GP is used to
evolve human faces. GP has also been successfully ap-
plied in the fields of design (Bentley, 1999; Graf, 1996)



and animation (Sims, 1991; Angeline, 1996; Ventrella,
1999).

Due to the difficulty of creating an evaluation function in
domains such as image or music generation, most of the
above mentioned systems use Interactive Evolution (IE).
In IE systems the user evaluates the individuals, thus
guiding evolution. In the musical field we can already
find several systems that resort to automatic evaluation
(e.g. Horner et al (1991), Mclntyre (1994), Spector (1994,
1995), Hodgson (1996,1990,1999), Papadopoulos et al
(1998)). In image generation, the picture is quite differ-
ent: as far as we know there has been only one attempt to
automate fitness assignment, the work of Baluja et al
(1994). However, the results produced by this system,
which uses neural networks to evaluate images, were
disappointing.

The core subject of this paper is the assessment of NEvAr
as a tool. In Section 2 we make a brief overview of the
previous work in Evolutionary Art Tools, focusing on the
most prominent systems. In Section 3, we introduce
NEvAr and describe the used evolutionary model. Section
4 concerns the assessment of NEvAr and the description
of the work methodology currently employed. This meth-
odology gives emphasis to the reutilization of good indi-
viduals, which are stored in a database. The difficulties of
managing an increasingly large database led to the study
of seeding procedures, which will be described in Sec-
tion 5. Finally, in the 6th section we make some overall
remarks and draw some conclusions.

2 State of the Art

In the past few years, the use of IE to the generation of
images has achieved a great popularity. The source of
inspiration of most of these applications can be found in
Richard Dawkins book “The Blind Watchmaker”, in
which the author suggests the use of a GA to evolve the
morphology of virtual organisms, biomorphs. In these
systems, the evolution is guided by the user accordingly
to hers/his aesthetic criteria. This inspired the works of K.
Sims (91) and W. Latham et al (92), which can be con-
sidered as the first applications of IE in the field of the
visual arts, and are usually considered as the most influ-
ential works in this area. The success of these approaches
has led to the emergence of a new art form, “Evolutionary
Art” (EA), and also to the proliferation of IE applications
in this field, usually called Evolutionary Art Tools.

In spite of the increasing number of this type of applica-
tions, few are the ones that can be compared favourably
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with the above mentioned works. The vast majority of
these applications adds nothing new to these works, and
are, frequently, inferior both in terms of potential and
results. Moreover, few are the ones that have been thor-
oughly tested, i.e. in most cases there was no attempt to
use them to create art. Therefore, it seems safe to say that
the classification of these applications as Evolutionary
Art Tools is misguiding, and that few are the applications
that deserve this name. In this restricted set, we can in-
clude the works of: K. Sims (91), W. Latham and S. Todd
(92), S. Rooke (96), Vetrella (99). The description of the
characteristics of these systems and the analysis of their
potential is clearly beyond the scope of this paper. These
systems share many features, most notably: they resort to
GP, use IE and have been successful in the generation of
visual artworks.

3 NEvAr

NEvAr (Neuro Evolutionary Art) is an evolutionary art
tool, inspired in the works of K. Sims (1991) and R.
Dawkins (1987). It allows the evolution of populations of
images from an initial one, and resorts to IE. In this sec-
tion, we will make a brief description of the evolutionary
model used in NEvAr. NEVAr is in many ways similar to
the application developed by K. Sims (91), namely in
what concerns the representation of the individuals and
the used genetic operators. Therefore we won’t make a
description of these aspects.

For the current purpose, it is enough to say that in NEvAr
the individuals are represented by trees. The genotype of
an individual is a symbolic expression, which is con-
structed from a lexicon of functions and terminals. In
NEvVAr, we use a function set composed mainly by sim-
ple functions such as arithmetic, trigonometric and logic
operations. The interpretation of a genotype results on a
phenotype, i.e. an image. All the genetic manipulations
(e.g. crossover, mutation) are performed at the genotype
level. In Figure 1, we present two images generated with
NEvAr and in Figure 2 some images generated by the
mutation and crossover of the genetic code of these im-
ages.

Figure: 1 -Two images created with NEvAr.
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Figure 2: The top row images were created through the
mutation of image a of Figure 1. The bottom row images
result from the crossover of images a and b of Figure 1.

As the images of Figure 2 show, the mutation and cross-
over operations can produce interesting and unexpected
results. The high plasticity, which is inherent to the used
representation and, to some extent, to GP approaches,
allows the generation of radically different, yet fit, phe-
notypes from similar genotypes.

3.1 The Model

In NEvAr, the assignment of fitness is made by the user
and, as such, she/he has a key role. The interaction of
human and computer poses several problems (e.g. limited
population size, limited runs). The fact that NEvAr is an
interactive tool has the advantage that a skilled user can
guide the evolutionary process in an extremely efficient
way. She/he can predict which images are compatible,
detect when the evolutionary process is stuck in a local
optimum, etc. In other words, the user can change its
evaluation criteria according to the context in which the
evaluation is taking place.

In the design of NEvAr’s model, we took under consid-
eration these idiosyncrasies. In Figure 3, we show the
model of NEvAr. From here on, we will call experiment
to the set of all populations, from the initial to the last, of
a particular GP run. NEvAr implements a parallel evolu-
tionary algorithm, in the sense that we can have several
different and independent experiments running at the
same time. It is also asynchronous, which means that we
can have an experiment that is in population 0 and an-
other one that is in population 100. Additionally, we can
transfer individuals between experiments (migration).
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Figure 3: The evolutionary model of NEvAr. The active
experiment is depicted in grey.

We will illustrate the use of this model through an exam-
ple. Suppose that the user creates two different experi-
ments, a and b, the initial population of a is randomly
generated and has size N, and the initial population of b
has size 0. The user focuses his efforts in experiment a
and evaluates the individuals of successive populations
generated by NEvAr. When the user finds images that
she/he likes, she/he adds these images to the current
population (in this case the population 0) of experiment b.
If at a given point the user feels that the evolutionary pro-
cess would benefit if the next population was generated
by the combination of the individuals of the current
population with individuals previously transferred to
population b, she/he adds those individuals to the current
population and the evolutionary process continues.

At a certain point, the user decides to focus on experiment
b, and orders the generation of a new population from the
current one (population 0), which is composed, exclu-
sively, by individuals transferred from a. Thus, the initial
population of experiment b is not random, but exclusively
composed by fit individuals that were originailly gener-
ated in other experiments. In fact, experiment b can be
seen as a database of images, which may be used to ini-
tialise future experiments. We may generalise this ap-
proach by organising a gallery of images.

NEvAr also allows the migration within experiments.
This feature is important due to the limited size of each
population, since it allows the revival of images from
previous populations. It is also possible to go back to a
previous population and change the evaluation of the in-
dividuals, which allows the exploration of different evo-
lutionary paths.



4 Working with NEvAr — The artistic
point of view

NEvVAr is an Evolutionary Art Tool, therefore the main
goal is the production of artworks. Its analysis must be
performed with this in mind. Like any other tool, NEvAr
requires a learning period. To explore all the potential of
a tool, the user must know it in detail and develop or
learn an appropriate work methodology. The results, and
user satisfaction, depend not only on the tool but also on
its mastering.

Additionally, the evaluation of the results (images) can
only be made by the user that generated them. The
evaluation of an art tool can only be made by the artist
using it. The key aspect is that the artist must review
her/himself in the produced artworks. Thus, the fact that a
tool can generate “interesting” images is irrelevant from
the artistic point of view. What is really important is that
the produced artworks convey the artistic ideas of the
artist. In other words the artist must be able to express
her/himself through the use of the tool.

The images generated with NEvAr during the early stages
of experimentation were clearly disappointing. This fail-
ure didn’t result from the lack of power of the tool, but
from our lack of expertise in its use. Next we will present
the work methodology that we currently use to generate
images with NEvAr.

4.1 The Process

The creation of an artwork encompasses several stages,
such as: genesis of the idea, elaboration of sketches, ex-
ploration of the idea, refinement, and artwork execution.
The methodology that we propose can be considered, in
some way, analogous. It is composed by four main
stages: Discovery, Exploration, Selection and Refine-
ment.

These stages can be described, concisely, as follows: the
stage of Discovery consists on finding a promising evo-
lutionary path, which, typically, corresponds to evolving
a promising set of images from an initial random popula-
tion (genesis of the idea); in the second stage, Explora-
tion, the “ideas™ evolved on the previous stage are used to
generate images of high aesthetic value (exploration of
the ideas); the Selection stage involves choosing the best
produced images; the selected images, when necessary,
will be subjected to a process of Refinement, whose goal
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is the alteration of small details or the correction of im-
perfections (final execution of the artwork).

Our empirical experience allows us to classify the Dis-
covery stage as the most crucial of the process, and, to-
gether with the Exploration stage, the one in which the
faculties of the user are more important.

Discovery corresponds to the genesis of the idea, there-
fore it is inappropriate to approach this stage with
pre-conceived ideas regarding the final aspect of the art-
work. In other words, it is impossible in practice (yet
tempting) to think on an image and use NEVAr to evolve
it. This is probably the most important aspect to retain,
because it contrasts with what is usually expected in a
tool, i.e. that it allow the implementation of an idea. This
aspect can be viewed as a weakness, but it is also the dis-
tinguishing feature and strength of NEvAr (and other
evolutionary art tools). A conventional art tool only plays
an important role in the artistic process in stages subse-
quent to the generation of the idea. Furthermore, the idea
frequently determines which tool will be used in its exe-
cution, since some are more adequate than others. NE-
vAr, however, plays a key role in the generation of the
idea. Its influence is noticeable through all the artistic
process and in its main creative stage. In NEvAr, the art-
ist is no longer responsible for the creation of the idea,
she/he is responsible for the recognition of promising
concepts. More precisely, the idea results from an evolu-
tionary process, and is created by the artist and the tool,
in a (hopefully) symbiotic interaction.

In the Exploration stage the initial idea is already set and
we are dealing with images of high aesthetic value.
Through the recombination of these images, we explore
a space of forms which is smaller than the one explored
in the discovery stage, and is therefore more thoroughly
searched. The Exploration stage can prolong itself con-
ducting the artist to a point which, at least apparently, has
nothing to do with the original one. Like in the Discovery
stage, the expertise of the user is determinant to the suc-
cess of this stage. With the accumulation of experience,
the user learns how to distinguish between promising
paths and ones that lead nowhere, to predict which com-
binations of images produce best results, how to manipu-
late crossover and mutation rates in order to produce best
results, etc.

The Selection stage can be divided in two different ones,
one that is concurrent with the evolutionary process, and
one that is posterior. During the stage of Exploration, the
best images (according to the user criteria) are added to a
different experiment, that works as a gallery. As stated



before, NEvAr stores all populations, which allows the
review of the evolutionary process and the addition to the
gallery of images that were previously neglected. This
revision is highly recommended, and a substantial amount
of time should separate the generation of the images and
its review in order to allow the necessary distance be-
tween generation and criticism.

The Refinement process usually occurs separately from
the experiment that generated the image. The common
procedure is to initialise a new experiment with the image
that we want to refine (i.e. the initial population of this
experinent will be composed by the image and, in some
cases, similar ones). The generation of new populations,
from this initial one, allows the exploration of a search
space in the vicinity of the image that we want to refine.
In Figure 4 we present some images created with NEvAr.

Figure 4: Some examples of images created with NEvATr.
Additional images can be found in the CD-ROM accom-
panying P. Bentley (1999).
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4.2 Image Database

One of the weaknesses of EC approaches lies on the fact
that they do not have long-term memory (although we
can view multiploidy as a limited memory mechanism).
The use of several experiments allows the accumulation
of individuals, which can be used in later experiences.
Thus, we can create a Knowledge Base (KB) of images.

The KB has been used mainly in two situations: To ini-
tialise new experiments and to add individuals to the cur-
rent population of an experiment. The goal of the first
form of use is to shorten, or even avoid, the initial stages
of the evolutionary process (Discovery and Exploration).
The addition of previously generated individuals to the
current population usually follows an opportunistic rea-
soning. There are several situations in which this may be
useful, for instance, to avoid a local optimum, or when
we find an image whose combination with a previously
created one is previewed as promising.

The KB is playing an increasingly important role in the
process of image generation, and is currently a priceless
feature of the system. The size of the KB is also increas-
ing rapidly and, consequently, the KB is becoming harder
to manage and use. This led us to the development of
automatic seeding procedures, which we will describe in
the following section.

5 Seeding

The development of automatic seeding procedures is part
of our ongoing research. In this section we describe our
current approaches, which should be considered prelimi-
nary.

Our idea is inspired in Case Based Reasoning, and can be
described as follows: the user chooses an image, and the
seeding procedure selects, from the database, similar
ones, to initialise the GP experiment. To implement this
idea, we need to develop a similarity metric, i.e. a way to
compare images. Unfortunately, this task is not trivial.

In our first attempt we used the root mean square error
(rmse) among two images, which is usually applied to
evaluate the error involved in image compression, as
similarity metric. Minimum error implied maximal simi-
larity. The similarity between two images, a and b, was
given by the following formula:
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The experimental results showed the inappropriateness of
this approach. This failure can be easily explained, the
goal is to find images that are similar to the eye and not
“mathematically” similar images. To illustrate the short-
comings of rmse based similarity, we resort to an exam-
ple: consider two images composed by alternate vertical
black and white stripes of one pixel width, one starting
with a black stripe and the other with a white one; these
images will be almost indistinguishable to the eye, how-
ever, the rmse among them will be maximal.

Our current idea is to compare images according to their
properties. It is a well known fact that image complexity
affects the performance of image compression methods,
i.e. it is easier to represent compactly a simple image than
a complex one. Moreover, some compression methods
work better with some types of images than with others.

JPG compression was designed for the representation of
natural images. In this type of images, colour transition is
usually smooth. Although adequate for these images, the
performance of JPG severely degrades when dealing with
images possessing abrupt colour transitions (e.g. a black
and white text image). Fractal Image Compression takes
advantage of the self-similarities present on the images
and will, therefore, perform better when these similarities
are high.

Our previous experience with image compression meth-
ods led us to believe that we could use the quality of the
compression to develop a similarity metric. For the scope
of this paper, we will define compression quality as:

compression ratio
—, 2

rmse
and compression complexity as the inverse.

We use two different compression methods: jpg and
fractal based. The fractal image compression algorithm
makes a quad-tree partitioning of the image. By changing
the maximum depth of the tree, we can specify, indi-
rectly, the limits for the error involved in the compres-
sion. During compression, the colour information is dis-
carded, the images are converted to greyscale and then
compressed.

Let’s define IC as the compression complexity resulting
from the use of the JPG method; PC as the compression
complexity resulting from the application of the fractal
based approach. We use two different maximum tree
depths, N and N-1, therefore we have PC, and PC,.
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To compare two images, a and b, we start by calculating
IC, PC, and PC,, for each of them. The similarity be-
tween images a and b is given by the following formula:

1

©)

sim =

1+4flic, - 1c|+|pct - pci | +|pc2_ - Pc2)|

In Figure 5, we present a subset the images belonging to
the database. In Table 1, we present the IC, PC, and PC,,
measures for each of them as well as the similarity of
these individuals with images 9 and 14 of the population.

Figure 5: The numbers bellow the images indicate the
rmse similarity to image 14 (see formula 1). According to
this metric, the closest image is image 15, which is good,

and the second closest is image 9, which is bad.

Ordering the individuals according to their similarity to
image 14, yields the following list: {14, 8, 13, 12, 15, 4,
5,7,0, 11, 10, 6, 3, 1, 2, 9}. This ordering seems to be
appropriate, the major deficiency being that individual 7
is considered less similar than individuals 4 and 5. The
comparison to image 9 gives the ordered list: {9, 2, 1, 3,
6,10,11,0,7, 5,4, 15, 12, 13, 14, 8}, which also appears
to be approximately correct. Image 9 is characterised by
its fluid and organic forms, and so are individuals 2, 3, 6,
0, and, although in a lesser degree, individuals 10 and 11.



Table 1: The IC, PC, and PC, measures for each of the
images presented in Figure 5, and the similarity among
these images and individuals 14 and 9 of the same figure.
fmage CI  CP1 CP2

Similar-
ityto9

Similar-
ity to 14

0 5.053| 19.228] 5.957 10.397f 17.500
1 4.455] 10.503] 4.646 9.790 22.703
2 2.926] 5.518] 2.403 9.365] 37.261
3 4.085{ 11.256] 5.957 9.879| 21.529
4 6.401} 21.357] 7.057 10.697] 16.189
5 5.965] 21.663| 6.504 10.650{ 16.365
6 4.6941 13.395| 4.988 9.976] 20.486
7 5.744| 19.373] 6.795 10.5031  16.981
8 12.125] 91.074| 25.331 16.948 8.349
9 2.399] 3.413] 2.200 9.239] 100.000
10 4.593f 12.839{ 5.883 9.989] 20.359
11 5.113] 14.434] 6.244 10.129] 19.170
12 8.736] 42.895] 13.636 13.765| 11.673
13 7.978] 45.669) 13.523 14.062] 11.506
14 11.518} 71.164] 21.835{ 100.000 9.239
15 6.891} 34.791{ 10.861} "12.181 13.032

The initialisation of a new population is based on the
similarity to an image chosen by the user. The seeding
procedure uses the similarity values as fitness, and rou-
lette wheel selection for choosing which images will be-
come part of the initial population. We do not allow the
repetition of images.

Although the experimental results are still preliminary,
the seeding procedure based on compression quality
seems to produce good results, indicating that the com-
parison of images based on their characteristics, namely
on their complexity, is appropriate. This, of course, sug-
gests that taking into consideration other types of features
of the images (e.g. edges, colour, outline, etc.) may also
prove useful.

It is also important to notice that the compression meth-
ods described can be applied to any image. Therefore, we
can compare the database images with ones that where
not generated with NEvAr. We still haven’t explored this
possibility, nevertheless we believe it can produce inter-
esting results.

6 Conclusions and Further Work

From the artistic point of view, we consider NEvAr to be
a tool with great potential. Through the use of NEvAr, the
artist is no longer responsible for the generation of the
idea, which results from an evolutionary process and
from the interaction of artist and tool. Thus, the use of
NEvAr implies a change to the artistic and creative proc-
ess. It is important to notice that, in spite of these
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changes, the artworks obey the aesthetic and artistic prin-
ciples of the artist. The use of NEvAr implies an abdica-
tion of control; however, this lack of control isn’t neces-
sarily negative. The artist can express her/himself through
the use of the tool and review her/himself in the works
created.

One of the erroneous conceptions about evolutionary art
tools is that the generation capabilities of a system are
deeply connected with the used primitives. Our experi-
ence with NEvAr shows that this is wrong. What is nec-
essary is a set of “basic” primitives that can be combined
in a powerful way.

The inclusion of a long term memory mechanism is ex-
tremely important, since it allows the reuse of previously
generated ideas. It is also the basis for the inclusion of
Case Based Reasoning mechanisms in NEvAr. Prelimi-
nary experiments indicate that the inclusion of these
mechanisms can create interesting results and further
extend the capabilities of our system.

Interactive evolution proved to be a very powerful tech-
nique. This can be explained by the fact that the user can
use other criteria besides fitness to evaluate the individu-
als, and thus guide the evolutionary algorithm more effi-
ciently. We are currently studying ways to automate fit-
ness assignment. Our initial idea was to train a neural
network and use it to automate this task. We currently
feel that full automation is not attainable on short term.
Our current idea is to use neural networks (as well as
other techniques) as a filter that eliminates individuals
that are clearly undesirable.
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