Contents

0 (U ii
Amilcar Cardoso, University of Coimbra, Portugal
Geraint A. Wiggins, City University, London, UK

Supporting Creativityccoeieiieeiaiiriereeecieseccerssssosescscconsesase 1

Multiagent Systems for Supporting and Representing Social Creativity in Science 3
Francesco Amigoni, Viola Schiaffonati & Marco Somalvico, Politecnico di Milano, Italy

Supporting Creativity in Software Designcooiiiii i 13
Paulo Gomes, Francisco C. Pereira, Nuno Seco, Jos L. Ferreira, Carlos Bento,
University of Coimbra, Portugal

Thinking Through Doing. External Representations in Abductive Reasoning 21
Lorenzo Magnani, University of Pavia, Italy & Georgia Institute of Technology, USA

Intelligent Dynamic COllaborationc.uiuinieiiiiiiniariniiiniitiiiaeineaiiannenn. 29
Kirsty A. Beilharz, University of Sydney, Australia

Pattern and Structure in Creative Systemsccveveveveceecrenccescsees 39

Giving ColourtoImagesooiniiiiiiiii i e e 41
Penousal Machado, Instituto Superior de Engenharia de Coimbra & University of Coimbra, Portugal
André Dias, Nuno Duarte, Amilcar Cardoso, University of Coimbra, Portugal;

Exact and Approximate Distributed Matching Problem for Musical Melodic Recognition 49
Costas S. Iliopoulos & Masahiro Kurokawa, King’s College, London, UK &
Curtin University of Technology, Australia

A psycho-social model for the evolution of aesthetic patternscooviiiiininennenens 57
Thibaud de Souza & Tatiana Kalganova, Brunel University, UK

Evolution of Musical Motifs in Polyphonic Passagesc..cooverieniiiiniiiiinvenenivaens 67
Costas S. Iliopoulos, King’s College, London, UK & Curtin University of Technology, Australia

Kjell Lemstrém, University of Helsinki, Finland

Mohammed Niyad, King's College, London

Yoan J. Pinzon, Universidad Autonoma de Bucaramanga, Colombia

Creative Language and Context Generationccco0eieeeernccscneennens 77

Linguistic creativity at different levels of decision in sentence productionot 79
Pablo Gervas, Universidad Complutense de Madrid, Spain

Awaiting the sensation of a short, sharp shock: twist-centred story generation 89
John Platts] & Christian Huyck, Middlesex University, UK

Ann Blandford, UCL Interaction Cenre, UK

Automatic Puzzle Generationttt e e e 99

Simon Colton, University of Edinburgh, UK

Preface

This document is the proceedings of the fourth AISB symposium on creativity in AI and Cognitive Science.
The purpose of the symposium is to bring together researchers interested in all Al and cognitive aspects of
creativity and cultural enterprise. The aim of holding one unified meeting, instead of several simultaneous
smaller ones, is to promote communication between those studying different aspects of creativity.

Each worshop has naturally taken a different structure from the last, and this year is no exception. The
papers in this volume can best be divided into three areas: Supporting Creativity, Pattern and Structure in
Creative Systems, and Creative Language and Context Generation. '

The first of these brings together papers which focus on the support of (mostly scientific) creative reasoning
by computers.

The second section looks at computational and aesthetic issues in dealing with structure, pattern and repeti-
tion in a creative context, both in terms of creative technology and of its applications. This section contains
papers on music and visual art.

Finally, the third section is about creativity in a particular domain — language — and creation of context for
language generation. The papers in this section cover many different levels of creativity, from the highest
level of narrative down to the choice of syntax in a poetic context.

The papers presented here were carefully selected by multiple blind anonymous peer review. This, as
always, entailed a lot of work for the symposium’s programme committee, to whom we are very grateful.
They were:

Simon Colton, Universities of Edinburgh and York, UK
Werner Dubitzky, University of Ulster, UK

John Gero, University of Sydney, Australia

Ashok Goel, Georgia Institute of Technology, USA
Alison Pease, University of Edinburgh, UK

Graeme Ritchie, University of Edinburgh, UK

We are grateful also to the authors for their punctuality and cooperation in preparing this volume, and to
the convention organisers for making the event possible.

Amilcar Cardoso
University of Coimbra, Portugal

Geraint A. Wiggins
City University, London, UK

ii

I — Supporting Creativity

MULTIAGENT SYSTEMS FOR SUPPORTING AND
REPRESENTING SOCIAL CREATIVITY IN SCIENCE

Francesco Amigoni; Viola Schiaffonati; Marco Somalvico
Politecnico di Milano - Artificial Intelligence and Robotics Project
Dipartimento di Elettronica e Informazione; Politecnico di Milano; Piazza Leonardo da Vinci 32; 20133 Milano; Italy
amigoni@elet.polimi.it; schiaffo@fusberta.elet.polimi.it; somalvic@elet.polimi.it

Abstract

In order to address the topic of creativity in science, this paper evidences the two main features that characterize the current
scientific practice: the increasingly important role of information machines and of collective sociality. Given the nature of the scien-
tific enterprise, we propose to adopt a powerful and flexible multiagent system, called scientific social agency, both to support crea-
tive scientists in their work and to represent the models devised as result of their activity. We ground the discussion on two practical
relevant examples: the Human Genome Project and the Screensaver Lifesaver Project.

1 Introduction

Creativity is usually considered as a mostly inexplica-
ble human activity characterized by different forms and
manifestations. Several attempts to enlighten creative
activities and creative behaviors have been proposed:
most of them are focused on the conception that crea-
tivity deals with generating ideas that are both novel
and valuable (Boden 1999). More particularly, creativ-
ity has been identified as a meta-level ability, which
leads to reflect on and modify our own frameworks and
principles (Buchanan 2001). According to that, scien-
tific enterprise is considered to be a typical creative ac-
tivity since it presupposes and involves both novelty
and relevance in the generation of new knowledge.

In the endeavors to grasp the essence of creativity and
to investigate its automatic reproducibility, the possi-
bilities of programs and machines that can be called
creative have been widely examined (Artificial Intelli-
gence 1997). This fertile research area, called machine
creativity, has shown to be an efficient mean also to
understand creativity: the implementation level offers
the opportunity to test the ideas proposed at the theo-
retical level. Machine creativity has led, from the one
side, to the design of computational supports for crea-
tive people and, from the other side, to the conception
of computational models of creative processes.

In this paper we afford the theme of creativity in scien-
tific discovery by concentrating on the role of a class of
artificial intelligence machines, called scientific social
agencies. A scientific social agency is a cooperative
multiagent system that is able both to support creative
people, as scientists, in their activities and to represent
models, namely the creative products resulting from
scientific efforts. We analyze two paradigmatic current

scientific projects that show the role of information
machines in scientific discovery and the sociality of the
scientific discovery activity, thus extending the phi-
losophy of creativity toward that of social creativity.
The analysis of these two examples of modern scien-
tific practice evidences a list of requirements that can
be satisfied by the adoption of a scientific social
agency.

This paper is organized as follows. In the next section,
we present the concept of scientific social agency. In
Sections 3 and 4, we illustrate the two examples from
which the desired characteristics of scientific social
agency emerge: the Human Genome Project and the
Screensaver Lifesaver Project, respectively. The desid-
erata for scientific social agency are summarized in
Section 5, where they are also discussed with respect to
the present state of the art. Section 6 proposes a flexi-
ble and powerful way to implement scientific social
agency in order to fulfill the requirements of Section 5.
Finally, Section 7 concludes the paper.

2 Scientific Social Agency

In this section we present the agency as a particular
kind of multiagent system and its role within scientific
discovery. Multiagent systems (Weiss 1999) are sys-
tems of distributed artificial intelligence that are com-
posed of several entities, called agents, which are spa-
tially distributed and interacting together. Since there is
not a global agreed definition of what an agent is
(Franklin and Graesser 1997), for our purposes we con-
sider information machines, both physical (computer or
robot) and logical (software programs), as agents.
Agents present the properties of autonomy, social abil-
ity, reactivity, and pro-activeness (Wooldridge 1995).

Moreover, agents perform inferential activities (i.e.,
logical reasoning, see Russell and Norvig (1995)).

When these agents are designed to cooperate, it is
profitable to consider the whole multiagent system as a
unitary machine called agency (see Minsky (1985) for
the origin of the name ‘agency’). An agency is thus a
cooperation machine, although the composing agents
can have very complex natures (Amigoni at al. 1999b).
Each agent of an agency can perform some high-level
functions, such as planning a sequence of tasks.
Moreover, each agent has the abilities to cooperate
with other agents when it is the case. In fact, the agents
in an agency interact together to offer or receive col-
laboration in order to achieve a global goal. The neces-
sary infrastructure for both cooperation and coordina-
tion among agents is a communication network that
connects the agents together. This communication net-
work can be implemented, for instance, as a shared
memory area or as an Intranet.

In order to build an agency, several problems have to
be addressed and solved. The first problem is the de-
velopment of a cooperative organization among agents.
Other problems regard how tasks are assigned to agents
and how knowledge is exchanged and shared. It is usu-
ally possible to develop flexible architectures for agen-
cies, to allow agents to be easily added and removed,
promoting a modification of the agency composition to
better adapt to the specific task at hand (more details
are given in Section 6). We note that an agency can be
structured in several nested levels, since it can be com-
posed of subagencies, each one of them acts as a single
agent.

Among the applications that can be addressed by agen-
cies, one of the most promising relates to the field of
scientific discovery. Usually, in this context, artificial
intelligence programs and devices can have a wide
range of roles: basically for all of them the purpose is
to emulate some human intellectual activities per-
formed during scientific discovery (such as hypothesis
construction, theory revision, law induction, and theory
formation), promoting what has been called computer-
supported scientific discovery (de Jong and Rip 1997).
The theme of scientific discovery processes has also
traditionally represented an area of interest for the
philosophy of science, which has constantly tried to
explain the mechanisms and the processes presupposed
by scientific activity in order to account for the devel-
opment of scientific knowledge and creativity.

Currently, as exemplified in the following sections, the
scientific research can be seen as characterized by two
main features:
(c) the increasing role of information machines as
supporting the scientists’ activities (computa-
tional property);

(s) the collective and social nature of the scien-
tific enterprise, which is no more carried on
by a single scientist in isolation, but by many
scientists in collaboration (social property, see
Turchetti et al. (2002)).

According to this scenario, an agency can play a very
interesting role within creative scientific discovery: as
a scientific social agency it is a machine that effec-
tively adapts itself and responds to the two features of
the contemporary scientific research. More precisely, a
scientific social agency is a cooperative multiagent
system composed of information machines, the agents.
We refer to the agents of a scientific social agency as
man-machine poles (Amigoni et al. 1999a) to express
the idea that men can perform some of their intellectual
activities by means of these information machines.
Therefore, being the man-machine poles the informa-
tion machines that support the scientists activities, sci-
entific social agency reflects the feature (c) of current
scientific practice. A man-machine pole can be an
agency itself, according to what previously said about
the nested levels of the agency architecture. Each agent
of a scientific social agency is devoted to a particular
specialized task in the scientific discovery process. The
global performance of a scientific social agency is ob-
tained by the cooperation of the agents that are uni-
formly integrated. In this way, scientific social agency
emphasizes the social nature of scientific enterprise,
according to the feature (s) above. Sociality is enlight-
ened by the cooperation of agents that reflects the more
general cooperation of the men who are supported by
the agents (their man-machine poles).

In the following, we will consider two concrete exam-
ples that are representative of the current scientific
practice: the Human Genome Project and the Screen-
saver Lifesaver Project. Since both the fundamental
role of information machines and the social character
of scientific discovery ~ the two key marks of current
scientific practice — clearly emerge in these paradig-
matic examples, we will base on them the discussion of
the role of scientific social agency within the process of
scientific discovery. In order to better address the de-
scription of the complexity of the current scientific
practice, in the first example we will emphasize the
vertical complexity, namely the completely different
natures of the several processes involved in the Human
Genome Project. In the second example we will em-
phasize the horizontal complexity, namely the large
number of parallel computational activities.

3 The Human Genome Project

In this section we illustrate the central features and the
main steps of the Human Genome Project (HGP), offi-
cially initiated in the United States in 1990 (The Hu-

. man Genome 2002; Venter et al. 2001). The aim of the

project is to decode the DNA (more precisely, the

complete nucleotide sequence) that constitutes the hu-
man genome, in order to better understand the human
evolution, the causes of diseases, and the interplay
between environment and heredity in defining human
condition. This scientific effort clearly illustrates the
two features (¢) and (s) of the contemporary scientific
practice. Indeed, the success of this project strongly
depends on the availability of various information ma-
chines, in particular those implementing computational
methods for sequencing the human genome. At the
same time, it is a colossal project that involves several
different collaborating laboratories and research cen-
ters, both public and private.

According to this scenario, a double role for scientific
social agency may be envisaged. It can support scien-
tists in their activities and it can represent the obtained
scientific results. In the first role, scientific social
agency, according to its nature of concrete, flexible,
and powerful machine, represents a practical support
for scientists during the process of scientific discovery
and is called assistant (scientific social) agency. Usu-
ally scientists utilize and exploit a number of instru-
ments and tools in carrying on their work. Among
these, information machines are in a prominent posi-
tion since a larger and larger number of not only prac-
tical, but also intellectual, activities can be delegated to
them both for necessity (e.g., huge quantity of data)
and for convenience (e.g., speed increasing). The ad-
vent of the first automated DNA sequencers in the
HGP is a clear example of this situation. These se-
quencers have considerably improved the human speed
in the sequencing process. In the first years of the pro-
ject, when the DNA sequencers were not available, a
researcher was able to isolate and read 10,000-20,000
bases (the building blocks of our DNA) per day.
Nowadays, an automated sequencer is able to process
10 millions bases per day. This is just one of the sev-
eral examples showing the role of information ma-
chines as supports for scientists in their research, pro-
moting the employment of wide and complex com-
puter-supported scientific environments.

An assistant agency can provide a particularly powerful
computer-supported discovery environment, where the
flexibility of the agency machine can be fully ex-
ploited. Besides being a collection of information ma-
chines supporting scientists, an assistant agency is con-
ceived as a cooperation machine that offers a valid
support for the social and distributed nature of the
contemporary scientific research. Let us show this
point by referring again to the HGP example. The HGP
has always been carried on by a wide distributed net of
people organized in research centers: at the beginning
(in 1990) only public laboratories, coordinated and fi-
nanced by the United States National Institute of
Health and Department of Energy, were involved in the
project. They were relatively independent units that
communicated and exchanged relevant information.

Then, the scenario has become even more articulated
with the advent of the private venture and, in particular,
of Celera Genomics which, starting from 1998, has in-
troduced a burning competition for the completion of
the sequencing and mapping of the human DNA 3 bil-
lions bases. It is worth noting that, in this example, the
distributed character of this scientific enterprise can be
found not only along the horizontal dimension, but also
along the vertical one. In fact, in the research centers
involved in the project, a number of experts in different
disciplines, such as molecular biologists, geneticists,
and computer scientists communicate and work to-
gether to integrate their respective results: This social
and collective nature of scientific discovery (both hori-
zontally, among research centers, and vertically, among
specialized experts in the same research center) could
be efficiently supported by an assistant agency that can
exploit its cooperation mechanism.

We consider now the second role of a scientific social
agency in which it offers a way for describing the re-
sults of the scientific discovery process and is called
representational (scientific social) agency. More spe-
cifically, a representational agency describes, in a con-
crete way, the set of models resulting from a scientific
effort. These models are embedded in the agents of the
representational agency, providing a descriptive (when
the models are simply stored in the agents) or a more
powerful operational (when the models results from the
agents activity) representation of the scientific knowl-
edge. The representational agency addresses the two
features (c) and (s) of modern scientific discovery, as
the HGP example demonstrates. With respect to feature
(c), information machines are necessary to store the
huge quantity of complex data relative to the genome.
A million of bases is equivalent to about 1MB of
memory on a computer: since the human genome in-
cludes 3 billions bases, around 3GB of memory are
necessary in order to contain it, without considering all
the notes and the comments which are essential to
complete the information describing each gene. It is
clearly impossible to manage this enormous amount of
sequences information by hand. Moreover, the aim of
the HGP is not limited only to identify the 80,000-
100,000 human genes and map their positions on the
chromosome, but also to determine the role of each
protein of DNA in the organism. This can be done only
by several cooperating specialized research centers (re-
call feature (s) of current scientific practice) that call
for a representational agency to organize both the col-
laboration among different contributors and the coordi-
nation of their contributions.

4 The Screensaver Lifesaver Pro-
ject

The two properties we aim to enlighten as the central
features of the contemporary scientific enterprise,

namely the computational (c) and the social (s) aspects,
are pointed out also by the Screensaver Lifesaver Pro-
ject (2002). The basic idea of this interesting scientific
effort is to accelerate the research for new cancer drugs
by means of a kind of distributed software, which en-
ables the spare time of computers to be used to screen
molecules for potential anti-cancer activities.

The success of the project, and even its existence, de-
pends on the enormous computational power provided
by the parallel work of thousands of computers around
the world. They are able to contemporaneously process
such a volume of information that is impossible to
process by just one computer, even if sophisticated.
The idea is that anyone with access to a personal com-
puter could potentially help by donating the “screen-
saver time” of his or her computer leading to the crea-
tion of a virtual super-computer. Hence, the computa-
tional aspect strongly depends on the social one: not
only several institutions and scientists are collaborating
in order to achieve the goal, but everyone interested in
the project can offer his or her collaboration. The pro-
ject will be the more successful the more people will
subscribe it and will make their computers available.
This project, due to its peculiar features, can let emerge
the usefulness of scientific social agency both in its
role of support for scientists - as assistant agency - and
in its role of description of the scientific results - as
representational agency.

Let us consider in more details the Screensaver Life-
saver Project in order to better explain the concept of
assistant agency. The collaboration between the Oxford
University Center for Computational Drug Discovery
and an American technology company, called United
Devices, has led to the creation of the Virtual Center
for Computational Drug Discovery, focused in par-
ticular to find efficient drugs for cancer. The current
anti-cancer therapies are concentrated on proteins sup-
posed to be the target of a cancer therapy. The main
purpose of the research is to find molecules that, firstly,
inhibit the enzymes which stimulate the blood flow to
tumors and, secondly, work against the proteins re-
sponsible for cell growth and cell damage. In order to
determine potential anti-cancer molecules to be devel-
oped as drugs, it is necessary an enormous screening
activity.

The difficulty basically lies in the high number of
molecules to be screened: there are 2.5 million starting
molecules resulted from a preprocessing activity that
eliminated the molecules that have not drug-like physi-
cal properties (such as solubility, reactivity, and easy
metabolization). Moreover, each of these molecules is
suitable to generate 100 derivatives made by small
changes. Thus, the estimated number of molecules to
review for this project is around 250 million for each
protein. So far, 12 target proteins (possible responsible
of the cancer growth) have been identified: this means

that, totally, about 3 billions of molecules need to be
screened. These molecules include not only the com-
mercially available ones, but also many others origi-
nated from approximately 20 Combinatorial Chemistry
libraries (Murray and Cato 1999). For this purpose,
several organizations donated their collections of
chemical data and catalogues of molecules to contrib-
ute to this project, thus envisaging another perspective
on the sociality aspect involved in the project.

Analyzing this quantity of data clearly requires an
enormous amount of computational power: traditional
information machines are not enough and even
supercomputers are limited in supporting scientists in
order to evaluate potential anti-cancer molecules. The
solution adopted in the Screensaver Lifesaver Project is
to exploit the unused computational power of the larg-
est possible number of computers: the necessity of
computational power depends on the extended social
character of the project and vice versa.

Let us consider how this solution works: at the begin-
ning, each subscribing computer receives an initial
package of 100 molecules over the Internet, together
with a drug design software application called Think
and a model of a target protein known to be involved in
causing cancer. Think evaluates the molecules for can-
cer-fighting potential by creating three-dimensional
models of them and testing their interaction with the
target protein. This software program, once installed,
runs unobtrusively in the background and works on
small workloads. This virtual screening of the mole-
cules consists of the evaluation of the many possible
shapes, or conformations, the molecules might adopt
when interacting with a protein (see Allen et al. (2001)
for a similar approach). When a successful conforma-
tion dock happens, namely when the molecule triggers
an interaction with the protein, this is registered as a hit
and sent back to a central server for further investiga-
tions. All the hits are recorded, ranked as to strength,
and filed for the next stage of the project which is ex-
clusively performed by specialized scientists.

This distributed computer network is not just a tradi-
tional computer-supported scientific environment,
where scientists are supported in some of their intel-
lectual activities by sophisticated information machines
(that perform an automatic screening, as opposite to a
manual screening). It is rather a novel way of doing
research, which basically tries to exploit the computa-
tional resources of common people who are not di-
rectly involved in the research. This clearly changes the
way medical research, intended as an instance of sci-
entific discovery, is performed. The distributed com-
puting and its coordination represent therefore a primi-
tive instance of an assistant agency, whose agents are
the Internet-connected computers processing the mole-
cules, which is suitable, given its architecture, to re-
spond to the requirements settled down by this scien-

tific effort. The analysis of how the public contribution
of computing power is managed offers new insights
over the role of assistant agency. The P2P (Peer-to-
Peer) applications (developed by Intel, which is spon-
soring the project) share resources such as hard drives
and processing power among the connected computers
to significantly increase the computing capabilities.
These applications allow the parallel work of millions
of individual computers (exactly 1,430,431 on March
5™, 2002) acting simultaneously on different molecules.
In this sense, computer owners have the opportunity to
use their personal computing resources to perform sci-
entific research. Thus, we may individuate two levels
of sociality within this scientific project: the social and
distributed interaction between scientists, research
centers, public and private laboratories, and techno-
logical companies, on the one hand; and the social and
distributed interaction between scientists and the rest of
the world, intended as the common people who donate
the unused power of their machines in order to contrib-
ute to the research, on the other hand. The first level of
sociality is similar to that of the HGP we have de-
scribed in the previous section. The second level of so-
ciality characterizes particularly the Screensaver Life-
saver Project and results in the cooperation of compu-
tational chemistry, computers, specialized software,
organizations, and individuals.

Besides the above depicted primitive assistant agency,
scientific social agency can, also in this example, rep-
resent the descriptions of the scientific results, acting as
a representational agency. The representational aspect,
characterized by both property (c) and property (s), in-
volves the results returned by the devices members of
the project, which are a first product of the scientific
process. In order to record, rank, and file these hits
(namely, the molecules that showed an interesting in-
teraction with the target protein) a big computational
power is needed. At the moment, a cluster of comput-
ers is used to store the results from the screened mole-
cules and to evaluate the molecules that could be de-
veloped as drugs. In this context, the Virtual Center for
Computational Drug Discovery is the coordinator that
collects and manages the various and heterogeneous
results coming from the thousands computers spread
around the world. It is clear that the results manage-
ment could be successfully enhanced by employing a
representational agency with high-level information
fusion capabilities.

5 Desiderata for Scientific Social
Agency

The analysis of the two previous examples has evi-
denced some desiderata for the design and the devel-
opment of a scientific social agency. We deem that the
most important ones are the following.

* The agents must share a unique common lan-
guage to ensure interoperability among them.

* Efficient mechanisms for the negotiation and
the delegation of tasks among the agents must
be identified. For example, the agents of the
Screensaver Lifesaver Project could benefit
from a dynamic efficient redistribution of the
computational burden among them, according
to their current workloads.

* A global cooperation framework to pro-
actively answer to the needs of the scientists
must be developed. For example, the auto-
matic retrieving of the papers and the docu-
ments referring to the subjects of the emails
received by the users.

¢ The scaleable reconfiguration of the scientific
social agency to allow the easy insertion of
new agents (namely, new man-machine poles)
and the easy elimination of old agents that are
no more useful. For example, it is desirable
that the agents supporting the work of a ge-
neticist who joins the HGP could be easily in-
serted in the scientific social agency that sup-
ports the project.

Despite there are several implemented agencies that
address different applications, the agency technologies
are not yet fully developed to be commonly employed.
In particular, the application of an agency as an assis-
tant agency has not been yet tested in real world scien-
tific environments. The currently used computer net-
works with compatible communication protocols can
be considered only as embryonic assistant agencies. As
already said, to obtain a “real” assistant agency, high-
level cooperative functions (that are still performed by
humans) have to be developed: cooperative informa-
tion retrieval from various sources, cooperative data
mining from different databases, information integra-
tion based on ontologies, distributed scheduling of the
activities, and so on. The research in all these fields is
very lively and promising; this supports our opinion
that the assistant agency is the next-to-come general
and powerful computer-supported environment to
strengthen the creativity of scientists in very complex
scenarios.

Similarly, although the adoption of a representational
agency could offer an improvement in managing the
different models produced by the scientific creativity
process and in describing the final result, a “real” rep-
resentational agency is not available. However, it is
easy to envisage the advantages it can provide, with its
high-level cooperation functions like information fu-
sion, over the present simply-communicating informa-
tion machiries that only store data.

Besides the discussed requirements, we deem that the
two different roles of a scientific social agency, namely
assistant agency and representational agency, must be

mutually integrated in order to consider the agency as a
powerful and flexible machine for scientific creativity.
This integration can be promoted at the light of a con-
ceptually very relevant property called circularity. Cir-
cularity is related to the possibility of implementing
both the assistant agency and the representational
agency in a unique physical agency which is able to
perform both roles. In this way, the representation of
new results, provided by the representational agency,
and the discovery environment, based on the assistant
agency, can mutually improve each other. Some results
of the scientific enterprise, represented by the agents of
a representational agency, can be physically inserted in
an assistant agency. Therefore, this new enhanced ma-
chine supports the production of new results that, in
turn, are employed to further empower the tool in an
endless evolutionary process.

To better illustrate the circularity property we are ad-
vocating, let us consider again the HGP scenario. The
results of the HGP are stored in a collection of data-
bases that record, organize, and interpret the flood of
data emerging from sequencing projects worldwide.
GenBank is, for instance, a genetic sequence database
that includes an annotated collection of all publicly
available DNA sequences. It collects approximately
15,850,000,000 bases in 14,976,000 sequence records
{December 2001) and receives every day new data that
are checked and inserted in the archive (that is publicly
accessible via Web at The Human Genome (2002)).
These connected databases can be considered as an
embryonic representational agency since high-level co-
operative functions are not yet developed, although a
unique format for exchanging data (that is, the base of
cooperation) already exists. The description of the sci-
entific results expressed in this simple representational
agency allows, according to the circularity property,
the development of an improved assistant agency. The
agents composing this assistant agency, the DNA se-
quencers for example, rely on the previous results em-
bedded in the agents of the representational agency to
prevent the repetition of the work already done by oth-
ers.

The same circularity property can enhance also the
Screensaver Lifesaver Project. The returned results,
namely the hits of the successful interaction between
the molecules and the target protein, are recorded,
ranked, and filed by the cluster of the Virtual Center
for Computational Drug Discovery, which can be seen
as an embryonic representational agency. These results
are then utilized by chemists and molecular biologists,
according to circularity property, in order to develop
better assistant agencies, both at the level of the analy-
sis of the interaction between molecules and proteins
and at the level of the design and the development of
anti-cancer drugs.

We summarize some of the stated desiderata, and in
particular the mutual interaction between the two roles
of scientific social agency, in the diagram of Figure 1.

‘ovatoeton Jor)

arpifcabos kA e | I
\ TEPEIEMTATONAL
ACEHCY
2
Figure 1 — The graphic representation of the flexibility
requirements on scientific social agency

The diagram shows the assistant agency that, as already
discussed, supports scientists in the generation of crea-
tive results and the representational agency that allows
the utilization of the creative results. The circularity
property is illustrated by the two arrows from assistant
agency to representational agency and vice versa. The
two loops on assistant agency and representational
agency illustrate the dynamicity that is desirable in the
management of their agents (see the last point of the
desiderata list). The circularity property is further dis-
cussed in the following section.

6 Dynamic Agency

Given the desiderata for scientific social agency, as
shown in Figure 1, in this section we propose a way in
which a scientific social agency could be developed in
order to fulfill these requirements.

The dynamicity and the flexibility in the management
of the agents of a scientific social agency could be
reached by adopting the dynamic agency methodology
we have developed, as described in Amigoni and So-
malvico (1998), to build flexible multiagent systems.
The dynamic agency approach (that has been proved to
be successful for robotic applications, see Amigoni and
Somalvico 2002) relies on a specific architectural
structure of each agent as divided into two parts. The
first part, called op semiagent, is composed of the
hardware and of the basic software components of the
computer (or of the robot). These components are de-
voted to operation: the op semiagent exhibits the abili-
ties to operate in the environment. For example, the
hardware components include sensors, actuators, proc-
essing units, and communication devices; the software
components include control systems for sensors and
actuators, operating systems of processing units, pro-

grams for managing the communication protocols, and
so on. The second part, called co semiagent, is com-
posed of high-level software modules. These modules
are devoted to cooperation: the co semiagents are ori-
ented to integrate the op semiagents in a uniform and
coherent cooperation framework. For example, they
provide functions for the negotiation and the division
of tasks, for high-level knowledge exchanging, and so
on. Hence, in the dynamic agency approach, each agent
of a multiagent system is composed of the op
semiagent and of the co semiagent.

The original and powerful way we propose to imple-
ment the dynamic agency architecture is to realize the
software modules of the co semiagents exploiting the
modern technique of mobile code systems (Fuggetta
1998; Picco 2001). These systems allow to build exe-
cution units (namely, software processes) that can mi-
grate in a network from one host to another, and re-
sume their execution from the point they interrupted. In
our methodology, the software modules of the co
semiagents are spread on the op semiagents by a
unique execution unit that replicates and evolves on
each one of them. In this scenario, the op semiagents
are the hosts (in a network) on which the execution unit
runs. To stress the mobility feature, we call Mobile In-
telligent Agent (MIA), the execution unit that constructs
the co semiagents (see Figure 2). By contrast, the op
semiagents have to show the ability to host and execute
the MIA. Hence, in the dynamic agency methodology,
we divide the adapting of a computer (or a robot) to be
integrated in a multiagent system, obtained by allowing
the op semiagent to host the MIA, from the building of
the cooperation mechanism among agents, obtained by
spreading the co semiagents. We outline that the con-
struction of the co semiagents as the evolution of a
replicated MIA is one of the distinctive features of the
dynamic agency methodology that enables the easy
management of the co semiagents.

Figure 2 — The MIA is sent on the communication net-
work connecting the op semiagents (top) in order to
spread uniform co semiagents that set up an high-level
cooperation structure (bottom)

The definition of the structure of the MIA and of the
hosting abilities of the op semiagents are the tasks the
designer of a multiagent system has to undertake. The
activities of the MIA are designed to install the co
semiagents on the op semiagents and to control them in
order to cooperatively reach a global goal. In this way,
the operative functions provided by the op semiagents
are exploited by the high-level cooperation structure set
up by the co semiagents that exchange knowledge, co-
ordinate the activities, and divide and assign goals.

The advantages of adopting mobile code systems for
implementing the dynamic agency methodology are
summarized as follows.

* Independence of the designers of the op
semiagents (computers or robots) from the de-
signer of the whole multiagent system. Since
the composing op semiagents are taken ‘as
they are’, the multiagent system designer has
the possibility to integrate in the system sev-
eral different op semiagents that enrich the
multiagent system, allowing it to tackle a
broad problem spectrum.

* Easy reuse of the existing op semiagents for
different purposes. In dynamic agency ap-
proach, existing computers and robots are
considered as parts of op semiagents on which
different co semiagents can be installed at dif-
ferent times in order to build various multi-
agent systems. These exploit the operative
functions of the computers (or robots) for ad-
dressing different applications.

* Automatic reconfiguration of the multiagent
system. The idea is that the process of install-
ing the co semiagents on the op semiagents
can be performed dynamically also during the
operation of the system. In this way, a new
agent can be dynamically integrated in the
multiagent system allowing, therefore, a dy-
namic reshaping of the system that can im-
prove its effectiveness in tackling complex
problems. In a similar way, an agent can be
dynamically excluded from the system.

* Economic advantages. Since the computers
(or robots) are viewed as existing elements,
offering operative functions and possibly de-
veloped from third parties, in the future we
will face a situation somehow similar to that
of object oriented programming (Martin and
Odell 1998), in which op semiagents may play
the role of library classes, co semiagents may
play the role of user-developed classes, and
complete agents may play the role of pro-
grams. If the idea of dividing the operative
part from the cooperative part is pushed fur-
ther on, it is possible to envisage a scenario in
which the op semiagents are developed in
large quantities at low-cost and are employed

to build increasingly complex multiagent sys-
tems.

In conclusion, we stress that the dynamic agency ap-
proach presented in this section is a good candidate for
developing a scientific social agency that meets the re-
quirements discussed in Section 5 and, in particular,
those related to the easy management of the agents and
to the circularity property. Referring again to Figure 1,
in the case of the assistant agency, the dynamic agency
approach enables the definition of a learning evolution-
ary process, called construction, which constructs the
most appropriate architecture of the assistant agency.
In fact, the assistant agency could include a redundant
set of agents, which could not be useful for the specific
creative process currently undertaken. Hence, during
the ongoing scientific process, an adaptive selection of
useful agents of the assistant agency can be performed
to better tune the architecture of the assistant agency.
Similarly, in the case of representational agency, the
dynamic agency approach enables the definition of a
learning evolutionary process, called modelization, that
ends in the final model of the scientific results com-
posed of the most appropriate agents. In fact, the repre-
sentational agency could include a redundant set of
agents, which could not be useful for the current repre-
sentation of scientific results. Also in this case, during
the ongoing shaping of a representation, an adaptive
selection of useful agents of the representational
agency can be performed to better refine the global
model embedded in the representational agency.

Given these two dynamic evolutionary processes, we
can envisage two different ways in which the circular-
ity property could be carried out (see Figure 1). In the
first case, called focalization, the assistant and the rep-
resentational agencies enhance each other on line,
namely during a scientific creative process. In the sec-
ond case, called amplification, the assistant and the
representational agencies improve each other off line,
namely at the end of a creative scientific process. In
both cases, the circularity property accounts for the
bottom-up improvement of the assistant agency, ac-
cording to the new results described by the representa-
tional agency, and for the top-down improvement of
the representational agency, according to the activity of
the assistant agency.

7 Conclusions

We have presented scientific social agency as an inter-
esting and powerful device to enhance (more and more
as agency technologies further develop) scientific dis-
covery considered as a form of creativity. Scientific
social agency accounts both for the increasing role of
information machines within scientific discovery and
for the social character of the scientific enterprise,
which we consider as the main features of the contem-
porary scientific research. Moreover, we have shown

10

how scientific social agency is able to play two roles:
as support for scientists, assistant agency, and as de-
scription of scientific results, representational agency,
which are integrated by the circularity property. We
explicitly note that our approach toward scientific
creativity does not provide a model of the whole proc-
ess of scientific discovery. We do not claim that scien-
tific social agency is a creative machine, namely a ma-
chine which performs autonomously some creative ac-
tivities; it is rather a machine that strengthens human
creativity.

In the future we plan to enrich the scientific social
agency paradigm to evidence the role of the various
levels involved in its architecture and the properties it
exhibits when it is composed of homogeneous (as in
the Screensaver Lifesaver Project of Section 4) or het-
erogeneous (as in the HGP example of Section 3)
agents. The long-time goal of our efforts is to experi-
mentally demonstrate the usefulness of scientific social
agency. To this end, we are currently working on
methods and techniques to transform a measurement
system in a perceptive agency. This represents one of
the basic stones on which a natural science oriented
scientific social agency will be developed.

References

B. C. P. Allen, G. H. Grant, and W. G. Richards.
Similarity Calculations Using Two-Dimensional
Molecular Representations. Journal Chem. Inf.
Comput. Sci., 41:330-337, 2001

F. Amigoni and M. Somalvico. Dynamic Agencies and
Multi-Robot Systems. In Distributed Autonomous
Robotic Systems 3, T. Lueth, R. Dillmann, P.
Dario, and H. Worn (eds.), Springer-Verlag, Berlin
Heidelberg, Germany, 1998, pp. 215-224

F. Amigoni, V. Schiaffonati, and M. Somalvico. Proc-
essing and Interaction in Robotics. Sensors and
Actuators A: Physical, 72(1):16-26, 1999a

F. Amigoni, M. Somalvico, and D. Zanisi. A Theoreti-
cal Framework for the Conception of Agency. In-
ternational Journal of Intelligent Systems,
14(5):449-474, 19990

F. Amigoni and M. Somalvico. Application of Mobile
Code to Development of Cooperative Multirobot
Systems. Proceedings of the 7th International
Conference on Intelligent Autonomous Systems
(IAS-7), Marina del Rey, CA, USA, March 25-27,
2002

Artificial Intelligence, Special issue on scientific dis-
covery, 91, 1997

M. Boden. Computer Models of Creativity. In Hand-
book of Creativity, R. J. Sternberg (ed.), Cam-
bridge University Press, UK, 1999, pp. 351-372

B. Buchanan. Creativity at the Metalevel. AI Magazine,
Fall: 13-28, 2001

H. de Jong and A. Rip. The computer revolution in sci-
ence: steps towards the realization of computer-
supported discovery environments. Artificial In-
telligence, 91:225-256, 1997

S. Franklin and A. Graesser. Is it an agent, or just a
program?: a taxonomy for autonomous agents. In
Intelligent Agents III: Agent Theories, Architec-
tures, and Languages, J. Miiller, M. Wooldridge,
and N. Jennings (eds.), Springer-Verlag, Berlin
Heidelberg, Germany, 1997, pp. 21-35

A. Fuggetta, G. P. Picco, and G. Vigna. Understanding
Code Mobility. IEEE Transactions on Software
Engineering, 24(5):342-361, 1998

J. Martin and J. J. Odell. Object-Oriented Methods: A
Foundation (UML Edition). Prentice Hall, 1998

M. Minsky. The Society of Mind. Simon & Schuster,
New York, USA, 1985

C. M. Murray and S. J. Cato. Design of Libraries to
Explore Receptor Sites. Journal Chem. Inf. Com-
put. Sci., 39:46-50, 1999

G. P. Picco. Mobile Agents: An Introduction. Journal
of Microprocessors and Microsystems, 25(2):65-
74, 2001

S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, 1995

Screensaver Lifesaver Project.
http://www.chem.ox.ac.uk/curecancer.html, last
access March 2002

The Human Genome.
http://www.ncbi.nlm.nih.gov/genome/guide/huma
n, last access March 2002

S. Turchetti, M. Capocci, and E. Gagliasso. Production,
Science and Epistemology: An Overview on
New Models and Scenarios. In Model-Based Rea-
soning: Science, Technology, Values, L. Magnani
and N. J. Nersessian (eds.), Kluwer Academic /
Plenum Publisher, 2002

C. Venter et al. The sequence of the Human Genome.
Science, February:1304-1351, 2001

11

G. Weiss. Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence. MIT Press,
1999

M. Wooldridge and N. R. Jennings. Intelligent Agents:
Theory and Practice. Knowledge Engineering Re-
view, 10(2):115-152, 1995

12

Supporting Creativity in Software Design

Paulo Gomes, Francisco C. Pereira, Nuno Seco, José L. Ferreira, Carlos Bento
CISUC - Centro de Informética e Sistemas da Universidade de Coimbra. Departamento de Engenharia Informatica,
Polo II, Universidade de Coimbra. 3030 Coimbra
{pgomes, camara}@dei.uc.pt, nseco@student.dei.uc.pt, {zeluis, bento}@dei.uc.pt

Abstract

The software design phase is nowadays a development phase requiring more focus from the software engineers. New de-
sign methodologies must be developed with the goal of optimising the software design and the resources needed for the develop-
ment. Software design is still more an art than an engineering task with clearly pre-defined processes and methodologies. Those
methodologies that exist are general guidelines, which can be interpreted in several ways according to the context involved. Like
architects, software designers frequently use their experience from the development of previous systems to design new ones. Most of
the mature engineering fields make the reuse of components a development rule, but, in software engineering, the reuse of compo-
nents and/or design ideas is not easy, given the conceptual complexity at hand. Thus, intelligent tools capable of supporting software
design are needed. These tools must provide not only intelligent search functionalities, so that relevant software pieces are found, but
also be able to explore areas of the design search space not usually explored. In this paper we focus in this last issue by presenting a
design tool capable of supporting creativity. This tool enables the exploration of regions in the design space not usually used in the
generation of designs. Our approach relies on analogical reasoning to do the exploration. We use a general ontology (WordNet) to
support this exploration by providing object classification, and an index structure that can be used to perform the search.

and (2) creative design. In innovative design, a new

1 Introduction artefact is generated from a known class of designs, but
differs from previous class artefacts in some substan-
Software design has been acquiring more importance tive way. This can occur, for instance, in terms of
as the complexity level of software increases. This also value(s) assigned to the design variables, which are
drives development teams to be more efficient and specific to the new solution. In creative design, the
more creative in their solutions. Software designers space of possible design alternatives is expanded
must find new design methodologies, trying to opti- _through the use of new variables. This takes place
mise development time, processing time, required when the space of potential designs is extensive and is
memory, and other resources. This kind of design is not entirely defined by the knowledge available to the
still more an art than an engineering task with clearly user. In creative design, the process of specifying re-
pre-defined processes and methodologies. Those meth- quirements is also viewed as an important phase
odologies that exist are general guidelines, which can (Kolodner and Wills 1993). Creativity is defined as a
be interpreted in several ways according to the context cognitive process that generates a product that is said
involved. Like architects, software designers fre- to be creative when satisfying certain kinds of proper-
quently use their experience from the development of ties or attributes (Dasgupta 1994). As far as we are
previous systems to design new ones. Most of the ma- aware, the phenomenon known as Creativity has at
ture engineering fields make the reuse of components a least four components (Brown 1989): creative process,
development rule, but, in software engineering, the creative product, creative person or entity, and creative
reuse of components and/or design ideas is not easy, situation. Within this model, the creative product is a
given the conceptual complexity at hand. Thus, intelli- crucial component. Thus an important issue in
gent tools that support the software design task are developing computational models of creativity is the
strongly welcome. These tools must implement com- evaluation of the creative product. Research in this
mon software reuse (Meyer 1987; Prieto-Diaz 1993; domain has come up with several methods for
Coulange 1997) techniques, but they also have to go generation of artefacts considered creative (Gero and
further, providing support for more complex reasoning Maher 1993; Gero 1994; Partridge and Rowe 1994).
abilities and exploration of new design spaces. Some methods identified in creative reasoning are
Design can be divided into routine and non-routine cross-domain transfer of ideas (e.g., by analogy),
design (Gero 1994). We use the term routine design combination of ideas and exploration and
when the designer is a priori acquainted with the nec- transformation of conceptual spaces. Most of these
essary knowledge. In this way, routine design com- methods are used in creative design (Gero 1994).
prises parametric variations of old designs. Non- Most of the software reuse tools (Basset 1987;
routine design involves two sub-classes: (1) innovative Prieto-Diaz 1991; Katalagarianos and Vassiliou 1995;

13

Fernéndez-Chamizo, Gonzélez-Calero et al. 1996) sup-
port only the retrieval of components (e.g. classes,
functions or specifications) from repositories. But reus-
ing software involves also adaptation of the retrieved
component to the system being developed. This is usu-
ally left to the designer, since it is a more complex and
demanding task. Analogical reasoning (Gentner 1983;
Hall 1989; Holyoak and Thagard 1989; Bhatta and
Goel 1997, Bhatta and Goel 1997) is a technique that
can be used in the adaptation phase of software reuse
(Maiden and Sutcliffe 1992; Jeng and Cheng 1993;
Spanoudakis and Constantopoulos 1994; Tessem,
Bjornestad et al. 1994). The transfer of ideas and solu-
tions from other domains to the target domain not only
provides a way to find solutions, but also gives the
opportunity to explore new solutions, sometimes find-
ing creative designs. Not only because they are novel
and unexpected, but also because they are more simple
and efficient. We believe analogical reasoning can
achieve this on its own or with the collaboration of the
software designer, providing the designer with ideas
and alternatives that help explore the solution space in
a more efficient way.

Being able to explore the huge design space for
Object-Oriented sofiware is not an easy task. A soft-
ware design system capable of coping with this explo-
ration task, must be able to handle a huge amount and
diversity of domain knowledge. There are two main
solutions for this problem: either it is assumed a wide
pre-defined categorization (in order to classify each
situation), thus organizing the knowledge base in some
well-defined and understandable way (e.g. a domain
taxonomy), or some kind of open-ended characteriza-
tion is allowed, subject to an underlying common on-
tology (e.g. a common sense ontology). While the for-
mer demands a huge knowledge engineering effort
with the obvious limitation of never guaranteeing
completeness, nevertheless facilitating the system’s
organization and performance, the latter needs less
effort in constructing the base ontology but a much
greater effort in structuring and constructing the
knowledge base in order to achieve some degree of
robustness and organization. In terms of creativity po-
tential, we believe diversity will bring a very positive
contribution, although a lot harder to control. At this
point, we must say that half of the success is guaran-
teed by the competence of the underlying ontology
base. The well-known project WordNet (Miller,
Beckwith et al. 1990), by its generic scope, organiza-
tion and continuous development, seems to us a very
good choice for such a task.

We are developing a CASE (Computer Aided Sofi-
ware Engineering) tool, ReBuilder, which applies ana-
logical reasoning to the reuse and design of object-
oriented software. Our goals are the development of an
intelligent tool for supporting software design, and to
motivate the generation of creative solutions in col-
laboration with the designer. This can be achieved

14

through the suggestion of new solutions by ReBuilder
or by stimulation of the designer’s divergent thought
(Guilford 1968). To provide the user with an intuitive
and commonly used language, we represent software
designs in Unified Modelling Language (UML)
(Rumbaugh, Jacobson et al. 1998). This is a graphical
language used to describe and document object ori-
ented software, and is a standard for most of the soft-
ware development companies. Using UML solves the
man-machine communication problem, which could
compromise the use of ReBuilder platform.

In the next section we present ReBuilder architec-
ture, and describe its modules. Then we focus in the
analogical reasoning module, explaining it in detail.
We also describe how WordNet is used with the ana-
logical engine. Then we present an example of the ana-
logical reasoning. Finally we present some conclusions
and future work on ReBuilder.

2 REBUILDER

UML comprises several types of diagrams capable of
describing numerous aspects of a software system.
These range from requirement analysis using Use
Cases, structural information using Class Diagrams, to
behavioural knowledge specified using State Ma-
chines. In ReBuilder, only UML class diagrams are
used for reasoning, though in future work other dia-
gram types can be also used. An example of a class
diagram is presented in Figure 1.

ReBuilder comprises four main modules: UML edi-
tor, Knowledge Base Management, Knowledge Base
(KB), and CBR engine. The UML editor is the front-
end of ReBuilder and the environment where the soft-
ware designer develops the software design. The
Knowledge Base Management module is used by the
administrator to manage the KB, keeping it consistent
and updated. The KB comprises four different parts:
the case library, which stores the cases of previous
software designs; an index memory that is used for
efficient case retrieval; the data type taxonomy, which
is an ontology of the data types used by the system;
and WordNet, which is a general purpose ontology.
From WordNet, ReBuilder uses only the hy-
pernym/hyponym relations (also known as is-a rela-
tions), and the holonym/meronym relations (which are
part-of, member-of, and substance-of).

Department 1.% 1.x Office

Person

Figure 1 - ReBuilder's architecture.

The CBR engine comprises five sub modules: re-
trieval, analogy, adaptation, verification and learning.
Retrieval is used to suggest past designs, which are
selected by the system based on the similarity with the
current problem. But the designer can go a step further,
and ask the system to complete the current design
she/he is working on. For this, ReBuilder offers two
different ways of doing it. The first one is using the
adaptation module, where the system uses the most
similar cases to the working design and tries to com-
plete it with parts of the retrieved designs. But it can
also go further and suggest alternatives using the anal-
ogy module, which establishes analogical mappings
between the working design and one from the case
library. After the mapping is established, the system
transfers knowledge from the selected design to the
current design. The verification sub module performs a
check on the working design, checking the design for
consistency, completeness, and correctness. For this,
ReBuilder uses several object oriented verification
rules, and domain knowledge provided by WordNet
relations. Finally, the learning module can learn new
knowledge from two sources: user interaction and ad-
aptation or analogy generated knowledge.

3 Analogy in REBUILDER

Designing an object model using UML involves two
main steps. The first one is creating the class diagram
with the classes and interfaces needed to implement the
software system. This phase is called the conceptual
design of the system’s structure and involves only the
main entities of the system represented as classes. In
the second phase, the designer needs to specify the
class attributes and methods. This step requires from
the designer a preview of which attributes and methods
are necessary for the system implementation, which is
not always easy. Analogical reasoning can be used to
assist the designer in both these steps.

15

3.1 Analogy for Conceptual Design and
Component Specification

The analogical engine helps the designer by providing
new objects’, attributes or methods for the query de-
sign diagram. The new suggested knowledge is based
on (partial) mappings between the working class dia-
gram (the query diagram) and class diagrams stored in
the case library. The process comprises four steps: se-
lect cases from the KB; map the working design to
these cases, yielding a mapping for each one; transfer
knowledge from the cases to the working design; and
finally select the best £ new designs (k is chosen by the
designer).

In the first phase, the analogical engine searches
and identifies a set of candidate cases from the case
library. In this step, we use the retrieval sub-module to
select the best j cases (j is also defined by the de-
signer). These cases are seed cases for the analogy
module. Retrieval is based on the similarity between
diagrams, which has two main aspects: conceptual
similarity and structural similarity. The conceptual
similarity of two objects is based on its WordNet cate-
gorization, and the objects’ attributes and methods.
Structural similarity is computed based on the objects’
relations.

The second phase establishes a mapping between
each base case and the query diagram. To accomplish
this, ReBuilder uses two alternative structure-matching
algorithms: one based on relations between objects,
and the other based on objects. The first algorithm uses
the relations from the query diagram to guide the map-
ping (see below). '

e Relations <— Get the best relation from the query
diagram, based on the independence measure’ of
the relation.

MappingList < Empty list
¢ While Relations is not empty Do

(o]

PRelation <« Get best relation from Relations,
based on the independence measure of the re-
lation

CRelation < Get best matching relation from
the base case relations that are matching can-
didates (structural constraints must be met)
Mapping < Get the mapping between objects,
based on the mapping between PRelation and

CRelation
o Remove PRelation from Relations

! UML objects are: packages, classes or interfaces.
Packages are UML object containers, classes possess
attributes and methods, and interfaces possess only
methods.

? The independence measure is a heuristic based on the
UML semantic to define for each diagram object which
is its degree of independence regarding the other dia-
gram objects.

o Add Mapping to MappingList

o Add to Relations all the same type® relations
adjacent to PRelations, which are not already
mapped (if PRelation connects A and B then
the adjacent relations of PRelations are the re-
lations in which A or B are part of, excluding
PRelation).

e Return MappingList

The alternative to the relation-based mapping algo-
rithm is an algorithm based on objects, which is an
algorithm where the starting points for the mapping are
the objects instead of the relations. The algorithm is:

e Objects « Get object from the query diagram
which has the highest independence measure
e MappingList « Empty list
o While Objects is not empty Do
o PObject « Get best object from Objects,
based on the object’s independence measure
o CObject « Get best matching object from the
base case objects that are matching candidates
(structural constraints must be met)
o Mapping « Get the mapping between POb-

ject and CObject
o Remove PObject from Objects
o Add Mapping to MappingList

o Add to Objects all the objects adjacent to
PObject, which are not already mapped (and
adjacent object B to an object A, are all the

objects that have a relation with A).
¢ Return MappingList

The third phase consists on completing the working
design using the selected mappings. In this step, a new
design is created for each mapping of the previous
phase. It is generated by first making structural transfer
of knowledge between the query diagram and the base
case. This consists on getting new relations and objects
from the base case to the query diagram, according to
the structural constraints of the mappings that were
established. After this, for each mapped object, a
matching between attributes and methods is performed.
Each unmatched attribute or method in the base case
object is copied to the query object, ending the knowl-
edge transfer.

The last step comprises the ranking of the alterna-
tive generated designs. In this task we use four alterna-
tive selection criteria: number of interconnected
mapped objects, number of mapped objects, sum of the
independence measure of the mapped problem objects,
or number of objects in the new design.

3 In UML there are four relation types: associations,
generalizations, dependencies, and realizations. Only
relations with the same type can be mapped.

3.2 Using WordNet as Background Knowl-
edge

In the mapping algorithms, knowing which objects can
be mapped is a crucial factor. To accomplish this task,
ReBuilder uses the WordNet ontology. In this network,
there are relations between synsets (a synset is a set of
synonym words expressing the same concept), which
reflect a hierarchy of categorization that is used to
compute a conceptual distance between two objects.

These are the is-a relations (e.g., a human is-a mam-

mal, which is-a animal). Because each object corre-

sponds ultimately to a specific synset (context synset),
and since it is normal to have several distinct candi-
dates, we use the object’s name to get the right synset.

We also use the context synsets of the objects in the

same context (class diagram), to choose the correct

synset (this process is named disambiguation).
ReBuilder ranks candidate objects using three
measures. To illustrate this, consider a target object
with context synset A, and a candidate object with con-
text synset B. Suppose that MSCA is the Most Specific

Common Abstraction synset between A and B.

o Taxonomical distance similarity — measures the
similarity between synset A and synset B, passing
by MSCA, based on the taxonomical distance.
The higher the value, the more similar are the
synsets, and closer they are.

- D(A, MSCA) + D(B, MSCA)
2 x MaximumDepth

Where D(A,MSCA) is the distance measured in is-a
links between A and MSCA, and MaximumDepth is
the is-a taxonomy maximum depth.

e Equilibrium measure — relates to the equilibrium
degree of the tree composed by all synsets be-
tween A and MSCA, and all synsets between B
and MSCA. The closer the value is to one, the
more balanced are the distances between A-
MSCA, and B-MSCA.

|D(4, MSCA) — D(B, MSCA)|
D(4, MSCA)? + D(B, MSCA)>

e Absolute depth measure — relates to the taxo-
nomical depth of MSCA. The closer to one, the
deeper MSCA is located.

Depth(MSCA)

MaximumDepth

Where Depth(MSCA) is the minimal distance from
MSCA to a taxonomical root synset. The analogical
algorithm then uses these three measures in a weighted
sum to select the best mapping object from a list of
candidates.

ReBuilder uses the object’s name to determine the
context synset associated to each object. This is a com-
plex task, requiring extraction of all the words from the
object’s name, and disambiguation of these word

meanings. The first thing to do is to get all the words
from the object’s name. Remember that, most of the
times, an object’s name is a composition of two or
more words (e.g. ClientRecord, SchoolDepartment),
and these must be identified and separated*. After a list
of words has been defined, then the algorithm gets the
synset list for each word and joins all the synsets in
one list (candidate synsets). Then the system computes
the sum of the semantic distances between each candi-
date synset and each context synset of the objects in
the same class diagram. The candidate synset with the
smaller semantic distance is the one chosen for the
object’s context synset. These objects comprise the
specific context in which the object is located. Word
decomposition is performed using a set of detachment
rules, which provide a morphological analysis of each
word. The semantic distance used in the disambigua-
tion is defined as the number of WordNet relations
between the two synsets. The relations used in this
distance are is-a, part-of, member-of, and substance-of
relations.

3.3 An Example

Figure 3 shows a short example of the application of
ReBuilder’s analogy module. The UML class diagram
presented in Figure 1 is used as the query for the ana-
logical engine. The class diagram of Figure 2 was cho-
sen from the UML case repository and is used to com-
plete the query design. The resulting diagram is pre-
sented in Figure 3. :

In the first phase, the retrieval algorithm selected
several diagrams, from which the one with the highest
score is presented in Figure 2. Then, the analogy mod-
ule used the object-based structural mapping algorithm
to establish the mapping between objects. The algo-
rithm starts the mapping selecting the query object
with the highest independence measure, which is De-
partment. Because no mappings take place in this first
iteration, all objects from the base diagram are map-
ping candidates.

Using WordNet to identify the context synsets, De-
partment has the same synset as SchoolDepartment -
both are considered departments. The second candidate
is School, and then Teacher and Student. The algo-
rithm selects SchoolDepartment for the first mapping
(Department-SchoolDepartment). After the mapping is
done, the Objects list gets one element: [(Person, {Stu-
dent, Teacher})]. This means that Person can be
mapped to Student or to Teacher, according to the dia-
gram relations that act as structural constraints.

* We are aware that, in English, the meaning of a com-
pound name (a name composed of two or more names)
cannot often be built from its parts. Yet, in the context
we are dealing here, this process of disambiguation
leads, if not to the exact meaning, at least towards the
correct context.

17

School

+ame: String
+address: String
+phone: int

addDepartment(Dep: School Department): void
removeDepartment(Dep: String): int

get Department(Dep: String): School Department
+new Operation(): void

has
1.7

SchoolDepartment

+hame: String

addTeacherteacher: Teacher): void
removeTeacher(Name: String): int
getTeacher(Name: String): Teacher
add Student(student: Student): void
remove Studert(Name: String): int
get Student(Name: String): Student

assignedfo attends
1 =
1.2 ”
Student
Teacher
- +hame: String
#name: String +StudentD: int

Figure 2 - The source UML class diagram used to
complete the class diagram of Figure 1.

In the next iteration, this element is retrieved from
the Objects list, and the algorithm uses WordNet to
select the best candidate. Since the path in WordNet
between Student and Person is 3 arcs long (Student is-a
Enrolee is-a Scholar is-a Person) and between Teacher
and Person is 4 (Teacher is-a Educator is-a Profes-
sional is-a Adult is-a Person), the selected candidate is
Student (Person-Student). At this point, the algorithm
has no more candidate mappings because of the struc-
tural constraints of the diagram.

Company

+name: String
+address: String
+phone: int

add Departenent(Dep: Department): void
removeDepartment(Dep: String): int
get Department{Dep: String): Department

Office

has

Department.

+name: String

addEmployee(employee: Employee): void
removeEmployee(Name: String): int

get Employee(Name: String): Employee
add Person(person: Person): void

remove Person(Name: String): int

get Person({Name: String): Person

, atends
assignedfo
1 x
1.7 _
Person
Employee
- +nhame: String
+name: String +Student!D: int

Figure 3 - The result of analogical reasoning between
diagrams of Figure 1 and Figure 2.

After the mapping between diagrams, the analogy
module transfers the knowledge from the base diagram
to the query diagram. First the relations and objects
associated with the mapped objects are transferred
from the base diagram to the query diagram, always
according to the structural constraints. In this case, two
new classes were transferred to the query diagram,
which had to be renamed by the designer (School to
Company, and Teacher to Employee). Then, the attrib-
utes and methods of the base objects are transferred
into the respective query objects. In Figure 3 Depart-
ment gets the methods and attributes from SchoolDe-
partment, and Person the attributes of Student.

4 Conclusions and future work

In this paper, we presented a CASE tool that uses ana-
logical reasoning to enable the software designer crea-
tivity, By providing a design space exploration mecha-
nism along with large broad-spectrum ontology, Re-

18

Builder can suggest alternative solutions to the soft-
ware designer. This enables the designer to be guided
in the design space exploration, evaluating the designs
generated by the system. Using a human-created de-
sign language like UML, allows ReBuilder to be a
broadband software design tool. Also with the intent of
being an easy to use tool, ReBuilder integrates a gen-
eral ontology like WordNet, so that the designer can be
understood by the machine, instead of having to ex-
plain himself to it.

One of the main advantages of analogical reasoning
is its capability to explore different domains, and to
create new ideas from this exploration. Despite this
major benefit, analogical reasoning has some limita-
tions, such as the complexity and expensive computa-
tional work involved in the process, and also the crea-
tion of bizarre designs. Some of these problems can be
solved using search-guiding heuristics, so that the
search done by the analogical reasoning can be ori-
ented to productive areas of the solution space. An-
other way to solve this problem is by using a common
sense ontology like WordNet to validate the solutions
generated by the analogy module. In future work we
plan to implement this validation mechanism in Re-
Builder using WordNet semantic relations. Future
work on ReBuilder will also involve the use of Design
Patterns as Case-Based Reasoning adaptation plans for
software designs.

S Acknowledgments

This work was partially supported by POSI - Programa
Operacional Sociedade de Informagiio of Portuguese
Fundagfio para a Ciéncia e Tecnologia and European
Union FEDER, contract POSI/33399/SR1/2000, by
program PRAXIS XXI.

6 References

Basset, P. G. (1987). “Frame-Based Software Engi-
neering.” IEEE Software(July): 9-16.

Bhatta, S. and A. Goel (1997). An Analogical Theory
of Creativity in Design. International Conference
on Case-Based Reasoning (ICCBR 97), Providence
- Rhode Island, USA, Springer-Verlag.

Bhatta, S. and A. Goel (1997). Design Patterns; A
Computational Theory of Analogical Design. Inter-
national Joint Conference on Artificial Intelligence
(IJICAI1'97).

Brown, R. (1989). Criativity: What are We to Meas-
ure? Handbook of Creativity. J. Glover, R. Ronning
and C. Reynolds, Plenum Press.

Coulange, B. (1997). Software Reuse.
Springer-Verlag.

Dasgupta, S. (1994). Creativity, Invention and the
Computational Metaphor: Prolegomenon to a Case
Study. Artificial Intelligence and Creativity. T.
Dartnall, Kluwer Academic Publishers.

London,

Fernandez-Chamizo, C., P. Gonzalez-Calero, et al.
(1996). Supporting Object Reuse through Case-
Based Reasoning. Third European Workshop on
Case-Based Reasoning (EWCBR'96), Lausanne,
Suisse, Springer-Verlag.

Gentner, D. (1983). “Structure Mapping: A Theoretical
Framework for Analogy.” Cognitive Science 7(2):
155-170.

Gero, J. (1994). Computational Models of Creative
Design Processes. Artificial Intelligence and Crea-
tivity. T. Dartnall, Kluwer Academic Publishers.

Gero, J. (1994). Introduction: Creativity and Design.
Artificial Intelligence and Creativity. T. Dartnall,
Kluwer Academic Publishers.

Gero, J. and M. L. Maher (1993). Modelling Creativity
and Knowledge-Based Creative Design. Sydney,
Lawrence Erlbaum Associates.

Guilford, J. (1968). Intelligence, creativity and their
educational implications. San Diego, CA, Robert
Knapp.

Hall, R. P. (1989). “Computational approaches to ana-
logical reasoning; A comparative analysis.” Artifi-
cial Intelligence 39(1): 39-120.

Holyoak, K. J. and P. Thagard (1989). “Analogical
Mapping by Constraint Satisfaction.” Conitive Sci-
ence 13: 295-355.

Jeng, J.-J. and B. Cheng (1993). Using Analogy and
Formal Methods for Software Reuse. IEEE 5th In-
ternational Conference on Tools with Al

Katalagarianos, P. and Y. Vassiliou (1995). “On the
reuse of software: a case-based approach employ-
ing a repository.” Automated Software Engineering
2:55-86.

Kolodner, J. and L. Wills (1993). Case-Based Creative
Design. AAAI Spring Symposium on
Al+Creativity, Stanford, CA, USA.

Maiden, N. and A. Sutcliffe (1992). “Exploiting Reus-
able Specifications Through Analogy.” Communi-
cations of the ACM 35(4): 55-64.

Meyer, B. (1987). “Reusability: The Case for Object-
Oriented Design.” IEEE Software 4(2, March
1987): 50-64.

Miller, G., R. Beckwith, et al. (1990). “Introduction to
WordNet: an on-line lexical database.” Interna-
tional Journal of Lexicography 3(4): 235 - 244,

Partridge, D. and J. Rowe (1994). Computers and
Creativity, Intellect Books.

Prieto-Diaz, R. (1991). “Implementing Faceted Classi-
fication for Software Reuse.” Communications of
the ACM(May).

Prieto-Diaz, R. (1993). “Status Report: Software Reus-
ability.” IEEE Software(May).

Rumbaugh, J., L. Jacobson, et al. (1998). The Unified
Modeling Language Reference Manual. Reading,
MA, Addison-Wesley.

Spanoudakis, G. and P. Constantopoulos (1994). Simi-
larity for Analogical Softiware Reuse: A Computa-
tional Model. 11th European Conference on Artifi-

19

cial Intelligence, Amesterdam, The Netherlands,
John Wiley & Sons.

Tessem, B., S. Bjornestad, et al. (1994). ROSA = Re-
use of Object-oriented Specifications through
Analogy: A Project Framework. Bergen, Depart-
ment of Information Science, University of Bergen:
23.

20

THINKING THROUGH DOING

External Representations in Abductive Reasoning

Lorenzo Magnani
Department of Philosophy and Computational Laboratory; University of Pavia; Pavia; Italy
Philosophy, Science, and Technology Program; Georgia Institute of Technology; Atlanta; GA; USA
Imagnani @cc.gatech.edu

Abstract

The concept of manipulative abduction is devoted to capture the role of action in many interesting situations: action
provides otherwise unavailable information that enables the agent to solve problems by starting and performing a
suitable abductive process of generation or selection of hypotheses. Many external representations, even if in some
cases inert from the epistemological point of view, can be transformed into what is called epistemic mediators, active
in creative abductive reasoning. I will present some aspects of this kind of reasoning in the case of the discovery of
non-Euclidean geometry; moreover, I will illustrate some examples from a computational program that simulates the

manipulations of diagrams in geometry.

1 Introduction

What is called theoretical abduction (sentential and
manipulative) certainly illustrates much of what is im-
portant in creative abductive reasoning both in humans
and computational programs, especially the objective
of selecting and creating a set of hypotheses that are
able to dispense good (preferred) explanations of data,
but fails to account for many cases of explanations
occurring in science or in everyday reasoning when the
exploitation of the environment is crucial. The concept
of manipulative abduction is devoted to capture the
role of action in many interesting situations: action
provides otherwise unavailable information that en-
ables the agent to solve problems by starting and per-
forming a suitable abductive process of generation or
selection of hypotheses.

Many external things, even if usually inert from the
epistemological point of view, can be transformed into
what is called epistemic mediators, which are illus-
trated in the second part of this paper, together with an
analysis of the related notion of “external representa-
tion”. I will present some aspects of this kind of rea-
soning in the case of the discovery of non-Euclidean
geometry and I will illustrate some examples from a
computational program that simulates the manipula-
tions of diagrams in geometry. The computational em-
bodiment generates in this last case a kind of “squared”
epistemic mediator: geometrical construction, as an
example of epistemic mediator, is further mediated.

21

2 Model-based abduction

It is well known that many reasoning conclusions that
do not proceed in a deductive manner are abductive.
What is called theoretical abduction (Magnani, 1999a
and 2001a) is, from a cognitive point of view, an inter-
nal process of reasoning. What about the “external”
ways of finding hypotheses?

Many attempts have been made to model abduction by
developing some formal tools in order to illustrate its
computational properties and the relationships with
the different forms of deductive reasoning. Some of
the formal models of abductive reasoning are based on
the theory of the epistemic state of an agent (Boutilier
and Becher 1995), where the epistemic state of an indi-
vidual is modeled as a consistent set of beliefs that can
change by expansion and contraction (belief revision
Sframework). This kind of sentential frameworks exclu-
sively deals with selective abduction' (diagnostic rea-
soning) and relates to the idea of preserving consis-
tency. If we want to provide a suitable framework for
analyzing the most interesting cases of conceptual
changes in science we do not have to limit ourselves to
the sentential view of theoretical abduction but we
have to consider a broader inferential one which en-
compasses both sentential and what is called model-
based sides of creative abduction.

' We have to distinguish between selective and creative
abduction. Abduction that merely selects from an en-
cyclopedia of pre-stored hypotheses is called selective.
Abduction that generates new hypotheses (Magnani
1992) is called creative.

Hence, if we want to deal with the nomological and
most interesting creative aspects of abduction we are
first of all compelled to consider the whole field of the
growth of scientific knowledge. Related to the high-
level types of scientific conceptual change (Thagard
1992) are different varieties of model-based abductions
(see, for examples, Magnani 1999b). Following Ner-
sessian (1999), the term “model-based reasoning” is
used to indicate the construction and manipulation of
various kinds of representations, not necessarily sen-
tential and/or formal. Obvious examples of model-
based reasoning are constructing and manipulating
visual representations, thought experiment, analogical
reasoning, but also the so-called “tunnel effect” (Cor-
nuéjols et al., 2000), occurring when models are built
at the intersection of some operational interpretation
domain — with its interpretation capabilities — and a
new ill-known domain.

What exactly is model-based abduction from a philo-
sophical point of view? Peirce stated that all thinking is
in signs, and signs can be icons, indices, or symbols.
Moreover, all inference is a form of sign activity,
where the word sign includes “feeling, image, concep-
tion, and other representation” (CP 5.283), and, in
Kantian words, all synthetic forms of cognition. That
is, a considerable part of the thinking activity is model-
based. Of course model-based reasoning acquires its
peculiar creative relevance when embedded in abduc-
tive processes.

For Peirce a Kantian keyword is synthesis, where the
intellect constitutes in its forms and in a harmonic way
all the material delivered by the senses. Surely Kant
did not consider synthesis as a form of inference but,
notwithstanding the obvious differences, I think syn-
thesis can be related to the Peircian concept of infer-
ence, and, consequently, of abduction. After all, when
describing the ways the intellect follows to unify and
constitute phenomena through imagination Kant itself
makes use of the term rule (Kant 1929, A140, B179-
180, 182), and also of the term procedure (Kant 1929,
A140-B179-180, 182). We know that rules and proce-
dures represent the central features of the modern con-
cept of inference.

Most of these forms of constitution of phenomena are
creative and, moreover, characterized in a model-based
way. Let me show some examples of model-based in-
ferences. It is well known the importance Peirce as-
cribed to diagrammatic thinking, as shown by his dis-
covery of the powerful system of predicate logic based
on diagrams or “existential graphs” (Anderson, 1987).
As we have already stressed, Peirce considers inferen-
tial any cognitive activity whatever, not only conscious
abstract thought; he also includes perceptual knowl-
edge and subconscious cognitive activity. For instance
in subconscious mental activities visual representations
play an immediate role.

22

Peirce gives an interesting example of model-based
abduction (Magnani, 1999a and 2001a) related to sense
activity: “A man can distinguish different textures of
cloth by feeling: but not immediately, for he requires to
move fingers over the cloth, which shows that he is
obliged to compare sensations of one instant with those
of another” (CP 5.221); this idea surely suggests that
abductive movements also have interesting extra-
theoretical characteristics and that there is a role in
abductive reasoning for various kinds of manipulations
of external objects (cf. below, the problem of “action-
based, manipulative abduction”). One more example is
given by the fact that the perception of tone arises from
the activity of the mind only after having noted the
rapidity of the vibrations of the sound waves, but the
possibility of individuating a tone happens only after
having heard several of the sound impulses and after
having judged their frequency. Consequently the sen-
sation of pitch is made possible by previous experi-
ences and cognitions stored in memory, so that one
oscillation of the air would not produce a tone.

To conclude, all knowing is inferring and inferring is
not instantaneous, it happens in a process that needs an
activity of comparisons involving many kinds of mod-
els in a more or less considerable lapse of time. All
sensations or perceptions participate in the nature of a
unifying hypothesis, that is, in abduction, in the case of
emotions too: “Thus the various sounds made by the
instruments of the orchestra strike upon the ear, and the
result is a peculiar musical emotion, quite distinct from
the sounds themselves. This emotion is essentially the
same thing as a hypothetic inference, and every hy-
pothetic inference involved the formation of such an
emotion” (CP 2.643).

What happens when the abductive reasoning in science
is strongly related to extra-theoretical actions and ma-
nipulations of “external” objects? When abduction is
“action-based” on external models? When thinking is
“through doing” as illustrated in the simple case above
of distinguishing the simple textures of cloth by feel-
ing? To answer these questions I will delineate the first
features of what I call manipulative abduction by
showing how we can find in scientific and everyday
reasoning methods of constructivity based on external
models and actions.

3 Manipulative abduction

Manipulative abduction happens when we are thinking
through doing and not only, in a pragmatic sense, about
doing. It refers to an extra-theoretical behavior that
aims at creating communicable accounts of new expe-
riences to integrate them into previously existing sys-
tems of experimental and linguistic (theoretical) prac-
tices. Gooding (1990) refers to this kind of concrete
manipulative reasoning when he illustrates the role in
science of the so-called “construals™ that embody tacit
inferences in procedures that are often apparatus and
machine based. The embodiment is of course an expert

manipulation of objects in a highly constrained ex-
perimental environment, and is directed by abductive
movements that imply the strategic application of old
and new templates of behavior mainly connected with
extra-theoretical components, for instance emotional,
esthetical, ethical, and economic.

The hypothetical character of construals is clear: they
can be developed to examine further chances, or dis-
carded, they are provisional creative organization of
experience and some of them become in their turn hy-
pothetical interpretations of experience, that is more
theory-oriented, their reference is gradually stabilized
in terms of established observational practices. Step by
step the new interpretation - that at the beginning is
completely “practice-laden” - relates to more “theoreti-
cal” modes of understanding (narrative, visual, dia-
grammatic, symbolic, conceptual, simulative), closer to
the constructive effects of theoretical abduction. When
the reference is stabilized the effects of incommensura-
bility with other stabilized observations can become
evident. But it is just the construal of certain phenom-
ena that can be shared by the sustainers of rival theo-
ries. Gooding (1990) shows how Davy and Faraday
could see the same attractive and repulsive actions at
work in the phenomena they respectively produced;
their discourse and practice as to the role of their con-
struals of phenomena clearly demonstrate they did not
inhabit different, incommensurable worlds in some
cases. Moreover, the experience is constructed, recon-
structed, and distributed across a social network of
negotiations among the different scientists by means of
construals.

To illustrate this process - from manipulations, to nar-
ratives, to possible theoretical models (visual, dia-
grammatic, symbolic, mathematical) - in a previous
work” I have considered some observational techniques
and representations made by Faraday, Davy, and Biot
concerning Oersted’s experiment about electromag-
netism. They were able to create consensus because of
their conjectural representations that enabled them to
resolve phenomena into stable perceptual experiences.
Some of these narratives are very interesting.

3.1 Epistemic mediators

Recent research, taking an ecological approach to the
analysis and design of human-machine systems, has
shown how expert performers use action in everyday
life to create an external model of task dynamics that
can be used in lieu of an internal model (Kirlik, 1998).
Not only a way for moving the world to desirable
states, action performs an epistemic and not merely
performatory role that is very relevant to abductive
reasoning.

? Cf. Magnani, 2001 (also studied in Gooding, 1990).

23

The whole activity of manipulation is devoted to build
various external epistemic mediators that function as an
enormous new source of information and knowledge. I
derive this expression from the cognitive anthropolo-
gist Hutchins (1995), that coins the expression “medi-
ating structure” to refer to various external tools that
can be built to cognitively help the activity of navigat-
ing in modern but also in “primitive” settings. Any
written procedure is a simple example of a cognitive
“mediating structure” with possible cognitive aims:
“Language, cultural knowledge, mental models, arith-
metic procedures, and rules of logic are all mediating
structures too. So are traffic lights, supermarkets lay-
outs, and the contexts we arrange for one another’s
behavior. Mediating structures can be embodied in
artifacts, in ideas, in systems of social interactions
[...]" (290-291).

In this light manipulative abduction in science repre-
sents a kind of redistribution of the epistemic and cog-
nitive effort to manage objects and information that
cannot be immediately represented or found internally
(for example exploiting the resources of visual im-
agery).’

3.2 Experiments and the “World of
Paper”

Already in the Dialogues Concerning the Two Chief
World Systems (1632), accentuating the role of obser-
vational manipulations Galileo presents an anatomist
that, manipulating a cadaver, is able to get new, not
speculative, information that goes beyond the “world
of paper” of the Peripatetic philosophy. It is well
known that recent philosophy of science has paid a
great attention to the so-called theory-ladenness of sci-
entific facts (Hanson, Popper, Kuhn) (Chalmers, 1999).
Nevertheless a lot of new information in science is
reached by observations and experiments, and experi-
ments are the fruit of various kinds of artifactual ma-
nipulations: the different strategies correspond to the
expert manipulations of objects in a highly constrained
experimental environment, directed by abductive
movements that imply the application of old and new
extra-theoretical templates (cf. the following section)
of behavior.

With Galileo’s achievements, we observe that human
“scientific” thinking is related to the manipulation of a
material and experimental environment that is no
longer natural. Knowledge is finally seen as something
cognitively distributed across scientists, their internal
“minds”, and external artifacts and instruments. Ex-
periments and instruments embody in their turn exter-
nal crystallization of knowledge and practice. Modern
science is made by this interplay of internal and exter-

3 It is difficult to preserve precise spatial relationships
using mental imagery, especially when one set of them
has to be moved relative to another.

nal. An immediate consequence of Galileo’s ideas is
the critique of the authority, that advocated the knowl-
edge relevance of a “world of paper”, mainly internal
from the cognitive point of view. Gooding observes: “It
is ironical that while many philosophers admire science
because it is empirical as well as rational, philosophical
practice confines it to the literary view that Galileo
rejected” (1990, xii). Galileo’s “book of nature” and
his systematic use of the telescope are the revolution-
ary epistemic mediators that characterize the cognitive
power of the new way of producing intelligibility.

3.3 Manipulative templates

We still know very little about what govems the action-
based abduction. I plan to better delineate some of the
manipulative templates’ that are active in creative ab-
duction comparing scientific and everyday reasoning:
1. action elaborates a simplification of the reasoning
task and a redistribution of effort across time when we
“need to manipulate concrete things in order to under-
stand structures which are otherwise too abstract”
(Piaget 1974), or when we are in presence of redundant
and unmanageable information; 2. action can be useful
in presence of incomplete or inconsistent information -
not only from the “perceptual” point of view - or of a
diminished capacity to act upon the world: it is used to
get more data to restore coherence and to improve defi-
cient knowledge; 3. action as a control of sense data
illustrates how we can change the position of our body
(and/or of the external objects) and how to exploit
various kinds of prostheses (Galileo’s telescope, tech-
nological instruments and interfaces) to get various
new kinds of stimulation: action provides some tactile
and visual information (e. g., in surgery), otherwise
unavailable; 4. action enables us to build external arti-
factual models of task mechanisms instead of the cor-
responding internal ones, that are adequate to adapt the
environment to agent’s needs: experimental manipula-
tions exploit artificial apparatus to free new possible
stable and repeatable sources of information about hid-
den knowledge and constraints; 5. in science experi-
mental action shows a sensibility to the aspects of the
phenomenon which can be regarded as curious or
anomalous; manipulations have to be able to introduce
potential inconsistencies in the received knowledge
(Oersted’s report of his well-known experiment about
electromagnetism is devoted to describe some anoma-
lous aspects that did not depend on any particular the-
ory of the nature of electricity and magnetism; 6. action
exhibits a preliminary sensibility to the dynamical
character of the phenomenon, and not to entities and
their properties, common aim of manipulations is to
practically reorder the dynamic sequence of events in a
static spatial one that should promote a subsequent
bird’s-eye view (narrative or visual-diagrammatic).

* As a kind of schematic and general habit typical of
many epistemological and/or cognitive behaviors.

24

4 Geometrical construction is a
kind of manipulative abduction

It is well-known that in the history of geometry many
researchers used internal mental imagery and mental
representations of diagrams, but also self-generated
diagrams (external) to help their thinking (Otte and
Panza, 1997). For example, it is clear that in geometri-
cal construction many of the requirements indicated by
the manipulative templates (cf. above) are fulfilled.
Indeed geometrical constructions present situations that
are curious and “at the limit”. They are constitutively
dynamic, artificial, and offer various contingent ways
of epistemic acting, like looking from different per-
spectives, comparing subsequent appearances, dis-
carding, choosing, re-ordering, and evaluating. Moreo-
ver, they present the features typical of manipulative
reasoning illustrated above, such as the simplification
of the task and the capacity to get visual information
otherwise unavailable.

Let’s quote an interesting Peirce’s passage about con-
structions. Peirce says that mathematical and geometri-
cal reasoning “consists in constructing a diagram ac-
cording to a general precept’, in observing certain rela-
tions between parts of that diagram not explicitly re-
quired by the precept, showing that these relations will
hold for all such diagrams, and in formulating this con-
clusion in general terms. All valid necessary reasoning
is in fact thus diagrammatic” (CP, 1.54). Not dissimi-
larly Kant says that in geometrical construction “[...] [
must not restrict my attention to what I am actually
thinking in my concept of a triangle (this is nothing
more than the mere definition); I must pass beyond it to
properties which are not contained in this concept, but
yet belong to it” (Kant, 1929, A718-B746, p. 580).

We have seen that manipulative abduction is a kind of
abduction, usually model-based, that exploits external
models endowed with delegated (and often implicit)
cognitive roles and attributes.

e The model (diagram) is external and the strategy
that organizes the manipulations is unknown a
priori.

o The result achieved is new (if we, for instance,
refer to the constructions of the first creators of
geometry), and adds properties not contained be-
fore in the concept (the Kantian to “pass beyond”
or “advance beyond” the given concept, Kant,
1929, A154-B193/194, p. 192).°

* That is a kind of definition that prescribes “what you
are to do in order to gain perceptual acquaintance with
the object of the world” (CP, 2.330).

® Of course in the case we are using diagrams to dem-
onstrate already known theorems (for instance in di-
dactic settings), the strategy of manipulations is not
necessary unknown and the result is not new.

Hence, in the construction of mathematical concepts
many external representations are exploited, both in
terms of diagrams and of symbols. I am interested in
my research in the diagrams which play an optical role
- microscopes (that look at the infinitesimally small
details), telescopes (that look at infinity), windows
(that look at particularly situation), a mirror role (to
externalize rough mental models), and an unveiling
role (to help to create new and interesting mathematical
concepts, theories, and structures). I describe them as
the epistemic mediators (cf. above) able to perform
various abductive tasks (discovery of new properties or
new propositions/hypotheses, provision of suitable
sequences of models able to convincingly verifying
theorems, etc.). Elsewhere I have presented some de-
tails concerning the role of optical diagrams in the cal-
culus (Magnani and Dossena, 2002).

5 Discovering new concepts with
diagrams and mechanizing manipu-
lative abduction

It is clear that humans and other animals make a great
use of perceptual reasoning and kinesthetic abilities.
We can catch a thrown ball, cross a busy street, read a
musical score, go through a passage by imaging if we
can contort out bodies to the way required, evaluate
shape by touch, recognize that an obscurely seen face
belongs to a friend of ours, etc. Usually the “computa-
tions” required to achieve these tasks are not accessible
to a conscious description. Mathematical reasoning
uses language explanations, but also non-linguistic
notational devices and models. Geometrical construc-
tions represent a relatively simple example of this kind
of extra-linguistic machinery we know as characterized
in a model-based and manipulative - abductive - way.

5.1 Unveiling and mirror diagrams in the
discovery of geometrical concepts

Diagrams serve an important role in abduction because
they can be manipulated. In mathematics diagrams play
various roles in a typical abductive way. Two of them
are central:

¢ they provide an intuitive explanation able to help
the understanding of concepts difficult to grasp or
that appear obscure and/or epistemologically un-
justified,’

e they help to create new previous unknown con-
cepts, as illustrated in the case of the non-
Euclidean geometry.

” Some new optical diagrams (microscopes within mi-
croscopes), which provide new mental representations
of the concept of tangent line at the infinitesimally
small regions, are introduced in the already cited Mag-
nani and Dossena (2002).

25

In the case of the construction and examination of dia-
grams in geometrical reasoning, specific experiments
serve as states and the implied operators are the ma-
nipulations and observations that transform one state
into another. The geometrical outcome is dependent
upon practices and specific sensory-motor activities
performed on a non symbolic object, which acts as a
dedicated external representational medium supporting
the various operators at work. There is a kind of an
epistemic negotiation between the sensory framework
of the geometer and the external reality of the diagram.
This process involves an external representation con-
sisting of written symbols and figures that are manipu-
lated “by hand”. The cognitive system is not merely the
mind-brain of the person performing the geometrical
task, but the system consisting of the whole body (cog-
nition is embodied) of the person plus the external
physical representation. In geometrical discovery the
whole activity of cognition is located in the system
consisting of a human together with diagrams.

An external representation can modify the kind of
computation that a human agent uses to reason about a
problem: the Roman numeration system eliminates, by
means of the external signs, some of the hardest parts
of the addition, whereas the Arabic system does the
same in the case of the difficult computations in multi-
plication (Zhang, 1997).

The external representations are not merely memory
aids: they can give people access to knowledge and
skills that are unavailable to internal representations,
help researchers to easily identify aspects and to make
further inferences, they constrain the range of possible
cognitive outcomes in a way that some actions are al-
lowed and other forbidden. The mind is limited be-
cause of the restricted range of information processing,
the limited power of working memory and attention,
the limited speed of some learning and reasoning op-
erations; on the other hand the environment is intricate,
because of the huge amount of data, real time require-
ment, uncertainty factors. Consequently, we have to
consider the whole system, consisting of both internal
and external representations, and their role in optimiz-
ing the whole cognitive performance of the distribution
of the various subtasks (Trafton et. al., 2002). We al-
ready stated that in the history of geometry many re-
searchers used internal mental imagery and mental
representations of diagrams, but also self-generated
diagrams (external) to help their thinking.

Mirror and unveiling diagrams play a fundamental
creative and explanatory (sometimes also didactic) role
to remove obstacles and obscurities and to enhance
mathematical knowledge of critical situations. They
facilitate new internal representations and new sym-
bolic-propositional achievements. The unveiling dia-
grams provide new light on mathematical structures:
these diagrams can lead to interesting creative results.
Finally, the mirror and unveiling diagrammatic repre-
sentations of mathematical structures activate direct

perceptual operations (for example how to identify
where we can find an orisphere in an Euclidean struc-
ture; how to represent a stercometric non-Euclidean
form, cf. below).

We stated above that in mathematics mirror and un-
veiling diagrams play various roles in a typical abduc-
tive way. Now we can add that;

e they are epistemic mediators able to perform vari-
ous abductive tasks in so far as

o they are external representations which, in the
cases we will present in the following sections, are
devoted to provide explanatory abductive results.

Figure 1.

Let us consider some aspects of the role of mirror and
unveiling diagrams in the Lobachevskyan discovery of
the elementary non-Euclidean geometry. A mirror dia-
gram (for example the diagram of the drawn parallel
lines - cf. Figure 1 - Lobachevsky, 1891) is a kind of
external analogous both of the mental image we depict
in the mental visual buffer and of the symbolic-
propositional level of the postulate definition (the fifth
postulate). In general this diagram mirrors the internal
imagery and provide the possibility of detecting
anomalies. The external representation of geometrical
structures often activates direct perceptual operations
(for example, identify the parallels and search for the
limits) to elicit consistency or inconsistency routines.
Sometimes the mirror diagram biases are inconsistent
with the task and so they can make the task more diffi-
cult by misguiding actions away from the goal. If con-
sistent, they can make the task easier by guiding ac-
tions toward the goal. In certain cases the mirror dia-
grams biases are irrelevant, they should have no effects
on the decision of abductive actions, and play lower
cognitive roles. The in the case of Figure 1 the diagram
of the parallel lines was used in the history of geometry
to make both consistent and inconsistent the fifth
Euclidean postulate and the new non-Euclidean per-
spective (more details on this epistemological situation
are given in Magnani, 2001b).

26

Figure 2.

c

An example of unveiling diagram is the one illustrated
by the Figure 2 (Lobachevsky, 1891). It is more ab-
stract than the previous one and exploits “audacious”
representations in the perspective of three dimensional
geometrical shapes. The construction given in the fig-
ure aims at diagrammatically “representing” a stere-
ometric non-Euclidean form built on a rectilinear right
angled triangle ABC to which theorems previously
proved (for example, the one stating that the parallels
AA', BB', CC', which lie on the three planes are paral-
lels in non-Euclidean sense) can be applied. In this way
Lobachevsky is able to further apply symbolic identifi-
cations and to arrive to new equations which consis-
tently (and in the same time) connect Euclidean and
non-Euclidean perspectives. This kind of diagram
strongly guides the geometer’s selections of moves by
eliciting what I call the FEuclidean-inside non-
Euclidean “model matching strategy”. This maneuver
also constitutes an important step in the affirmation of
the modern “scientific” concept of model. This un-
veiling diagram constitutes a kind of gateway to imagi-
nary entities.

In general we have to note that some perceptions acti-
vated by the diagram are of course disregarded as ir-
relevant to the task, as it usually happens when ex-
ploiting external diagrammatic representations in rea-
soning processes. Because not everything in external
representations is always relevant to a task, high level
cognitive mechanisms need to use task knowledge
(usually supplied by task instructions, geometrical, in
our case) to direct attention and perceptual processes to
the relevant features of external representations. This
external representation in terms of an unveiling dia-
gram activates a perceptual reorientation in the con-
struction (that is identifies possible further construc-
tions and enhancements); in the meantime the gener-
ated internal representation of the external elements
activates directly retrievable information (numerical
values) that elicits the strategy of building further non-
Euclidean structures together with their analytic coun-
terpart (the non-Euclidean trigonometry equations)’.

* More details concerning the role of mirror an unveil-
ing diagrams in constructing different ideas of infinite
in Lobachevsky’s thought are given in Magnani, 2002).

5.1 Automatic geometrical constructions
as epistemic mediators

A very interesting artificial intelligence computer pro-
gram has been built, ARCHIMEDES (Lindsay, 1994,
1998), that represents geometrical diagrams (points,
line segments, polygons, and circles) both as pixels
arrays and as propositional statements. For example a
triangle will be represented from a propositional de-
scription as a set of marked pixels in an array, together
with a set of data naming the given triangle and storing
facts about it (for instance that it is right) and con-
straints upon it (perhaps that it remains right through-
out this use of the diagram). Hence, a computational
equivalent of a physical diagram is represented, plus
some human propositional knowledge about it.

The program is able to “manipulate” and modify its
own representations of diagrams, that is it is able to
make geometrical constructions (called “simulation
constructions”): adding parts or elements, moving
components about, translating and rotating by preserv-
ing metric properties, of course subordinated to the
given specific constraints and to the whole structure of
the two-dimensional space. Some knowledge of alge-
bra is added, and of the taxonomic hierarchy of geo-
metric figures (all square are rectangles, etc.); moreo-
ver, it is also added additional knowledge like side-
angle-side congruency theorem and the sum of the inte-
rior angles of a triangle, knowledge of problem solving
strategies and heuristics, knowledge of logic (for ex-
ample: a universal statement can be disproved by a
single counterexample) (Lindsay, 2000b).

When the program manipulates the specific diagram, it
records the new information that comes out, then it can
for example detect sets of area equivalences, and so on:
for example, it is able to verify that a demonstration of
the Pythagorean Theorem is correct, mirroring its truth
in terms of constructions and manipulations. To ac-
count for the universality of geometrical theorems and
propositions many different methods for learning and
“generalizing™ the specific instance of the constructed
diagram are exploited (Lindsay, 1988, pp. 260-264).

These methods come from a kind of predicative

knowledge of course “exogenous” to the mere dia-
grammatic representation: generalization is not a pos-
sible product of the pure diagrammatic understanding.
For instance, one suggestion is to break the problem
into cases, to individuate a “representative” instance
for each case, and to demonstrate that this conclusion
holds for each of these instances. Another one is to
exploit the simulative aspects of constructions by *“run-
ning experiments” that show how some parts of a dia-
gram co-vary with changes in others: the observation
of the interaction of the diagrams parts as one property
is varied allows us to grasp and understand the “univer-
sal” value of some geometric relations and results (for
example congruency theorem, asymptotic behaviors,

27

periodic relations, and some symmetric relations). It is
interesting to note that one of the construction ma-
nipulations proposed by the program to verify the Py-
thagorean Theorem intends to show that it is not true of
(some examples of) non-right triangles.

An extension of the program (described in Lindsay,
2000a), aims to autonomously build constructions that
can demonstrate a given proposition,’ rather than sim-
ply verify them. It accomplishes the further complex
task of discovering conjectures that can lead to the con-
structions of demonstrations, illustrating the possible
role of diagrammatic reasoning in creativity.

6 Conclusion

The concepts of model-based and manipulative abduc-
tion we have described provide a better understanding
of many kinds of reasoning based on external repre-
sentations and their treatment.

There are many creative and didactic settings where
some mechanisms underlying these epistemic media-
tors can be studied and elicited. For example: i) the role
of optical diagrams both in the calculus' seems rele-
vant.

I am preparing a research devoted to detect the details
of their didactic effects on the calculus students at the
University of Pavia (mathematics and engineering cur-
ricula and teaching environment); I am also convinced
these kinds of diagrams can be exploited and studied as
epistemic mediators in everyday non-mathematical
applications (finding routes, road signs, buildings
maps, for example), in connection with various zoom-
ing effects of spatial reasoning; ii) I think the cognitive
activities of optical, mirror, and unveiling diagrams can
be studied in other areas of model-based reasoning
(Magnani and Nersessian, 2002), such as the ones in-
volving creative, analogical, and spatial inferences,
both in science and everyday situations so that this can
extend the epistemological and the psychological the-
ory.

References

D.R., Anderson. Creativity and the Philosophy of
Charles Sanders Peirce. Clarendon Press, Oxford,
1987.

C. Boutilier and V. Becher. Abduction as belief revi-
sion. Artificial intelligence, 77:43-94, 1995,

’ The program is able to “discover demonstrations”,
that is to find sequences of manipulations that achieve
a particular end.
'° Cf. footnote 7.

AF. Chalmers. What is this Thing Called Science
(1976). Hackett, Indianapolis/Cambridge, 1999.

A. Cornuéjols, A. Tiberghien and G. Collet. A new
mechanism for transfer between conceptual do-
mains in scientific discovery and education. Foun-
dations of Science, 5(2):129-155, 2000. Special Is-
sue on “Model-based Reasoning in Science:
Learning and Discovery”, ed. by L. Magnani, N.J.
Nersessian, and P. Thagard.

G. Galilei. Dialogues Concerning the Two Chief World
Systems (1632), translated by S. Drake. In: M.R.
Matthews, ed., 1989, pp. 61-81.

D. Gooding. Experiment and the Making of Meaning.
Kluwer, Dordrecht, 1990.

E. Hutchins. Cognition in the Wild, MIT Press, Cam-
bridge, MA, 1995.

I. Kant. Critique of Pure Reason (1787), translated by
N. Kemp Smith. MacMillan, London, 1969, reprint
1998.

A. Kirlik. The ecological expert: acting to create in-
formation to guide action. In: Proceedings of the
1998 Conference on Human Interaction with Com-
plex Systems (HICS’98), IEEE Press, Piscataway,
NI, 1998.

R.K. Lindsay. Understanding diagrammatic demon-
strations. In: Proceedings of the 16" Annual Confer-
ence of the Cognitive Science Society, A. Ram and
K. Eiselt, eds., Erlbaum, Hillsdale, NJ, 1994, pp.
572-576.

R.K. Lindsay. Using diagrams to understand geometry,
Computational Intelligence, 9(4):343-345, 1998,

R.K. Lindsay. Using spatial semantics to discover and
verify diagrammatic demonstrations of geometric
propositions. In: Spatial Cognition, S. O’Nuallian,
ed., John Benjamins, Amsterdam, 2000a, pp. 199-
212.

R.K. Lindsay. Playing with diagrams. In: Diagrams
2000, M. Anderson, P. Cheng, and V. Haarslev,
eds., Springer, Berlin, 2000b.

R.K. Lindsay. Knowing about diagrams. In: Reasoning
with Diagrams, M. Anderson and P. Olivier, eds.,
Springer, Berlin, 2000c.

N.J. Lobachevsky. Geometrical Researches on the Theory of
Paralleles [1840), translated by G.B. Halsted. University
of Texas, Austin, 1891.

L. Magnani. Abductive reasoning: philosophical and
educational perspectives in medicine. In D. A. Ev-
ans and V. L. Patel (eds.). Advanced Models of

28

Cognition for Medical Training and Practice.
Springer, Berlin, 1992, pp. 21-41.

L. Magnani. Model-based creative abduction. In: L.
Magnani, N. J. Nersessian, and P. Thagard, eds.,
Model-Based Reasoning in Scientific Discovery,
Kluwer Academic/Plenum Publishers, New York,
1999a, pp. 219-238.

L. Magnani, Inconsistencies and Creative Abduction in
Science. In: Al and Scientific Creativity. Proceed-
ings of the AISB99 Symposium on Scientific Crea-
tivity, Society for the Study of Artificial Intelligence
and Simulation of Behaviour, University of Edin-
burgh, Edinburgh, 1999b, pp. 1-8.

L. Magnani. Abduction, Reason, and Science. Proc-
esses of Discovery and Explanation. Kluwer Aca-
demic/Plenum Publishers, New York, 2001a.

L. Magnani. Philosophy and Geometry. Theoretical
and Historical Issues. Kluwer Academic, Dordrecht,
2001b.

L. Magnani. Epistemic mediators and model-based
discovery in science, in: L. Magnani and N.J. Ner-
sessian, eds, 2002, pp. 305-329.

L. Magnani and R. Dossena. Perceiving the infinite and
the infinitesimal world: unveiling and optical dia-
grams and the construction of mathematical con-
cepts, submitted to CogSci2002.

L. Magnani and N.J. Nersessian, eds. Model-Based
Reasoning: Science, Technology, Values. Kluwer
Academic/Plenum Publishers, New York, 2002.

M.R. Matthews. The Scientific Background to Modern
Philosophy. Hackett, Indianapolis/Cambridge, 1989.

N.J. Nersessian. Model-based reasoning in conceptual
change. In: L. Magnani, N. J. Nersessian, and P.
Thagard eds., Model-Based Reasoning in Scientific
Discovery, Kluwer Academic/Plenum Publishers,
New York, 1999, pp. 5-22.

M. Otte and M. Panza, eds. Analysis and Synthesis in
Mathematics. Kluwer Academic, Dordrecht, 1997.

C.S. Peirce. Collected Papers 1-6 (CP), edited by C.
Hartshorne and P. Weiss. Collected Papers 7-8, ed-
ited by A. Burks, Harvard University Press, Cam-
bridge, 1931-35, 1958.

J. Piaget, Adaptation and Intelligence, University of
Chicago Press, Chicago, IL, 1974.

P. Thagard. Conceptual Revolutions. Princeton Univer-
sity Press, Princeton, 1992,

Intelligent Dynamic Collaboration

Kirsty A. Beilharz

Key Centre of Design Computing and Cognition
University of Sydney, Australia
kirsty@arch.usyd.edu.au

Abstract

This paper investigates criteria required for developing a robotic or computational collaborative tool for designers /
creators. The intention of this tool is a real time collaborative assistant or collaborator that provides innovative designs
in reaction to, and adaptation of, material in a situated design context. The human designer provides the cathartic
stimuli to which the collaborative tool responds and using adaptive, reactive and learned knowledge the collaborator
responds with material in response and adaptation to the constantly evolving, hence dynamic, situated design context.
As the human designers ideas and formulations evolve and morph, the computational or robotic collaborator model
adapts to the transforming dominant trends in creativity to shape the material it produces in response. This model is
not designed to replace or simulate human creativity; rather it is a productive, responsive complementary tool, complicit
to the creative tendencies of the human design developer. This is a concept prototype for which an hypothetical design
scenario is considered in order to address formation of hierarchy and categorisation of design parameters that are situated
and specific to the design context. Essential to a real time reactive agent or computational collaborative model, is its
ability to learn and to discard knowledge from past, leaned, situated experiences as the situation changes with the
dynamic of the human designer. It is envisaged that this tool is useful at those stages of the designing process in
which the productivity of the principal (human) designer is relatively rapid, intuitive and spontaneous. Its potential
benefit, therefore, is at the conceptual stage of design or in a situation in which output is delivered immediately, e.g. an
improvisatory or design-screening stage in the design process.

1 Introduction

1.1 Terminology

In this paper, “designer” is used to refer to the human de-
signer or creator who provides the initial and transforming
information and material to which the collaborative tool
responds and reacts. Although both designer and collabo-
rative assistant are creative in generating new design ma-
terial, the collaborator continuously produces its material
in reaction to the human designer.
In this work “design” is viewed as

“a situated and dynamic activity”. (Reffat &
Gero, 2000)

The term “collaborator” is used to refer to the col-
laborative, also generative or creative, computational de-
sign assistant but the innovation and adaptation of ma-
terial produced by the collaborator is in response to the
dynamic situation provided by the designer.

Throughout this paper, it is assumed that the design
process and the creative material it generates are insepa-
rable from its context. The process of designing is con-
ditioned by what has preceded it, both in the case of the
human designer and in the case of the computational col-
laborator. On the part of the collaborative tool, the mate-
rial it generates is further conditioned by reaction to the
designers trends and production. Due to the reactive and

29

adaptive nature of the material produced by the collab-
orator, the model is entirely dependent on the output of
the designer. As the designers concepts evolve and trans-
form, so too the collaborators reactions evolve and learn
from situated experiences. The process of evolving and
discerning principal tendencies and pursuing their change
by the collaborator renders the model irremovable from
its context.

Designers actions are situation dependent, i.e. situ-
ated, such that designers work interactively with the de-
sign environment within the specific conditions of the sit-
uation. (Reffat & Gero, 2000; Gedenryd, 1998)

Compliant with this observation of the design process,
this model is situation dependent and, especially the role
of the collaborator is wholly situated according to the ac-
tions of the designer with whom the collaborative tool is
interacting. This notion of the collaborators response is
stretched to include not only categories of “reactive” and
“adaptive” response, but also to term it “interactive” be-
cause the material generated by the collaborator is imme-
diately returned to the designer who may react to it and
thence the material is further reinterpolated by both de-
signer and collaborator as the design continues to evolve.

A “reactive” response is one in which the collabora-
tor provides a simple response in answer, reciprocation
or response to the material it receives. No computational
transformation of context or material is required in this

reaction. An example of this response is if the collabo-
rator establishes that no change in dynamic or deviation
from its learned knowledge about the material is required
before it provides a contextual response.

By comparison, an “adaptive” response is one in which
the collaborator senses a change in the dynamic condi-
tions of the design or to which the collaborator finds no

appropriate response in its learned knowledge for response.

In this instance, the collaborator must transform ma-
terial to provide a response derived from the knowledge it
has learned not of the design material but about the design
process, about the way in which the designer thinks or op-
erates. The response it provides is interpolated according
to rules of transformation observed from the designer then
applied to the material it has received while comparing it
against other conditions in the current design context to
ensure it is compatible at that moment in time, given that
some parameters of design may change at different rates
to others. This complex procedure requires computational
generation concurrently with observation.

It assumes that the parameters of observation have
been established to accommodate the most important cri-
teria for constancy and change.

The collaborator also needs to be able to adapt to the
changing hierarchy of determining parameters, as the dom-
inating combination of important criteria is certain to be
dynamic in its combination and parts.

N.B. Since the expression “dynamic” here is used in
reference to the changing, mobile nature of design envi-
ronments and the collaborative agents ability to adapt to a
dynamic environment, when subsequent discussion refers
to the dynamic level of sound or music it is always re-
ferred to as “dynamic (loudness)” for differentiation.

1.2 Significance

Importantly, the design situation of a human and collab-
orative reaction must occur in real time and immediately
because the material generated by the designer is contin-
ually transforming in the order, hierarchy and selectivity
of its components but the composite result of designer and
collaborator is perceived or delivered concurrently, simul-
taneously.

The significance of a real time collaborator is three-
fold. Firstly, the collaborator does not replace, replicate
or mimic the designer. It has creative or generative ca-
pabilities if its own which are interdependent on the de-
signer. It maintains an intelligent but subservient role in
the design process while designing new material in a situ-
ated environment. Secondly, by providing rapid response,
the collaborator has the potential to complement, accom-
pany or augment and increase the rapidity of the design
process while retaining the design values of the princi-
pal decision-maker. Thirdly, it has the ability to change
with the dynamic of the design in a manner comparable to
human designing thought by constructing situated knowl-
edge, not only about he designed material but also about

30

the designers methodology.

It is significant that a considerable amount of research
has been conducted into computer generative creativity,
i.e. in which the autonomous computer or agent innovates
in place of the designer or for the designer, both in archi-
tectural designing and in musical composition. Tools also
exist for pre-programmed accompaniment but this con-
cept is novel in its ambition to both innovate and observe
simultaneously while learning from a dynamic source out-
side its initial programmed knowledge.

1.3 Implementation Scenarios

The hypothetical scenarios in which this collaborative tool
could be implemented are insignificant or unspecific in
that the concept for this model could be applied to var-
ious dynamic real time creative situations. The scenario
are considered here, for developing a methodology for ad-
dressing the dynamic nature of the source material pro-
duced by the designer and to formulate a methodology
for prioritising, categorising and reacting to this dynamic,
situated material on the part of the collaborator.

Whether the implementation of the collaborative tool
is computational, mechanical or robotic, is purely specu-
lative because the nature of the output by the collaborator
is completely dependent on the design situation. To this
end, the two scenario to be considered, posed for the pur-
pose of formalising the model, explained subsequently, is
a live performance musical improvisatory collaboration.

Hypothetically, there are other design instances in
which the collaborative tool could prove its usefulness
by increasing productivity and rapidity of producing de-
sign alternatives for consideration. Most design tools re-
quire the user to make selections from machine generated
designs, whereas this model applies the intelligence of
designer-determined criteria, selectivity and preferences
to generate material that is highly likely to conform to
the sensibilities of the designer because his/her material
and methods of creativity are the source for the collabo-
rators innovation. An example of an alternative scenario
is utilising the collaborator to generate a series of render-
ing alternatives for an architectural model design in order
to canvas opinion from the prospective client. The alter-
natives provided may be “guided” or tempered according
to guidelines followed by the designer in response to the
client.

In the situation proposed in this paper, the medium of
sound and live performance tests the responsiveness and
adaptive capabilities of the collaborator tool because the
outcome is delivered in real time, almost simultaneously,
and the sound produced, i.e. the creative outcome, is per-
ceived immediately and concurrently by the (third-party)
audience. Typically, in most existing collaborative musi-
cal tools, the human must be complicit to the accompany-
ing material because the assistant has no adaptive or reac-
tive intelligence with which to formulate new material in
a dynamic situation.

An example of this scenario is a Jazz collaborator
that must adapt to unknown factors of an already impro-
vising musician / designer. Musically, the designer will
follow certain rules and establish certain patterns of be-
haviour (e.g. reiterate rhythm cells or frequently utilised
pitch patterns) but criteria such as transposition and key,
or rhythmic pulse and tempo, may change and the col-
laborator must learn the designers / improvisers methods
for innovation by observing how material is transformed.
The material it produces in response occurs in real time
changing according to the designers context. Wiggins
(Curry & Wiggins, 1999; Papdopoulos & Wiggins, 1998)
and Johnson-Laird (HREF1; HREF3) both refer to, or
have modelled, Jazz improvising or composing comput-
ers in which the program creates new interpolations of
melody and other parameters according to a grammatical
construction based on Jazz music practice. This is quite
different from the function of the collaborator in this pa-
per, which must learn its creative procedures and deter-
mine relevant parameters in which to operate from a dy-
namic design environment determined transiently outside
the computer program.

This collaborative design scenario is explored because
the author is familiar with this scenario and has conducted
considerable analysis into the process of musical “live” or
real time response. It is important to remember, however,
that this is purely an example for illustration purposes and
that the concept for the collaborator tool can be applied
to many situations, providing that it is appropriately pro-
grammed. Its significance as a concept for intelligent col-
laboration is that the model is adaptable and configurable.

2 Collaborative Intelligence

2.1 Intelligent Reaction in a Dynamic Envi-
ronment

Designing, and knowledge required for designing, depend
on situation. In order for the collaborator to be able to re-
act in the ways described following, it must first be able
to learn from, and “understand”, a dynamic environment.
This means that the designer who is responsible for send-
ing the data that triggers the reactions of the collaborator
is sending information the nature of which, and for which
the context, constantly changes.

The first part of the collaborators intelligence is con-
cerned with assessing and responding to the changing im-
portance of criteria or parameters of design. In order to
do this, the collaborator must analyse and impose hierar-
chy on the observed material sourced from the principal
designer. The analysis process is considered in 3.1. The
aspects of design that change in a dynamic creative envi-
ronment are the composition of elements, the constituent
parameters, and the importance of those parameters rela-
tive to one another. The collaborator is learning two main
strands of knowledge: knowledge of designed material
and knowledge of the design process observed in the hu-

31

man designer. Both strands change throughout the cre-
ative process.

If the collaborator were simply to accrue all the
knowledge directed towards it, it would eventually over-
load with data, much of it superfluous and no longer rel-
evant. The dynamic collaborative agent therefore must
discern the principals of design creativity and material
that are temporally dominant or contextual according to
its knowledge. This constitutes situated knowledge and
must be determined by a series of filters.

The filters determining relevance can be based on cur-
rency and proliferation, i.e. those design practices utilised
constantly and currently must be retained and operated
with. Those that have not been utilised recently (the con-
straints of which are determined by storage capacity and
computational power) can be deemed obsolete and may
be discarded. This is computationally derived from in-
cidence frequency and locality. To use the example of
the musical improviser scenario, those pitch sequences
that are reiterated frequently and remain connected to
the currently relevant key centre are retained while those
used extremely infrequently and not recently, may be dis-
carded and may be relearned if the dynamic situation sub-
sequently requires it.

The learned knowledge and behaviours useful if re-
tained are likely to be data pertaining to the designers ac-
tual practice of creativity and innovation, i.e. if the collab-
orator retains and develops knowledge about how the de-
signer thinks and creates, human thought patterns are less
likely to change at the same rate as the material on which
the permutations themselves are performed. This is based
on the premise that what we call “style” is a form of de-
sign grammar. Grammar characterises individuals while
the material with which designers work changes rapidly.
Meanwhile, the collaborator must remain dynamic and
sensitive to modifications in grammar. If the computa-
tional collaborator operated only with initially learned
grammars, its habits would evolve independently and in
obsolescence from the designer who, as the creative hu-
man in this equation, holds the “right” or “authority” to
change. For this knowledge analysis to be effective, its
accuracy is distinguished by the parameters and criteria
it is programmed to process. Hence, the decisions about
the relevance and methods of analysis are critical to the
success of the collaborator. This is discussed in 3.1.

The process of intelligent reaction in a dynamic en-
vironment is therefore concerned with choice of relevant
response criteria and elimination of redundancy. This ac-
tion of choice needs to be adaptable and changing. This
means that the enclave of knowledge utilised in reaction
and adaptation is a module of dynamic composition. This
is the key to a collaborator able to evolve and change in
real time alongside a human designer.

2.2 Intelligent Learning from the Designers
Creative Practice

Intelligent learning from the designers creative practice
is essential to provide the collaborator with methodolo-
gies for tackling unfamiliar or novel situations in which
an adaptive response is required.

In the case that a simple reactive response is inad-
equate, unsatisfactory or unavailable, the computational
collaborator must be able to innovate a response “in char-
acter” or “appropriate” to the dynamic situation. This
involves a combination of knowledge of grammar and
knowledge learned through the situation characterising
the methods the designer uses to invent. The collaborator
is called upon to invent or design using these methodolo-
gies learned from the designer to produce a coherent and
situated design response of its own. Because the collab-
orator is implementing design grammar learned from the
designer, aesthetically its outcome is likely to be compat-
ible with the concurrent generation by the designer him-
self/herself. This understanding of learned grammar is
compared against currently operative conditions in the de-
sign environment and any incompatibility is eliminated.

For example, if the collaborator observes that chro-
maticism has been completely and methodically obliter-
ated by the designer in certain keys, it may learn by com-
parison that, although this may be a grammatical product
variable, it is, according to probability, inappropriate to
the design perception of the human controller.

If, for instance, the musical improvising collaborator
learns that whole-tone adjacent pitch steps are character-
istic grammar of the designer/improvising performer but
compares this information against the currently relevant
key and finds the two are incompatible, the whole-tone
step pattern can not be used and a substitute must be se-
lected or invented according to different relevant gram-
matical tendencies.

3 Response Criteria, Reaction and
Adaptation

3.1 Selecting and Prioritising Response
Criteria for the Collaborator

In this model, the quality of decisions relating to situated
knowledge is dependent on the criteria set for intelligent
response in the collaborator and its computational abil-
ity to adapt to change. The success of the entire process
therefore hinges on dynamic prioritisation of criteria and
the programmed and learned criteria used by the collabo-
rator. The collaborators knowledge about design creativ-
ity, relevance and incidence of criteria, and parameters is
dynamic but the analysis tools of the collaborator must
initially be determined. The initial human programming
of computational tool determines the selection of active
knowledge filters.

32

In the same way that a German history book about
World War II reads differently to an English one, or that
a lions view of a hare differs to the hares view of the lion,
the “intelligence” and “interpretative” abilities of the col-
laborative agent depend on the tools for knowledge ac-
cruement and analysis at its disposal. It is critical which
parameters should be measured and any known inherent
hierarchy that is unchanging, e.g. in Western music, for
an improvising collaborator, the parameters of pitch and
rhythm would likely be given precedence over timbre and
register. The scope and constraint of the filters also needs
to be determined, e.g. the degree of inflection or flexi-
bility of pitch permitted before a pitch is deemed to be
another, i.e. the scope of definition and constraints in har-
monisation might include the degree of permissible dis-
sonance considered acceptable to the designer.

Given the aesthetic and subjective nature of defin-
ing and constraining these parameters for perception by
the collaborator, it is suggested that the principal de-
signer is involved in the programming process shaping
the outcome of his/her collaborative tool. In this way,
the collaborator may “learn” individual sensitivities from
the designer or the designers individual views of percep-
tion may be programmed according to preferences gov-
erning the behaviour of the collaborator. This suggests
that the collaborator needs to be customisable by the de-
signer. This customisation both optimises performance
and is crucial to the flexibility of the model in its applica-
tion, as per 1.3 in the Introduction to this paper.

The number, type, specification, scope, restriction of
parameters or categories of classification, as well as sensi-
tivity, adaptability, expansiveness, distinguish the intelli-
gent collaborator from existing collaborative devices, e.g.
in the field of musical accompaniment, a simple (pitch)
harmoniser equivalent or (thythmic) drum machine. The
comparative simplicity of these existing tools means that
the harmoniser is an unintelligent, signal-processing de-
vice that merely produces 2 filtered version of the per-
formers/designers output (i.e. requiring no creativity or
invention on the part of the machine). The drum machine
plays a pre-programmed sequence of patterns to which
the performer /designer must then conform without scope
for deviation or innovation, nor flexibility of pulse. By
comparison, the collaborative intelligent, learning agent
(a) acts and reacts and adapts to many more parameters in
combination, and (b) is enabled, by its intelligent learned
situated knowledge, to produce innovative but congruent
material. This permits greater freedom on the part of the
live (human) performer.

The way in which these criteria can be arranged is
similar to the categorisation method described by Reffat
& Gero (2000) in Computational Situated Learning in De-
sign, when describing shape semantics:

. “These regularities are arranged in terms of
categories and since these categories reflect
the relationships and dependencies among
shape semantics based upon where they were

used they are called situational categories™

...except that in the collaborative agent model advo-
cated in this paper, the relationships and dependencies are
modelled on design grammars observed by the collabora-
tor. The regularities referred to by Reffat & Gero (2000)
are recurrences in geometric shape grammars, whereas
in this model, regularities are observed in parameters de-
fined by the designer during customisation, which there-
fore means that the parameters themselves differ vastly
depending on the creative medium of interest and appli-
cation. The subset of categories or parameters of greatest
significance change over time and the dependencjes also
contribute to the grammatical knowledge learned by the
collaborative agent as these, too, change throughout the
course of the designing process.

Itis obviously apparent that the design environment to
which this concept is applied determines the mechanical
or electronic receptors/ perception devices/data to which
the computational model reacts. Hypothetically, in the
case of the architectural design model in its final stages
of rendering, for which the collaborator offers compatible
textural alternatives, it might be driven through AutoCAD
and computational application. The scenario of musical
collaborator with live improviser, on the other hand, re-
quires receptors capable of receiving rhythmic and pitch
and other data about the design output as the connec-
tive interface with the computational application. This
is achievable using a MIDI acoustic instrument or hyper-
instrument or an instrument that produces the designers
output electronically, e.g. a MIDI violin or a keyboard
synthesiser or computerised music. The sophistication
of the MIDI violin, for example, is such that its recep-
tors, located in the fingerboard and bridge and/or body of
the instrument, pick up information about the most crit-
ical parameters of the designers/performers musical out-
put, e.g. pitch, rhythm, dynamic (loudness), attack, decay,
tone quality, even which of the four strings is used to pro-
duce the tone. This information can be analysed accord-
ing to the categories of customisation in the collaborative
device immediately before it produces an adaptive or re-
active response according to its learned knowledge about
the designers grammar,

Some specific instances of selective criteria for col-
laborative response are modelled in Sections 5.1 (Sce-
nario Model Intelligent Dynamic Design Collaborator for
Musical Improvisation) and 5.2 (Selectivity and Categori-
sation Criteria to Classify Parameters, Subcategories and
Interdependencies).

3.2 Reacting to Dynamic Design Input

A “reactive” response is one in which the collaborator
provides a simple response in answer, reciprocation or re-
ply to the material it receives. No computational trans-
formation of context or material is required in this reac-
tion. An example of this response is if the collaborator
establishes that no change in dynamic or deviation from

33

its learned knowledge about the material is required be-
fore it provides a contextual response. This is the simplest
kind of response the collaborator would return although,
unlike the passive and unintelligent existing collaborative
devices that only filter or modifier the exact output of
the designer, the collaborator still “creates” new material.
The new material returned, however, is a “composition”
or “design” constructed from criteria that are unmodified
temporally, i.e. while the design environment is consis-
tent or static in grammatical terms and according to the
other parameters on which the model operates. As soon
as a dynamic change occurs in the nature of the categories
dominating the design process, the collaborator must in-
stead react adaptively using knowledge of the designers
creative process.

An example is the musical collaborative agent that
observes a consistent pattern in the parameters of prece- °
dence. That is, if pitch, thythm and dynamic are cus-
tomised as criteria of dominant importance, and the de-
signers output remains constant in its pitch language,
rhythmic divisions, meter and pulse and the dynamic
(loudness) is also constant, the collaborator reacts in a
manner already familiar to it without having to further ap-
ply its intelligence about the designers creative practices.
It still, however, generates innovative material. To sim-
ply replicate the designer would result in mimicry. The
purpose, once again, of the collaborative tool, is to add to
and complement the dominant designer and not to repli-
cate his/her output, in a consistent style of creativity.

3.3 Providing an Adaptive Response to In-
put in Dynamic Situated Design

For a learning agent to be situated in the design process it
should be able to learn the interrelationships among de-
sign knowledge and actions based on where they were
used and be responsive to the changes that take place in
the environment (Reffat & Gero, 1999).

It is in the dynamic design environment in which
the collaborative model exercises its intelligence, utilis-
ing learned design behaviours from the principle designer.
It uses this learned information provide an adaptive re-
sponse to a changed design environment with which it is
unfamiliar, i.e. the collaborator designs an appropriate re-
sponse to a novel situation.

In a new or changed design situation, the collabora-
tive tool combines its accrued knowledge, drawing on pa-
rameters of consistency while innovative in parameters of
change. If, for example, the designer/improviser modu-
lates musical key, the collaborative agent takes knowledge
about pitch patterns and rhythmic patterns typical of the
designer and transposes it into the new key. The collab-
orative agent may also have learned in its recent situated
experience, that the designer when modulating to remote
keys has the interdependent habit, or characteristic gram-
matical behaviour, of decreasing dynamic (loudness) in-
tensity and, in this case, the collaborator combines the

dependent characteristics of these parameters in the for-
mulation of its new material.

This scenario describes relatively simplistic act of
transposition combined with innovation. The most chal-
lenging situation arises when the collaborator observes
a completely novel set of parameters, i.e. when a dis-
junction occurs in the dynamic design environment. It
is in this situation that its most sophisticated or intelligent
computation takes place. The collaborative agent operates
with the completely novel data set pertaining to immedi-
ately relevant constituent parameters and the characteris-
tics of those parameters. It combines this material with
processes of design learned from the design by its situat-
edness and generates innovatively on both levels. Only a
situated agent with intelligent learning capability is able
to respond to such a dynamic design environment.

3.4 Building a Predictive Behaviour in a
Dynamic Situated Design

Each classification of response considered thus far, con-
stitutes some variation of response to a set of conditions
and learned creative methodologies based on the design-
ers grammar. It follows that to increase the speed and
human-like potential of the collaborator in a dynamic sit-
uated design, the collaborator could enhance its perfor-
mance by “anticipating” designer actions using its learned
knowledge about the designers inventive mannerisms.

This concept takes the collaborative intelligence one
step further by utilising “expectation” or “anticipation”
of the improvising or creating musician/designers future
actions. Given that the collaborator learns historically
about design practice, it is possible to implement this
learned knowledge about the way in which the designer
typically constructs change to predict a likely next step
in the creative design. Like the adaptive response, this
predictive response is only valid if checked against the
currently extant conditions in the dynamic design envi-
ronment. While not entirely different from the adaptive
response in outcome, the temporal advantage in predict-
ing or “pre-meditating” a possible solution to the collab-
orators creative task, is to facilitate a rapid response that
can be computed during periods of design stasis, need-
ing modification only to fit the dynamic parameters of the
design at any given time,

The concern of this paper is not to consider analy-
sis methods or data collection problems because there are
already many commercially available and well-developed
tools that are capabie of many of the computational stages
between the produced design (sound) emitted by the de-
signer and the collaborative computer (that will be cited
in section 5.). The conceptual Artificial Intelligence chal-
lenge in this conceptual model is to process the collected
intelligence and learned knowledge and transform it into
a classification of knowledge that may be operated upon
creatively and provide feedback to the designer.

34

4 Interactivity between Designer
and Collaborator

Although the principal characteristics of the collaborative
agents intelligence are its ability to innovate a reactive re-
sponse and its ability to create an adaptive response in a
changing, dynamic design environment from which it has
learned knowledge about the design process, there is also
some degree of interactivity involved.

The interactivity occurs in three ways: firstly, the col-
laborative agent is reacting and adapting to a stimulus,
namely the output by the principal designer. This is ob-
served as an interaction on the part of the collaborator.
Secondly, the material produced by the collaborator, in
turn, will invoke reaction and action from the principal
designer, thus forming some feed into the subsequent ma-
terial generated by the designer. Thirdly, this reactive re-
sponse to the collaborators material contributing to the
output by the designer forms the trigger stimulus for fur-
ther collaborative response. This builds a complex inter-
relation of the material created by both designer and col-
laborative that evolves in a close-knit outcome while con-
currently undergoing evolution. While not constituting
true interactivity, the composite result will be a complex
union of relating reactive and adaptive responses, the sum
of which can be inferred as interactive, especially when
the composite design of both designer and collaborator is
observed concurrently by a third party.

5 Scenario Model Intelligent Dy-
namic Design Collaborator for
Musical Improvisation

5.1 Modelling Information Flow between
Designer and Collaborator

Figure 1 illustrates paths for information flow between
designer, collaborator and back to designer and audi-
ence. As input is classified, observed and concurrently
behavioural knowledge is learned, whether the condi-
tion of the situated design environment is static or dy-
namic, and to what degree change has occurred, deter-
mines the reactive or adaptive process applied. Interac-
tion occurs with the designer and the collaborator, both
of whom “hear” (analyse) and respond to emergent inno-
vation. Constantly, the collaborator generates predictive
material verified against observed parameters.

Existing technologies provide solutions for many of
the informational and linkage issues raised in this con-
ceptual model. Some potential commercially available
solutions are advocated here to address those technical in-
terfaces that have already been addressed in existing but
different ventures (proving technological validity):

Table 1: Existing Technologies for the Analysis Process

MIDI Output devices that convey complex digitised
(binary) information about musical parameters in-
clude devices such as MIDI synthesizer keyboards,
MIDI violin. Alternatively, if the designers tool is
already computerized, such as in digital music pro-
duction (composed/improvised on the computer),
the task of digitisation is not required. It is nec-
essary to digitise information about the design that
would otherwise be an analogue sound signal, in
order for the computational operations to be com-
pleted.

Chunking tools are those applications capable of divid-
ing a continuous flow of information into musically
logical and recognizable units upon which it is ap-
propriate to apply isolated transformations. In mu-
sical language, a chunk is equivalent to a musical
phrase at the semantic and phonetic level. In a pho-
netic sense, phrases are typically separated by small
breaks or temporal pauses, separations in sound and
semantically this analysis can be augmented with
knowledge about typical grammatical progressions
(e.g. cadences in tonal keys, etc.). A number of
commercial software programs have an automated
process for dividing music into small, processable
phrase equivalents, e.g. Cool Edit 2000 a sound
wave editing program. The program bases its “de-
cisions” on the dynamic envelopes and pauses in
the audio wave.

Tools that convert MIDI input into distinct musical
parameters exist in the form of notation programs,
e.g. Sibelius or Finale, that transform played-in
music into score notation. The same capability
holds potential to convert played-in music to cat-
egory sets for computational intelligence.

Quantisation or discriminating between pitches and du-
rations based on a customisable latitude of defini-
tion / scope in defining characteristics also occurs
in notation programs. The degree of latitude or ac-
curacy is typically programmed by the user, e.g. the
measure of rhythmic flexibility or variance in pitch
intonation permissable.

5.2 Selectivity and Categorisation Criteria

to Classify Parameters, Sub-categories
and Interdependencies

Table 2 demonstrates examples of criteria that might
be used to categorise and differentiate between different
characteristics of data input on which, in turn, observa-
tions about recurrent usage and localized, situated knowl-
edge can be developed. The relative hierarchy of these

35

elements and constituent quantifiers will be transient or
dynamic according to the situated design. Recognition of
priority and quality/character form the basis of observa-
tions from which the collaborator learns.

Curry and Wiggins (1999) refer to the chunks or
phrase units to which such categorisation is applied as the
“Grouping Structure”,

“Grouping Structure is the segmentation of
musical events into groups of similar or re-
lated events. These rules try to encapsulate
the notion of “chunking” in which a listener
groups certain events together whilst hearing
the piece” (Curry & Wiggins, 1999, p.14-15).

Curry and Wiggins consider a similar task of dividing
music into units or blocks that both make sense for the lis-
tener and for interpolation by computation. They describe
A New Approach to Cooperative Performance: A Prelim-
inary Experiment in which the relationship between high-
level structure of a musical piece and a (human) perform-
ers expression is investigated in order to model an expres-
sive computer performance. While their goal is differ-
ent to the collaborative agents in this paper, their criteria
for dividing information and categorising it are relevant
to the concerns of this paper in deducing empirical data
from subjective human performance for the purposes of
computational interpretation.

Once categories are classified for analysis, the high-
level structures can be represented with logical formulae
allowing the expression of complex relationships between
different musical categories in divisions equating to “de-
scriptions”.

In Music Representation - Between the Musician and
the Computer (Smaill, Wiggins & Miranda, 1993), hier-
archical relationships are expressed as definitions based
on logical properties of constituent notes (pitches) nl, n2,
and constituents or characteristics related to these notes
Cl1, C2, The frequency or pitch of n is an absolute value
of the pitch parameter as described in Table 2. above and
C refers to the values attributed to category (and further
sub-class) of pitch in the same table. On this basis, a new
constituent or description of the (phrase) unit based on the
logical properties of n and C is:

D1 = {z: P(2)} ¢9)

where P is a logical formula, gives a constituent that se-
lects those values of n (pitch) and C (pitch category) that
make P true. Combinations can be explicitly expressed:
D2 = {n1,n5,C2,C3} 2)
The expression of combinations distinguishes interdepen-
dencies. This is clearly much simpler than the computa-
tional reality for which the number of n variables might
be in the vicinity of 200 or more and the number of C
possible variables would depend on the parameter being

described and the specificity of customisation of the pro-
gram. Given that for every phrase unit there are multiple
parameters and, for each parameter, qualifying categories
and sub-classes, the actual representation would be con-
siderably more complex.

It is beyond the scope of this paper to classify sub-
jective, qualitative genres in musical style that affect de-
sign grammar. The reader is directed to a further paper
by Wiggins: Towards a more precise characterization of
creativity in Al, (Wiggins, 2001); in which he formulates
detailed and logical descriptions of different historic mu-
sical genres and their typical characteristics in mathemat-
ical syntax. This is necessary for the performance of any
computation.

6 Conclusion

Existing computational agents or assistants used to create
musical design either innovate new designs alone based
on structures that have been learned from human creativ-
ity or other methodologies for generating new material.

Existing accompanimental assistants or collaborative
tools passively reinterpret human performers or act on
pre-programmed structures. To innovate new material
from learned knowledge in an evolving dynamic design
environment, in real time and in response to a designer,
requires a different level of intelligence that is both sen-
sory and observatory.

The situatedness of this concept model is fundamental
to determining the type of response this model provides,
depending on the appropriateness of the type of response
it gives. This model undertakes a reactive or adaptive re-
sponse, in combination with prediction and constant com-
parison with the dynamic, current conditions of its design
situation through observation.

Amongst the characteristics that change in a dynamic
design environment are the constitution and hierarchy of
parameters governing design creativity, in addition to the
character or nature of these parameters. Prediction and
evolving methodology for improvisation builds intelli-
gently on learned knowledge about the design situation
and the designers creative process.

The human designer remains the stimulus for collab-
oration and creative practice and the collaborators role is
inseparable, in time and situation, from the situated de-
sign and situated learning that emanates from the princi-
pal designer.

This concept has the potential to improve productivity,
innovation, invention and true, human-like collaboration
and to provide intelligent, dynamic responsiveness in real
time.

Acknowledgements

The author would like to acknowledge the extensive re-
search in the Key Centre of Design Computing and Cog-

nition in the Faculty of Architecture at the University of
Sydney, especially by Professor John Gero. The author
looks forward to future work with Greg Smith in the Fac-
ulty of Architecture to develop the mathematical substan-
tiation of the model discussed herein.

References

Bryson, Smaill, A. & Wiggins, G.: 1992, The Reactive
Accompanist: Applying Subsumption Architecture
to Software Design.

Curry, B. & Wiggins G.: 1999, A New Approach to
Cooperative Performance: A Preliminary Experi-
ment, International Journal of Computing Antici-
patory Systems.

Gedenryd, H.: 1998, How Designers Work, Ph.D Thesis,
Lund University, Lund, Sweden.

Gero, J. S. and Fujii, H.: 2000, A computational frame-
work for concept formation in a situated design
agent, Knowledge-Based Systems 13(6), pp. 361-
368.

Harris, Smaill, A. & Wiggins, G.: 1993, Representing
Music Symbolically, IX CIM, Genova.

Johnson-Laird, Philip N.: 1991, Rhythm and Meter: A
Theory at the Computational Level, Psychomusi-
cology 10, 88-106.

Padgham, L.: 2001, Smart Software Agents with Per-
sonality and Intelligence, in Nolch, G. (ed.) Aus-
tralasian Science, Vol. 22(10), Control Publications
Pty. Ltd., Australia, pp. 33-36.

Papadopoulos & Wiggins, G.: 1999, AI Methods for Al-
gorithmic Composition: A Survey, A Critical View,
and Future Prospects, Proceedings of the AISB’99
Symposium on Musical Creativity, AISB.

Papdopoulos & Wiggins, G.: 1998, A Genetic Al-
gorithm for the Generation of Jazz Melodies,
STeP’98, JyvLskylL, Finland.

Park, S-H. and Gero, J. S.: 2000, Categorisation of
shapes using shape features, in Gero, J. S. (ed.),
Artificial Intelligence in Design00, Kluwer, Dor-
drecht, pp.203-223.

Pearce & Wi'ggins, G.: 2001, Towards A Framework for
the Evaluation of Machine Compositions, in Wig-
gins, G. (ed.) Proceedings of the AISB’01 Sym-
posium on Al and Creativity in Arts and Science,
AISB.

Reffat, R. and Gero, J. S.: 2000, Computational situated
learning in design, in Gero, J. S. (ed.), Artificial
Intelligence in Design00, Kluwer, Dordrecht , pp.
589-610.

Reffat, R. and Gero, J. S.: 1999, Situatedness: A new
dimension for learning systems in design, in A.

36

Brown, M. Knight and P. Berridge (ed.s), Archi-
tectural Computing from Turing to 2000, eCAADe,
University of Liverpool, U.K., pp. 252-261.

Robertson, J., de Quincey, R., Stapleford, T., & Wiggins,
G.: 1998, Real-Time Music Generation for a Vir-
tual Environment, ECAI98 workshop on AI/Alife
and Entertainment, Brighton, England.

Smaill, A., Wiggins, G. & Harris: 1993, Hierarchical
Music Representation for Composition and Analy-
sis, Computing and the Humanities Journal.

Smaill, A., Wiggins, G. & Miranda: 1993, Music Repre-
sentation - between the musician and the computer,
World Conference on Al and Education workshop
on Music Education, Edinburgh.

Wiggins, G., Papadopoulos, Phon-Amnuaisuk & Tuson:
1999, Evolutionary Methods for Musical Composi-
tion, International Journal of Computing Anticipa-
tory Systems.

Wiggins, G. & Smaill, A.: 2000, Musical Knowledge:
what can Artificial Intelligence bring to the musi-
cian? (Ch.) in Miranda (ed.) Readings in Mu-
sic and Artificial Intelligence, Harwood Academic
Publishers.

Wiggins, G.: 2001, Towards a more precise characteri-
sation of Creativity, Al,

Proceedings of the ICCBR 2001 Workshop on Creative
Systems, Vancouver, British Columbia.

Wiggins, G., Miranda, Smaill, A. & Harris: 1993, Sur-
veying Musical Representation Systems: A Frame-
work for Evaluation, Computer Music Journal.

Wiggins, G., Harris, M. & Smaill, A.: 1989, Rep-
resenting Music for Analysis and Composition,
EWAIMB89, Genova.

HREF1: http://www.york.cuny.edu/ seitz/JPS2001paper.htm,

last visited 1/11/01

HREF2: http://citeseer.nj.nec.com/context/208274/0,
last visited 1/11/01

HREF3: http://citeseer.nj.nec.com/ramalho94simulating.htmi,

last visited 1/11/01

37

Designer

MIDI Output device:
digitised informa-

tion about design
A parameters

Compare current with recent
historic dynamic design
environment characteristics to

Audience

observe methodology of
transformation: learn knowl-
edge about designers creative
processes of manipulation /

inventjon

H 1
interp

y

device

Collaborators
MIDI Output

predictive invention
based on learned knowledge

Collaborative Agent

v

Classification / categorisa-
tion of design parameters,
division of continuous
information into phrase-
equivalent temporal
chunks

v

Information about current dynamic
design environment characteristics

A

\J

& Q &
LN g8y
38 £ 8
2% 3§33
5 N
1L §5&
§ §8§
x g §i3
Reactive: Adaptive:
Utilise learned Utilise learned
ive behav- creative behav-
iours to pro- iours with
duce new observed
material with " dyaamically
same parameters altered parame-
ters but typical
designer

Figure 1: Information flow between the designer, collaborator and audience; processed according to dynamic stasis/change
in the situated design environment.

Table 2: Categorisation Criteria Applied to Chunks/Phrase Units

Parameters Categories Sub-classes Scope/Limiters
Pitch/Modality Tonal, chromatic, modal, mi- | Different modes, key relations, | Minimum deviation (Cents)
crotonal micro-intervals differentiated & maximum dif-
ferentiation permitted
Meter Simple/compound; additive; | Duple, triple, quadru- | Maximum deviation subdivi-
regular/irregular ple; simple/complex divi- | sion unit
sions/irrational
Pulse/Tempo Beats, speeds, syncopation, | Emphases within the | Variance from strict tempo,
cross-rhythmic subdivisions bar/measure, accentuated | minimum and maximum
pulses speeds, variation in accuracy
Rhythmic Duration Different units of duration in- | Whole units, irrational frac- | Durational variance permissi-
terdependent on meter tions of units inter-dependent | ble relative to unit
on meter
Attack Velocity, Envelope, | Percussive, subtle, inarticulate, | Degree of distinction between
Size/degree, nuance joined to previous pitch sub-classes
Dynamic Loudness popp--ff££ Intermediate values Hertz differentiation between

increments

Timbre

Tonal Quality (depends on
sound medium)

Refined subsets within cate-
gories, related tonal qualities

Sensitivity of perceptual device

Registration/Input

Different strings or registers of
input device

Regions high and low relative
to category

Sensitivity of perceptual device

38

IT1 — Patterns and Structure in
Creative Systems

39

40

Giving Colour to Images

Penousal Machado'?; André Dias?, Nuno Duarte*; Amilcar Cardoso®
! Instituto Superior de Engenharia de Coimbra; Quinta da Nora, 3030 Coimbra, Portugal;
2 CISUC - Center for Informatics and Systems, Univ. Coimbra, 3030 Coimbra, Portugal;
machado@dei.uc.pt; adias@student.dei.uc.pt; nduarte@student.dei.uc.pt; amilcar@dei.uc.pt;

Abstract

This paper is about the colouring of greyscale images. More specifically, we address the problem of learning to colour
greyscale images from a set of examples of true colour ones. We employ Genetic Programming to evolve computer programs that
take as input the Lightness channel of the training images and output the Hue channel. The best programs evolved can then be used
to give colour to greyscale images. Due to the computational complexity of the learning task, we use a genome compiler system,

GenCo, specially suited to image processing: tasks.

1 Introduction

The work presented here is part of a wider research pro-
ject, NEvAr, whose aim is to build a constructed artist
(i.e. a program that generates artworks autonomously).

NEvAr is an Evolutionary Art Tool inspired on the work
of K. Sims (1991). It relies on Genetic Programming
(GP) to evolve populations of images, based on aesthetic
principles. Fitness assignment plays, like in most Evolu-
tionary Computation systems, a key role since it guides
the evolutionary process.

NEvAr can be used as an Interactive Evolution tool. In
this mode of execution the user supplies the fitness val-
ues to the evolved images. It can also be used as a fully
autonomous system. In this case fitness is assigned
through an explicit fitness function, which takes into
consideration several complexity estimates of the images
(Machado, 2002).

However, the fitness assignment procedure only takes
into account the lightness information of the images,
discarding the hue and saturation information. Therefore,
in this mode of execution, we are limited to greyscale
images. A full description of NEvAr and of the automatic
fitness assignment can be found in (Machado, 2002).

There are good theoretical and artistic reasons to deem
colour less important than lightness. The development of
the colouring procedures of systems like AARON
(Cohen, 1995) is, to some extent, based on this notion.
However, this collides, at least apparently, with the im-
portance given to colour by some of the most prominent

41

painters (e.g. (Kandinsky, 1991)). Moreover, NEvAr’s
limitation to greyscale images, in its autonomous ver-
sion, was frustrating, to say the least. In this paper we
address the problem of giving colour to greyscale images.

An analysis of the role of colour and the way colour is
assigned, particularly in abstract art, leads to the conclu-
sion that artists (certainly not all, but at least a signifi-
cant proportion) usually work with a limited colour pal-
ette, and that the spatial relation between colours usually
follows some rules. This is consistent with the view that
each artist constructs its own artistic language, which
complies with an implicit grammar. It is also consistent
with the approach used in AARON to colour its drawings
(Cohen, 1995; Cohen, 1999).

The idea of creating a program to give colour to the grey-
scale images created by NEvAr emerged naturally. Unfor-
tunately this poses several problems. Qur system is based
on a non symbolic approach and produces bitmap images,
hence there is no clear definition of closed forms, shapes,
etc.

Therefore, although we could define a palette to work
with, assigning the colours of that palette to specific
forms would be difficult since we have no forms to begin
with. Even assuming that the forms could be properly
identified by some sort of pre-processing method, assign-
ing the right colour to each shape and keeping a proper
spatial relation among colours would still be a problem,
due to the unstructured nature of the output.

Additionally, the creation of a colouring system, by it-
self, doesn’t appear to be an easy task, involving the

choice of an adequate set of palettes, establishing a con-
sistent colouring grammar, etc.

Taking these facts into consideration, and also the fact
that the generality of this type of approach would be lim-
ited, we decided to abandon this idea. Instead, we are try-
ing to create a system that leamns to colour images from a
set of training ones.

This approach has, potentially, several advantages over a
built-in colouring procedure, namely: we don’t need to
code by hand a set of colouring rules; the results of the
system are less predictable; we can use paintings made by
well-known artists as training set, hence leaming to col-
our images according to their style.

Additionally, it’s also an indirect way of testing if the
colouring procedures followed by some artists can be
formally expressed.

The paper is structured as follows: In the next section we
describe our current approach to colouring images; In
Section 3, we present some experimental results attained
by this approach and make a brief analysis; finally, in
section 4, we will draw some conclusions and present our
ideas for future research.

2 Our Approach

GP is one of the most recent Evolutionary Computation
techniques. Its goal is to evolve populations of computer
programs, which improve automatically as evolution
progresses (Banzhaf 1998).

Due to the outstanding influence of the work of Koza
(1992) it is common, within the Machine Learning
community, to associate the term GP to the evolution of
tree structures. In this paper we follow this “classical”
definition. Therefore, when we talk about GP we are talk-
ing about the evolution of tree structures, which are built
from a set of functions (f-set) and terminals (t-set). The
internal nodes of the tree are members of the f-set, and the
leafs are members of the t-set.

In our approach we use GP to evolve populations of pro-
grams that give colour to greyscale images. We start by
selecting a true-colour training image (or set of images),
which is split in its Lightness, Hue and Saturation chan-
nels (see Fig. 1).

The evolved programs take the greyscale image corre-
sponding to the Lightness channel as input, and output a

42

greyscale image. The output is compared with the Hue
channel of the training image, the closer the output is to
the desired one, the higher the fitness. The same proce-
dure can be applied using the Saturation channel, to
evolve programs that generate the saturation information.

Figure 1:

The original image, and the corresponding
Lightness, Hue and Saturation channels.

As evolution progresses, the quality of the individuals
increases and, eventually, we find programs which gener-
ate colourings very close to the original ones.

It is important to notice, however, that this is not
enough — the idea is to use these programs to give colour
to different images. The fact that a program produces an
output that exactly matches the training one does not
guarantee that it will produce an interesting colouring on
different images. In other words, the evolved programs
must generalise well. To promote their generalising ca-
pabilities, we took some precautions in the selection of
the function set and also in the construction of the fitness
function. In the remainder of this section, we describe the
options taken and give justification for these options.

2.1 Implementation details

A first word goes to how the output of each program is
calculated: given a particular individual, it is run for each
of the pixels belonging to the training image (or images).
Therefore, assuming a training image of 100*100 pixels,
each individual must be run 10000 times. Each execution
of an individual implies the transversal of its tree and
calling, for each node the corresponding function.

When we take into account that the individuals can easily
reach sizes of several thousand nodes, and that GP popu-
lations usually contain several hundred individuals, the

conclusion that the execution step is of considerable
computational weight clearly follows. In order to mini-
mize this problem we implemented our system with
GenCo, a Genome Compiler system specially suited for
image processing tasks (Machado, 2001).

A Genome Compiler is a GP system that makes online
compilation of the evolved programs. In situations like
the one previously described, i.e. in which each individual
must be executed several times, this type of system can
provide significant speed improvements, since each indi-
vidual is compiled once and the resulting machine code
executed several times (10000 considering a training im-
age of 100*100 pixels). In this scenario, genome com-
piler systems are, typically, 50 to 100 times faster than
standard C based GP implementations (Fukunaga 1998;
Nordin 1994; Nordin 1995; Machado 2001).

Next we describe the design options made in the selection
of the function and terminal set, and the reasons that jus-
tified them.,

2.1.1 Function and Terminal Set

Our problem has some similarities with the symbolic
regression of functions or images (Nordin 1995; Koza
1992). There are, however, some important differences. In
a symbolic regression task, one would usually resort to a
function set composed by the arithmetic operations and
the if statement, and use as terminal set the variables X,
Y. This type of set-up unavoidably results in programs
whose output depends exclusively on the coordinates of
the pixel being calculated.

In an attempt to solve this problem, we added to the ter-
minal set the lightness value of the pixel being evaluated,
thus giving more information to the program. This al-
lows the output to vary in accordance to changes on the
lightness channel. Additionally, we also added the light-
ness values of the adjacent pixels, so that the programs
have access to the surrounding context of each pixel.

In what concerns the function set, we decided to keep the
“traditional” one. The reason for this choice is threefold:
it was deemed sufficient for a first approach; the inclusion
of more complex functions (e.g. for-next loops, or high
level constructs) would severely increase the computa-
tional weight of the evaluation step; the inclusion of this
type of functions doesn’t necessarily benefit the evolu-
tionary process, in fact, the opposite can, and frequently
happens (see, e.g., (Banzhaf, 1998)).

43

Taking all this factors in consideration we used the fol-
lowing function and terminal sets:

¢ F-set={+, -, *, %, if}, where % stands for the pro-
tected division operator, and if for the if-less-then-
else statement (Koza, 1992)

e T-set={X,Y, A.I}, where X, Y are variables corre-
sponding to the coordinates of the pixel, and A..I are
the lightness values of the pixel being calculated and
of the surrounding ones.

The results achieved were very disappointing, basically
because the behaviour of programs continued to be deter-
mined, almost exclusively, by the values of the X and Y
variables. This is clearly undesirable, since it means that
we are not evolving programs that give colour to images
according to their lightness channel, we are merely evolv-
ing a function that, when applied over an interval of X, Y
values, generates the hue channel of the training image.
Thus, we are only memorizing the training instance(s).

Taking the X, Y variables from the terminal set resulted
in having poor evolution, and convergence to trivial and
uninteresting colourings (e.g. having as a result the pre-
dominant colour of the training image, or always assign-
ing to a specific lightness value the same hue or satura-
tion).

It was clear that the variables X, Y were not producing
any desirable impact on the programs. Therefore, we de-
cided to delete them from the terminal set. It was also
clear that without these variables the programs hadn’t
enough information to determine the appropriate colour
for each pixel, since the programs only have a local view
of the lightness channel (the pixel being evaluated and the
nine surrounding ones). To compensate this lack of in-
formation, we introduced a new function, get(Ax,Ay),
whose behaviour can be described as follows: assuming
that the current pixel has the coordinates a, b, it returns
the lightness value of the pixel situated on (a+Ax,
b+A4y).

Since the get function provides a way to access the light-
ness values of the surrounding pixels, there was no rea-
son to make these values as part of the terminal set. Ac-
cordingly, our function and terminal sets became:

e F-set={+, -, *, %, if, get}

¢ T-set = {E}, where E stands for the lightness value of
the pixel being evaluated.

This set-up proved to be adequate, allowing the evolution
of suitable colouring programs with good generalization
capabilities, as will be shown in section 3. In the follow-
ing section we focus on the used fitness functions, and on
the grounds for using them.

2.1.2 Fitness Functions

We start by describing the fitness function used when we
are evolving the saturation channel of an image from the
lightness one. In this situation we use the root mean
square error between the desired output and the real one to
assign fitness, i.e. considering that / holds the desired
saturation values and that P is the output of a program
the fitness is given by the following formula:

Bty Mt~ -_

J

When we are trying to evolve the Hue information, this
formula must be slightly altered due to the circular nature
of the Hue channel. Assuming that the images take val-
ues in the [0, 1] interval, the above formula yields a
maximum distance when I(x,y) = 1 and P(x,y) = 0 (or
vice-versa). However, in this situation the difference in
hue would be quite small and probably unnoticeable to a
human observer. Therefore, we use the following for-
mula:

(1

(2)

where I holds the desired Hue values, P the program’s
output, and min, returns the minimum angle distance
between the two values. This fitness function can be fur-
ther improved if we take into consideration that the per-
ceived difference in hue depends on the lightness of the
pixel (e.g. if the pixel as lightness equal to zero it will
always be black, no matter what hue we assign to it;
even when the lightness is only close to zero, giving to
that pixel a hue different than the desired one will hardly
be noticeable to a human viewer). Taking this into ac-
count, and considering that L holds the lightness informa-
tion we obtain the following formula:

44

WEFLIITII= = -)

(3)

The tests conducted using formulas 2 and 3 as fitness
functions yield deceptively good results. In the early steps

- of evolution fitness increases steadily and swiftly, giving

the impression that an adequate colouring program will
be easily found. However, after a few hundred genera-
tions, the improvements in fitness drop suddenly and
evolution seems to halt. This wouldn’t be a cause for
concem if the evolved programs solved the problem at
hand satisfactorily. To some extent they do, since they
usually have high fitness values, relatively close to the
maximum attainable fitness. The problem is that a quali-
tative analysis of the results reveals that the colourings
are usually uninteresting from an aesthetic perspective —
typically, only a small subset of the original colours is
used, resulting in the loss of nuances that make the
original colouring work. This situation becomes more
severe when the training images have a large area filled
with a particular hue value, and other areas filled with hue
values close to that one.

To better explain the problem we will use an example:
consider, for instance, a landscape painting mostly filled
with green (for the grass and trees) and with a blue sky
(green and blue are relatively close in the colour spec-
trum); a program that outputs the hue corresponding to
the green colour will have a relatively good fitness, since
it is not penalised in the dominant green area of the im-
age and only suffers a little penalisation on the blue area.
To make things even worse, such a program is easy to
evolve, so it will be found in a small number of genera-
tions. Changing it by mutation or crossover will tend to
decrease its fitness, meaning that the fittest descendents
will tend to be similar to it. Therefore, in a few genera-
tions the population will be dominated by similar pro-
grams, which will begin to increase in their size to pro-
tect themselves from destructive crossover and mutation;
soon the increase in size becomes exponential and evolu-
tion becomes impossible (the exponential growth of pro-
gram size is usually called bloat problem; a more detailed
explanation of why bloat occurs can be found in
(Banzhaf, 1997)).

In an attempt to force our system to evolve more interest-
ing colourings, covering a wider colour spectrum, we
decided to add another factor to our fitness function. A

description of the procedure used to calculate that factor
follows.

We start by taking the I image (that holds the desired hue
values) and decrease its colour depth, using the optimised
median cut algorithm, obtaining an image I’ composed
by only 16 different hue values (v,...v,5). Then we count
how many pixels exist of each different hue and store the
pixel count values in an array, A;.. For each pixel of im-
age P, which holds the output of the program, we deter-
mine the closest hue value, v,, and the distance Av be-
tween the pixel value and v, We add to A,.; the value 1-
Av, thus if the pixel’s hue matches exactly one of the
sixteen hues present in the training image we add one,
when it doesn’t match exactly we add slightly less. After
performing this procedure for all the pixels of the output
image we compute the following formula:

J

Thus, we are basically comparing the number of pixels of
each hue value of the output and target image. Returning
to our previous example of the green and blue landscape,
if the output image has the same amount of blue pixels
and green pixels than the original (and also assuming that
it is the exact blue and green tone), formula 4 will give a
value close to one. However, if the output image is
dominated by the green colour there will be a huge dis-
crepancy between the amount of green and blue of the
two images, and therefore H, will be close to zero. Notice
that, in what H, is concemned, the placement of the col-
ours has no real influence on the resulting value. To fur-
ther force a wider coverage of the colour spectrum, we
also used the following modification to this formula:

(4

©)

which ensures that all sixteen different hues have the
same weight in the calculation. Resorting again to our
example, and considering that we have a small yellow
area (for the sun), when we use formula 5 having the
correct number of yellow pixels is as important as having
the correct number of blue or green ones. In the next sec-

45

tion we will present some of the experimental results
achieved.

3 Experimental Results

To test our approach we conducted a series of experi-
ments. As training images, we used some of the early
works of Wassily Kandinsky. The images where reduced
to the size of 96*96 pixels in order to allow a faster evo-
lution. Although our system may use several training
images at the same time, we haven’t taken advantage of
this possibility so far. The results presented in this sec-
tion concern the evolution of programs that take the
lightness channel of an image as input and give the hue
channel as output. As fitness we used H,.+H,..

Figure 2: On the left column the original images, on
right the images resulting from the application of the
best individual of each run to the lightness channel of the
training image.

In Fig. 2 we present some of the training images, and the
images generated by the evolved programs'.

It is clear from the results presented that we can achieve
images very close to the original ones. However, what is
really important to our goal is accessing how well do the
evolved programs perform when applied to images not
involved in their training, i.e. their generalisation capa-
bilities. In Fig. 3 we present some results achieved with
this mode of operation.

Figure 3: The images on the first column result from the
application of the program that generated the image a’
from Fig. 2; on the second column, images resulting
from the application of b’; on the third column images
resulting from the application of c’.

We consider these results to be extremely promising.
Some of the colourings presented in Fig. 3 are quite close
to the original ones and, additionally, in some cases, al-

! A colour version of the paper can be found in:
http://www.dei.uc.pt/~machado/research/research.htm

46

though significantly different, they are still interesting
colourings. In order to allow a more equitable assessment
of the results, we don’t present the original image corre-
sponding to the fourth row of Fig. 3.

4 Conclusions and further work

In this paper we presented our ongoing research whose
goal is to learn to colour greyscale images from a set of
training instances. This effort is part of a wider research
project that aims at building a fully autonomous con-
structed artist.

The results achieved so far concern, mostly, the evolution
of programs that generate the hue channel from the light-
ness one. The experiments performed on the evolution of
programs to generate the saturation channel, seem to in-
dicate that this task is quite simpler. Nevertheless, the
replacement of the original saturation channel by one
generated through a program will unavoidably imply the
introduction of further noise. At the time of writing we
can’t access exactly how much this will affect the quality
of the generated colourings (although we foresee little
impact).

There is also the need to conduct additional experiments,
specially to use several training images simultaneously,
which will hopefully increase the generalization capabili-
ties of the evolved programs. Another aspect that can be
improved is the fitness function, we are currently altering
it so that it also takes into account the vicinity relations
between areas of colour, once again the idea is to promote
the evolution of programs that assign colour based in
more general concepts.

A final word goes to other types of application of the
proposed techniques, for instance, the colouring of black
and white movies. Assuming that one of the frames is
coloured (either by hand or by some other method) it
should be possible to evolve a program that gives comect
colours to the surrounding frames.

Acknowledgements

This research project was approved by FCT (Fundagdo
para a Ciéncia e Tecnologia) and POSI (Programa Opera-
cional "Sociedade da Informagdo"), and is partially funded
by FEDER, project n. POSI/34756/SR1/2000.

We would also like to thank the blind reviewers of this
paper, which provided precious remarks not only for the
paper in question but also for future research.

References

Banzhaf, W., Nordin, P. and Francone, F. D. Why in-

trons in genetic programming grow exponentially,
Workshop on Exploring Non-coding Segments and

-Genetics-based Encodings, ICGA, East Lansing,
MI, USA, 1997.

Banzhaf, W., Nordin, P., Keller, E. and Francone, F. D.
Genetic Programming — An Introduction, Morgan
Kaufman, 1998.

Cohen, H., The Further Exploits of AARON, Painter,
SHR, Constructions of the Mind, Vol. 4, Issue 2,
1995.

Cohen, H., Colouring Without Seeing: a Problem in
Machine Creativity, AISB Quarterly, 102:26-35,
1999.

Fukunaga, A. Stechert, A. Mutz, D. A Genome Com-

piler for High Performance Genetic Programming,
Genetic Programming 1998: Proceedings of the

Third Annual Conference, pp. 86-94, Morgan
Kaufmann, 1998.

Kandinsky, W., On the Spiritual in Art, republished by
Dover publications in 1997, 1911.

Koza, J. Genetic Programming: On the Programming of
Computers by Means of Natural Selection, MIT
Press, 1992,

Machado, P., Dias, A., Cardoso, A., GenCo — A project
Report. Proceedings of the Third International
Symposium on Artificial Intelligence and Adaptive

Systems (ISAS’2001), La Havana, Cuba, 2001.

Machado, P., Cardoso, A., All the truth about NEvAr.
Applied Intelligence, Special issue on Creative Sys-

tems, Bentley, P. Come, D. (eds), Vol. 16, Nr. 2,
pp. 101-119, Kluwer Academic Publishers, 2002.

Nordin, P. A compiling genetic programming system
that directly manipulates the machine-code. Ad-
vances in Genetic Programming, Kenneth E (Ed.),
pp 311-331, MIT Press, 1994.

Nordin, P., Banzhaf, W. Complexity Compression and
Evolution, Genetic Algorithms: Proceedings of the

47

Sixth International Conference, ICGA9S, pp. 310-
317, Morgan Kaufmann, 1995.

Sims, K., Artificial Evolution for Computer Graphics,
ACM Computer Graphics, Vol. 25, pp. 319-328,
Addison-Wesley: Boston, MA, 1991.

48

Exact and Approximate Distributed Matching for Musical
Melodic Recognition

Costas S. Iliopoulos; Masahiro Kurokawa
Algorithm Design Group, Dept of Computer Science
King’s College London, Strand, England and
School of Computing, Curtin University of Technology, Perth, Australia
Email: {csi, kurokawa}@dcs.kcl.ac.uk

Abstract

Here, we present fast and practical algorithms for musical melodic recognition. Music analysts are often concerned
with finding occurrences of pattems (motifs), or repetitions of the same pattern, possibly with variations, in a score.
The pattern can be distributed horizontally in a score, either in one voice or across several other voices, and the pattern
occurrence can be exact or with errors. Modifying the Shift-Or algorithm and considering the pitch and rhythm, exact

and approximate distributed matching problems are solved in linear time with few false matches.

1 Introduction

The main motivation for studying the family of distributed
matching problems is their application to computer as-
sisted music analysis. Music analysts are interested in
finding occurrences of patterns (motifs), repetitions of the

patterns, possibly with variations (errors), in musical scores.

A score can be viewed (at some level) as a string. The al-
phabet can be the set of notes in simple cases or the GRIP
representation of Cambouropoulos (1996) in more gen-
eral cases. Using this approach, the solution of several
computational music problems can be done by means of
pattern matching algorithms. These problems are exten-
sions of the ordinary string matching problem: the differ-
ence is that the pattern or the text (or both) can be multiple
strings called plural strings.

The primary goal in this paper is to design and imple-
ment bit-wise algorithms for several variants of the dis-
tributed matching problem: given a set of sequences of
notes (one for each voice) and a pattern, find whether the
pattern occurs distributed horizontally, either in one voice
or across several other voices; the pattern occurrence can
be exact or with errors.

Here we consider distributed problems related to ex-
act and approximate string matching: exact distributed
string matching and approximate distributed string match-
ing. Formally, given s texts T* = #i...t} ;i € {1...s} of
equal length n over the alphabet ¥ and a pattern P =
P1...Pm Of length m < n over the same alphabet X, the
problem of the exact distributed string matching is to find
all occurrences of the pattern P in the texts T'%, ¢ € {1...s},
such that the various parts of the pattern P can be lo-
cated in consecutive positions of different texts, i.e. find
all positions r € {1...,n — m + 1}, such that for each

49

j € {1..m}, there exists an integer I; € {1...s} such
that p; = tlr’;j_l. In the approximate distributed string
matching problems we search for all occurrences of the
pattern in the text with at most k errors. In this paper
we consider the Levenshtein distance (replacement, in-
sertion, deletion).

A survey of computational tasks arising in musical
analysis can be found in Crawford, Iliopoulos, and Ra-
man (1998). Distributed pattern matching problems were
introduced in Holub, Iliopoulos, Melichar, and Mouchard
(2001); they presented a finite automata for a singular/plural
text vs a singular/plural pattern. Meredith, Wiggins, and
LemstSm (2001) presented new practical algorithms for
the distributed pattern matching problem. Cole, Hariha-
ran, and Indyk (1999) presented asymptotically fast O (nlogn)
algorithms for a variant of the distributed matching prob-
lem. Cole, Iliopoulos, and Rytter (2001) presented asymp-
totically fast algorithms for § matching. The latter two al-
gorithms require convolutions that are impractical to im-
plement.

A new thread of practice-oriented results exploited the
hardware word-level parallelism of bit-vector operations.
Baeza-Yates and Gonnet (1992) presented an O(nm /w)
algorithm for the exact matching case and an O(nmlogk/w)
algorithm for the k-mismatches problem, where w is the
number of bits in a machine word, n is the length of the
text, and m is the length of the pattern. Wu and Man-
ber (1992) showed an O(nkm/w) algorithm for the k-
differences problem. Furthermore, Wright (1994) pre-
sented an O(nlog|Z|m /w) bit-vector style algorithm, where
|X| is the size of alphabet for the pattern. Wu, Mam-
ber, and Myers (1996) developed a particularly practi-
cal realization of the 4-Russians approach introduced by
Masek and Paterson (1980). Most recentlv. Baeza-Yates

and Navarro (1996) have shown a O(nkm/w) variation
on the Wu-Manber algorithm, implying O(n) performance
when mk = O(w).

The most common variant of the approximate string
matching problem is to find substrings that match the pat-
tern with at most k-differences. The first algorithm ad-
dressing exactly this problem is attributable to Seller’s
(1980). Sellers’ algorithm requires O(mn) time, where
m is the length of the query, and n is the length of the
text. Subsequently, this was refined to O(kn) expected
time (Ukkonen, 1985), then to O(kn) worst-case time,
first with O(n) space (landau and Vishkin, 1998), and
later with O(m?) space (Galil and Park, 1990).

Here we employed word-level parallelism into algo-
rithms and speeded up the solutions of the above compu-
tational problems. In particular we presenta O(n{m/wl)
algorithm for exact distributed matching, where n is the
length of the text, m is the length of the pattern, and w is
the length of the computer word.

This paper is organized as follows. In the next sec-
tion we describe the basic definitions and background re-
quired. In section 3, we describe the Shift-Or algorithm,
and in section 4, we modify input data. We present algo-
rithms for exact distributed matching problem in section
5, and for approximate distributed matching problem in
section 6. We implement them in section 7, and we de-
scribe the asymptotic time complexity in section 8. Fi-
nally in section 9 we present out conclusions.

2 Background and basic string defi-
nitions

A string is a sequence of zero or more symbols from an
alphabet X; the no symbol, that is the string with zero
symbols, is denoted by e. The set of all strings over the
alphabet L is denoted by £*. A string z of length n is
represented by z1...z,, wherez; € Eforl1 <i<n. A
string w is a substring of = if £ = wwv for u,v € ¥*;
we equivalently say that the string w occurs at position
|u| + 1 of the string z. The position |u| + 1 is said to be
the starting position of w in z and the position |u| + |w|
the ending position of w in z. A string w is a prefix of
z if = wu for u € ¥*. Similarly, w is a suffix of z if
z = uw foru € X*. The string zy is a concatenation of
two strings = and y. The concatenation of k copies of z is
denoted by z*.

Consider two sequences 7 = T17a...7 and pp1 p2...0r
with 7;, p; € ZU {€},¢ € {1...r}. If 7; # p;, then we say
that 7; differs from p;. We distinguish among the follow-
ing three types of differences.

Neither of these two symbols correspond to no sym-
bol and the symbol of the first sequence corresponds to a
different symbol of the second one, that is 7; # p; and
7; # € and p; # e. This type of difference is called mis-
match (or substitution).

Tha cvmhal AF tha frct cannancra narracnando ta na e

50

bol of the second sequence, that is 7; # ¢ and p; = e.
This type of difference is called deletion.
The symbol of the second sequence corresponds to no
symbol of the first sequence, that is 7; = € and p; # e.
This type of difference is called insertion.

Lett = tits...t, and p = p1ps2...pm With m < n.
We say that p occurs at position g of ¢ with at most k-
differences (or equivalently an alignment of p and ¢ at
position g with at most k-differences), if one can trans-
form p into #4...t54+m—1 With at most k basic operations
insertion, deletion and substitution.

The problem of string searching with k-differences is
defined as follows: given a text t = £;{,...t,, a pattern
p = p1p2-..Pm and an integer k, find all occurrences of
the pattern p in the text ¢ with at most k-differences.

3 The Shift-Or Algorithm

The Shift-Or algorithm is used to solve exact string match-
ing problems for a singular pattern and a singular text, de-
veloped by Baeza-Yates & Gonnet (1992). It is very fast
in practice as well as easy to implement. Let R? be a bit
array of size m. Vector R is the value of the entire array
RO after text character y[i] has been processed. It contains
information about all matches of prefixes of z that end at
position ¢ in the text (0 < 7 < m — 1):

o [0 i a0.d] = yli = §, i)
RO[4] =
<] {1 otherwise

Therefore, R2[m — 1] = 0 is equivalent to say that an ex-
act occurrence of the pattern z ends at position 7 in y. The
vector RY can be computed after R?_; by the following
recurrence relation:

; and
1 otherwise

R0 = {0 if {0] = y[i]

R = {0 if R?_,[j — 1] = 0 and z[j] = yli]

1 otherwise

The transition from RY_; to RY can be computed very
fast as follows. For each a € X, let Sa be a bit array
of size m defined by: for0 < j < m -1, Sa[j] =0
iff z[j] = a. The array Sa denotes the positions of the
character a in the pattern z. Each Sa can be preprocessed
before the search. And the computation of R reduces to
two operations, SHIFT and OR: R? = SHIFT (R?_;) OR
Sy[i]'

Assuming that the pattern length is not longer than
the memory-word size of the machine, the time complex-
ities of the preprocessing phase and searching phase are
O(|Z| + m) and O(n) respectively.

4 Modified Input Data

Searching for a pattern in a score is more complicated
than searching for a pattern in a string because of the pres-
ence of the rthythm. Since the rhythm is as significant
as the pitch for a melody, we will consider not only the
pitch of the notes but also the rhythm. In order to adapt
the Shift-Or algorithm to distributed matching problem
within polyphonic sources, input data needs to be modi-
fied - by dividing all notes into the length of the shortest
note present in the given data. This modification will be
done very easily and takes a linear time.

O | A | | .

I] |
) eme e S

e

[

vl

Figure 1: Score and a pattern from Bach’s Italian Con-
certo

Table 1 shows simple input data of the first bar of the
example (Fig. 1). The data format is (Pitch, Length).
In this example, the shortest note is a quaver = length 1.
Table 2 shows the modified input data of the bar. All notes
are divided into quavers.

voicel | (72,2),(70,2),(69.4)

voice2 | (0,1),(67,2),(67,1),(0,1),(67,1),(65,1),(64,1)
voice3 | (52,2),(48,2),(53,2),(48,2)

pattern (72,1),(67,1),(70,1),(67,1),(69,1),(67,1),(65,1),(64,1)]

Table 1: Simple input data of a bar from Bach’s Italian
Concerto

i]o 1 2 3 4 5 6 7
vi|72 72 70 70 69 69 69 69
v2| 0 67 67 67 0 67 65 64
v3 {52 52 48 48 53 53 48 48

[pa. |72 67 70 67 69 67 65 64

Table 2: Modified input data of a bar from Bach’s Italian
Concerto

In this example, the total length of the original score,
in other words, the number of notes in the score is: V=3
(Voicel) + 7 (Voice2) + 4 (Voice3) = 14. And the length
of the original pattern is: M = 8. The total length of the
modified score is: N' =n x v = 8 x 3 = 24, where n
is the number of the notes in each modified voice, and v
is the number of the voices. And the length of the mod-

51

aN(a > 1),andm = O(M) = BM(8 > 1). Inthe
example (Bach’s Italian Concerto), @ = 1.7 and 8 = 1.0.
However, the general values of a and 5 cannot be shown,
because the relationship between the length of the orig-
inal input data and the length of the modified input data
depends entirely on the lengths of the given notes and the
shortest note.

We can now apply the Shift-Or algorithm to this mod-
ified melodic data because the data can be handled like
string data - all notes are the same length. Howeyver, the
Shift-Or algorithm has to be modified for this problem,
and the length of a modified pattern normally cannot be
more than 64 (long long int). Since the original data is
divided into the length of the shortest note, the algorithm
does not know which modified note belongs to which orig-
inal note. This allows the algorithm to find slightly differ-
ent patterns from the original pattern as long as the se-
quence of the pitch and each length is the same, and this
will affect the value of k& (Levenshtein distance) of ap-
proximate distributed matching. For instance, the follow-
ing occurrences would be found as exact matches (Fig.
2):

Figure 2: Possible exact matches (Bach’s Italian Con-
certo)

S ExactDistributed Matching Prob-

lem
il]o0 1 2 3 4 5 6 17
172 72 70 70 69 69 69 69

v|2|0 67 61 67 0 67 65 64
3152 52 48 48 53 53 48 48
7210 o0 1 1 1 1 1 1
67!1 0o 0o 1 1 1 1 1
70!]1 1 0 o0 1 1 1 1
6711 1 1 0o 1 1 1 1

pl6o9|1 1 1 1 0 1 1 1
67{1 1 1 1 1 0 1 1
6511 1 1 1 1 1 0 1
641 1 1 1 1 1 1 0

Table 3: R? (Bach’s Italian Concerto)

The Shift-Or algorithm can be adapted without any
modifications to searching monophonic music patterns within

to solve exact distributed matching problems in polyphonic
sources. If there are v voices:

RY = SHIFT (R)_,) OR (Syjoj;y AND Syp1js) AND ...

AND SY[y—1)i3))-

Table 3 shows R} = SHIFT (R{_;) OR (Sy|;yj AND
Sy[);) AND Syg);s)) in the previous example (Bach’s

Italian Concerto).

The modified algorithm is shown in Fig. 3, and it runs
very fast (Fig. 4). Time complexities of preprocessing
phase and searching phase are O(|X| + m) and O(N) re-
spectively, where mn is the length of the modified pattern,
|Z| is the size of the alphabet, IV is the length of the orig-
inal score. The alphabet size will be 88 (the number of
keys of the piano) plus 1 (rest). We need to preprocess 89
data with the modified pattern data.

begin
foreacha € X do T'fa] + 2™ — 1
for j « 1 tom do Tpy;] « Tlpy)) — 27~
E « 2™ — 1, //E denotes a bit-vector
fori «+ 1ton do
E « shiftleﬁ(E)I(T[tll][i]]&T[t[zl{i]]&...&T[t[v][i]]);
if E.m = 0 then write(7);
end

Figure 3: Modified Shift-Or Algorithm for Exact Dis-
tributed Matching Problem

sm=15
*» m=30

N W e !

Time (in mili sec)

o -~

|

300 600 900 1200 1500
Text size of each modified voice (n)

(=]

Figure 4: Timing curves for the modified Shift-Or Al-
gorithm (4 voices) *n=320: Die Kunst der Fuge (Bach)
excerpt, *n=864: Flute quartet in D (Mozart) excerpt,
*n=1311: String Quartet No.16 (Beethoven) excerpt. Us-
ing a SUN Ultra Enterprise 300MHz running Solaris
Unix.

6 Approximate Distributed Match-
ing Problem

6.1 Wu-Manber Algorithm

There is a modified Shift-Or algorithm, called the Wu-
Manber algorithm, which can solve approximate string

52

insertion, deletion, and substitution. The algorithm main-
tains k + 1 bit arrays R, R!, ..., R¥. The vector R? is
maintained similarly as in the exact matching case. The
other vectors are computed with the formula (1 < j < k):
R] =(SHIFT(R]_,) OR Syj;)) AND SHIFT(R]™* AND
RIZH AND RI7}

The time complexities of its preprocessing phase and search-
ing phase are O(|X| + m + k) and O(kn) respectively.

6.2 Modified Wu-Manber Algorithm for Dis-
tributed Matching Problem

We modified the Wu-Manber algorithm in order to solve
approximate distributed matching problems in polyphonic
sources. If there are v voices:

Rg =(SHIFT(R‘Z_1) OR (Sy[O][i] AND Sy[l][i] AND...AND
Syu-1)i)) AND SHIFT(R!™' AND RIZ}) AND R]7;.
Fig. 5 shows the Modified Wu-Manber Algorithm, and
it runs very fast (Fig. 6).

Time complexities of preprocessing and searching are
O(|Z| + m + k) and O((k + v)n) = O(N) respectively,
where |X] is the size of the alphabet, m is the length of the
modified pattern, k is the Levenshtein distance allowed, v
is the number of voices, n is the length of each modi-
fied voice, and N is the length of the original score. The
value of k£ does not correspond to the Levenshtein dis-
tance between an original score and an original pattern,
but the Levenshtein distance between a modified score
and a modified pattern.

begin
foreacha € £doTa] - 2™ -1
for j « 1tomdo T[p[j]] — T[p[j]] - 2j_1;
RY + 2™ — 1, /IR denotes a bit-vector
for h < 1to k do R} « shiftlef(R} 1)
fori+ 1tondo
mask ¢+ (T[t[l][i]]&T[t[z][i]]&---&T[t[u][i]])
forh + 1tokdo
Rl « (shiftleft(R}_,)|mask)
&shifileft(RM &R &R}
if R¥.m = 0 then write(3);
end

Figure 5: Modified Wu-Manber Algorithm for Approxi-
mate Distributed Matching Problem

6.3 Octave-displaced Matches

It often happens, for instance, that the cello plays a melody
and the violin takes over or repeats it. In this case, the re-
peated melody is normally one or more octaves higher.
Fig. 7 is an example from 4th movement of Beethoven’s
String Quartet No.16. To detect both occurrences, input
data has to be modified and suppressed - divide the data

her 17 and adAd 1 ta tha vcanmnindans favannt N wantd Thaea.

m=15 m =30

k=1
k=3
A k=5

Time (in mili sec)

O = N e R N
Time (in mili sec)

Q= NWasNE~N

o

300 800 900 1200 1500
Text size of each modified voice (n}

=3

300 600 800 1200 1500
Text size of each modified voice (n)

Figure 6: Timing curves for the modified Wu-Manber Al-
gorithm (4 voices) *n=320: Die Kunst der Fuge (Bach)
excerpt, *n=864: Flute quartet in D (Mozart) excerpt,
*n=1311: String Quartet No.16 (Beethoven) excerpt. Us-
ing a SUN Ultra Enterprise 300MHz running Solaris
Unix.

C=1, C#=2,....B=12, and rest will stay 0. This modifica-
tion will be done in linear time. In the previous exam-
ple, the suppressed data of the violin and cello will be the
same. Therefore, both patterns will be detected as exact
matches. Needless to say, we need to modify the alpha-
bet size and the data in the preprocessing phase as well.
The alphabet size will be 13 (0 for rest, and 1,2,...,12 for
C,C#,...,.B) instead of 89.

O
» , o pF

[N] 1 1 T

y A & 17 1 1 1

i N & e 1T & —1 P 1

1 L1 DI § 1

e o e ® O

v Y T A o v T 1 1 T
R e —

Figure 7: Melodies from Beethoven’s String Quartet
No.16

7 Implementation

In this section, we implement the codes with actual mu-
sic pieces. We have chosen the beginning of Beethoven’s
Symphony No.5 as a good example of distributed match-
ing problem, and 34 bars from Beethoven'’s String Quartet
No.16.

7.1 Beethoven’s Symphony No.5 - 1st Move-
ment

7.1.1 Score

Since clarinets and bassoons play the same notes as strings
in the score (Fig. 8), and no other instruments play here,
only the string section will be considered in order to sim-
plify the process. In this example, the total length of the
original score, in other words, the number of notes in
the score is: N=28 (1st Violin) + 24 (2nd Violin) + 26
(Viola) + 15 (Cello) + 11 (Bass) = 104. As the shortest
note is a quaver, the total length of the modified score is:

53

Figure 8: Score of the beginning of Beethoven’s Sym-
phony No.5

Position
Exact Matching 35
Approx. Matching (k = 1) 34,35,36
Approx. Matching (k = 2) | 33,34,35,36,37

Table 4: The output for the pattern and score (Beethoven’s
Symphony No.5)

notes in each modified voice, and v is the number of the
voices. Therefore, N' = O(N) = aN = 2.5N. Since
one bar includes 4 quavers and the shortest note is a qua-
ver, one bar includes 4 positions (for instance, position 60
corresponds to the first quaver of bar 16).

7.1.2 Pattern

Figure 9: A pattern for Beethoven’s Symphony No.5

The length of the original pattern (Fig. 9) is: M = 13.
Modified pattern: [0, 67, 67, 67, 63, 68, 68, 68, 67, 75,
75,75,72,72,72, 72] .

The length of the modified pattern is: m = 16, as the
shortest note is a quaver: m = O(M) = M = 1.2M

7.1.3 Implementation

There is an exact match from position 20 to 35. The out-
put (the last position of the occurrence) is shown in Table
4.,

Position
-Exact 47(1stVn)
Approx.(k = 1) 46,47(1stVn),48
Approx.(k = 2) | 45,46,47(1stVn),48,49

Table 5: The output for the pattern and score (Beethoven'’s
String Quartet No.16)

7.2 Beethoven’s String Quartet No.16 - 4th
movement

7.2.1 Score

Fig. 10 shows a score from Beethoven’s String Quartet
No.16. In this example, the total length of the original
score is: N = 350. As the shortest note is a crochet, the
total length of the modified score is: N/ = n x v = 544,
Therefore, N' = O(N) = aN = 1.6N.

Figure 10: Score of the beginning of Beethoven’s String
Quartet No.16

7.2.2 Pattern

Figure 11: A pattern for Beethoven’s String Quartet
No.16

The length of the original pattern (Fig. 11) is: M = 13.
Modified pattern: [77, 75, 74, 72, 74, 75, 75, 0, 75, 74,
72,70,72,74,74]

The length of the modified pattern is: m = 15, as the
shortest note is a crochet: m = O(M) = M = 1.15M.

7.2.3 Implementation

There is an exact match in the 1st Violin from position 33
to 47. The output (the last positions of the occurrences) is
just as expected (Table 5).

7.24 Octave-displaced matching

There is a similar pattern (one octave lower and with one
substitution) in the Cello from position 35 to 49 (Fig. 12).
To detect this pattern too, we need to apply approximate
octave-displaced matching program.

Suppressed pattern: [6, 4, 3,1, 3,4,4,0,4,3,1,11, 1, 3,
3]

The output is just as expected (Table 6).

Figure 12: A similar pattern

Position
47(1stVn)
46,47(1stVn),48,49(Cello)
45,46,47(1stVn),48,49(Cello),50

Exact
Approx.(k = 1)
Approx.(k = 2)

Table 6: The output for the suppressed pattern and score
(Beethoven’s String Quartet No.16)

7.2.5 Transposed match

Now, all expected exact matches, approximate matches,
(approximate) octave-displaced matches are found with
no false matches. However, there is another important
match in the Cello - transposed match. Fig. 13 shows the
same motif (Cello, position 1-15) as the pattern, but not
in the same key and with one substitution. To find trans-
posed matches, create 11 transposed patterns by adding 1
to 11 to the suppressed pattern data except 0, and if the
data exceeds 12, then subtract 12 from it. Run the pro-
gram with all the 12 patterns.

The output is just as expected (Table 7). Now, we found
all relevant occurrences with no false matches.

Figure 13: A transposed pattern

8 Asymptotic Time Complexity

Assuming |X| and % are constant, and the word-size is
larger than m, all distributed matching problems (exact,
approximate, octave-displaced, and transposed) are solved

Position

Exact 47(1stVn)

Approx.(k = 1) | 15(Cello),46,47(1stVn),48,49(Cello)

14,15(Cello),16,45,46,
47(1stVn),48,49(Cello),50

Approx.(k = 2)

Table 7: The output for the transposed patterns
{Beethoven’s String Quartet No.16)

in O(N + M) time.

(N Total length of an original score
M The length of an original pattern
n The number of notes in each modified voice
v The number of voices
N’ The total length of a modified score
m The length of a modified pattern
|¥| 13 for suppressed data, otherwise 89
(k& Allowed Levenshtein distance

o Exact Distributed Matching:
O(N + M + |X})

1. Modify a score and a pattern:
O(N'+m)=0(N + M)

2. Shift-Or - Preprocessing:
O(|Z| +m) = O(|Z| + M)

3. Shift-Or - Searching:
O(vn) = O(N)

¢ Approximate Distributed Matching:
ON+M+Ek+|X))

1. Modify a score and a pattern:
O(N'+m) =0(N + M)
2. Shift-Or - Preprocessing:
O(Z|+m+ k) =O(|Z| + M =k)
3. Shift-Or - Searching:
O((v + k)n) = O(N + (kN)/v) = O(N)
¢ Exact Octave-displaced Distributed Matching:
O(N + M + [3])
1. Modify and suppress a score and a pattern:
O(N'+m) =0(N + M)
2. Shift-Or - Preprocessing:
O(IZ| +m) = O(IZ| + M)
3. Shift-Or - Searching:
O(vn) = O(N)

o Approximate Octave-displaced Distributed Match-

ing:
ON+M+k+|%|)

1. Modify and suppress a score and a pattern:

2. Shift-Or - Preprocessing:
O(Z|+m+k)=0(Z|+ M =k)

3. Shift-Or - Searching:
O((v + k)n) = O(N + (kN)/v) = O(N)

o Exact Transposed Distributed Matching:
O(N + M + |Z])

1. Modify and suppress a score and a pattern:
O(N' +m) = O(N + M)
2. Produce 11 transposed patterns:
O(11m) = O(M)
3. Shift-Or - Preprocessing:
12 x O(|Z]| + m) = O(|Z| + M)
4. Shift-Or- Searching:
12 x O(vn) = O(N)

¢ Approximate Transposed Distributed Matching:
ON+M+Ek+]|T))

1. Modify and suppress a score and a pattern:
O(N' +m) = O(N + M)

2. Produce 11 transposed patterns:
O(11m) = O(M)

3. Shift-Or - Preprocessing:
12xO(|Z}+m+ k) =O(|Z|+ M + k)

4. Shift-Or - Searching:
12x O((v+k)n) = O(12N + (12kN) /v) =
O(N)

9 Conclusion and Limitations

Using the Shift-Or algorithm, distributed matching prob-
lems (exact, approximate, octave-displaced, and transposed
matching) for musical melodic recognition are solved in
linear time. The functions (the modified Shift-Or algo-
rithm and modified Wu-Manber algorithm) run very fast
and work well with actual musical pieces with few false
matches. However, there are some limitations. Since the
pitch and the rhythm are considered, we had to make the
length of modified patterns longer, even though it can-
not exceed 64. 64 should be enough normally, but if
triplets and semi-quavers coexist in a score, for instance,
a crochet could be divided into 12 notes. To reduce the
length, we could consider musical events to be a list of
notes which begin to play at the same time. However, the
rhythm cannot be considered, and the Shift-Or Algorithm
may not work well on it.

These codes cannot identify one major form of patterns in
music, namely harmonic progressions. This limitation is
apparent, for example, when considering variation form
{which by definition is pattern-based). An example of
this might be the opening movement of Mozart’s A-major
Piano Sonata, which is a set of variations on a simple
melody. Whilst musicians can recognize a harmonic rela-

Shift-Or algorithm is unable to identify this relationship
no matter how large is the value of k.

Acknowledgements

Costas S. Iliopoulos was partially supported by a Marie
Curie Fellowship and Royal Society, Wellcome Founda-
tion and NATO grants.

References

A. Apostolico, Z. Galil. Pattern Matching Algorithms.
Oxford University Press, 1997.

R. A. Baeza-Yates and G. H. Gonnet. A new approach to
Text searching. CACM, 74-82, 1992.

R. A. Baeza-Yates and G. Navarro. A faster algorithm
for approximate string matching. Proceedings of the
7th Symposium on Combinatorial Pattern Matching,
LNCS, 1075:1-23, Springer-Verlag, New York, 1996.

E. Cambouropoulos. A general pitch interval representa-
tion, Theory and applications. Journal of New Music
Research, 25:231-251, 1996.

C. Charras and T. Lecroq. Exact String Matching Al-

gorithms. [http://www-igm.univ-mlv.fr/lecrog/string/],
1997.

R. Cole, R. Hariharan, and P. Indyk. Tree pattern match-
ing and subset matching in deterministic O(nlog®m)
time. Proceedings of the Tenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 245-254,
1999.

R. Cole, C. S. Iliopoulos, T. Lecroq, W. Plandowski,
and W. Rytter. Relations between delta-matching and
matching with don’t care symbols: delta-distinguishing
morphisms. Proceedings 12-th Australasian Workshop
on Combinatorial Algorithms, 2001

T. Crawford, C. S. Iliopoulos, and R. Raman. String
Matching Techniques for Musical Similarity and
Melodic Recognition. Computing in Musicology,
11:73-100, 1998.

M. Crochemore and T. Lecroq. Pattern Matching and Text
Compression Algorithms, in A.B. Tucker Jr, ed. The
Computer Science and Engineering Handbook, CRC
Press, Boca Raton, 1997.

M. Dovey and T. Crawford. Heuristic Models of Rele-
vance in Searching Polyphonic Music. Diderot Forum
on Mathematics and Music, Vienna, December 2-4,
111-123, 1999.

M. Dovey. A technique for “regular expression” style
searching in nalvnhonic mnsic. 2001.

56

Z. Galil and K. Park. An improved algorithm for approx-
imate string matching. SIAM Journal on Computing,
19:989-999, 1990.

J. Holub, C. S. Iliopoulos, B. Melichar, and L. Mouchard.
Distributed Pattern Matching Using Finite Automata.
Journal of Automata, Languages and Combinatorics 6,
2:191-204,2001.

G. M. Landau and U. Vishkin. Fast string matching with k
difference. Journal of Computer and Systems Sciences,
37:63-78, 1998.

K. Lemstrém. String Matching Techniques for Music Re-
trieval. University of Helsinki, 2000.

W. J. Masék and M. S. Paterson. A Fast algorithm for
computing string edit distances. J. Comput. Sy. Sci.,
20:18-31, 1980.

D. Meredith, G. A. Wiggins, and K. Lemstrom. Pat-
tern induction and matching in polyphonic music and
other multi-dimensional datasets. Proceeding of the
5th World Multi-Conference on Systemics, Cybernet-
ics and Informatics (SCI2001), July 22-25, Orlando,
FL., X:61-66, 2001.

J. Pinzon. Algorithms for Computing Approximate Rep-
etitions in Musical Sequences. Thesis, 1999.

P. H. Seller. The theory and computation of evolutionary
distances: Pattern recognition. Journal of Algorithms,
1:359-373, 1980.

E. Ukkonen. Finding approximate patterns in strings.
Journal of Algorithms, 6:132-137, 1985.

S. Wu and U. Manber. Fast text searching allowing errors.
CACM, 35:83-91, 1992.

S. Wu, U. Manber, and G. Myers. A subquadratic algo-
rithm for approximate limited expression matching. Al-
gorithmica, 15:50-67, 1996.

A. H. Wright. Approximate string matching using within-
word parallelism. Soft. Pract. Exper., 24:337-362,
1994,

A psychosocial model for the evolution of aesthetic patterns

Thibaud de Souza' and Tatiana Kalganova
Brunel University, Uxbridge UB8 3PH

'ee00ttd @brunel.ac.uk; *tatiana.kalganova@brunel.ac.uk

Abstract

This paper describes an original attempt to evolve aesthetic patterns by integrating the rules of colour psychology into a
multi-agent evolutionary model. The system uses the principles of evolution to determine social relationships between agents.
Communication plays an important role in the evolution of social behaviour. In our case the exchange of information between
agents determines their behavioural characteristics. The interaction between agents and their social behaviour may be controlled

and monitored using real-time image animation technique.

1 Introduction

It is well known that it is difficult to guide the evolution
of meaningful aesthetic patterns. Important problems
associated to this include the design of systems with ge-
neric representational capabilities, the question of aes-
thetic judgement and knowledge integration (Machado et
al 1996).

The use of artificial intelligence in evolution of artwork
has been researched actively during the last decade. Thus,
experiments described earlier involve manual guidance of
evolution (Rooke, 2001). Mechanisms for rearranging
ready-made forms have been presented in (Soddu, 2001).
Behavioural agents have been used to evolve images of
virtual creatures (biomorphs), through the use of genetic
algorithm (Dawkins, 1987). However, in this case again,
manual selection has been involved.

Recently the modelling of emotions has attracted much
attention from researchers. Using this technique, believ-
able agents have been created (El-Nasr et al 1998;). At
the same time it has started to be considered an essential
component of intelligence (Gershenson, 1999; El-Nasr et
al 1998).

Following some insights provided in (Taylor, 2001), we
have attempted to evolve aesthetic patterns without man-
ual intervention. We suggest that automatic evolution of
aesthetic forms may be achieved by combining the fol-
lowing:

1- A generative system with sound potential in terms of
the variety and level of organisation of created forms.

2- Behavioural scripts able to manipulate the data struc-
tures contained in the system

57

3- Encoded rules binding the behavioural scripts to the
perceived psychological qualities of the produced forms.

A system binding behavioural agents to the perceived
psychological values associated with colour was designed
and implemented in order to test this hypothesis. In this
paper, the design of the system is exposed, along with
preliminary experimental results.

2. Modelling social behaviour

The purpose of the system is to evolve scripts describing
the behaviour of individuals within social groups. Each
individual is described using parameters that define its
physical and emotional states and a behavioural script.
Physical states of agents determine their emotional state.
Emotional states control the execution of an individual's
script. Behavioural script defines the interactions between
agents.

Relations between individuals have been modelled at 3
distinct levels:

¢ The emotional states of an individual are de-
rived from the colour of its neighbours using
the rules of colour psychology.

¢ Informational and material transfers are per-
formed between individuals in the form of data,
code, colour, density and physical links ex-
change. :

e Social units are modelled using directed links
binding individuals. Such links constrain the
relative positions of individuals in space while
facilitating informational exchanges and ampli-
fying individual contributions to local emo-
tional climates.

The location of agents is constrained within spherical
bounds. The graphical patterns created reflect the evolu-
tion of individual and group attributes over time.

The system allows controlling interactively the rules that
constrain the behaviour of agents and the evolution of
their physical and emotional states.

3. Agent characteristics

In real life, individuals may be described by their physi-
cal and psychological states.

3.1 Physical states

In our system, physical attributes include location, col-
our, speed and density (see Table 1). The speed vector is
decomposed into 3 distinct component vectors represent-
ing the agent's speed, the pull exerted by physical links
(spring vector) and a variable amount of random noise.

Table 1: Agent physical attributes

pnad

amber duamly | ok v

wellppand
wwalwfaln]s

e e ™
alule|e|nin

] ponen | bive | meri

The location of each individual is initialised randomly
within specified bounds. At each execution cycle the
location is updated using the follow rule:

location = location + s

where s is calculated as a sum of cell speed, spring vector
and noise vector.
The cell's speed is updated using the cell's target loca-
tion, friction and acceleration parameters:

Sp eed = (Sp eed + Aacceleratian) u)) (1 -4 ﬁ'iction)

where u is a normalised vector representing the direction

of target location; ““acceleration is an agent acceleration

that is constant; Africn'on is an agent friction that is con-

stant.
The spring vector is the sum of the spring forces Fis,
generated by each physical links:

S=(S+ ‘Fsi)'(l_Sﬁ-ictian)
0<t<N s
where S piction is a spring friction that is constant;

N i is the number of physical links, ks, is a spring

58

forces that is calculated according to the following equa-
tion:

Fs,=v-d,-D)'S,

wer

where v is a normalised vector representing the direction
of the physical link; d;is current length of physical
link; D, is reference length of the physical link; S power
is the spring power constant.

The noise vector can be jittered randomly with a speci-
fied probability.

3.2 Colour coding scheme for modelling
emotions

The psychological state of individuals has been modelled
by describing the influence of the psychological climate
produced by colours on individuals. Fig. 1 illustrates the
relationships between agents and their emotions. The
expressions of agents are derived from their colours. The
expression values contribute to the emotion values of
neighbouring individuals (see Fig. 2).

lﬂento '__.[Expression l-_L_.
U\gent 1 HExpressu‘TI.___u Emotions
[[Agent2 |—{ Expression I..__l'_'

Figure 1: Deriving agents’ emotions from neighbouring
agents’ expressions.

‘ !S.°°'a||. | Affectivity
: 3
Emotion
Source . o
colour Expression contribution
values
: T
| Colour Distance to
Agent

Figure 2: Evaluation of emotions

For each individual expressions and emotions are mod-
elled. For any individual, values for 8 basic emotions and
expressions are stored in arrays of decimal numbers in the
range [0, 1] (see Table 2). The higher coefficient, the
stronger the feeling.

Table 2: Psychological attributes of agent, where
E,M,€[0]].

bt § sndwcona | Gapad ey < M
dsprimenad | B0 | 44 -+ 4] [7] B [1]
amabeeal |40 | w2 Wy [T 6y | N7

The expression of an individual is derived from its current
colour using the rules of colour psychologﬁéll‘ he inten-

sity value for each expression component is calcu-

lated as a function of the agent's colour >

and the expression component reference colour
>

-

All expression components are then rescaled so that the
maximum expression component value is 1.0 and the
minimum is 0.0.

The overall expression intensity value is calculated ac-
cording to the reference sizes of the physical links

established by the individual with its neighbours (see
Table 3).

Table 3: Calculation of expressions overall intensity

{n. of bnks | exprassion intanesy vaive
Q Ex

1 ERD

N | =v(IDi/Mp2TER

The chosen mapping between emotions and colour is
exposed in Fig. 3.

The emotions of individuals

T are

derived from the expressions of neighbours according to

the equation:

59

>

where | > |are emotion calculus coefficients that are
constants; l > 1 is the number of neighbours;
> |is the agent affectivity.

Figure 3: Colour coding scheme

3.3 Behavioural scripts

Each agent holds a thread that will execute the agent's
behavioural script. Execution threads use reference and
scheduling to perform operation. Every time invoked, an
agent's thread performs zero, one or more operations be-
fore releasing control.

Behavioural scripts consist in operation sequences. Each
operation is identified by a descriptor. The descriptor
specifies the following parameters:

* anoperation identifier (opcode);
* aratio used by specific operations;

* 4 Boolean values used by Boolean logic opera-
tors;

* program and memory pointers used to address
specific areas in cell memory;

¢ cell addressing parameters;
¢ one identifier controlling write access privileges.

Scripts may manipulate data stored in an individual's
memory.

Behavioural scripts are initialised semi-randomly. Opera-
tors that play a crucial role in the evolution of the system
are seeded in higher proportion. Memory buffers are ini-
tialised randomly.

At each execution cycle, an execution thread invokes one
or more instructions. The execution thread releases con-
trol when one of the following occurs:

* The latest operator invoked specified a non-zero
execution delay or had its break parameter set

* The program pointer is out of range.
* A stop operator was executed.

Execution may be controlled using a range of parameters
that will influence the evolution and quality of the pro-
duced system (see Table 4).

Table 4: Execution control parameters

enable write ac-
cess modifiers

Allows scripts to protect memory or
code fragments in writing.

Controls whether data transfer opera-

progressive data tions validity is checked once per

:;a'.leer check- transfer or once for each transferred
& memory buffer
progressive pro- | Controls whether program code trans-
fer operations validity is checked
gram memory
transfers once per transfer or once for each

transferred operator

Controls whether an offset address
should be used when transferring data
from cell to cell

allow data trans-
fer offsets;

Controls whether an offset address
should be used when transferring
code from cell to cell

allow program
transfer offsets

Used to determine success of failure

action threshold

of action operators, based on the dis-

values AQ,Al tance from the caller to the target
cell.
perception Used to determine success of failure

threshold values
PO, P1

of perception operators, based on the
distance from the caller to the target
cell.

Each operator has a number of associated parameters:
operator cost, break parameter, emotion code and emotion
reference value (Table 5).

3.3 Operators

60

In the systems a number of operators has been defined
according to the evolution of the system. Thus, one of
the introduced operators is the transfer operator. This op-
erator can transfer colour, link material or density to tar-
get agent using specified ratio. The operator has been
designed in such way that no material can be added or
removed to/from the system. If some material has been
transferred from one agent to another, then the same
amount of material will be subtracted from the source
agent. Another operator that has been introduced in the
system is a motion operator. The purpose of this operator
is to identify the target location for the agent. The link
operator allows establishing the physical links between
agents. The specified value of link material can be allo-
cated using an allocation operator. The allocation is car-
ried out between two previously linked agents. Active
agents are allowed to exchange information with their
neighbourhood. In this case distance, colour and location
of agent are taken into account. The enquiry is used in
order to establish contacts with agents in neighbourhood
and if the answer is positive the exchange of information
takes place.

Table 5: Operation attributes

cost I:lepresents the amount of energy needed
0 execute operator.
etermines whether an agent's thread
break pa- .
should release control after execution of
rameter .
e associated operator.
execution e time (in frames) necessary to com-
delay lete execution.

Successful execution of the given operator]
ill be dependant on the value of one
specified emotion

emotion code

he threshold value that the given emo-
on should have for the given operator to
ways execute successfully.

emotion refer-] .
ence value

3.4 Evaluation criteria

The system potentially contains self-reproducing behav-
ioural patterns involving one or more individuals. Evolu-
tionary pressure arises primarily as a result of memory
resources limitations. The fittest behavioural patterns use
the given instruction set advantageously to reproduce
faster and more accurately according to the physical and
psychological rules governing the system.

4 Graphical representation

The evolved patterns are represented in real-time. Images
can be produced by rendering the system incrementally
over time. Images contain information about agents and
their physical links.

Fig. 4 illustrates an example of image produced after sev-
eral generations. In this image the black tracks represent
agent trajectories. The agents that established links with
neighbourhood are drawn as polygons. The colours of
polygons interpolate the colours of individuals. The pre-
sented picture is at an early stage of evolution. The dis-
tribution of colour is still random. This shows that the
system has not evolved any specific emotional climate.
One can notice that there are only few links established
between agents. This is identified by the number of poly-
gons in the presented image.

A

Figure 4: A sample output image

Physical environment and program execution parameters
may be modified interactively. The user may tune the
visual output using a range of parameters and navigate
inside the system. These parameters include whether the
links should be drawn or not, whether the neighbourhood
should be drawn or not, etc.. The Viewing camera may be
linked to one of the agents’ location.

A comparison between Fig. 4 and Fig. 5 demonstrates
the use of different viewpoints.

61

Fig. 5: Close up

5. Experimental results

The system has been implemented using C++. A number
of experiments have been set up in order to test the tech-
nical and aesthetic qualities of the system. A population
of one thousand of agents has been used in the performed
series of experiments. The analysis of experiments shows
the evolutionary qualities of the system, as well as its
ability to produce a wide range of aesthetically pleasing
visual patterns. Two main series of experiments have
been carried out. In the first one the parameters of the
system have been investigated in detail. In the second
one the aesthetic qualities of the produced images have
been evaluated by an expert in the field.

5.1 Numerical analysis

In order to identify how the system behaves depending
on the used type of constraints, a number of experi-
ments have been carried out. The purpose of the ex-
periment is to illustrate how the system will behave
with and without colour constraints. First of all we
have been interested in the evolution of operator dis-
tribution in the system (Experiment A). In this case
no colour scheme has been applied. In the second ex-
periment, colour constraints have been applied (Ex-
periment B). In this case one psychological colour
based constraint has been applied to the copy and get
cell reference operators.

Table 6: The parameters of the system
I environment parameters

1

number of agents |768

link avail/cell fo.03
randomise colour fno
seed radius 25
world radius 1.50
reduced operator set ratio 0.25
agent acceleration 10.008
agent friction fo.001
agent max. speed fo.05
target threshold fo.0s
action thresholds A0,Al fo.3,0.5
perception thresholds PO,P1 0.3,0.9
stamina recovery 0.01
environment depth 10.4
spring power fo.08
spring friction fo.6
spring max speed fo.045
noise amount Jo.001
noise frequency fo.001

fo.o1

noise max speed

execution control
use write protection es
progressive data transfer checking es
progressive program transfer checking]
data transfer offset €s
program transfer offset yes

The operators were set to warrant execution only for love
emotion values superior to 0.6.

The initial values of parameter used in this experiment
are shown in Table 6. The experimental results obtained
are plotted in the graphs shown in Fig. 6 (Experiment A)
and Fig. 7 (Experiment B). The analysis of obtained
results shows the following :

* In both cases, evolution arises and can be detected
by the characteristic shape of the graphs.

* The distribution of operators evolves more slowly
when additional colour constraints are applied.

* When colour constraints are applied, there is an
increase in the proportion of arithmetic operators.

* [t can be clearly seen that the copy operators is
used more often if there are no colour constraints.

* The transfer link material is used less in Experi-
ment B,

* The distribution of operators slows down with in-
crease of number of generations.

62

Analysis of the results of these experiments shows that
the use of colour-based constraints influences the overall
performance of the system.

5.2 Aesthetic qualities of the produced im-
ages

Images produced after 10000 generations have been pre-
sented to an expert in the area of graphic design to iden-
tify the strengths and weaknesses of the generated im-
ages. The evaluation of the images has been focused on
the evocative power and the dynamic qualities of the
images.

8 images have been presented to the expert in graphic
design. Some of these images are reproduced in Fig. 8 —
Fig. 10. Fig. 8 and Fig. 9 present the evaluated images
as well as the comments of the expert. It is interesting to
note that associations with Van Gogh have been drawn
with one of the presented images. At the same time an-
other examined image has been associated with the works
of Balla (not shown).

The overall impression is that “most images have a frac-
tured quality to them and tonally occupy a similar
amount of variation — all the images share a similar
amount of activity except two depicted in Fig. 8 and
Fig. 10 which seem to be more active. Apart of Fig. 8
and several others they look like abstract prints ... The
one I find hardest to look at is Fig. 8.

Based on the comments of expert one can conclude that
the produced, graphical patterns are novel, original and
inspiring.

set write access

,Q:/ get cell reference

get lacation

N

opcode == 7

move

transfer link material

the number of generations

Figure 6: Experiment A: Distribution of operators over
time without colour constraints. The horizontal axis rep-
resents the number of generations and the vertical axis

represents the number of operators used in the system.

63

_ ﬁ ~sBt Write_access

et cell reference

getlocation

s T T e T e ® e s

e move

transfer link material

VES

the number of generations

Figure 7: Experiment B: Distribution of operators over
time with colour constraints. The horizontal axis repre-
sents the number of generations and the vertical axis rep-
resents the number of operators used in the system.

“A scratchy image, looking a little like a Van Gogh of a
lave flow. Quite explosive but a cooler explosion - a
steam geyser rather than a lave eruption. There is a sense
of clashing and collision here between the linearity of the
red (lower right) and the more chaotic greens and blues of
the upper left.”

Figure 8. The first selected image, “Domain”

“A forest, a multi-layered image that does not seem to
have a “ground” or a base on which the images are con-
structed, there is the sense of a continuing, scalable envi-
ronment. It all seems very organic and natural. A “flat”
composition with a rather uniform emphasis ¢hence the
feeling of no foreground and no background just a con-
tinuing space).”

Figure 9. The second selected image

Figure 10: The third selected “active” image, “Ice skat-
ing”

“Looking a mountain through frosted glass, its too to-
nally uniform to be mist. The more you examine it the
more colourful it becomes and the more physical depth is
perceived.... Turning it back to the correct orientation it
reveals an eye in the centre, it is more sinister. Again it
is top heavy, fractures, crystalline.”

Figure 11. The fourth selected image

Figure 12. Generated image

A number of generated images produce very strong asso-
ciations with real life. Thus, it has been noticed that the
image depicted in Fig. 12 reminds a lot of the relaxing
sea life. Dynamic motion inside the picture can be seen
very clearly.

6. Future work

Extended analysis of the system may explore the spatial
migration of passive and operational knowledge within
the system and attempt to identify and understand spe-
cific behavioural patterns.

The rules of colour psychology should be combined with
an anthropomorphic approach to space and motion to
evolve appealing graphic configurations.

7. Summary

In this paper, a psychosocial model for the automated
evolution of aesthetic patterns has been presented. A col-
our-coded scheme has been used to constrain the social
behaviour of individuals. Experimental results demon-
strate the influence of colour-based constraints on the
evolution of behavioural and graphic patterns. An expert
in graphic design has examined several produced images.
The quality in terms of colour harmony and composition
has been demonstrated. The dynamic is one of the spe-
cific features of generated images. The experimental re-
sults show the dominance of different colours in different
neighbourhood. The produced images display aesthetic
qualities in terms of colour harmony.

Acknowledgements

We would like to thank Leon Cruickshank from Brunel
University for his evaluation of the produced images and
anonymous reviews for their comments. The first author
would like to thank Prof. John Stonham for advice and
friends for kind support given during preparation of this

paper.
References

Dawkins, R. The blind watchmaker. W.W. Norton &
company , Inc., 1987,

65

El-Nasr, M.S. and M. Skubic. A Fuzzy Emotional Agent
for Decision-Making in a Mobil Robot, Proc. of
Fuzz-IEEE 98 , 1998.

El-Nasr, M.S. and J. Yen, Agents, Emotional Intelli-
gence and Fuzzy Logic, Proc. of the 17th Annual
Meeting of the North American Fuzzy Information,
1998.

Gershenson, C. Modelling Emotions with Multidimen-

sional Logic. Proc. of the 18th Int. Conference of
the North American Fuzzy Information Processing

Society (NAFIPS '99), pp. 42-46. New York City,
NY, 1999.

Machado, P., Cardoso, A., Generation and Evaluation of
Artworks. Proc. of the 1st European Workshop on
Cognitive Modeling, CM'96, in Schmid, Krems and
Wysotzli (Eds.), TR 96-39, Technische Universitit
Berlim, Germany, 1996.

Rooke, S. Eons of Genetically Evolved Algorithmic Im-
ages. In “Creative Evolutionary Systems”. Eds:
P.J. Bentley, D.W. Come, published by Morgan
Kauffman, 2001.

Soddu, C. Recognizability of idea. In “Creative Evolu-
tionary Systems”. Eds: P.J. Bentley, D.W. Corne,

published by Morgan Kauffman, 2001.

Taylor, T. Creativity in Evolution. In “Creative Evolu-
tionary Systems”. Eds: P.J. Bentley, D.W. Corne,
published by Morgan Kauffman, 2001.

66

Evolution of Musical Motifs in Polyphonic Passages

Costas S. Iliopoulos*'; Kjell Lemstrdm®; Mohammed Niyad*; Yoan J. Pinzén?

* Department of Computer Science, King’s College, London.
t School of Computing, Curtin University of Technology, WA.
° Department of Computer Science, University of Helsinki, Finland. -
t Facultad de Ingenieria de Sistemas, Universidad Autonoma de Bucaramanga, Colombia
{csi,niyadm} @dcs.kcl.ac.uk;klemstro@cs.helsinki.fi;ypinzon@bumanga.unab.edu.co

Abstract

In this paper we consider the problem of motif evolution in polyphonic musical sequences. A related problem, where a
set of sequences of notes (one sequence for a voice) and a pattern is given, is to find whether approximate occurrences
of the pattern occur distributed across the sequences (Holub et al., 1999; Lemstrom and Tarhio, 2000). Formally, this
related problem is as follows: given a set ¢ of h strings (each representing a voice) ' = #i, . St i € {1..h}, for
some constant h and a pattern p = py, ... , pm, We say that p occurs at position j of ¢t if p; = t;‘ , D2 = t;%rl, ce Pm =
t;ﬁm-l for some {i1,... ,im} € {1..h}. Our problem of finding evolutionary chains is defined as follows: given a set
t of h strings ¢* (the target), for some constant h and a motif p, find whether there exists a sequence u1 = p, Uz, ... ,ue
occurring in the target ¢ such that u;+1 occurs to the right of u; in ¢ and for any given j € {1..£ — 1}, u; and uj4,
are similar enough, i.e., they do not differ more than by a certain number of basic operations — insertions, deletions
and substitutions. In this paper, we consider several variants of the evolutionary chain problem and present efficient

algorithms solving them.

1 Introduction

This paper is focused on a set of string pattern-matching
problems which arise in music analysis (Mongeau and
Sankoff, 1990; Stech, 1981), musical information retrieval
(Lemstrdm, 2000) and molecular sequence analysis (Gus-
field, 1997). A musical score can be viewed as a string: at
a very rudimentary level the alphabet could simply com-
prise the pitch names of the western music notation, or
at a more complex level, we could use the GPIR repre-
sentation of Cambouropoulos (1996a,b) as the basis of an
alphabet. It is generally agreed in musicology and music
psychology, that one of the most important phases in un-
derstanding a musical work is to identify the significant
repetitions. The capability of identifying such repetitions
would have a direct impact on automated music analysis
and music information retrieval. The definition of musical
repetition, however, is very vague. In its most restricted
form, repetitions may be defined as excerpts being exactly
similar (by considering intervals instead of absolute pitch
values, repetitions that are merely transposed fall into this
category of repetitions, as well).

Exact repetitions have been studied extensively. Such
repetitions may either appear as distinct substrings (Apos-
tolico, 1983; Iliopoulos et al., 1996b; Landau and Schmidt,
1993; Main and Lorentz, 1984; Myers and Kannan, 1993)
or they may overlap (Berkman et al., 1996; Iliopoulos

67

and Mouchard, 1999; Iliopoulos et al., 1996a; Moore and
Smyth, 1994). A natural extension of the repetition prob-
lem is to allow the presence of errors. Although this makes
the task more challenging, it is usually much more perti-
nent approach, which is the case, especially, when deal-
ing with music. In approximate pattern matching, error
tolerance is achieved by introducing a similarity measure
(such as edit or Hamming distance, see e.g. (Crochemore
and Rytter, 1994)) and a threshold variable % indicating
the allowed tolerance to errors. A repeated substring may
be subject to other constraints (e.g., it may be required to
be of at least a certain length) and some invariances, as
well.

Efficient algorithms for computing the approximate
repetitions are not only relevant to our music task at hand.
Instead, they are directly applicable also, for instance, to
molecular biology (Fischetti et al.,, 1992; Karlin et al.,
1988; Milosavljevic and Jurka, 1993) and in particular in
DNA sequencing by hybridization (Pevzner and Feldman,
1993), reconstruction of DNA sequences from known DNA
fragments (Schmidt, 1994; Skiena and Sundaram, 1995),
in human organ and bone marrow transplantation as well
as the determination of evolutionary trees among distinct
species (Schmidt, 1994).

In this paper, we study a certain modification of the
approximate repetition problem, namely the evolution of

a) Original b) insertion

NN N
o\./ N Ne .\./ \0’\./ e

c) deletion

d) substitution
(= detetion + insertion)

.
|4

./.\.

~ ./ ™

Figure 1: An example of an evolving motif and of local editions required to trace the gradual changes.

a monophonic! musical motif in a target of polyphonic
music?. A simplistic case of the problem, when the target
is also monophonic, is defined as follows: Given a string ¢
representing the target (in combinatorial pattern matching
often called the text) and a motif p, find whether there ex-
ists a sequence u; = p,ua,... ,U¢ occurring in the target
t such that u; 41 occurs to the right of u; in ¢ and for any
giveni € {1..£ — 1}, u; and u;4; are similar enough, i.e.,
they differ by at most k editing operations. The editing
operations considered in this paper are insertions, dele-
tions and substitutions - see Fig. 1.

Crochemore et al. (1998) presented an algorithm for
computing non-overlapping evolutionary chains in mono-
phonic targets. Their algorithm run in time O(nm), where
n and m denote the length of the target and the motif, re-
spectively. They also presented an O(n(logm +log |X|))
theoretical version algorithm for the same problem that
makes use of suffix trees and another version that requires
O(kn) time for fixed alphabets. Here ¥ and k denote
the size of the underlying alphabet and the approxima-
tion threshold, respectively. Furthermore, they considered
also several variants of overlapping evolutionary chains
for which they presented O(n?) algorithms.

Such algorithms are of great use in music analyses, for
musical motifs may actually evolve this way. One actual
case is shown by the successive thematic entries present
in Messiaen'’s piano work, Vingr Regards sur L’Enfant Je-
sus. Other simple examples are the familiar cases of the
standard tonal answer in a conventional fugue, or the in-
creasingly elaborated varied reprises of an 18th-century
rondo theme. On a more subtle level, the idee fixe in
Berlioz’s Symphonie Fantastique recurs in a wide vari-
ety of different forms throughout the four movements of
the symphony. In all these cases, each repetition can be
seen as a transformation of the original motif. However,
in these cases a repetition of generation r is often more
similar to the repetition of generation r — 1 than to the
original motif; a measure of this similarity has to be pre-
set in an algorithm intended to detect all such repetitions
of the motif.

In practice, the music under consideration is usually
polyphonic (as in the examples above) in which case the
algorithms by Crochemore et al. (1998) cannot be ap-
plied. However, when dealing with polyphony, problems
become more challenging. For instance, for traditional

Hn monophonic music, there is only one note played at a time.

2In polyphonic music, at times, several notes are played simultane-

Anely

pattern matching problem in music numerous algorithms
for the monophonic case have been suggested (see e.g.
(Ghias et al., 1995; Lemstrom and Laine, 1998; McNab
et al., 1997; Pollastri, 1999; Rolland et al., 1999; Shmule-
vich et al., 2001)) but only a few for the polyphonic case
(Holub et al., 1999; Lemstrom and Tarhio, 2000; Mered-
ith etal., 2001). The problem of distributed pattern match-
ing in polyphonic musical sequences is as follows: given
a set of sequences of notes (one sequence for each voice)
and a pattern, find whether occurrences of the pattern oc-
cur distributed across the sequences. More formally, given
a set t of strings t* = ti...t%, i € {1..h}, for some con-
stant h and a pattern p = p;...pm, We say that p occurs at
position j of tif p1 = 13}, p2 = t7, .., Pm = tj.’_’;m__l
for some {i;...im} € {l..h}. Although the techniques
solving this problem (Holub et al., 1999; Lemstrém and
Tarhio, 2000) may also be adapted to approximate match-
ing, they are not applicable to the problem considered
here.

Our problem of motif evolution in polyphonic music
is as follows: given a set ¢ of strings t* = ti...t}, i €
{1..h}, for some constant h 3 and a motif p, find whether
there exists a sequence 41 = p,us,... ,Us Ooccurring in
the target ¢ such that u;4; occurs to the right of u; in
t and for any given j € {1..£ — 1} u; and u;4; are k-
similar (i.e. they differ by at most k insertions, deletions
and substitutions). Moreover, every u; occurs within one
voice of ¢ (any pair (uj,ug), however, may occur in dis-
tinct voices).

This paper is organized as follows. The next Section
presents basic definitions for strings and background no-
tions for string pattern-matching. Section 3 and 4 show
how evolution trees representing non-overlapping and over-
lapping chains, respectively, can be computed. In Sec-
tion 5 we show how the solutions to the three variants
of our problem, that are the longest evolutionary chain,
the nearest neighbour evolutionary chain, and the min-
imal weight chain, can be induced out of the evolution
trees. Finally, Section 6 presents conclusions and some
open problems.

2 String Combinatorics

A string is a sequence of zero or more symbols from an
alphabet 3; the “no symbol”, that is, the string with zero
symbols, is denoted by €. The set of all strings over the

68

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
pi B A D F E € C A T| B A D F E C A
T| B C D € E F C A p| B C D E F C A

Mat Mis Mat Del Mat Ins Mat Mat

Figure 2: Types of differences: Mismatch, Insertion, Dele-
tion.

alphabet ¥ is denoted by X*. A string z of length n (|z| =
n, for short) is represented by z; . .. x,, where z; € X for
1 < i < n. A string w is a substring of z if z = uwv for
u,v € L*; we equivalently say that the string w occurs
at position |u| + 1 of the string z. The position |u| + 1 is
said to be the starting position of w in z and the position
|u| + |w| the ending position of w in z. A string w is a
prefix of z if z = wu foru € L*. Similarly, w is a suffix
ofzifx = uwforu € L*.

Consider two sequences 7 = Ty72...7, and p =
p1P2...pr With 7y, p; € £,5 € {1...7}. If 7; = p;, then
we say that 7; and p; match, otherwise 7; differs from p;.
We distinguish among the following three types of differ-
ences:

1. Neither of these two symbols correspond to “no
symbol” and the symbol of the first sequence cor-
responds to a different symbol of the second one,
that is 7; # p;, 7; # € and p; # . This type of
difference is a mismatch (or a substitution).

2. The symbol of the first sequence corresponds to “no
symbol” of the second sequence, i.e., p; # € and
7; = €. This type of difference is called a deletion.

3. The symbol of the second sequence corresponds to
“no symbol” of the first sequence, that is p; = €
and 7; # e. This type of difference is called an
insertion.

To give an example, let p = BADFECA and 7 =
BCDEFCA (see Fig. 2). If we consider the alignment
above, matches occur at positions 1, 3, 5, 7 and 8, while
there is a mismatch at position 2, a deletion at position
4 and an insertion at position 6. Another way of see-
ing this difference is that one can transform the sequence
p to T by using the basic operations: insertions, dele-
tions and substitutions. In this example, it means that
we need three basic operations to transform BADFECA
into BCDEFCA: one mismatch (position 2 (4, C)),
one deletion (position 4 (F,€)) and one insertion (posi-
tion 6 (e, F')).

Note that we can also use three substitutions (position
2 (A,C), position 4 (F,E) and position 5 (E, F), see
Fig. 3) without using the insertion and deletion. Therefore
an “optimal alignment” is not necessarily unique. Never-
theless, we can always compute the minimal number of
operations to transform one string into the other. If p is
obtainable from 7 (or vice versa) by using k editing oper-

69

Mat Mis Mat Mis Mis Mat Mat

Figure 3: An alternative solution.

3 Computing Evolution Tree for Non-

Overlapping Chains

Let p be a motif to be searched for in a polyphonic tar-
get t of h parallel voices. We aim at finding whether
there exists a chain of monophonic strings U = {u; =
DUz, ... ,ug} occurring in the target.

Consider an occurrence of u; in t. Function ind(u;,)

shows the index (subscript) of the matching position of
u;; in ¢. For example, let A = 1, ¢ = combinatorics,
and ups = tori. Then ind(ug;) = 10. A chain of
monophonic strings U = {uy,...
Overlapping Evolutionary Chain (NOEC) if and only if
it satisfies the conditions:

,ue} is called Non-

Lou=p;

2. eachu; occursinsome t¥i,i € {1...£},k € {1...h};

3. ind(uit1,) > ind(uy,,), for1 <4 <ljand
4. u; = ui+1,f01‘ 1<i<l.

Our idea is to compute an evolution tree representing

all non-overlapping evolutionary chains of the motif. In
Section 5, we show how solution to different variants of
the problem can be induced out of the tree. The main idea
of the algorithm it to maintain the scores of differences
between every prefix of the motif and the target. We keep
on calculating the scores until we found an occurrence
of p in a voice of ¢ with at most k-differences. Once an
occurrence of the motif has been found at position j on
the target, the match would be extracted out of the target
and this match will be used in a new query that starts at
position j + 1.

The algorithm presented below uses the notion of re-

cursion to compute NOECs.

1. Initialization:

2. Main step:
At step j we have computed the number of differ-
ences between t} ...1%,1 < j <n, i € {1..h} and
D.

3. Check for match
If the number of differences between p and 1 ...t}
is at most k for some pair (i, j), then let u be the
suffix of that prefix having & differences with p.

motif target

a
o
o
o
|

Figure 4: The original motif and how it evolves.

an occurrence of v with at most k-differences in
titr ... tn.

. Output chain
If u is a leaf of the tree (see Fig. 5) then output the
current chain and continue the previous recursive
call..

Figure 5: The tree representation. The longest chain is
emphasized by shading.

Fig. 4 shows how the algorithm above works. The
first match with the original motif is u; and this becomes
the next motif. The position of the match becomes the
starting position for the next recursive call. On continuing
the search, 4, is matched with %1, and u12. However, any
occurrences for u1; is not found in ¢, hence {p ~ uy ~
411 } is a chain, so is {p ~» u1 ~ u12 ~ uy2; }. Once the
search for u; further in the target has been exhausted, the
next match with the original motif is taken, i.e., u5. The
same procedure is repeated and the following chains are
found: {p ~» uz}, {p ~ us ~» us1}.

The same figure can be rearranged as a tree (see Fig. 5)
which gives a more accurate representation of how the
Evolution Tree is produced. All our discussions will be
based on this tree representation and a leaf of this tree
always completes a chain.

70

3.1 Pseudo-Code

Let us consider the straightforward NOEC’s main routine
(see Fig. 6).

NOEC(t,p, k)
1 EvoChain + {0}
2 ETREE(1,p, EvoChain)

Figure 6: Algorithm for computing non-overlapping evo-
lutionary chains.

The input for NOEC are target (¢), motif (p) and error
tolerance (k). To produce the evolution tree, NOEC calls
ETREE (the first parameter gives the starting position for
the search).

ETREE(start, p, EvoChain)
if start > n — [m/2]

—

2 then PRINT(EvoChain)
3 return
4 IsLeaf + TRUE
5 forj « startton
6 do ifD(P, tstart..j) <k
7 then IsLeaf - FALSE
8 p' + BACKTRACK(p, tstart. ;)
9 o the recursive call
10 ETREE(j + 1,p', EvoChain U {start})
11 if (IsLeaf)
12 then PRINT(EvoChain)

Figure 7: Recursive function that computes the evolution
tree.

Consider the pseudo-code for the function ETREE that
is given in Fig. 7. At line 9, the all important recursive
call with the new motif p’ can be found. At line 8, BACK-
TRACK is the process of retrieving the match out of the

start = 1, EvoChain = {8}

7

start = 53, EvoChain = {45, 52}

[

53 60

start = 27, EvoChain = {6, 26}

start = 11, EvoChain = {6,10}

|
60

1

32

start = 33, EvoChain = {6, 26, 32}
[

33

Figure 8: Example showing how the recursive calls from the tree.

possible to find a match after position n — |m/2]. Thus,

we have reached a leaf, i.e., end of a chain. Similarly line '

11 outputs the chain if a match is not found in the current
iteration, again this is a leaf of the evolution tree.
Referring to the tree representation shown in Fig. 5,
assume u; = 6, up = 17, uz = 45, u;; = 10, u2 =
26, u3; = 52 and wuy9; = 32 with n = 60. Fig. 8 shows
how the function ETREE recursively computes the chains.
Table 1 is the tracing of the algorithm NOEC. The
first entry in the table is the initial call to ETREE from
algorithm NOEC. Entry 1 indicates that the first recur-
sive call after a match (with at most k-differences) was
found ending at position 6. Therefore, 6 was added to the
EvoChain and the new task is to find “ABCD” start-
ing from position 7. This makes sure the matches do not
overlap. Entry 2 denotes that a k-similar match was found
ending at position 10, which is then added to the chain.
Now the new recursive query is to find “ABD D" start-
ing from position 11. This query, however, does not yield
any results. Therefore, we must have reached a leaf on
the evolution tree (see Fig. 5), and the evolutionary chain
FEvoChain is output. Having finished with this instance
of ETREE, we go back to entry 1 and continue from posi-

tion 6 (which is where we left and spawned entry 2) with
the old motif “AACD” until another k-similar match is
found. Ending at position 26 is an approximate match
which is added to EvoChain. Now ETREE is recursively
called to look for “ACC B” starting from position 27 as
depicted by entry 3 on the table. This process of recur-
sively calling ETREE with a new query each time is re-
peated until the first call to ETREE (entry init in Table 1)
is exhausted. Table 1 is the tracing of the recursive calls.

3.2 Running Time

The computation of a single non-overlapping evolution-
ary chain requires O(mn) time and O(mn) space. The
computation of all non-overlapping evolutionary chains
can require exponential time (in terms of nm) in patho-
logical worst-case scenarios like this one:

p=A"t=A"andk =0. 1)

The worst case happens, when we have a match at
every position. The best case happens when there is no
match at all; In this case O(mn) time and O(m) space is

71

call start EvoChain P
init 1 {0} “AACD”
1 7 {6} ABCD
2 11 {6, 10} ABDD
Output EvoChain % {ABCD ~» ABDD}
3 27 {6, 26} ACCB
33 {6, 26,32} BCCB

Output EvoChain & {ABCD ~ ACCB ~ BCCB}

5 | 18 | {17} | BACD
Output EvoChain © {BACD}

6 46 {45} AABD

7 53 {45, 52} AABB

Output EvoChain & {AABD ~» AABB}

Table 1: Recursion parameters and order.

algorithm for computing all non-overlapping evolutionary
chains is quadratic O((mn)?), requiring O(mn) space.

A practical speed-up for the algorithm is to mark the
nodes that have already been used in a chain, and only
unmarked nodes can be selected as nodes in any chain. In
this way, even the exponential worst case time complexity
of the pathologic case becomes polynomial: O(n*).

4 Computing Evolution Tree for Over-

lapping Chains

In this section we present the other variation of evolu-
tionary chains, namely Overlapping Evolutionary Chains
(OEC, for short). The problem is defined as follows: given
asett of strings t* = ¢ ...t%, 1 € {1..h}, a motif p and
an integer k < |p|/2, find whether there exists a sequence
U3 = p, U2,...,U occurring in the target ¢ such that
the following conditions are satisfied (note the difference
between the items 3 here and of that given in Section 3):

1. Uy =p;

2. eachu;occursinsome t*i,i € {1... €}, ke {1...h};

3. ind(uiy1,) > [ind(ui,) + J%‘l)], forl <i <

4. u; = ujp,forl <i<l.

These strings have been constrained to overlap at most
|p|/2 symbols. Without such a constraint, we can obtain
trivial chains such as ind(u;,) = s, ind(uiy1,) = s+ 1,
and obviously u; and u;,, have at most one difference.

Let us now introduce the pseudo-code for the OEC
algorithm (see Fig. 9). The function ETREE' (Fig. 10) is
a slightly modified version of the one that was used with

OEC(t, p, k)
1 EvoChain « {0}
2 ETREE’(1,p, EvoChain)

Figure 9: Algorithm for computing overlapping evolu-
tionary chains.

Note that the two versions, ETREE and ETREE’, are
very similar: the only difference is the addition of the
three lines at the beginning. Line 1 makes sure the over-
lapping cases are taken into account but with the con-
straint (m/2) as explained earlier. The if statement in
Line 2 is for the case when the initial call from NOEC
is met with start = 1 and having executed Line 1, start
will be negative (thus, start is fixed to be positive).

Obviously, the time complexity of this algorithm is of
the same order as that of NOEC. Since we allow for over-
lapping, m /2 symbols are included again in each recur-
sive call. More precisely, the practical time complexity
for OEC is O((mn)?) and space complexity O(mn).

S Inducing Solutions out of the Evo-
lation Trees

Let us now define three specific problems of evolutionary
chain computing and show how solutions for these prob-
lems can be induced out of the evolution trees.

Longest Evolutionary Chain (LEC). LEC is the sim-
plest form of these problems; it is the chainid = uy ... ug
that maximizes £. Once the evolution tree has been com-
puted, the length of the LEC is the height of the evolution
tree. Therefore every time a new chain is being output,

72

ETREE’ (start, p, EvoChain)
start « start —m/2
if start < 1
then start + 1
if start > n — |m/2)
then PRINT(EvoC hain)
return
IsLeaf + TRUE
for j « startton
do ifD(P; tstart..j) <k
then IsLeaf <— FALSE
p' < BACKTRACK(p, tstart..5)
> the recursive call

S\OOO\IO\LII-PU)N'—-

11
12
13
14
15

if (IsLeaf)
then PRINT(EvoC hain)

Figure 10: Recursive function to compute the evolution
tree for OEC.

the length of that chain is compared with the height of the
tree, and if it longer then that must be the longest chain
so far. This procedure is repeated for all the chains and in
the end we output the length of the longest chain together
with the indices of the chain elements u; found in the tar-
get. In the example given in Fig. 5 LEC is emphasized
using shading.

Nearest neighbour Evolutionary Chain (NEC). NEC
is the chain 4 = {uy,...,u,} that minimizes e in the
following equation:

-1

e=Y flind(uir1,) - ind(uq,,)),

i=1

@

where f is some increasing function on positive integers.
The simplest function of that form (that is also considered
here) is the identity function; f(z) = z.

When solving NEC, we associate values with the edges
of the tree. These values are the gaps between the two
joining nodes of the tree. In the case of overlapping matches,
the gap is taken to be zero. Once this is completed, the to-
tal gap of each chain is compared to find the minimum
chain and the total gap together with the chain index is
output.

Minimal weight Evolutionary Chain (MEC). MEC min-
imizes d in:
-1
d=Y D(ui,uir1), 3
i=1

where D(u;, ui+1) is the Edit Distance between u; and

ETREE’(j + 1,p', EvoChain U {start})

73

In this case, we attach values to the edges, as well.
This time, the values are the the number of differences,
d’', between the two joining nodes of the tree. Once this is
completed, the total difference d of each chain is summed
up and compared to find the chain with minimum d. The
output is the chain giving the minimum to d and the value
d, itself.

6 Conclusions and Open problems

Our primary goal is to identify efficient algorithms for
computational problems which arise in computer-assisted
analysis of music, and to also formalize their relation to
well known string pattern-matching problems. The pri-
mary direction of this research is towards a formal defi-
nition of musical similarity between musical entities (i.e.
complete pieces of music or meaningful subsets of pieces,
e.g. ‘themes’ or ‘motifs’, see (Cambouropoulos, 1997;
Cambouropoulos and Smaill, 1995; Crawford et al., 1998;
Lemstrom, 2000) for details). In particular we are aiming
at producing a quantitative measure or ’characteristic sig-
nature’ of a musical entity. This measure is essential for
melodic recognition and it will have many uses including,
for example, data retrieval from musical databases.

We presented practical algorithms, NOEC and OEC,
for computing non-overlapping and overlapping evolu-
tionary chains. Furthermore, we presented three variants
of these problem, the longest evolutionary chain, the near-
est neighbour evolutionary chain, and the minimal weight
evolutionary chain, each of which are of practical impor-
tance.

The problems presented here need to be further in-
vestigated under a variety of similarity or distance rules
(see (Crawford et al., 1998; Mongeau and Sankoff, 1990;
Lemstrém, 2000)). For example, Hamming distance of
two strings u and v is defined to be the number of sub-
stitutions necessary to get u from v (u and v have the
same length). Several variants to the evolutionary chain
problem are still open. The choice of suitable similarity
criteria in music and biology is still under investigation.
The use of penaity tables may be more suitable than the
k-differences criterion in certain applications.

Further investigation whether methods such as (Galil
and Park, 1990; Landau and Vishkin, 1988) can be adapted
to solve the problems considered here is needed. Further-

Figure 11: Motif distributed across voices.

more, modifications to our algorithms in order to find evo-
lutionary occurrences that are distributed across voices
(see Fig. 11) are left to future studies; the algorithms that
have been presented to find distributed occurrences of a
monophonic motif in a polyphonic target (Holub et al.,
1999; Lemstrém and Tarhio, 2000) are not applicable to
the problem at hand. This is because these bit-parallel al-
gorithms are only able to locate the positions of occur-
rences, but they cannot, however, extract the matching
substring out of the target. Therefore, they cannot be ap-
plied in a recursive manner as the algorithms presented
here.

Acknowledgements

Costas lliopoulos was partially supported by a Marie Curie
Fellowship and Royal Society, Wellcome Foundation and
NATO grants. Kjell Lemstrém was partially supported by
the grants #48313 from the Academy of Finland and re-
search grant GR/R25316 from EPSRC. Jose Pinzén was
partially supported by an ORS studentship and EPSRC
Project GR/L92150.

References

A. Apostolico. The myriad virtues of the suffix trees. The-
oretical Computer Science, 22:297-315, 1983.

O. Berkman, C. Iliopoulos, and K. Park. String covering.
Information and Computation, 123:127-137, 1996.

E. Cambouropoulos. A formal theory for the discovery of
local boundaries in a melodic surface. In Proceedings
of the III Journees d’ Informatique Musicale, Caen,
France, 1996a.

E. Cambouropoulos. A general pitch interval representa-
tion: Theory and applications. Journal of New Music
Research, 25:231-251, 1996b.

E. Cambouropoulos. The role of similarity in categorisa-
tion: Music as a case study. In Proceedings of the Third
Triennial Conference of the European Society for the
Cognitive Sciences of Music (ESCOM), Uppsala, 1997.

E. Cambouropoulos and A. Smaill. A computational the-
ory for the discovery of parallel melodic passages. In
Proceedings of the XI Colloquio di Informatica Musi-
cale, Bologna, Italy, 1995.

T. Crawford, C.S. Iliopoulos, and R. Raman. String
matching techniques for musical similarity and
melodic recognition. Computing in Musicology, 11:
71-100, 1998.

M. Crochemore, C.S. Iliopoulos, and H. Yu. Algorithms
for computing evolutionary chains in molecular and

74

musical sequences. In Proceedings of the 9-th Aus-
tralasian Workshop on Combinatorial Algorithms, vol-
ume 6, pages 172-185, 1998. :

M. Crochemore and W. Rytter. Text Algorithms. Oxford
University Press, 1994.

V. Fischetti, G. Landau, J.Schmidt, and P. Sellers. Iden-
tifying periodic occurences of a template with applica-
tions to protein structure. In Proc. 3rd CPM, volume
644, pages 111-120. Lecture Notes in Computer Sci-
ence, 1992.

Z. Galil and K. Park. An improved algorithm for approx-
imate string matching. SIAM Journal on Computing,
19:989-999, 1990.

A. Ghias, J. Logan, D. Chamberlin, and B.C. Smith.
Query by humming - musical information retrieval in
an audio database. In ACM Multimedia 95 Proceed-
ings, pages 231-236, San Francisco, CA, 1995.

D. Gusfield. Algorithms on strings, trees and sequences:
computer science and computational biology. Cam-
bridge University Press, Cambridge, 1997.

J. Holub, C.S. lliopoulos, B. Melichar, and L. Mouchard.
Distributed string matching using finite automata.
In Proceedings of the 10th Australasian Workshop
On Combinatorial Algorithms, pages 114—128, Perth,
1999.

C.S. Tliopoulos, D.W.G. Moore, and K. Park. Covering a
string. Algorithmica, 16:288-297, 1996a.

C.S. Iliopoulos, D.W.G. Moore, and W.F. Smyth. A lin-
ear algorithm for computing the squares of a fibonacci
string. In Proceedings CATS'96, Computing: Aus-
tralasian Theory Symposium, pages 55-63, 1996b.

C.S. Tliopoulos and L. Mouchard. An o(nlogn) algo-
rithm for computing all maximal quasiperiodicities in
strings. In Proceedings of CATS’99: Computing: Aus-
tralasian Theory Symposium, volume 21, pages 262—
272, Auckland, New Zealand, 1999. Lecture Notes in
Computer Science.

S. Karlin, M. Morris, G. Ghandour, and M.Y. Leung. Ef-
ficients algorithms for molecular sequences analysis.
In Proc. Natl. Acad. Sci., volume 85, pages 841-845,
1988.

G.M. Landau and J.P. Schmidt. An algorithm for approx-
imate tandem repeats. In Proc. Fourth Symposium on
Combinatorial Pattern Matching, volume 648, pages
120-133. Lecture Notes in Computer Science, 1993.

G.M. Landau and U. Vishkin. Fast string matching with
k differences. Journal of Computer and Systems Sci-
ences, 37:63-78, 1988.

K. Lemstrom. String Matching Techniques for Music Re-
trieval. PhD thesis, University of Helsinki, Department
of Computer Science, 2000. Report A-2000-4.

K. Lemstrom and P. Laine. Musical information retrieval
using musical parameters. In Proceedings of the 1998
International Computer Music Conference, pages 341-
348, Ann Arbor, MI, 1998.

K. Lemstrém and J. Tarhio. Detecting monophonic pat-
terns within polyphonic sources. In Content-Based
Multimedia Information Access Conference Proceed-
ings (RIAO’2000), volume 2, pages 1261-1279, Paris,
2000.

G. Main and R. Lorentz. An o(n log n) algorithm for find-
ing all repetitions in a string. Journal of Algorithms, 5:
422-432,1984.

R.J. McNab, L.A. Smith, D. Bainbridge, and I.H. Witten.
The New Zealand digital library MELody inDEX. D-
Lib Magazine, 1997.

D. Meredith, G.A. Wiggins, and K. Lemstrém. Pattern
induction and matching in polyphonic music and other
multi-dimensional datasets. In the 5th World Multi-
Conference on Systemics, Cybernetics and Informatics
(SCI'2001), volume X, pages 61-66, Orlando, FLO,
July 2001.

A. Milosavljevic and J. Jurka. Discovering simple dna se-
quences by the algorithmic significance method. Com-
put. Appl. Biosci., 9:407-411, 1993,

M. Mongeau and D. Sankoff. Comparison of musical se-
quences. Computers and the Humanities, 24:161-175,
1990.

D.W.G. Moore and W.F. Smyth. Computing the covers of
a string in linear time. In Proc. 5th ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 511-515, 1994.

E. Myers and S. Kannan. An algorithm for locating
non-overlapping regions of maximum alignment score.
In Proc. Fourth Symposium on Combinatorial Pattern
Matching, volume 648. Lecture Notes in Computer
Science, 1993.

P.A. Pevzner and W. Feldman. Gray code masks for dna
sequencing by hybridization. Genomics, 23:233-235,
1993.

E. Pollastri. Melody-retrieval based on pitch-tracking and
string-matching methods. In Proceedings of the XIIth
Colloquium on Musical Informatics, 1999.

PY. Rolland, G. Raskinis, and J.G. Ganascia. Musical
content-based retrieval: an overview of the melodiscov
approach and system. In ACM Multimedia 99 Proceed-
ings, Orlando, FLO, 1999.

75

J.P. Schmidt. All shortest paths in weighted grid graphs
and its application to finding all approximate repeats
in strings. In Proc. of the Fifth Symposium on Combi-
natorial Pattern Matching CPM’94. Lecture Notes in
Computer Science, 1994,

I. Shmulevich, O. Yli-Harja, E. Coyle, D.J. Povel, and
K. Lemstrom. Perceptual issues in music pattern recog-
nition - complexity of rhythm and key finding. Com-
puters and the Humanities, 35(1):23-35, 2001.

S.S. Skiena and G. Sundaram. Reconstructing strings
from substrings. J. Computational Biol., 2:333-353,
1995.

D.A. Stech. A computer-assisted approach to micro-
analysis of melodic lines. Computers and the Humani-
ties, 15:211-221, 1981.

76

III - Creative Language and
Context Generation

77

78

Linguistic Creativity at Different Levels of Decision
in Sentence Production

Pablo Gervas

Universidad Complutense de Madrid
Ciudad Universitaria, 28040 Madrid, Spain
pgervas@sip.ucm.es

Abstract

The shape taken by linguistic creativity at the different levels of decision involved in sentence production (phonetics,
rhythm, lexical choice, semantics, syntax and narrative content) is explored in relation to existing computational models of crea-
tivity. A general outline of the possibilities is given for each level, and two specific levels - word invention at the lexical level,
illustrated by the Jabberwocky poem by Lewis Carroll; and poetic metaphor at the semantic level, illustrated by examples from
verses by Garcia Lorca - are studied in further detail. The applicability of the existing computational models is discussed in connec-

tion to the kind of creativity apparent in the examples.

1 Introduction

Assuming we all speak a common language, everybody
uses very much the same grammar and the same words to
build the sentences that make up our daily world. How
come some of these sentences are considered creative and
some are not?
One way to begin to answer this question is to identify
the levels of decision at which the final form of a sen-
tence is shaped. Some of these allow little variation
(grammar or syntax), others provide a big field (seman-
tics), others are only immediately available to the trained
speaker (rhythm, prosody), others are restricted to use by
the poet (alliteration). A complete study of all the possi-
bilities would require an enormous amount of space. As a
first approximation, six basic levels of decision can be
identified in the production of linguistic elements:
* phonetics, the level at which letters are put to-
gether to make sounds
¢ rhythm, the level at which the stress patterns of
words are taken into account to shape the stress
pattern of a sentence or a text
¢ lexical choice, the level at which actual words are
chosen for the text
* semantics, the level at which the meanings of the
words being used are considered and put together
to form the meaning of the text
* syntax, the level at which the linguistic construc-
tions used to join the words (and their meanings)
to one another are chosen

79

* narrative, the level at which the contents. of the
text are decided

Another possible source of insights is to consider what
objectives drive the production of sentences. Sentences are
produced in many different contexts, and with many dif-
ferent purposes. Decisions taken at these levels on the
final shape of a sentence will necessarily take into ac-
count a number of objectives of the speaker/writer. In
most instances of language generation, the objectives that
drive the utterance process are of a practiéal nature, related
with the communication of a certain message or informa-
tion. In these cases, the narrative and the semantic levels
take priority over all the remaining levels, and transgres-
sions - sometimes dramatically severe - of the accepted
elementary rules governing language production are al-
lowed. A speaker in a hurry may, for example, waive the
rules of correct syntax as long as he sees his message put
across briefly. In going beyond the accepted rules, such a
speaker may be deemed to be behaving creatively. This
type of linguistic creativity (say, corner-cutting creative
communication) is worth exploring in detail, but it would
require access to enough samples of specific instances of
the phenomenon to provide starting material. Other in-
stances of language generation, have objectives specifi-
cally geared towards obtaining a pleasing effect of some
sort. These instances tend to get explicitly recorded for
this pleasing effect to be available at later times, and they
provide an easier starting point for a study of this sort. To
make matters even easier, this study will concentrate on
literary written texts, even though there are many other
fields and formats in which there can be said to be a con-

scious linguistic creative effort with an aesthetic aim in
mind (film dialogues, TV scripts, radio programs, adver-
tising...).

Finally the point of view from which the question is
asked plays a role. When considering whether a sentence
is creative or not, it seems important to take into account
three basic issues: whether the speaker or writer considers
he has been creative in producing that sentence, whether
other people consider the sentence creative, and whether
the sentence can be considered a valid sentence of the
language. These three basic issues already begin to reflect
the elementary distinctions outlined by Ritchie (2001) in
his sketch of creativity assessment. The matter is consid-
ered in more depth in the following sections.

Creativity at the different levels of decision is outlined in
this section, formal concepts of creativity are discussed in
section 2, two specific cases are developed further in
sections 3 and 4, and conclusions are drawn in section 5.

1.1 Phonetics

At the level of phonetics, linguistic creativity may be
aimed at searching for a pleasing aesthetic effect by play-
ing with a careful selection of the words in the sentence
with an eye on the effect that results over the phonetics of
the complete sentence. The results of this type of creativ-
ity come up as pleasing uses of rhyme, internal rhyme or
alliteration (Espy, 1997). The extreme example is that of
sound poetry (Ball, 1974; Hausman, 1971; Schwitters,
1993), an artistic initiative related to the Dada and Surre-
alist movement. In sound poetry, poems are not built up
using words but simple phonetic constructs without
meaning. The classic example of this line of creative
work is Schwitters' Ursonate, a forty minute long pho-
netic poem set in a more or less sonata form. This par-
ticular approach to composition survives in text-sound
composition, an artistic hybrid standing midway between
poetry and music. For a review of text-sound composition
efforts see Hultberg (1993).

1.2 Rhythm

One can find more creative thythms that are uncommon
in the language, or in the existing poetry. Edgar Alan
Poe, in his defence of this poem the Black Raven (Poe,
1997) specifically discusses how the rhythm he has
chosen for his verses is innovative - in the sense that it
had not been used before to his knowledge, in English
literature.

1.3 Lexical

The choice of vocabulary with which to construct a sen-
tence plays an important role in making the result pleas-
ing, but one is usually restricted to words that the reader
will understand, leaving little room for creativity. A

80

different alternative lies in using words that the user does
not know. This forces the rules to a certain extent, and, if
done carefully, it can be done in such a way as to actually
convey a certain meaning to the reader in spite of the
unknown words. A good example of this is the poem
‘Jabberwocky', that appears in Alice's adventures through
the Looking Glass (Carroll, 1872). This particular poem
is analysed later in the paper.

1.4 Semantics

If we approximate the pictures in our head by means of a
logical description of them (a challengeable assumption),
a rough and ready formalization of what it takes for a
sentence to be semantically creative is to consider as a
measure of creativity the ratio between the size of the
sentence and the complexity of the picture (a short sen-
tence that manages to create a complex picture may sug-
gest special creativity). However, this may be more re-
lated to the author's craftmanship. Another possibility
lies in forcing the semantics a little bit. Truly creative
sentences seem to put together words that force an inter-
pretation where, in merging the meanings of the words,
the reader must necessarily prune one or the other to reach
the interpretation intended by the writer. This is particu-
larly the case in the use of metaphor. The amount of
pruning required (often triggered by wild clashes between
the meanings of words purposefully joined together) gives
an idea of the creativity involved. The degree of clashing
can be a measure of the creativity involved. A set of
examples of metaphors by Spanish poet Garcia Lorca is
discussed in relation with this issue.

1.5 Syntax

Much may be said about literary creativity in the sphere
of syntax, and most of it would require a precise state-
ment of what non-creative syntax is taken to be, and
therefore beyond the scope of this paper. There is much to
be said in favour of a close study of the role of creativity
in stretching syntax to achieve specific literary effects.
This aspect is for the time being left in the hands of more
able literary critics.

1.6 Narration

Beyond the boundary of a single sentence, there is a uni-
verse of creative possibilities to explore, related to the
creativity employed in generating the situations that are
being described or narrated. This is the level of creativity
involved in general fiction, and the subject of study of
thousands of academics world-wide. The implications of
attempting to automate creativity at this level in terms of
story telling systems have been tackled, among others,
for animal stories (Meehan, 1977), Arthurian legend
(Turner, 1992), humorous language (Ritchie, 2000) and

for tragic stories specifically concerned with treason
(Bringsjord and Ferruci, 2000). Interesting as the field
may be, the discussion in this paper focuses on creativity
in the production of individual sentences in order to ex-
plore its role in language understanding and generation,
and therefore this particular level is not explored in detail.

2. Formal accounts of creativity

Various attempts have been made to formalise the con-
cepts involved in creativity in some more rigorous, for-
mal way that allows objective judgements to be drawn.

2.1 Boden's framework

Boden’s original framework (Boden, 1990) aims to de-
scribe Al approaches to creativity from a philosophical
point of view. Two of the distinctions made in that work
are particularly relevant to the issue in question. Boden
distinguishes between H-creativity (creating a concept
that has never been created at all) and P-creativity (creat-
ing a concept that has never been created before by a
given creator). This distinction addresses the existence of
a important subjective ingredient in our perception of
creativity. She also distinguishes between exploratory
creativity (identifying new concepts within a conceptual
space that is already established) and transformational
creativity (broadening an established conceptual space so
that new concepts become accessible outside the bounds
of the original conceptual space). Although this distinc-
tion opens the way for many interesting insights on
creativity, it remains vague as to how an established
conceptual space can be identified if not all of its mem-
bers are known (a necessary requirement for exploratory
creativity to be meaningful).

2.3 Extending Boden's framework

Wiggins (2001) outlines explicit definitions of Boden's
concepts of exploratory and transformational creativity
together with criteria for objectively distinguishing be-
tween them. The concepts developed here provide a
framework in which the following two examples can be
discussed.

Wiggins proposes a mechanism to describe an explora-
tory creative system in terms of a septuple:

<U,L,[([.11,<<.>>,R,T,E>

where U represents a multidimensional space that includes
all possible concepts, L is a language for expressing rules
on members of U, R is a set of rules in L that defines a
given conceptual space C included in U, T is a set of rules
in L that encode the way in which a particular creative

81

step increments the set of known elements of a given
conceptual space, and E is a set of rules for evaluating the
quality of a concept. The function {[.]] is an interpre-
tation function which generates from L a function to
select members of sets, and provides the mathematical
tools to describe a conceptual space C in terms of the
rules R that describe it, so that C=[[R]] (U). The
function <<.>> provides the means for defining the set
of known concepts, c¢,, after a given creative step in
terms of the original set of known concepts, ¢, the sets
of rules defining the conceptual space, R, and the creative
means of traversal of the conceptual space, T; so that
Co=<<R U T>>(cy). This characterization allows
representation of several concepts that play an important
role in an analysis of creativity: the rules that define a
particular style (R), the rules that represent the modus
operandi of a particular creator (T), or the consensus on
what is a good concept for a given community at a given
moment in time (E).

Wiggins argues that exploratory creativity operates by
applying T to increment the set of known concepts. It is
important to consider that, because creation takes time
and effort and the amount of both devoted to exploring a
conceptual space is limited in real terms — by the creator's
life span at best - the set of concepts that may be reached
using T within a given conceptual space may always be
much bigger than the set of known concepts. This is
what makes exploratory creativity interesting in practical
terms, allowing timely discovery of specific concepts
with high values for E. '
Transformational creativity is characterised in terms of
modifying either R — thereby adding new possible con-
cepts - or T — providing means for discovering concepts
that were possible but not accessible by previous means
of creation. The intuition behind this is that the set of
techniques available to a set of creators at a given mo-
ment in time may not be sufficient to traverse the com-
plete conceptual space in which they are working.

An interesting idea that arises from the formalisation is
that there is no formal constraint requiring that T be
unable to lead to concepts not originally included in C-
this is the reason why both R and T are needed to apply
<<.>> — thereby somewhat blurring the differences be-
tween exploratory and transformational creativity. In a
way, this corresponds to accepting the fact that the crea-
tive technique of a given agent can be transformational in
the sense that it leads beyond the initial conceptual space.
Wiggins’ proposal includes a conjecture that - the modifi-
cation of R and T being itself a creative process - an
equivalent formalisation can be used to describe transfor-
mational creativity, formulated in terms of creativity at

the meta-level. This implies that transformational creativ-
ity requires that the creator be aware of the particular
methods that he is using in his work, so that he can be
creative about them.

3 Inventing Words

The best known example of creativity at the lexical level
is Carroll's poem 'Jabberwocky'. Its first few lines pro-
vide a fine sample of creativity in the use of invented
words:

“Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:

All mimsy were the borogoves,
And the mome raths outgrabe.

"Beware the Jabberwock, my son!

The jaws that bite, the claws that catch!
Beware the Jubjub bird, and shun

The frumious Bandersnatch!"

He took his vorpal sword in hand:

Long time the manxome foe he sought --
So rested he by the Tumtum tree,

And stood awhile in thought.

And, as in uffish thought he stood,
The Jabberwock, with eyes of flame,
Came whiffling through the tulgey wood,
And burbled as it came!

One, two! One, two! And through and through
The vorpal blade went snicker-snack!
He left it dead, and with its head
He went galumphing back.
"And, has thou slain the Jabberwock?
Come to my arms, my beamish boy!
O frabjous day! Callooh! Callay!'
He chortled in his joy.

“Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;

All mimsy were the borogoves,
And the mome raths outgrabe.

3.1 A Close Look at the Poem

As Alice herself observes in the book, "Somehow it
seems to fill my head with ideas -- only I don't exactly
know what they are!". A very interesting analysis of
complex processes involved in even the most uncon-
scious interpretation of this piece of text is presented in
(Dean, 2001).

82

Exactly how one may arrive at a computational model of
the kind of creativity involved in generating this type of
language samples is difficult to say. However, many
clues are lying around to be gathered by the interested
reader.

An important concept for this endeavour is provided in
the original text (Carroll, 1872). Alice asks for an expla-
nation of the poem, and Humpty Dumpty (with her help)
indulges her whim. This explanation provides some in-
sight into the processes that may be at play in composing
the poem. For instance, the idea of a 'portmanteau’ word -
two meanings packed into one word - is explained. The
examples given by Humpty Dumpty in his explanation
of the poem are 'slithy', meaning 'lithe and slimmy', or
'mimsy', meaning 'flimsy and miserable'.

Carroll himself goes further towards describing the actual
process of creating a new word in a letter to Maud Stan-
den in 1877 (Graham, 1981), discussing the word ‘burble’
that also occurs in the poem: "If you take the three verbs
'‘bleat', 'murmur' and 'warble’, and select the bits I have
underlined, it certainly makes 'burble'...". However, he
presents us with an important difficulty in the rest of his
sentence "...though I am afraid I can't distinctly remember
having made it in that way." It should not be overlooked
that, easy as it may seem to reconstruct in hindsight the
way in which a poet amrived at a particularly creative
word, this need not be the way in which it actually oc-
curred to him.

An important issue is to identify how the poet ensures
that a poem with an important amount of invented words
can still be - at least partly - understood by the reader.
Dean describes several techniques used by Carroll to keep
'Jabberwocky' from becoming complete nonsense:

* manufacture the words in such a way that they
look as if they could be real (choose vowel and
consonant combination that appear genuine and
easily pronounceable),

* use many invented nouns and adjectives but com-
paratively few invented verbs,

* rely on the sound of the intended words (rather
than their non-existent meaning) to convey the
meaning of the poem,

¢ use the placement of the invented words within
the sentences to give the reader an idea of how
they function within the sentence.

From the point of view of computational accounts of
creativity, a more revealing analysis is carried out by
Hofstadter (1980) in terms of how the different translators
of Jabberwocky chose to render the poem in different
languages. Hofstadter considers the matter from the point
of view of how the poem activates a symbolic network
inside the brain of the reader. In particular, he studies how

translators devise versions of 'Jabberwocky' in a new
language B, assuming that their aim is to find 'the same
node' in the brain of the B reader as the one that activated
by the original poem in the English reader. The main
problem arises from the assumption that the symbolic
network associated with the B language and English will
usually be, on some level of analysis, extremely non-
isomorphic: in a poem of this type many "words" do not
carry ordinary meaning, but act purely as exciters of
nearby symbols, and what is nearby in one language may
be remote in another. Hofstadter considers the original
poem and a French and a German translation, and shows
how each translator adapts the linguistic form and even
the contents of the poem in search for equivalent effects.
This includes the invention of new words in the corre-
sponding language, where the ingredient words employed
by Carroll may not necessarily exist.

3.2 What Creativity is Involved

The composition of a whole poem involves creative
decisions at various level of linguistic decision but the
present analysis is concentrated on the level of innovation
at the lexical level.
Suppose a baseline assignment of definitions to the ele-
ments of Wiggins’ characterization:
* U the set of all ortographically valid words ac-
cording to the rules of English
* R the set of rules that describe semantically
meaningful words in English at the time the
poem was written
¢ T the algorithm for lexical choice available to
Lewis Carroll (memory, dictionary look up...)
* E the criteria used by readers to evaluate a particu-
lar word
This would have been the starting point at which Lewis
Carroll found himself when he set out to write the poem.
Hofstadter's analysis of the translation process may be
related to the formalisation applied so far in the following
way: each node in such a symbolic network would corre-
spond to a concept, the process of learning a new concept
corresponds to adding new nodes to the network and link-
ing them appropriately by activation synapses to existing
nodes. In terms of the formalism, our description now
becomes:
* U the set of all possible nodes and the connec-
tions between them
* R the set of rules that describe nodes and connec-
tions associated with words of the language
* T the algorithm for travelling along the symbolic
network in order to find a word

83

* E the criteria used by readers to evaluate the acti-
vation patterns resulting from the interpretation
of a particular word

It is clear that a user may know a word (have it included
in the set determined by R) and yet never use it himself
when composing sentences (it is not accessible by means
of his T). The introduction of a new word will require on
one hand an extension of the existing set of nodes (R) but
also an extension of the procedure for composing sen-
tences (T) so that the word is actually used in production.
What makes Jabberwocky a striking poem from the crea-
tive point of view is that Lewis Carroll has extended the
conceptual space of words available for lexical choice
beyond the set of words that have an accepted meaning in
English. In terms of Wiggins’ model, R has been ex-
tended to include newly formed words. however, the cor-
rect sequence to be considered is: Carrol extends his T set
to include new techniques., the new techniques result in
elements that are beyond R, (therefore requiring a new set
R'). One option is to consider that transformational
creativity has taken place at this stage, yet the sequence is
not yet finished. The extended set R' - (or the examples of
it generated by Carrol's T) meet with approval from the
literary taste of the time (score well under their E func-
tion). R' becomes the new R for this domain. The other
option is to consider that transformational creativity has
taken place only if this last effect is achieved. On addi-
tional consequence is that Carroll's T has by then become
available to other authors, and yet intuitively it seems
that any further application of the same technique would
no longer be deemed transformationally creative. This
could bring in to play the other dimension of Boden's
classification: an act of creation could be either H-
transformational or P-transformational (depending on
whether the evaluators perception of R includes the result
or not).

The evidence provided by Carroll himself, both in the
words of his characters and in his later explanatory letters,
provides an insight into the actual mechanisms that result
from - or constitute a sketch of — the new set of rules T.
It is apparent from the various attempts at explaining the
techniques that the author does not have a clear picture of
how exactly the new words have come about, but he is
certainly aware of an assortment of possible mechanisms
that are somehow involved in the process'. Furthermore,
Carroll has made his readers aware of these processes in
his work. Two interesting questions arise from this last
observation. What role does the fact that Carroll explains

! This seems to back up Wiggins' conjecture on the need
for self awareness involved in creativity at the meta level.

his technique (in fact his new T) in his book play in the
ensuing success (the high score for E)? What role does it
play in making any further use of the same T a matter of
exploratory rather than transformational creativity? The
issue is not discussed further here, yet it has bearing on
the interpretation of modern art and modern music, in
which new creations seem to be hard to evaluate without
an added explanation of how they came about.

The techniques described by Dean illustrate how the
author has taken pains to ensure that the final product
meets the constraints imposed by E. It is unclear to what
extent the particular technique used for word creation
assures that the readers will identify the meaning intended
by the writer, but the success of the poem over time
suggests that the author found a way of meeting the nec-
essary requirements, even though the poem was built up
by applying rules beyond those traditionally used by
readers to evaluate poems. An important role is played by
the interaction between the different levels of linguistic
decision. Carroll makes sure that, while he is being
wildly innovative at the lexical level, he remains conser-
vative at the phonetic and syntactic levels.

Hofstadter argues that the networks corresponding to
different languages are non-isomorphic, and that the chal-
lenge for the translator involves producing a similar acti-
vation pattern, even if it involves nodes that are not nec-
essarily the formally correct equivalents of those activated
by the original. This is true of translation in general. In
cases as the particular one under discussion, there seems
to be an additional ingredient: the invention of new words
calls for the creation of new nodes and/or new activation
synapses. Two basic issues to be considered in detail
arise: how an author produces a new concept (if he ever
actually does explicitly), and how a reader reacts on find-
ing a new word (and whether he does produce a 'meaning'
for it). Both processes seem to involve creative behav-
iour: having created a new word requires the creation of a
meaning for it. For a case like the one described this can
either be provided by the author in the accompanying
text, or by the reader when trying to interpret the text.
When no meaning is available, it is plausible to assume
that the reader produces a tentative - and possibly partial -
meaning that fits in with the interpretation of the rest of
the text. There are certainly complex creative processes
involved in the interpretation of unknown words in gen-
eral, and this is one of the areas where having a reason-
able formalisation of how creativity operates at the vari-
ous levels may be most useful. One wonders whether
there is any guarantee that, given both concept creations,
the resulting concepts of author and reader bear resem-
blance at all, or simply produce a similar general impres-
sion. From Hofstadter's description of the translators

84

tricks of the trade, it seems that achieving such a 'similar
general impression' is all that is required for a translation
to be deemed correct.

4 Metaphor

The study of well documented instances of creativity at
the semantic level may provide insights on this issue.
One such instance is the use of metaphor in literary texts.

4.1 Theories of metaphor

Various studies (Gentner et al, 1989; Martin, 1990;
Indurkhya, 1992; Veale and Keane, 1993; Veale, 1995;
Barnden, 1997) have been carried out in search for a com-
putational theory of metaphor. A metaphor involves a
conceptual transfer from one object of situation (the
source or vehicle domain) and another object or situation
(the target or tenor domain). Metaphorical interpretation
is considered to be directional: each domain or object has
a different role and its interchange will not lead to the
same meaning (though it may yield an equally valuable
metaphor). Metaphor is constrained by deep rules of co-
herency. Concepts that are mapped from one domain to
another should be coherent among themselves (Indukhya,
1992). Some research on metaphor interpretation consists
in finding the largest mapping function (between do-
mains) that avoids inconsistencies.

An elementary structural description of metaphor interpre-
tation is provided in the Sapper system (Veale, 1995).
Starting from a representation of semantic memory in
terms of a network of concepts linked together by associa-
tions, metaphor is described as a two-step process that
first identifies implicit relationships between concepts
(dormant bridges) and then establishes an explicit link
between them (an awakened bridge that represents the
metaphor in memory). In the Sapper system a rule-based
symbolic solution deals with the first step and a spreading
activation connectionist step deals with the second. Once
a bridge is awakened, it effectively warps the memory so
that the tenor and vehicle domains move conceptually
together. The identification of dormant bridges is carried
out not only in terms of identifying structure based on
shared associations (Triangulation Rule) but also based on
shared metaphor bridges (Squaring Rule).

The consistent transfer of concepts between two different
domains is addressed in Leite et al (2000), where Dynamic
Logic Programming is used to resolve the possible in-
consistencies arising from the transfer, while retaining as
much as possible of the added value represented by the
metaphor. A metaphorical framework consists of two
theories (tenor and vehicle), defined in two different lan-
guages, together with a function mapping one part of the
language of the vehicle into the language of the tenor.

The final theory will consist of the tenor theory together
those rules from the transformed vehicle theory that are
not contradicted by the rules from the tenor theory.

4.2 Examples

The following lines from a poem provide an example of
the type of metaphor employed in literature in general and
poetry in particular:

the streetlamps were switched off
and the crickets were switched on

(Federico Garcfa Lorca, Gipsy Ballads)

Crickets are not switched on, but rather start singing at
sunrise. The poet forces the use of the verb 'to switch on'
together with the noun 'crickets', which is against the
strict rules of language. The metaphor works (can be
easily understood by the reader) because crickets are

Crickets Streetlights
start and stop at periodic|start and stop at periodic
intervals intervals
feature in our perception of| feature in our perception of
a scene a scene
switch on and off
animate inanimate
active passive
natural man-made

Table 1. 'Theories' for crickets and streetlights

known to start and stop singing at regular intervals, just
as if they were switched on and off by a mysterious hand.
The transgression of the rules of language is licensed by
the effect achieved: a parallel is drawn in this way be-
tween the two verses, in the form of a pattern that is
followed by the sentences that make up each one.

One possible interpretation of this example in terms of
theory extension (Leite et al, 2000) would be to consider
the domain of crickets as tenor and the domain of
streetlights as vehicle. The concepts involved for each
domain might be represented as shown in table 1.

The fact that both theories share concepts such as starting
and stopping at periodic intervals, or being features in our
perception of a scene, provides the crossover point,
which allows the concept of being switched on and off to
be applied to crickets. This would require all other incon-
sistent concepts (animate/inanimate, active/passive, natu-
ral/man-made) associated with switching on and off a
streetlight to be pruned from the meaning it has in the
full sentence. However, once the rules are broken, it is
not clear whether the poet intends the reader to imagine

85

that the crickets are a man-made addition to the landscape,
or that the switching off of the streetlamps (or their very
existence) is as natural as the song of the crickets. This
observation brings into question the directionality of
metaphor in a strictly linguistic literary use. In more
general terms, because the rules have been broken in this
way, each reader may end up with a different reconstruc-
tion of the poet's intention. It may be this multiplicity of
possible interpretations that makes a metaphor specially
successful.

A different example from the same source shows similar
behaviour:

Playing her parchment moon
Preciosa comes along...

Preciosa is a young gypsy girl. She has no moon, and
there is no moon made of parchment, but the moon is
round, and she is playing a tambourine (which is round
like the moon and made of parchment). The 'theory' for
the domain of tambourines (tenor) and the domain of
moons (vehicle) might be represented as shown in table
2.

Tambourine Moon
round round
parchment
layed on
active passive
belongs to Preciosa
admired by all

Table 2. 'Theories' for tambourines and moons

It is interesting to note that here the part of the concept
that actually establishes the bridge between the domains
in both examples is actually not present in the text.
Again, the description of what is actually used as a bridge
may in fact be different for different readers, or may sim-
ply be a 'similar general impression'.

Finally, the actual interplay between concepts that is the
hallmark of a poet can be more complex than the sort of
simple crossover described in the examples so far. Take
the following example by the same author:

Against the bitter green,
a card-hard light

traces raging horses

and riders' silhouettes.

This occurs in a context where a knife fight takes place in
an olive grove between men on horseback for an un-
known reason, and ends in the death of several of them.

Various interpretation can be put upon the various con-
cepts interacting in these verses by literary critics. Harris
(1991) believes that the reference to playing cards in the
second line indicates "a reason for the fight", and shows
"the quality of hardness from the knives" transferred to the
light. Havard (1990) points out that "cards depict motifs
in profile, and the equivalent of a jack in Spanish cards is
a horse and rider". Whether one accepts this depth of
analysis as meaningful or not, it is clear that there are
hidden interactions between the concepts represented by
the words of the poem well beyond those that could be
sketched along the lines followed above. The bitterness of
the situation is attributed to the colour, a hypothetical
reason for the fight (neither playing cards nor gambling
feature anywhere else in the poem) is used to qualify the
hardness (supposedly of the knives) attributed to the light,
and the scene described evokes the picture that appears in
a playing card which has been brought in to qualify the
light and act as suggested reason for the fight. How many
of those were intended by the author, how many arose by
chance (but were retained by the sensibility of the poet as
good contributions), how many did not even surface into
the author's consciousness... these are questions for which
no answers are available, and yet, from the moment that
someone points out the interactions, there is a certain
need to model them and provide a computational theory to
explain/achieve/evaluate them.

4.4 Which Creativity

One possible baseline assignment of definitions to the
elements of Wiggins’ characterization would be:
¢ U the set of all syntactically valid word combina-
tions according to the rules of Spanish
* R the set of rules that describe semantically
meaningful combinations of words in Spanish at
the time the poem was written
¢ T the algorithm for sentence composition avail-
able to Lorca
¢ E the criteria used by readers to evaluate the re-
sulting sentence
It is not particularly clear what should be understood as
‘semantically meaningful combinations of words in Span-
ish’. Certainly metaphor had been used often before in
literature, so metaphorical uses of particular words and a
number of typical word combinations for constructing
metaphors should be considered as already included in the
set defined by R, and the mechanisms for using metaphor
as included in T. In this case, it appears that any particu-
lar innovation introduced by Lorca would have to be
interpreted solely in terms of exploratory creativity, his
creative contribution taking the form of making explicit
particular combinations of words that were possibly not

86

available by application of the individual composition
techniques of previous authors.

Why is metaphor so striking in general if it in essence it
reduces to simple word combination? The assignment
given may have been drawn too broadly. The example can
be analysed at a different level of granularity, by focus-
sing the description in terms of Wiggins’ septuple to a
different level of linguistic decision. Consider the follow-
ing alternative assignment of definitions:

* U the set of all possible definitions of the mean-
ings for the words and sentences of Spanish (in-
cluding partial definitions)

* R the set of rules that describe the particular
meanings assigned to Spanish words and sen-
tences at the time the poem was written

¢ T the compositional algorithm for constructing
the meaning of a sentence from the meanings of
the words used to construct it (as employed by
Lorca)

* E the criteria used by readers to evaluate the re-
sulting sentence

In this case, it may be possible that the T applied by
Lorca results in a different set of (surviving partial) mean-
ings within the context of this sentences for the words he
actually employs. this interpretation fits better with our
perception of poetry and its effect on us. However, it has
severe implications on the feasibility of formalising
meaning, and on long standing assumptions such as the
principle of compositionality of language.

5. Conclusions

Various levels of linguistic decision have been shown at
play in two examples of creativity. The first example
showed how creative behaviour does not occur in the
same degree across all levels. Rather, a conservative ap-
proach in some levels is required for a successful interpre-
tation of creative innovations at other levels. Creativity at
a linguistic level can be counterproductive for communi-
cation if abused. This suggests that different levels of
linguistic decision should not be exploited creatively at
the same time. With respect to the question asked at the
beginning of the paper, the creativity of a sentence may
be evaluated at the different levels of linguistic decision.
For each set of examples, the analysis of the creative
behaviour in terms of exploration of a conceptual space
has been used. In order to capture the peculiarities of
creative behaviour intuitively associated with the exam-
ples, the conceptual spaces involved must be restricted to
the domains of application presented by the level of
linguistic decision being creatively exploited.

To formalise this idea, a different conceptual space would
have to be used for each different level of linguistic deci-
sion. The overall representation for the conceptual space
of language use would involve the union of the different
concepts. This fits in with the idea that there is no ho-
mogeneous theory of language, but rather a set of theo-
ries, each one governing a different level of linguistic
decision.

An additional problem that would have to be tackled is
the extent to which the interaction between the theories
for the different levels complicates the picture signifi-
cantly. Intuition suggests that it will to a considerable
extent. Creativity may operate at each of the levels of
decision involved in linguistic production, but it may
interact between different levels in ways that are not evi-
dent. As it has been shown in the ingenious use of pho-
netic restrictions to support lexical invention in Carroll's
poem, an additional level of creativity comes about when
some form of interplay between different levels of creativ-
ity appears - whether consciously or unconsciously, as
explained by the author's misgivings as to the validity of
his own explanations of his effects (Graham, 1981).

It is important to consider that, because of the nested
structure of the levels of decision described, creativity at a
certain level may imply creativity at the level below it.
For instance, inventing a new word may be done accord-
ing to the accepted rules of word formation (even if the
valid particular combination of valid syllables had not
been used in the language before) or, because it is new, it
may be done while breaking accepted rules of syllable
construction. This last example would involve creativity
at the lexical and the phonetic level. At a finer level of
analysis, the creation of words in Jabberwocky involves
exploratory creativity at the phonetic level and transfor-
mational creativity at the lexical level. The creation of
words involving new rules of syllable construction would
count as transformational creativity on both levels. There
is a possibility that it also involve transformational crea-
tivity at the semantic level, if a meaning that could not
be represented in the language before is now represented
by this word. There may be transformational creativity at
the syntactic level if a new syntactic category is invented.

Another aspect that is at play in determining whether a
sentence is creative is the effect of the point of view of
the evaluator. Three issues must be considered: whether
the speaker or writer considers he has been creative in
producing that sentence (Boden's P-creativity), whether
other people consider the sentence creative (related with
Boden's H-creativity and Wiggins's E function), and
whether the sentence can be considered a valid sentence of
the language (related to Wiggins' R rules). This question
acquires particular importance in the study of linguistic
creativity, since there are neither universally agreed rules

87

for establishing the validity of a language expression, nor
recognised ways of establishing consensus between
speakers of a language that are consistently used when
accepting a new word or meaning into the language. It is
still an open issue whether a conceptual space is deemed
to have been transformed if somebody uses a new word or
whether this can be taken to have happened only if some-
body uses it successfully (i.e. manages to convey the
intended meaning to somebody else). The extreme crite-
rion would be to consider such creativity to have taken
place only if the new word becomes generally accepted
and used in the language.

References

Ball, H., Flight Out of Time. New York, Viking Press,
1974.

Barnden, J.A., An Al system for metaphorical reasoning
about mental states in discourse. In J-P. Koenig (Ed.)
Conceptual Structure, Discourse and Language II,
Stanford, Ca., 1997.

Boden, M., The Creative Mind, Abacus, 1990.

Boden, M., Creativity and Artificial Intelligence, Artifi-
cial Intelligence, 103: 347-356, 1998.

Bringsjord, S. and Ferruci, D., 2000. Artificial Intelli-
gence and Literary Creativity, Lawrence Erlbaum As-
sociates, New York.

Carrol, L., 1872. Through the Looking-Glass and What
Alice Found There, 1872

Dean, C., 2001, The
http://home.earthlink.net/lfdean/carroll/

Espy, W.R., The Wordsworth Rhyming dictionary,
Wordsworth Editions, Hertfordshire, 1997.

Garcia Lorca, F., Romancero gitano.

Gentner, D., Falkenheimer, B. and Skorstad, J., Meta-
phor: The Good, The Bad and The Ugly. In Y. Wilks
(Ed.) Theoretical Issues in Natural Language Process-
ing. Hillsdale, NJ: Lawrence Erlbaum Associates,
1989.

Graham, E. "Lewis Carroll and the Writing of Through
the Looking Glass", Introduction to Through the
Looking Glass. In Alice's Adventures in Wonder-
land/Through the Looking Glass, Puffin Books,
Great Britain, 1981.

Hausmann, R., 'The Ortophonetic Dawn', Stereo Head-
phones No. 4, Spring, Suffolk, England: Nicholas
Zurbrugg, 1971.

Hofstadter, D.R., Gddel, Escher, Bach: An Eternal Golden
Braid, New York: Basic Books, 1980; Vintage Books
Edition, Sep 1980.

Jabberwocky,

Hultberg, T., (Ed.), Literally Speaking: sound poetry &
text-sound composition, Sweden: Bo Ejeby Edition,
1993.

Indurkhya, B., Metaphor and Cognition, Kluwer Aca-
demic Publishers, Dordrecht, 1992.

Martin, J.H., A computational model of metaphor inter-
pretation, Academic Press, 1990

Meehan, J. The metanovel: writing stories by computer.
Ann Arbor: University Microfilms International,
1977

Leite, J.A., Pereira, F.C., Cardoso, A. and Pereira, L.M.,
Metaphorical mapping consistency via Dynamic
Logic Programming. In Time for Al and Society,
Proceeding of the AISB'00 Symposium on Creative
& Cultural Aspects and Applications of Al & Cogni-
tive Science, 17-20th April, 2000, University of
Birmingham.

Poe, E.A., La filosofia de la composicién, seguida de El
cuervo. Ediciones Coyoacén, México, 1997.

Ritchie, G., Describing verbally expressed humour. In
Time for Al and Society, Proceeding of the AISB'00
Symposium on Creative & Cultural Aspects and
Applications of Al & Cognitive Science, 17-20th
April, 2000, University of Birmingham.

Ritchie, G., Assessing creativity. In: Proceedings of the
AISB'01 Symposium on Artificial Intelligence and
Creativity in Arts and Science, 21st-24th March
2001, University of York.

Schwitters, K., 'From MERZ 1920'". In: J. Rothemberg
and P. Joris (Eds) pppppp: POEMS
PERFORMANCES PIECES PROSES PLAYS
POETICS, Philadelphia: Temple University Press,
1993.

Tumer, S. MINSTREL: a computer model of creativity
and storytelling. PhD Thesis, Computer Science De-
partment, University of California, Los Angeles.
Technical Report CSD-920057, 1992.

Veale, T., Metaphor, Memory and Meaning: Symbolic
and Connectionist Issues in Metaphor Comprehen-
sion. PhD Thesis, Trinity College, Dublin, 1995.

Veale, T. and M. Keane, A Connectionist Model of Se-
mantic Memory for Metaphor Interpretation, 1993
Workshop on Neural Architectures and Distributed
Al

Wiggins, G.A., Towards a More Precise Characterization
of Creativity in Al In: R. Weber and C. Gresse von
Wangenheim (Eds.), Proceedings of the Workshop
Program at the Fourth International Conference on
Case-Based Reasoning 2001, Technical Note AIC-01-
003, Washington, DC: Naval Research Laboratory,
Navy Center for Applied Research in Artificial Intel-
ligence.

88

AWAITING THE SENSATION OF A SHORT, SHARP SHOCK:
TWIST-CENTRED STORY GENERATION BY
TRANSFORMATION

John Platts', Ann Blandford® & Christian Huyck!
1: School of Computing Science, Middlesex University, Bounds Green Road, London N11 2NQ
2: UCL Interaction Centre, UCL, 26, Bedford Way, London, WC1H OAB
{j.platts;c.huyck}@mdx.ac.uk, a.blandford@ucl.ac.uk

Abstract

A mechanism whereby a human storyteller may compose a twist-centred story, that is, a story possessing a
surprising ending that obliges the addressee (audience or reader) to reappraise their understanding of what has
preceded it, is proposed. The mechanism involves the generation of an overt story, its conversion into a concealed
story, and the building of a twist phase whose function is to destroy the credibility of the overt story and reveal the
concealed story. A piece of software, TWISTER, which models this process, is described. Examples of its

operation are given.

1 Introduction

This paper is concerned with the generation of twist-
centred stories - stories, whether spoken, written or
performed, which have a surprise, “twist”, ending. It
seems clear that successful authors and storytellers
frequently produce such compositions, and that the
ability to do so is particularly valued in such authors.

In this paper, it is contended that a successful twist-
centred story can be generated by the following
process. An existing story is transformed into two
variants, known as “the overt story” and “the concealed
story”. These two components are synthesised into an
overall story, presented in such a way that the
addressee (audience or reader) interprets what they are
reading as the overt story. A “twist phase” is then
introduced, which has the effect of making the
audience realise that what they are reading is in fact the
concealed story. It may also be necessary to introduce a
“post-twist phase”, in which issues raised by the twist
phase are satisfactorily resolved. In this paper, the
characteristics of these components, and the processes
that generate them, are examined. Computational
examples of parts of these processes are provided.
Finally, the degree to which this is a satisfactory model
of the way in which human storytellers generate twist-
centred stories is discussed.

2 The Seeds of Stories

If one wishes to model the process whereby a human
storyteller generates an effective story, one is faced
with the question of what the starting point for such a
story — the seed from which the story is to be grown

89

should be. Earlier authors in the field of automated
story generation have tended to follow one of two
strategies. Meehan (1976), and those who have
developed his work, used a scheme in which the
storyteller invented a setting, and characters, and a
problem for the central character, and the story took the
form of a report of the character’s efforts to extricate
themself from the problem. Turner (1994), in contrast,
used a scheme in which some well-known piece of
conventional wisdom, such as “pride comes before a
fall”, was instantiated with characters and events in
order to make it into a story, and further events or
background items were added to make the story
coherent and believable. Bringsjord & Ferrucci (2000),
in a variation on this approach, started with a logical
definition of one of the compelling themes to be found
in literature, namely “betrayal”, rather than a piece of
conventional wisdom, and instantiated it in a similar
way.

In this paper, we suggest that an alternative approach,
which a storyteller may very well find more amenable,
is to start with an existing story, extract its essence, and
transform it into a surprising (and therefore original)
form. In support of this hypothesis, we have given
expert storytellers an example of a story fragment
taken from Irish mythology - “the raven banner” - and
asked them how they would turn it into a story.
The material presented was as follows:
The Raven Banner was a magic flag that a King
could have carried before him into battle. If he
did so, he was bound to win the battle. But the
warrior who carried the banner was bound to be
killed in the battle.
On occasions, they generated stories with twists. In
other words, the author started with a story

fragment, an overt story. They then tried to find a
way to manipulate the story to achieve a surprising
end. All of the basic constraints of the overt story
would be met: there is a magic banner which is
carried into battle; the warrior who carries it is
doomed to die, and does so; and the side he is on
wins, as prophesied. However, the storyteller would
ingeniously introduce extra features of the story,
not revealed until the end, that confounded the
expectations that the reader possessed (or rather,
might reasonably be expected to possess). For
instance, one author suggested that, after the
warrior had died, and victory had been assured, the
king discovered that the warrior was, in fact, his
(the king’s) sole heir. A concealed story is
generated (involving the warrior’s true identity, and
why it is unknown to the king), and so is a twist
phase (the king’s, and therefore the reader’s,
discovery). The function of the twist phase is to
reveal the concealed story to the reader, in such a
way that it replaces the overt story (in which a
relatively unimportant warrior makes the sacrifice)
in their comprehension.

3 The Mechanism

We are currently developing a piece of software,
TWISTER, whose function will be to generate twist-
centred stories of the type described above. The
process involves taking an existing story, and dividing
it into episodes, then explaining what is happening in
these episodes. This provides an overt story. Then an
alternative explanation is generated, and, from this,
alternative episodes, thus generating a concealed story.
Conflicts between the two versions of the story are
detected and eliminated. A twist phase is generated,
based on information in the concealed story. It may be
necessary to generate a post-twist phase. Finally, some
of these components — the overt story as far as the
climax, the twist phase, the post-twist phase — are
assembled into an overall story. The effect of the
overail story so generated should be to mislead the
reader into accepting the overt version of the story until
the twist phase is reached. The system has, however,
generated an alternate concealed version of the story
that is also plausible. During the twist phase, the
reader is obliged to abandon their comprehension of
the overt story, and construct a comprehension of the
concealed story, on the basis of what they now know.
What the reader experiences will, with any luck, be

surprise.

This process is explored in more detail in section 3.1.
The way in which the process is implemented in
TWISTER is described in section 3.2. Finally, section
3.3 describes a slightly different approach to the
provision of the seed story.

90

seed shots

overt story
episodes

locate principal
character
gloss

episodes

glosses for overt story

re-explain climax
A Z

new gloss for climax

locate climax

principal
character

climax

reason backwards in order to
re-explain earlier episodes

glosses for concealed story

Y

@ episodes from @
v

concealed story episodes

generate twist
phase from

concealed story
episodes

resolve conflicts
between concealed
& overt episodes

revised overt
episodes

twist phase
episodes

assemble episodes

episodes for overall story

render into English

Fig.1: The processes involved in the simple version of
TWISTER. Following the diagrammatic conventions of
KADS (Tansley & Hayball, 1993: p.74), inference
steps are shown in elliptical boxes, and the products of
such inference steps are shown in rectangular boxes.

3.1 Simple story-telling by transformation, and how
TWISTER embodies it

At present, TWISTER takes as its input a semantic
representation of a simple story: a collection of “story
shots”. Each of these “shots” represents a simple action
or a simple description. The process of converting this
into a twist-centred story is described in Fig.1. Parts of
this process have been implemented, other parts are
still under development.

TWISTER's first task is to divide the story into episodes.
Next, it must explain (we use the term “gloss™) the
various episodes in the story; these glosses are stored
internally rather than being presented to the reader.
Then the episodes are re-explained: alternative glosses
are generated for the episodes, starting with the one
identified as the climax. This is a process of backward
reasoning, in that the climax may be seen as the
culmination of reasoning processes in the story, and re-
explaining follows these processes backwards towards
their initial conditions. As it does so, it generates
episodes necessary for these new glosses to make
sense. These new episodes form the “concealed” story.
Any contradictions between the concealed episodes
and the overt episodes are resolved, by amending the
overt episode. A twist phase is generated, in the form

of a plausible reason to reveal one or more of the
concealed episodes. The story can then be related to the
reader, in the form of the overt story episodes, (some of
which may have been amended), followed by the twist
phase episodes.

3.2 Computational examples

TWISTER is written in Prolog, and consists of a number
of modules. It contains a lexicon of 654 verbs, 41
nouns, and 11 adjectives. An ontology of verb types
has been written, containing 195 nodes, and the verb
meanings are organised on the basis of this. A small
portion of this ontology is shown in fig. 2. It enables

mentally act
on person 231—communicate 2311 :verbally 23111
verbally with instrument 23112
non-verbally 23113 ——by expression
231131
by gesture
231132
by sound
231133
musically 23114
ith supematural being(s) 23115
onstative act 23116
irective act 23117
mmissive act 23118
behabitive act 23119
performative act 2311a
ommunicate misleadingly 2311b

Fig.2: Part of the verb ontology used in TWISTER.

TWISTER to reason on the basis of hierarchies of actions
and descriptions. The lexicon also contains data
(mainly concerned with sentence frames) derived from
WordNet, the electronic lexical database written at
Princeton University (see Fellbaum (1998) for a
description of WordNet).

91

statement (overt, 1 , rel, semrep(rain-,
{{1,0,_1, p, 1000, 1020, (neutral), p),
[(time, ‘on", 'Wednesday', [then’, , 111)).

statement (overt, 2 , rel, semrep('walk",
[{1,0,_1, i, 1010,1010, [neutral], pl.
{{ag, 'by’, Pat’, ["he’,3,s]],

{goal, “into’, "the bank', [“thexe’, _, 111)).
statement (overt, 3 , rel, semrep(approach’,
({1,9,_1, i, 1011,1011, [neutral], pl,

[{ag, by, Pat’, {"he",3,s]], [goal, ', the
counter”, [there’, ,_111)).

statement (overt, 4 , rel, semrep('ask’,
[g3,o0,1], i, 1012,1012, [neutral], pl,
[[ag,‘by‘,‘Pat':[‘he‘,3,S]], [exp: Ty
teller’, (["she’, 3, s}], [(utt, _,
statement (overt, 5), _11)).

statement (overt, 5 , nonrel, semrep('cash’,
{{1,0,_}, i, 1013,1013, [modal(future,)1,
pl. [lag, by, "the teller’,['she’,3,s]],
{exp, ‘for®, "Pat’, ["he’, 3, s]], (thm,
'", 'a cheque’, ['it",3,s]1])).

statement (overt, 6 , rel, semrep('say’,
[(3,0,1], i, 1013,1013, [neutral], pl,
[[ag, 'by’, "the teller’, ['she’, 3, s}],
[exp, "to", “Pat’,[("he’,3,s]], [utt, _,
statement (overt, 7), _11)).

statement (overt, 7 , nonrel, semrep(own’,
{r1,0,_1, i, 1013,1013, [neutral], n],
[{ag, by, 'Pat’,["he",3,s])], (thm, 7,
money”, ["it*,3,s]1}1)).

statement (overt, 8 , rel, semrep(become’,
{ti,0,_1, i, 1014, 1014, [(neutrall, pl,

“the

“any

{lag, 'by", "Pat’, ["he",3,s]], [thm, 7,
‘angry’, ["it’,3,s8111)).

statement (overt, 9 , rel, semrep(shout”,
(1(3,0,7), i, 1015,1015, [neutrall, pl,

[lag, 'by", "Pat’, {"he",3,s11]1)).

statement (overt, 10 , rel, semrep('cry’,
(fi,0,_1, i, 1016,1016, [neutrall, p],
{{ag, 'by’, "Pat’, ["he’,3,s]1])).

Fig. 3: The shots making up the story “Pat goes to the
bank”, expressed in TWISTER’s semantic representation

Fig. 3 shows a simple ten shot story, in the semantic
representation format that TWISTER uses. If given this
collection of statements, “Render”, the language-
generation module in TWISTER, would translate it as
follows:

It was raining on Wednesday.

Pat walked into the bank.

Pat approached the counter.

Pat asked the teller to cash a cheque for Pat.

The teller said to Pat that Pat didn't own any

money.

Pat became angry.

Pat shouted.

Pat cried.

When asked to episodise this story, TWISTER uses some
rather simple principles (involving adjacency,
similarity of actions, and involvement of a particular
character) to produce the structures shown in fig.4.

Episodes corresponding to the overt story -

episode: overt, 1 starting at time 1000,
finishing at time 1020
the type is: [scSet]
consisting of shots -
It was raining on Wednesday.
episode: overt, 2 starting at time 1010,
finishing at time 1011
the type is: [move]
consisting of shots -
Pat walked into the bank.
Pat approached the counter.
episode: overt, 3 starting at time 1012,
finishing at time 1013
the type is: [talk]
consisting of shots -
Pat asked the teller to cash a cheque
for Pat.
The teller said to Pat that Pat
didn't own any money.
episode: overt, 4 starting at time 1015,
finishing at time 1016
the type is: [drama]
consisting of shots -
Pat shouted.
Pat cried.

Fig.4: episodes in the story “Pat goes to the bank”, as
identified by TWISTER.

TWISTER also identifies Pat as the principal character
(because of the frequency with which he is involved in
actions) and the last episode as the climax (because of
its position in the sequence, coupled with the fact that
something “dramatic” is happening to the principal
character in it).

Subsequent reasoning stages are based on the use of
“lexical scripts”: stock descriptions of actions,
containing both pre- and post-conditions. These have
much in common with Schank & Abelson’s “scripts”
(Schank & Abelson, 1977) and Correira’s “extended
Horn clause rules” (Correira, 1980). They allow a story
to be extended backwards, from a particular episode or
gloss, by a process that takes the episode/gloss and a
set of lexical scripts and selects the scripts that lead to
this set of statements.

When asked to produce a gloss for the second of the
episodes listed in fig.4, TWISTER provides the
following:

gloss attached to episode no. overt, 2
contains the following elements -
Pat had a plan at 1010.
Pat had to be at the counter at 1010.

Fig.5: A sample episode gloss.

However, after the next episode has been glossed, this
episode 2 gloss is augmented:

92

gloss attached to episode no. overt, 2
contains the following elements -
Pat had a plan at 1010.
Pat had to be at the counter at 1010.
The plan was that Pat would take
money from Pat’s bank account.

Fig.6: The same gloss, with an extra feature.

The reasoning here is more complex than before. First,
(using a low-level reasoning mechanism, not based on
lexical scripts), TWISTER recognises that Pat has gone
into a location, and is still there, and that it is a place
where “finance” takes place. Second, a lexical script is
located that (in effect) says that, if a person goes into
such a place, they have a plan that involves them being
there. Third, and on the basis of information extracted
from the next episode, a lexical script is located that (in
effect) says if one directs someone to do something,
this is in fulfilment of one’s plan. Fourth, another
lexical script is located that (in effect) says that to cash
a cheque has the result that one has taken money from
one’s bank account. And last, another lexical script is
located that (in effect) says that if one is in a place
where “finance” takes place, and one directs a person
who is “financially authorised” to cash a cheque, and
one has money in the account, then one can
successfully cash a cheque.

It should be clear that, though the reasoning may be
long and involved, lexical-script-based reasoning
(augmented with lower-level reasoning) can explain
episodes (provided that there are sufficient lexical
scripts in the library). Re-explaining is essentially
similar, in that an episode must be given a gloss, but
one or more of the lexscripts used in the previous
glossing stage are explicitly disallowed. However, re-
explaining is coupled to a backward reasoning process.
This means that evidence is sought in the episode that
is being re-explained, and prior to this episode, to fulfil
the pre-conditions of the lexical script. If the available
facts (in the episodes and glosses) contradict these pre-
conditions, then the lexical script must be rejected. But
if they are merely absent (rather than present in a
contradictory form), then the facts can be invented,
with details chosen from files of suitable instantiations,
and recorded as glosses that belong to the concealed
story. Given the glosses, accompanying episodes (that
also belong to the concealed story) can be invented.

It is intended that, given a gloss to the climax of this
story that specifies that Pat is upset, because Pat thinks
that someone has stolen the money that was in his bank
account, TWISTER should come up with a complete
concealed story. This would involve Pat pretending to
be upset. The “Pat is upset” statement is slightly
changed; the attached episode — overt 4 — doesn’t have
to be. The “because” statement is replaced completely
(the lexical script that generated it is no longer viable):
a lexical script is located that says (in effect) that one
pretends to be upset because one wishes to cause a

diversion, i.e. the act of pretending to be upset can have
the effect of making persons not notice that an act
(undesirable from their point of view) is taking place.
The existence of this act, at the same time as the
diversion, is a pre-condition. Backward reasoning must
now invent this act, undesirable to the teller. Lexical-
script-based reasoning could devise “a robbery”,
though low-level reasoning would be needed to
establish that it wasn’t Pat who was doing it, and to
invent a new character (“Sandy”, perhaps) who was
doing it. Backward reasoning would proceed to invent
episodes in which Sandy went in to the bank and stole
the money — there are no facts in the overt story to
contradict the idea that he went into the bank, and the
reasoning that would conclude that someone would
stop him from stealing the money is de-activated by the
statement about the diversion.

Backward reasoning from the “causing a diversion”
script would also eventually lead to the conclusion that
Pat must arrange for there to be no money in his bank
account. Another lexical script can be used to generate
a concealed episode in which Pat removed the money
at an earlier time.

A search for conflicts between the newly-created
concealed story and the overt story would reveal that
Pat has a different plan in the two versions, but this is
not a conflict that needs to be resolved — in general, a
character can have differing cognitions of any sort in
the two versions of the story, and it will not be treated
as a problem.

There remains the problem of a twist phase. One
strategy for generating this is to develop the concealed
story beyond the climax that was the starting point for
its generation. The concealed story glosses contain the
information that Pat and Sandy had a plan to
(collaboratively and surreptitiously) rob the bank. A re-
examination of the lexical script that generated this
gloss reveals the later phases of such a plan — the
culprits leave the scene of the crime, and the culprits
share the proceeds amongst themselves. A process of
forward reasoning can be used to invent episodes that
fulfil this script, beyond those that already exist is the
concealed story. These are episodes in which Pat and
Sandy both leave the bank, Pat and Sandy meet up, and
Pat and Sandy divide the stolen money between them.
Some of these can be revealed, to provide a simple
twist phase — the simplest strategy is to reveal all of
them. The final composition might be something like
the following:

It was raining on Wednesday.

Pat walked into the bank.

Pat approached the counter.

Pat asked the teller to cash a cheque for Pat.

The teller said to Pat that Pat didn't own any

money.
Pat became angry.

93

Pat shouted.

Pat cried.

Sandy left the bank.

Pat left the bank.

Pat and Sandy met at the street corner.

Pat and Sandy divided the money they had

stolen.

This would be a better story with a statement such as
“No one noticed what Sandy was doing” after the 8"
line but, at the moment, it’s not clear how such a
statement could be generated.

The later stages of this description have been
speculative. Nevertheless, it is contended that the
mechanisms needed for re-examining, backward
reasoning, and forward reasoning are simply variants
on the mechanisms that already exist for glossing.

3.3 An alternative starting point

As a model of human storytelling, the approach
described in section 3.1 assumes that the storyteller
starts with a complete story in their minds, and then
modifies it. It seems more plausible to assume that the
storyteller will sometimes start from a more abstract
version of the seed story. An author, wishing, perhaps,
to “retell the Romeo and Juliet story in a new setting”
will probably not start with a detailed version of
Romeo and Juliet. Rather, they will start with an
outline, containing the most important features. We
have therefore given some consideration to the
generation of a twist-centred story from a template.

A template is a set of seed episodes generalised from
an existing story. For our example, we will take a story
template from the Greek myth of Hesione and Heracles
(Graves, 1955, p.169). A brief summary of the story is
that Laomedon must sacrifice Hesione, his daughter, to
a sea monster sent by Neptune, by chaining her to a
rock on the sea-shore, ready for the monster to eat.
Heracles arrives and releases her, making her grateful
to him. Generalising away from individuals, and
specific props, and generalising towards vaguer
versions of the actions, the template is that:

* B causes C to be in danger from D

¢ Asaresult, Cis in a dangerous situation.

* E gets C out of the dangerous situation.

* Cis grateful to E.

It is also possible to make changes to the template, by
eliminating dispensable characters (amongst other
possibilities). The motivation might be to produce a
story that is not simply a re-telling of the old story. If
we do this to the template above, we have:

¢ Cisindanger from D

¢ Asaresult, Cis in a dangerous situation.

¢ E gets C out of the dangerous situation.

¢ Cis grateful to E.

This story is then instantiated into a simple overt story.
This involves providing C, D and E with names and
characters, and rationalising why C is in the dangerous
situation, why D is a threat, and why C, D and E are all
there at the same time. It also extends the template
forward to relate what happens next. For example, in
the process of this rationalisation, we might generate
the facts that C is weak, D is insane, E is helpful, D is
unattractive, and the place where they all are is
beautiful countryside. We can also give the characters
names, such as Chloe, Darren, and Edward, and make
Wensleydale the location. This of course is just one
possible set of instantiations. With this instantiation,
one possible alternative story goes as follows. Darren
is insane (and dangerous) and walking around in
Wensleydale. Chloe goes for a walk in Wensleydale
and is cornered and threatened by Darren. Edward
comes along at just the right moment to interrupt and
drive Darren away.

All these instantiations can be performed by low-level
reasoning, consulting files of ready-made details (such
as a file of proper names, classified by gender), and,
above all, matching against a library of lexical scripts
as mentioned in the last section. These lexical scripts,
coupled with a backward-reasoning mechanism,
provide the essential component of the search. Each
has its own preconditions, so new story facts may be
derived, and existing story facts can be incorporated
into the developing fabric of the story.

For example, in the story of the encounter in
Wensleydale, we might infer that Chloe enjoys walking
and that it is a beautiful day for a walk, and that is
sufficient to account for her being in Wensleydale that
day. A similar line of reasoning might be applied to
account for why Edward is there. For Darren, an
adequate account might be based on him having
recently escaped from a mental hospital and now being
on the run.

The system may have the knowledge, in the form of a
lexical script, that someone is in a dangerous situation
if some other person plans to physically attack them.
The system will find the climax, Chloe is in a
dangerous situation and try to derive a reason for it.
Using the lexical scripts along with the existing story
facts, the system extends the story back from provided
knowledge like Chloe is in a dangerous situation to
invented knowledge like Darren plans to physically
attack Chloe because he is insane and therefore Chloe
is in a dangerous situation.

The advantage of deriving invented knowledge from
the climax as a principal story generating mechanism is
that it guarantees that the story will reach the desired
climax. The search space is diminished, and
consistency and plausibility are ensured. As
demonstrated in the previous section, deriving the

94

implicit knowledge using lexical scripts and the climax
permits the generation of a complete story from a
group of seed episodes. However, it should be
appreciated that it is necessary to include in the system
principles that determine when events in the story have
been sufficiently explained, and sufficiently extended,
otherwise the story will not have a satisfactory start or
finish.

The overt story, so generated, will be plausible but is
likely to be uninteresting. Both qualities arise from the
use of lexical scripts: the reader knows the script, as it
is relatively common knowledge, and finds an
instantiation of it unexceptional. The next phase
transforms the overt story into a concealed story. As
explained in earlier sections, the concealed story is an
alternative series of events that lead to the climatic
episode; however the concealed story differs from the
overt story in special ways that ensure that it is
perceived as both substantially different to and
(ideally) more interesting than the overt story.

It is contended that storytellers use a repertoire of tricks
in order to generate such variant stories. One such trick
is to rotate the roles played by the various characters
and invent some reason why these roles were not
immediately apparent. In the example given above, the
original roles could be identified as victim (C),
persecutor (D) and rescuer (E), and these might be
manipulated by swapping persecutor and rescuer. Then
the system needs to generate a reason why the overt
facts do not support this interpretation. It can do so by
using a lexical script involving misapprehension on
Chloe’s part (in contrast to the script involving
deception on Pat’s part, in the “Pat goes to the bank”
story). The effect would be that Chloe misinterpreted
Darren and Edward’s behaviour, thinking that Darren
was the persecutor and Edward the rescuer, when the
facts were the reverse.

This is a particular case of an approach in which
actions appear to be the same as those to be found in
the overt story, when interpreted by a character within
the story, but are in fact different in terms of
unobservable features, notably motivation and
intention. Thus, in the example, Chloe believes Darren
to be dangerous and Edward to be the rescuer. The
twist in the story is achieved by exposing the fact that
these beliefs are incorrect: that Darren is — or could be
— the rescuer, while Edward is dangerous.

A more general approach is to choose lexical scripts of
lower plausibility than those used to construct the overt
story from the seed episodes. Without an obvious
mechanism for calculating plausibility in the context of
a particular story, this seems an unpromising direction,
but it might be possible to include a rating of default
plausibility in the lexical script record.

When generating the concealed story, it is necessary to
maintain a correspondence between it and the overt
story, amending the episodes in one or both, so that
when either is related, the events are not inconsistent
with the other. It is also necessary for the chains of
preconditions in both stories to be maintained - each
story must remain self-consistent.

After the concealed story has been generated, we are
left with two sets of plausible reasons for the story
facts. The overt story is more plausible and should be
the one that the reader has in mind at the climax. It is
also necessary to generate a twist phase to the story.

The twist phase consists of one or more episodes,
designed to replace the climactic episodes of the overt
story, in which the props supporting the overt story are
kicked away, and the concealed story is revealed. That
is to say, certain preconditions without which the overt
story is unsupportable are revealed to be untrue, and
certain pieces of evidence that point particularly
strongly to one or more of the episodes to be found
exclusively in the concealed story are presented.

It may also be necessary to generate a post-twist phase.
In this, forward-chaining is used to generate the
episodes that immediately follow the twist phase.
Similarly existing facts may also be used as
preconditions for lexical scripts to derive future story
events.

Edward can be revealed as being insane by having him
say something that exposes that fact. For example “I
am the Duke of Wensleydale”.

4 Discussion

It was suggested earlier that many human storytellers
are accustomed to generating twist-centred stories. The
mechanism described above amounts to a model of
such story-generating behaviour. The degree to which
it can be considered a good model has yet to be
established. Further work with practicing authors might
throw light upon this question. It would be desirable to
use the techniques of knowledge elicitation to discover:

a) whether such practitioners, when
endeavouring to compose a twist-centred
story, do in fact locate the climax of what they
have already written and reason backwards
from it;

b) whether they do in fact create an overt story,
and then a parallel concealed story (and, if so,
whether they invariably do so);

c¢) whether they are using something
approximating to a lexical script in their
reasoning and, if so, how they are tackling
questions of plausibility;

among other questions.

95

Important issues raised by this study include the nature
of a substantial (as opposed to trivial) transformation of
an episode, the nature of a surprising episode, the
nature of plausibility in the context of storytelling, and
how these qualities can be manipulated by a program.

It may be possible to draw up a list of features that
must be present if the transformation of an episode is to
be considered substantial. Or it might be possible to
arrange that, if an episode is to be transformed into
another, substantially different, episode, the process
involves the utilisation of a lexical script that is
distinctly different from the script used to gloss the
first episode. This would be possible if the lexical
scripts were organised hierarchically, so that it was
possible to measure the semantic distance between
them.

Plausibility (or vraisemblance, to use a term more
widely found in the field of literary studies) can
perhaps be described in terms of deviation from, or
adherence to, generally known scripts, and levels of
likelihood (probability measures) stored within these
scripts. "Degree of deviation" can perhaps be
determined by a calculation based on the presence or
absence of familiar features, weighted for importance,
whose function is to modify this stored probability.
Before the episode, or sequence of episodes, can be
matched against a script in this way, it must be
generalised (since there cannot be a script for every
conceivable event), and one is faced with familiar
problems concerning which aspects are to be
generalised. Consider the episode "Jack, while walking
across the battlefield on his way home, came across a
corpse lying on the ground". If the element
"battlefield" is generalised to "place", the episode is
likely to receive a much lower plausibility rating than if
it is not.

But really, to use plausibility in this way is a short-cut
which may well not correspond to the way in which
human storytellers handle the problem - there is little
evidence that humans have situations stored in their
minds, indexed according to plausibility, or that they
do plausibility calculations. When a human reader
makes a judgement of likelyhood in real life, or of
vraisemblance in a story, they are making a
comparison. On the one hand, they have the event,
action, or whatever, that is under consideration. On the
other, they have a collection of events or actions that
they have stored in their memory at earlier points in
their life, and their fiction-reading. Tversky &
Kahneman (1973) have described such judgements in
terms of the "heuristic of availability”. By this they
mean that when a subject is asked to judge the
typicality of a case, they endeavour to remember a
similar case, and use the ease with which such a case
can be recalled as an indication of how frequently such
cases occur and therefore how likely the current case

is. They have provided convincing evidence that this is
indeed the heuristic that people typically employ in
such a case (op.cit.). The heuristic might perhaps be
modeled by a case-based reasoning system.

The concept of surprisingness is related to (though not
identical to) the concept of implausibility. The author
of a story — particularly a twist-centred story — will
wish to devise episodes, or perhaps a series of episodes
amounting to a plot, that are surprising but which pass
a threshold of vraisemblance.

Ortony & Partridge (1987) have described
surprisingness in terms of three different sorts of
expectation failure. In each case, there is a conflict or
inconsistency between the input proposition and
something in the subject's mind: in the first form, it is
an active prediction or expectation. In the second form,
it is their knowledge or beliefs. In the third form, it is
what might be judged to be normal or usual. We
suspect the existence of another form of surprisingness:
the idea that the subject searched for a particular
solution to a problem, or interpretation of
circumstances, but did not find it. When presented with
this solution/interpretation, they are aware that they did
not find it, but recognise the solution/interpretation to
be effective or correct.

Macedo & Cardoso (2001) have proposed a model of
creativity based on surprise value. In this model,
surprise value is calculated as the degree of
unexpectedness of an event: 1 - p(x), where p(x) is the
probability of the event, which in turn is calculated as
the mean of the conditional probabilities of its
component parts, which in turn are calculated using
Bayes's formula. They use this value to guide a process
of selecting a solution to a problem, the solution being
represented as a subgraph needed to complete an
existing graph. The solution is chosen from candidate
solutions by applying a utility function, based partly on
surprise value and partly on an appropriateness value.
The effect is to generate a solution to some task —
presumably a task in which creativeness is valued —
which is both effective and original.

Macedo & Cardoso's approach (op.cit) does not
employ the idea of surprisingness as the presentation of
a solution that the subject searched for but did not find.
It is almost certainly more tractable than an approach
that did. It is hard to imagine that a computer system
could model the subject’s thought processes, in terms
of searching for a solution or an interpretation, and
predict what the subject would not find, and then
generate this unlocatable solution itself.

This paper has described a theoretical model of story
generation and a partial computational implementation
of that model. The model generates two versions of a
seed story, the overt and concealed versions. It then

96

generates a twist, so that the audience, when presented
with the overt story and the twist, is forced to re-
interpret the surface story as the concealed story.

As TWISTER is developed, it is intended that explicit
methods for manipulating vraisemblance and
surprisingness will be incorporated into it. We hope
that TWISTER will become a system that generates
interesting stories with twists, and a system that can
help to explore the story generation process.

Acknowledgements

This work is supported by a part-time studentship from
Middlesex University.

References

Bringsjord, Selmer & Ferrucci, David (2000) Artificial
intelligence and literary creativity. Lawrence
Erlbaum Associates, Mahwah NJ.

Correira, Alfred (1980). Computing story trees.
American Journal of Computational Linguistics. 6,
pp135-149.

Fellbaum, Christiane (ed.) (1998) WORDNET: an
electronic lexical database. MIT Press,
Cambridge, MA.

Graves, Robert (1955) The Greek myths. Penguin
Books, Harmondsworth.

Macedo, Luis & Cardoso, Amilcar (2001) Creativity
and surprise. AISB'0Ol symposium on artificial
intelligence and creativity in arts and sciences.
21-24 March, York, UK.

Meehan, James. (1976) The metanovel: writing stories
by computer (Tech. Rep. no.74, doctoral disserta-
tion). Yale University, Dept. of Computer Science.

Ortony, A & Partridge, D (1987) Surprisingness and
expectation failure; what's the difference?
Proceedings of the 10 International Joint
Conference on Artificial Intelligence. Morgan
Kaufmann, Los Altos CA.

Schank, Roger C. & Abelson, R. (1977) Scripts, plans,
goals, and understanding. Lawrence Erlbaum
Associates, Hillsdale NJ.

Tansley, D. 8. W. & Hayball, C. C. (1993) Knowledge-
based systems analysis and design. Prentice Hall,
Hemel Hempstead UK.

Turner, Scott R. (1994) MINSTREL: A computer model
of creativity and storytelling. Doctoral dissertation,
Artificial Intelligence Laboratory, Computer
Science Department, University of California, Los

Angeles.

Tversky, A & Kahneman, D (1973). Availability: a
heuristic for judging frequency and probability.
Cognitive Psychology, S, pp207-232.

97

98

Automated Puzzle Generation

Simon Colton
Division of Informatics
University of Edinburgh
Edinburgh EH1 1HN
United Kingdom
simonco@dai.ed.ac.uk

Abstract

We give a characterisation of certain types of puzzle in terms of the structure of the question posed and the nature of
the answer to the puzzle. Using this characterisation, we have extended the HR theory formation system (2) to enable
it to automatically generate puzzles given background information about a set of objects of interest. The main technical
difficulty to overcome was to ensure that the puzzles generated by HR had a single solution (up to a level of plausibility).
We give details of the implementation and some results from its application.

1 Introduction

Broadly characterised as the generation of novel informa-
tion about a domain given some background information,
the specific tasks in machine learning include finding a
concept given some positive and negative examples of the
concept, and generating a scheme for predicting the na-
ture of a given object. We can add to this list of tasks
the generation of problems and puzzles about a given set
of objects in a domain. While much effort has been ex-
pended on determining and implementing general prob-
lem solving techniques (8; 5), there has been little re-
search on the question of automatically generating puz-
zles. This is in spite of the observations that scientific
advance sometimes occurs through specifying exactly the
right question to ask (and finding the answer), and that
setting exercises is an important educational tool.

Our primary aim here is to determine the nature of
certain types of puzzle and to show how the production
of them can be automated. This is similar to how Ritchie
specified the internal linguistic structure of a joke, sepa-
rately to the notion of what makes a joke funny (7). How-
ever, a secondary aim is to determine the nature of a “good
puzzle”. While a full study of the notion of a good puzzle
would require a field test of the puzzles produced auto-
matically, we make some preliminary observations and
some plausible suggestions about increasing the difficulty
of a puzzle. We begin in §2 with an analysis of some
puzzles from which we make a characterisation of certain
types of puzzle. In §3, we discuss ways of increasing the
difficulty of the puzzles. In §4 we discuss the HR theory
formation system (2) and in §5, we describe the extension
to it which has enabled puzzle generation. We present
some results in §6 and conclude in §7 with a brief discus-
sion of puzzles in the context of creativitv research.

99

2 A Characterisation of Puzzles

We take as examples for study eight puzzles taken verba-
tim from the web pages at queendom.com, a popular site
for people interested in solving puzzles.

1. Q. Which is the odd one out:
coconuts, oysters, clams, eggs, walnuts, haddock?
A. Haddock: all the others have shells.

2. Q. Which is the odd one out:
hair, triangles, squares, plants, words, trees?
A. Triangles: all the others have roots.

3. Q. Which is the odd one out:

soft ice cream cone, salsa, landscape, raw vegetable, sales,
chips?

A. Salsa: all the others can be dipped.

4. Q. Jingle is to corporation as ._ is to politician:

(a) campaign (b) platform (c) slogan (d) promises?

A. Slogan.

5. Q. Hair is to stubble as potatoes are to .__

(a) french fries (b) sweet potatoes (c) potato skins (d) veg-
etable?

A. French fries.

6. Q. What is next in the sequence: 3, 8, 15, 24, 357
A. 48: Starting from 2, square each consecutive integer
then subtract 1.

7. Q. What is next in the sequence: 2,7, 4, 14, 67
A. 21: These are the multiples of 2, alternatively inter-
spaced with the multiples of 7.

8. Q. What is the next in the sequence: 15,210, 115, 220,
1257 A. 230. These are the multiples of five with the digit
1 or 2 alternatively placed in front of each number.

The first thing to notice about these puzzles is that
they fall into three classes:

¢ (dd one out puzzles (puzzles 1, 2 and 3)
® Analogy puzzles (puzzies 4 and 5)
® Next in sequence puzzles (puzzles 6, 7 and 8)

Indeed, the puzzles at queendom.com are arranged into
classes, and there are many others, such as “hidden word”
and “word associations”.

‘We impose the following characterisation on these puz-
zles: each puzzle consists of (i) a question (ii) a set of
choices, one of which is the answer (iii) the answer (iv)
an explanation which consists of a single, positively stated
concept. For example, in puzzle 1, the question is: “Which
is the odd one out”, the set of choices is {coconuts, oys-
ters, clams, eggs, walnuts, haddock}, the answer is had-
dock and the concept is the notion of having a shell.

We note that the puzzles stated above do not all fit this
characterisation, and some flexibility is required. Firstly,
the next in sequence puzzles do not have a set of possi-
ble answers to choose from. However, the implicit as-
sumption is that the answer is an integer, hence we can
say that the set of choices in this case is the set of natu-
ral numbers. Secondly, the analogy puzzles do not have
an explanation. This is perhaps because, in the examples
given above, the analogy is not exact, but rather the solu-
tion has a closer analogy than the other possible answers.
However, it is reasonable to assume that puzzles where
the analogy is via a single concept are acceptable. For in-
stance, if the concept was “doubling” and the domain was
numbers, then the analogy puzzle:

Q. 10ist020 as 30isto 60 as 40 is to ___:

70, 80, 90?

A. 80 because 20 is 10 times 2, 60 is 30 times 2 and 80 is
40 times 2.

is valid. Hence to impose our characterisation, we assume
that there is a single concept which explains the solution
to the puzzle.

We call this concept the embedded concept, and by
saying that it must be positively stated, we mean that the
concept is not obviously the negation of another concept.
For instance, in odd one out puzzles, it is usual for the odd
one out to be lacking a property that the others all have.
Puzzles where the opposite is the case are to some extent
unsatisfying, for instance, consider the puzzle:

Q. Which is the odd one out: 2, 3, 9, 20?
A. 9 because it is a square and the others are not.

We see that the standard format has been violated: it is
expected that the solution lies in finding a concept which
2, 3 and 20 satisfy and 9 doesn’t, not in finding a prop-
erty unique to 9. We also note that the embedded con-
cepts are, in general, fairly simple and are rarely formed
through disjunction. For example, if an explanation was
something like: “because the others are either a fruit or

100

have a shell”, this too would be slightly unsatisfying.

Given this characterisation, we note that the three puz-
zle types differ only in the presentation of the question
and explanation. In odd one out puzzles, the problem is
to find the choice which does not have a property that the
others have. In analogy puzzles, the problem is to find the
choice which is most analogous with the given object. In
next in sequence puzzles, the problem lies in extrapolat-
ing a sequence.

Another important observation is that the puzzles must
have only one plausible solution. Consider, for example
the puzzle:

Q. Which is the odd one out: 4, 9, 18, 36?

Here, there are (at least) two simple answers: (a) 18 is
the odd one out because the other are all square numbers
and (b) 9 is the odd one out because the others are all
even numbers. Hence this puzzle is ineffective as there is
a possibility that the solver will get the “wrong” answer,
but not accept that his or her solution was worse than the
supposed “right” answer. We see that the puzzle genera-
tor must take into account all simple concepts and ensure
that the examples for the embedded concept do not form a
puzzle for another embedded concept of similar or lesser
complexity.

3 Increasing the Difficulty of Puzzles

We have shown that — with a little flexibility — the eight
puzzles provided fit into a characterisation in terms of
a question statement, a set of objects from a domain to
choose from, an answer, and an embedded concept which
explains the solution. This characterisation is useful in
implementing puzzle generation, as discussed in §5 be-
low. We have also noted that for each puzzle, the set of
objects of interest do not embed a puzzle of similar or
lesser complexity. This will help to ensure (but by no
means guarantee) that the solver will be satisfied with the
solution.

We must also concern ourselves with the difficulty of
the puzzle. In particular, a puzzle which is too easy will
be of little interest to the solver, yet a puzzle which is so
difficult that no-one can find the solution is also ineffec-
tive. A balance needs to be found so that the intended puz-
zle solvers have some difficulty finding the answer, but in
general, they eventually prevail. We describe below three
properties of a puzzle which may help us to assess the
difficulty of the puzzle. We make an implicit assumption
that the time taken to solve a puzzle gives an indication of
the difficulty of that puzzle.

31

In the eight puzzles given above, the number of objects to
choose the answer from ranges from 4 to 6, and increas-
ing the number of objects is a potential way to increase

Number of Choices

(or indeed decrease) the difficulty of the puzzle. A plau-
sible method for solving odd one out puzzies is to choose
an odd one out and attempt to find a property that the oth-
ers share. Another possible method is to take two objects
and find a property that they share, then try to add a third
with the same property and so on, until all the objects
have been added, with the exception of the odd one out.
In either case, having more examples will slow down the
solving process, and hence can be thought of as increasing
the difficulty.

Similarly, to solve analogy puzzles, a plausible method
is to choose a possible answer and attempt to find a con-
cept which provides both an analogy between the pairs of
objects stated in the question and an analogy between the
final object stated in the question and the answer chosen.
Again, increasing the number of objects to choose an an-
swer from may increase the time taken to find a solution.

3.2 Complexity of the concept

Another possible way to increase the difficulty of the puz-
zle is to increase the complexity of the embedded concept,
because, to search for the answer, there must be a search
for the explanatory concept. Hence, making the solver
search further for that concept will increase the difficulty
of the puzzle.

We noted that, in general, we’ve observed that the
concepts embedded in the puzzle are usually not partic-
ularly complex. One explanation for this could be that it
is unlikely that a simpler solution will exist if the concept
chosen to embed is simple. That is, checking for unique-
ness of the solution up to a particular complexity level
will be easier if the concept chosen to embed is itself sim-
ple. With this observation, we can tentatively state that, if
the uniqueness-checking mechanism is reliable and effi-
cient, then there is no reason why the difficulty of puzzles
couldn’t be raised by choosing complicated concepts to
embed in the puzzles.

3.3 Disguising Concepts

If we look at puzzle 7 above, there is clearly an attempt
to disguise the puzzle by involving another concept in the
examples given in the problem statement. In that case, the
embedded concept js multiples of 7, and the disguising
concept is multiples of 2. It could be argued that multiples
of 2 is also an embedded concept, and that our characteri-
sation should take into account the possibility of multiple
concepts providing the explanation. However, we note
that the answer is only dependent on the concept of mul-
tiples of 7, and the explanation could have been provided
as: “every other term is a multiple of 7, hence the next is
217, with no explicit reference to the concept of multiples
of 2. Therefore, we call the secondary concept the dis-
guising concept, and note that it only serves to increase
the difficulty of the puzzle by diverting the solver’s atten-
tion from the real problem in the puzzle.

101

It is important to note that there are a number of ways
to employ disguising concepts, and it is part of the solv-
ing process to (a) realise that the puzzle is disguised and
(b) work out and ignore the disguising concept(s). For
number sequences, interleaving the disguising concept as
in puzzie 7 is a common construction, as is appending
the disguising sequence onto the front (or end) of the em-
bedded sequence, for instance puzzle 8 above, where the
embedded concept is “multiples of five”, and the disguis-
ing concept is placing the number 1 or 2 alternatively in
front of each number.

If we assume the strategies for finding the odd one out
discussed in §3.1, then we can propose a way to use a dis-
guising concept C' in odd one out puzzles: choose exam-
ples which all share the property prescribed by C. In this
way, as the solver attempts to find a property which the
majority of examples share, he or she may come across
C, because as all the examples share the property. As
this cannot lead to a solution to the odd one out puzzle,
it simply serves to slow the solver down. For instance, in
puzzle 1 above, the solver might realise that the majority
of the examples provided are foodstuffs, and try to find an
example which is not. In this case, they would be disap-
pointed to realise that all the examples are foodstuffs and
therefore another concept is embedded in the puzzle.

4 The HR Program

The HR system performs automated theory formation by
inventing concepts, making conjectures, proving theorems
and finding counterexamples (2). The main functionality
used for the application to puzzle generation is concept
formation, which is achieved by using production rules
which take one (or two) old concepts as input and output
a new concept. The production rules perform as follows:

® Compose : this composes concepts using conjugation.
® Disjunct:this combines concepts using disjunction.
* Exists :this introduces existential quantification.

¢ Forall :this introduces universal quantification.

* Match:this equates variables in predicate definitions.
¢ Negate :this finds compliments by negating clauses.
® Size:this counts set sizes.

® Split :this instantiates variables.

As an example of how the production rules are em-
ployed, figure 1 shows how HR can construct the concepts
of squares minus one (as used in puzzle 6 above). We see
that the concept of square numbers is constructed from the
user-given concept of multiplication using the match and
exists production rules. The concept of adding 1 (equiv-
alently subtracting 1) is constructed using the split rule
to instantiate the number being added to 1. Finally, the
compose rule is used to join these two concepts into the
desired concept. We say that the concept produced in fig-
ure 1 is of complexity 5, because five concepts (including
itself) are used in the construction path. The complexity

[a, b, c]: a=b*c
match
[a, b] : a=b*b [a, b, c] : a=b+c
exists split
[a] : exists b (a=b*b) [a, b] : a=b+1

&)mpose /:ompose

[a, b] : exists ¢ (a=c*c) & a=b+1

Figure 1: Example construction via production rules

of a concept gives some indication of how complicated
the notion expressed in the concept is, and we use this in
the puzzle generation, as discussed in §5 below.

Another fact used in puzzle generation is that each
concept produces a categorisation of the objects of inter-
est in a domain, for example the concept of squares minus
one categorises the numbers 1 to 15 into two categories:

3,8,15],[1,2,4,5,6,7,9,10,11,12, 13,14

The fact that HR knows when a concept is a specialisa-
tion of the objects of interest is also employed in puzzle
generation. For example, once constructed, HR knows
that the concept of squares minus one actually specialises
the concept of integers. Furthermore, HR knows when
one concept is a generalisation of another, information
which is also used in the puzzle generation process. For
instance, HR knows that the concept of prime numbers
is a generalisation of the concept of odd prime numbers.
HR also maintains knowledge of which concepts are func-
tions. The user specifies which concepts supplied as back-
ground knowledge are functions, and HR propagates this
information as the theory is built, i.e., it knows in which
circumstances the application of a production rule will re-
sult in a function, and records this information. In partic-
ular, the size production rule (which counts sizes of sets)
always produces a function. For more details of HR’s
concept formation, see (4), or chapter 6 of (2).

5 Extension for Puzzle Generation

Our original motivation for using HR for puzzle genera-
tion was the knowledge that HR can form a theory about a
set of objects of interest, given some concepts about those
objects. Hence it seemed that the task of producing puz-
zles with unique solutions could be achieved by (i) form-

102

embedding it in a puzzle in such a way that no other con-
cept in the theory could be used to provide a solution to
the puzzle. Hence, we extended HR to produce puzzles
of the three types mentioned above (odd one out, analogy
and next in sequence). There are many ways to produce
such sequences, and we have only explored one or two
avenues for each puzzle type — there is still much work
needed to make HR proficient at generating puzzles.

Due to the characterisation afforded above, much of
the implementation was not specific to the particular puz-
zle types. However, the two main areas where the imple-
mentation differs for the puzzle types is in checking that
no other simple solution to a puzzle was possible, and in
disguising the puzzle, and we deal with these in the sub-
sections below. Also, various observations made in the
characterisation above influenced our approach to auto-
mated puzzle generation, including:

® Negated concepts are not usually provided as the solu-
tion to puzzles. Based on this observation, we decided
to omit the negation production rule when producing the-
ories from which puzzles will be generated. This helps
avoid puzzles where the explanation is a negated concept
(for example, the odd one out is a square number, whereas
the others are non-squares).

® Concepts with disjunction are not usually provided as
the solution to puzzles. Based on this observation, we de-
cided to omit the disjunct production rule when producing
theories from which puzzles will be generated. This helps
to avoid puzzles where the explanation concept has dis-
junction (for example, the embedded concept is “primes
or squares”).

® The solution to a puzzle is supposed to be the sim-
plest such solution. As mentioned above, the methods for
checking uniqueness of solution is described for each puz-
zle type below. In essence, however, HR simply checks
that there is no simpler solution to a puzzle it has gen-
erated by looking through all the concepts in the theory.
Our notion of whether one solution is simpler than an-
other was changed by some initial results from HR: we
originally intended to use HR’s complexity measure to de-
termine which solution was simplest, with the least com-
plex concept embedded being the simplest solution. How-
ever, we found that sometimes, more complex concepts
were actually easier to understand than less complex ones.
In particular, the match production rule will generate a
concept with complexity one more than its parent, but in
many cases, the definition of the concept produced will be
simpler than that of the parent. Hence, we decided that,
once all concepts up to a particular complexity limit (usu-
ally 4 or 5) had been generated, HR should discard puz-
zles which have two solutions, even if one embedded con-
cept is more complex (according to HR’s measure) than
the other. While this lowers the yield of puzzles, it also
reduces the possibility of a puzzle being generated with
two or more plausible solutions.

5.1 0Odd One Out Puzzles

After a theory containing many concepts has been formed
by HR, the user decides the number of choices, n, and
asks HR for odd one out puzzles. HR then looks at each
specialisation concept, C, in turn and takes each subset of
n objects of interest where the first n — 1 have the prop-
erty prescribed by C and the last one does not have the
property. For each tuple of n objects, it checks whether C
is the only concept embedded in the tuples for an odd one
out puzzle. For instance, if it took the integers 3,5,17,8
to embed the concept of prime numbers (true for 3, 5 and
17, not true for 8), it would run through all the other spe-
cialisation concepts and check that no other solution was
possible. In this case, when it came to the concept of in-
tegers with one digit, it would realise that 17 could be
considered the odd one out instead of 8, because 17 has
two digits, whereas the others have only one. Hence this
quadruple would be rejected for an odd one out puzzle
where the concept to be discovered is prime numbers.

Tuples of objects for embedding a concept C into a
puzzle are rejected if another concept D can be embedded
as the solution to the puzzle, with one exception: when
C is a generalisation of D. For example, if 3,5,17,22
were chosen to embed the concept of prime numbers in
a puzzle, then the concept of odd prime numbers could
be used to reject this tuple, as it provides another answer
(22 is not an odd prime number, the others are). However,
as mentioned above, HR keeps track of which concepts
are specialisations of another and it knows that the con-
cept of prime numbers is a generalisation of odd prime
numbers, so it will not reject the tuple for the puzzle. In
effect, the solver is expected to be happy with the answer
of prime numbers for the puzzle, if they have decided that
the answer was odd prime numbers, because the former is
a simpler solution. Hence, as HR knows which concepts
are generalisations of the others, it can avoid rejecting a
tuple when a more specialised concept can be embedded
in the objects chosen.

For each concept, HR collects all the tuples which
pass the uniqueness test, and determines the level of dis-
guise of each, measured as the number of concepts in the
theory which specify a property that all the objects sat-
isfy. For instance, if the concept of square numbers was
embedded with the examples 4, 16, 20, 36, then the con-
cept of even numbers would be a disguising concept for
this puzzle, as all the numbers are even. The choice of
objects determines the number of other concepts in the
theory which act as disguising concepts. We found that,
even with a high level of disguise, puzzles with simple
concepts were easy to solve. Hence, we used an inter-
estingness measure which takes the average of the com-
plexity of the embedded concept and the level of disguise.
For each concept, the most interesting puzzle is taken as a
representative puzzle for that concept. To finish the puz-
zle, HR randomly re-orders the choices, so that the odd
one out is no longer the last choice.

103

5.2 Analogy Puzzles

Our treatment of analogy puzzles has been fairly shallow
so far. After a theory has been formed, HR takes each
specialisation concept and chooses objects of interest to
embed the concept in a puzzle. There are many ways in
which the analogy could be set up, and we have so far
only experimented with one: HR produces puzzles of the
form “Ais to B as Cis to 7, where objects A, B, C and the
solution, all share the property expressed by the concept.

The user specifies the number, n, of choices which
will be available in the puzzle, and then to generate puz-
zles from a concept C, HR takes each category, T', in
the categorisation of the objects of interest afforded by
C, and counts the number of objects in 7. If this num-
ber is four or more, then HR randomly chooses four ob-
jects O1,03,03 and O4 from T'. From the objects of
interest which are not members of T', HR chooses objects
X1,...,Xn-1 as the choices for the puzzle. It then adds
Oy to this list in a random position, so that O4 becomes
X; for some ¢ and there are n choices for the answer to
the puzzle. The puzz’le is then stated as: “O; is to O3 as
Oz isto X1,Xs,... , Xn 7.

As with odd one out puzzles, for each puzzle HR gen-
erates, it checks whether there is another equally plausible
solution. In the case of analogy puzzles, to do this, it runs
through every other concept D, and checks whether there
is a category V in the categorisation produced by D such
that V' contains O3, O and O3 and V also contains a sin-
gle object from the set X1, ..., X,,. In such cases, D also
provides a solution to the puzzle, so the puzzle should be
discarded. As with odd one out puzzles, the exception to
this rule is when D is a specialisation of C.

For analogy puzzles, we do not yet worry about dis-
guising the puzzle. For this reason, for each concept to
embed in a puzzle, HR stops once it has found a puzzie
which passes the uniqueness test. To stop biasing towards
certain objects of interest, the category T" is chosen ran-
domly from all the categories, and {O,02,03,04} and
{Xi,...,Xn-1} are chosen randomly from all possible
sets until the supply is exhausted.

5.3 Next in Sequence Puzzles
Three common formats for next in sequence puzzles are:

¢ The embedded concept is a number type and successive
examples of the number type are given in order, with the
next such number being the answer, e.g., puzzle 10 in §2
has the concept of multiples of five embedded.

® The embedded concept is a function f mapping the in-
tegers to themselves, and the function is applied to succes-
sive integers n,n + 1,...,n + k for some n and k, with
the answer being f(n + k + 1). For example, in puzzle 6
in §2, the function is f(n) = n2? — 1 and the application
of f starts with f(2) = 3 and continues until f(6) = 35,
so that f(7) = 48 is the answer.

¢ The embedded concept is again a function £, but it is
applied recursively to the previous terms in the sequence.
An example of this is the Fibonnaci sequence: 1,1, 2, 3, 5,
8, ..., where the nth term in the sequence is gained by
adding together terms n — 1 and n — 2 (with 1 and 1 cho-
sen arbitrarily as the first two terms of the sequence).

At present, HR only has the functionality to produce puz-
zles of the first and second format, although we do not
envisage any problems extending HR’s range to include
the third format.

To generate puzzles of the first type, HR forms a the-
ory in the domain where the objects of interest are integers
and then looks for concepts C' which are number types,
i.e., specialisation concepts. Given that the user has spec-
ified that n integers should be given as clues to the puzzle,
HR chooses n successive integers from the integers which
have the property prescribed by C. Instead of choosing
the starting point for the clues randomly, we made HR
choose them in such a way that the clue numbers were as
large as possible. For example, given the numbers 1 to 30
about which to form a theory, when producing a puzzle
with 5 integers as clues to a puzzle with prime numbers
as the embedded concept, HR would choose the numbers
11,13,17,19 and 23, with the final prime number that
HR knows about (29) being held back as the answer. We
found that many sequences have similar numbers early
on in the number line, and hoped that, by choosing the
largest numbers possible, it would be easier to ensure the
uniqueness of the solution and also perhaps increase the
difficulty of the puzzle.

To generate puzzles of the second type, HR takes each
concept C, which it knows to be a function, f, map-
ping the integers to themselves. HR then chooses a num-
ber z to start at, and provides the integers f(z), f(z +
1),..., f(z+n) as clues to the puzzle, with f(z +n+1)
held back as the answer. As with the first type, we made
HR choose z to be as high as possible. With both types
of sequence, HR checks that the solution is unique for all
the concepts in the theory. It takes into account the fact
that an alternative solution could come from a sequence
generated by number types or by a function.

Rather than trying to find puzzles with the most dis-
guise — as is the case with odd one out puzzles — HR ex-
plicitly imposes disguise on a puzzle by interleaving the
clues with another sequence of similar complexity. HR
does this only if the complexity of the embedded con-
cept is very low (the user sets this, usually at complexity
2 or less). This means that only the puzzles about very
simple concepts such as even numbers are disguised. For
instance, HR disguises the concept of numbers with the
digit 2 in them (given with examples 12, 20, 21) by inter-
leaving them with the concept of even numbers (2, 4, 6, 8)
to produce the puzzle: “what is the next in the sequence:
2,12,4,20,6,21,8?

We chose the starting point for the disguising sequence
to be as low as possible. Our rationale behind this was that

104

we wanted the solver to recognise the disguised concept
(thus being somehow distracted by it). After disguising,
HR again checks for the uniqueness of the solution, and
will backtrack over (i) the choice of start point for the dis-
guising sequence (ii) the choice of disguising sequence
and (iii) the start point for the embedded sequence, until
it finds a puzzle which has a unique solution.

There are many other methods for generating and dis-
guising next in sequence puzzles which we have not yet
equipped HR with. HR will need to both generate puz-
zles using these methods and take them into account when
checking for uniqueness of the solution. For instance, HR
will eventually take into account that many sequence ex-
trapolation puzzles are solved by taking the difference se-
quence, i.e., the difference between successive terms.

6 Results

Unfortunately, time has not permitted the kind of exten-
sive development and testing of HR’s puzzle generation
capabilities that we wanted to report on here. In particu-
lar, we wanted to use HR to generate puzzles of a visio-
spatial nature, but we have not had time yet to do this.

6.1 Animals Puzzles

To generate odd one out and analogy puzzles, we chose
the animals dataset which is supplied not with HR, but
rather with the Progol machine learning program distri-
bution (6). This dataset consists of 18 animals described
with 12 properties, such as whether or not they produce
eggs, which habitats they dwell on (air, water, land) and
so on. We set HR’s complexity limit to be five and ran
the search to exhaustion using the compose, exists, forall,
match, size and split production rules. It took 65 seconds
to build the theory on a Pentium 500Mhz processor. We
then asked for all odd one out and analogy puzzles with
four choices which could be generated as prescribed in
§5 above. This took a further 7 seconds and produced 31
puzzles, which we supply in appendix A in such a way
that the choices for the answer are given, with the correct
one bearing an asterix, and the embedded concept and dis-
guising concepts stated below the choices.

With some puzzles, the complexity of the embedded
concept may have made the puzzle of sufficient difficulty
to be interesting, for example, the solver needed to know
in puzzle 25 that of the four animals supplied, dolphin
was the only one to have a single habitat (water). With
other puzzles, however, the choice of the animals negated
the complexity of the concept, e.g., puzzle 27 asked: dog
is to cat as eagle is to (a) lizard (b) eel (c) ostrich (d) trout,
with ostrich being the only plausible solution, regardless
of the concept which related dog, cat, eagle and ostrich
(which was being a homeothermic land-dweller).

Puzzle 7 had the most disguise: the objects to choose
the odd one out from were ostrich, platypus, eagle and

penguin, which share three properties; they are homeother-
mic, produce eggs and have two legs. However, as they
are also all animals (a disguising concept for all the odd
one out puzzles), and because HR invented the concept of
being homeothermic and producing eggs, which they all
share, this puzzle scored 5 for disguise. This suggests that
an improvement in measuring disguise would be to make
sure that the properties the objects share are not really be-
ing counted twice. In general, we were disappointed with
the level of disguise, and it was at such a low level to be
unlikely to have an effect on the solver’s ability to find the
solution.

An important observation is that relatively few con-
cepts used in the puzzles were of complexity 4 and 5.
This is partly due to there being slightly fewer such con-
cepts in the theory, but also because the more complex
concepts tend to be more specialised. As the complex-
ity (and hence specialisation) of a concept increases, it
becomes less likely that the concept will have sufficient
positive examples to make a puzzle out of it. For instance,
the concept of birds which fly has only one example in the
animals dataset: eagle. Hence this concept cannot be used
in an odd one out puzzle. The solution to this, of course, is
to provide more objects of interest (in this case, more an-
imals) in the background information, although this will
mean that the theory formation and puzzle generation will
take more time.

To summarise the animals results, as the level of both
disguise and complexity of the puzzles was in general
fairly low, we expect these puzzles to be easily solved.
It appears, however, that a sizeable proportion of the puz-
zles would be satisfying to the solver, in that they would
probably come up with the solution that HR prescribed.

6.2 Integer Sequences

To produce next in the sequence puzzles, we ran HR in
number theory with the numbers 1 to 30 and the concepts
of: multiplication, addition, divisors and digits, which
are all commonly used concepts in sequence extrapola-
tion puzzles. Due to experience in this domain, to reduce
the complexity of the concepts generated, we used a com-
plexity limit of 4 and did not use the forall production
rule, using only compose, exists, match, size and split.
Again, we ran the exhaustive search to completion, and
then asked for all next in sequence puzzles where 6 num-
bers were given as clues. It took 165 seconds on a Pen-
tium 500Mhz processor to form the theory and a further 2
seconds to generate the 24 puzzles given in appendix B.
Some of the puzzles generated are promising, for in-
stance HR made a puzzle about prime numbers (puzzle 4),
which is a mainstay of human produced puzzles. Also,
puzzie 10 asked: what is next in the sequence: 21, 22,
24, 25, 26, 28, with 30 being the answer, as this is the se-
quence of integers where there is a digit which divides the
number. This is perhaps at around the limit of difficulty
for a next in seauence puzzle. Also. the disguising oro-

105

cess for the simpler concepts seemed to work fairly well.
In particular, in puzzle 3, HR used the same concept (mul-
tiples of 3) to disguise the embedded concept to produce
the sequence: 21, 3, 24, 6,27, 9, which was interesting.

However, many of the puzzles highlight problems with
HR'’s puzzle generation which will need improvement. In
particular, some of the concepts, while only at complexity
4 in HR’s terms might be a little complicated to reason-
ably expect the solver to identify them. These include the
number of even divisors of the integers (puzzle 20). The
situation is exasperated by the policy of starting the puz-
zles as far down the number line as possible. While this is
a good idea for puzzles involving number types, it seems
likely that expecting the solver to realise that the sequence
6, 0, 2, 0, 4, 0 has been generated by writing down the
number of even divisors of 24, 25, 26, 27, 28 and 29 is
asking too much. This suggests that for sequences gen-
erated by applying a function to successive integers, the
clues to the puzzle should start by applying the function
as close to the number 1 as possible.

The last two puzzles in appendix B highlight the fact
that puzzles with a simpler solution can sometimes slip
through. It is unlikely that the solver would accept HR’s
convoluted answer for the next in the sequence: 0, 1, 2,
3, 4, 5 (puzzle 24). In this particular case, as HR was
given the numbers 1 to 30 to work with, not 0 to 30, it
never realised that the sequence 0, 1, 2, 3, 4, 5 was part of
the natural number sequence. Similarly, HR should have
realised that the sequence 11, 12, 12, 13, 13, 14 (puzzle
23) could be generated by repeating the natural numbers.

To summarise the next in sequence resuits from this
session, it seems that the majority of the sequences gener-
ated from number types produced acceptable puzzles and
the policy of taking the largest numbers possible worked
well. However, the policy worked badly for the sequences
generated from functions and this combined with the high
complexity of the embedded concepts meant that the puz-
zles were perhaps too difficult.

7 Conclusions and Further Work

The generation of puzzles is a machine learning task which,
to our knowledge, has rarely been tackled. To implement
puzzle generation, we identified three common types of
puzzle and found a characterisation to fit the three types.
This enabled us to extend the HR program to generate odd
one out, next in sequence and analogy puzzles. We pre-
sented results in two domains to highlight the strengths
and weaknesses of our approach. We found that the main
technical problem with puzzle generation was ensuring
the uniqueness of the concept supposed to explain the
puzzle solution. We used automated theory formation to
build a theory so that, up to a reasonable level of com-
plexity, HR could check that there was no other simple
solution to a puzzle. While this approach is not perfect
— indeed it is a very difficult problem to predict the cre-

ative approaches to problem solving that people will em-
ploy — we found that in most cases the solution found by
the solver was likely to be the one they were supposed to
find. We argue in (3) that the theory formation approach
employed by HR is perhaps better suited for puzzle gen-
eration than other machine learning techniques which aim
to find a single concept.

Puzzle generation, which, in its broadest sense en-
compasses many activities ranging from identifying the
correct question to propagate research to the setting of ex-
ercises to educate students, is an intelligent activity which
itself requires creativity, but which must take into account
the perceived creativity of the intended puzzle solvers.
In particular, a puzzle must be generated in such a way
that the given answer is more plausible than any other the
solver might think of. In terms of Boden’s characterisa-
tion of creative acts (1), a puzzle setter must choose exam-
ples for the puzzle which make the solver act P-creatively
(produce a solution which is a personal discovery), rather
than H-creatively (produce a solution which is histori-
cally novel). This is because, by definition, a H-creative
solution to a puzzle will be wrong (in the sense that it
was not the answer intended by the puzzle setter). Once
we have improved the quality of HR’s puzzles and tested
them with human solvers as mentioned below, we hope to
have a greater insight into the nature of machine/human
creativity with respect to puzzle generation and solving,.

The results from the initial testing of HR’s puzzle gen-
eration show that there is still much more to be done in or-
der to increase the quality of the puzzles it produces. We
hope to follow two main directions with this work. Firstly,
we must test whether human puzzle solvers find the puz-
zles HR produces interesting, and we hope to use a web-
based experiment which asks the solvers to rate (a) how
difficult they thought the puzzle was and (b) how happy
they were with the solution. We will then compare their
difficulty ratings with those used by HR, and attempt to
reduce the number of puzzles produced for which they
gave a different (but valid) answer.

Secondly, we hope to add a layer of sophistication to
the assessment of difficulty by getting HR to model the
puzzle solver as well as the puzzler setter. HR has already
been applied to integer sequence extrapolation (4), and
we hope to combine this application with the application
to puzzle generation, so that one copy of HR generates the
puzzles and another copy attempts to solve them, giving
an indication of the difficulty in the process.

Acknowledgments

This work is supported by EPSRC grant GR/M98012.
The author is also affiliated to the Dept. of Computer Sci-
ence at the University of York. This research was inspired
by a very interesting meeting with Prof. Herbert Simon,
whose comments and questions greatly improved the au-
thor’s understanding of puzzie solving and generation.

106

References

[1] M Boden. The Creative Mind. Weidenfeld and Nicol-
son, 1990.

[2] S Colton. Automated Theory Formation in Pure
Mathematics. PhD thesis, Department of Artificial
Intelligence, University of Edinburgh, 2000.

{31 S Colton. An application-based comparison of auto-
mated theory formation and inductive logic program-
ming. Linkoping Electronic Articles in Computer and
Information Science (special issue: Proceedings of

Machine Intelligence 17), forthcoming.

4] S Colton, A Bundy, and T Walsh. Automatic identifi-
cation of mathematical concepts. In Machine Learn-
ing: Proceedings of the 17th International Confer-

ence, 2000.

Marsha J. Ekstrom Meredith. Seek-Whence: A Model
of Pattern Perception. PhD thesis, Department of
Computer Science, Indiana University, 1987.

(5]

(6] S Muggleton. Inverse entailment and Progol. New
Generation Computing, 13:245-286, 1995.

[71 G Ritchie. Describing verbally expressed humour. In
Proceedings of the AISB-00 Symposium on Creative
& Cultural Aspects and Applications of AI & Cogni-
tive Science, 2000.

[8] H Simon and A Newell. Heuristic problem solving:
The next advance in operations research. Operations
Research, 6(1), 1958.

A. Puzzles about Animals

1. Which is the odd one out?

i. eagle* ii. bat iii. cat iv. dolphin

answer: a produces milk

Disguising Concepts:

a is homeothermic

interestingness=1.5, disguise=2.0, complexity=1

2. bat is to cat as dog is to:

i, platypus* ii, lizard iii. trout iv. herring
answer: a produces milk

complexity=1

3. Which is the odd one out?

i. eagle ii. eel* iii. bat iv. dog

answer: a is homeothermic

interestingness=1.0, disguise=1.0, complexity=1

4. bat is to cat as dog is to:

i. shark ii. dragon iii. eel iv. dolphin*
answer: a is homeothermic

complexity=1

5. Which is the odd one out?

i. bat* ii. snake iii. lizard iv. penguin
answer: a produces eggs

interestingness=1.0, disguise=1.0, complexity=1

i. dog ii. t_rex* iii. dolphin iv. bat
answer: a produces eggs
complexity=1

7. Which is the odd one out?

i. ostrich ii. platypus* iii. eagle iv. penguin
answer: a is a bird

Disquising Concepts:

a is homeothermic

a produces eggs

a has 2 legs

a is homeothermic & a produces eggs
interestingness=3.5, disquise=5.0, complexity=2
8. Which is the odd one out?

i. snake ii. herring* iii. lizard iv. dragon
answer: a is a reptile

Disquising Concepts:

a produces eggs

a is covered by scales

interestingness=2.5, disguise=3.0, complexity=2
9. crocodile is to dragon as lizard is to:

i. penguin ii. platypus iii. bat iv. turtle*
answer: a is a reptile

complexity=2

10. Which is the odd one out?

i. cat ii. platypus iii. bat iv. dolphin*
answer: a is covered by hair

Disguising Concepts:

a produces milk

a is homeothermic

interestingness=2.5, disguise=3.0, complexity=2

11. Which is the odd one out?

i, lizard ii. eagle* iii., dragon iv. herring
answer: a is covered by scales

Disguising Concepts:

a produces eggs

interestingness=2.0, disguise=2.0, complexity=2

12. crocodile is to dragon as herring is to:
i. penguin ii. eel iii. turtle* iv. bat
answer: a is covered by scales

complexity=2

13. wWhich is the odd one out?

i. snake ii. shark iii. bat* iv. dolphin
answer: a has 0 legs

interestingness=1.5, disguise=1.0, complexity=2

14. herring is to shark as snake is to:

i. trout* ii. platypus iii. turtle iv. eagle
answer: a has 0 legs

complexity=2

15. Which is the odd one out?

i. penguin ii. ostrich iii. cat* iv. bat
answer: a has 2 legs

Disquising Concepts:

a is homeothermic

interestingness=2,0, disguise=2.0, complexity=2

16. bat is to eagle as ostrich is to:

i. snake ii. platypus* iii. herring iv. dragon
answer: a has 2 legs

complexity=2

17. Which is the odd one out?
i. dog ii. dragon iii. cat iv. eel~*

e meemems = L A VN ama

107

interestingness=1.5, disguise=1.0, complexity=2
18. cat is to crocodile as dragon is to:

i. snake ii. penguin iii. dolphin iv. t_rex*
answer: a has 4 legs

complexity=2

19. wWhich is the odd one out?

i. lizard ii, snake iii. dog iv. bat*

answer: a lives in land

interestingness=1.5, disguise=1,0, complexity=2

20. cat is to crocodile as dog is to:

i. shark ii. penguin iii. herring iv. ostrich*
answer: a lives in land

complexity=2

21. Which is the odd one out?

i. crocodile ii. turtle iii. bat* iv. dolphin

answer: a lives in water
interestingness=1.5, disguise=1.0, complexity=2

22, crocodile is to dolphin as eel is to:
i. dragon ii. ostrich iii. t_rex iv. trout*
answer: a lives in water

complexity=2

23. eagle is to ostrich as penguin is to:
i, t_rex ii. platypus* iii. dog iv. trout
answer: a is homeothermic & a produces eggs
complexity=3

24. eel is to herring as snake is to:

i, dragon ii. platypus iii. t_rex iv. trout*
answer: a produces eggs & a has 0 legs
complexity=4

25. Which is the odd one out?

i, dragon ii. bat iii. crocodile iv. dolphin*
answer: 2=|{b: b is a habitat & a lives in b}|
interestingness=2.0, disquise=1.0, complexity=3

26. bat is to crocodile as dragon is to:

i. cat ii. eel iii. eagle* iv. dog

answer: 2=|{b: b is a habitat & a lives in b}|
complexity=3

27. cat is to dog as eagle is to:

i. lizard ii. eel iii. ostrich¥* iv. trout
answer: a is homeothermic & a lives in land
complexity=4

28. eagle is to ostrich as snake is to:

i, cat ii. turtle iii. penguin iv. t_rex*
answer: a produces eggs & a lives in land
complexity=4

29. crocodile is to lizard as snake is to:
i. shark ii. eel iii. bat iv. t_rex*
answer: a is a reptile & a lives in land
complexity=5

30. cat is to dog as lizard is to:

i. t_rex* ii. eel iii. platypus iv. bat
answer: a has 4 legs & a lives in land
complexity=5

31. eel is to platypus as shark is to:

i. snake ii. eagle iii. turtle* iv. lizard
answer: a produces eggs & a lives in water
complexity=4

B. Next in Sequence Puzzles

1. What’s next in the sequence:
27 2 28 12 29 20 (30)?

answer: a is an integer
Disguising Concepts:

2 is a digit of a

disguise=1,0, complexity=1

2. What’s next in the sequence:
436629 (8)?

answer: b=|{c: c|a}|

Starting with n=27

Disguising Concepts:

3|a

disguise=1.0, complexity=2

3. What’s next in the sequence:
21 3 24 6 27 9 (30)?

answer: 3|a

Disguising Concepts:

3la

disguise=1.0, complexity=2

4. What’s next in the sequence:
7 11 13 17 19 23 (29)?

answer: 2=|{b: bla}|
disguise=0.0, complexity=3

5. What’'s next in the sequence:
284462 (8)2

answer: b=|{c: cja}| & 2|b
Starting with n=19
disguise=0.0, complexity=4

6. What’s next in the sequence:
66 4846 (8)?

answer: b=|{c: cla}| & 2|a
Starting with n=9

disguise=0.0, complexity=4

7. What’s next in the sequence:
646484 (8)?

answer: b=|{c: cla}| & 3|a
Starting with n=4

disqguise=0.0, complexity=4

8. What’s next in the sequence:
56789 11 (22)?

answer: l=|{b: b is a digit of a}|
disguise=0.0, complexity=3

9. What’s next in the sequence:

19 20 21 23 24 25 (26)2

answer: 2=|{b: b is a digit of a}|
disguise=0.0, complexity=3

10. What’'s next in the sequence:
21 22 24 25 26 28 (30)?

answer: exists b (b|a & b is a digit of a)

disguise=0.0, complexity=4
11. What’s next in the sequence:
211010 (1)?

answer: b=|{c: cla & ¢ is a digit of a}|

Starting with n=24

disguise=0.0, complexity=4

12. What’s next in the sequence:
312121 (1)

answer: b=|{(c d): c*d=a & d|c}|

disguise=0.0, complexity=4

13. what’s next in the sequence:
16 17 18 19 21 24 (25)?

answer: exists b ¢ (b*c=a & ¢ is a digit of b)

disquise=0.0, complexity=4

14. what'’'s next in the segquence:
211101 (0)?

answer: b=|{(c d): c*d=a & d is a digit of c}|

Starting with n=24

disguise=0.0, complexity=4

15. what’s next in the sequence:
723351 (7)?

answer: b=|{(c d): c+d=a & d|c}|
Starting with n=24

disguise=0.0, complexity=4

16. What’s next in the sequence:
20 22 23 24 25 26 (27)?

answer: exists b ¢ (b+c=a & ¢ is a digit of b)

disguise=0.0, complexity=4
17. wWhat’s next in the sequence:
213131¢(2)?

answer: b=|{(c d): c+d=a & d is a digit of c}|

Starting with n=24

disqguise=0.0, complexity=4

18. What’s next in the sequence:
011222 (2)?

answer: b=|{(c d): c+d=a & d is a digit of a}]|

Starting with n=24

disguise=0.0, complexity=4

19. Wwhat's next in the sequence:
252223 (2)?

answer: b=|{c: c|a}| & 2=|{d: d|b}|
Starting with n=8

disguise=0.0, complexity=4

20. what’s next in the sequence:
602040 (4)?

answer: b=|{c: cla & 2|c}|
Starting with n=24

disquise=0.0, complexity=4

21. What's next in the sequence:
400300 (4)?

answer: b=|{c: cla & 3|c}|

Starting with n=24

disguise=0.0, complexity=4

22. what'’s next in the sequence:

11 12 20 21 23 24 (25)?

answer: exists b (b is a digit of a &
b=|{c: ¢ is a digit of a}])
disquise=0.0, complexity=4

23. what’s next in the sequence:
11 12 12 13 13 14 (14)2

answer: b={{(c d): c+d=a & exists e (e+d=c)}|

Starting with n=24
disguise=0.0, complexity=4

24. what's next in the sequence:
012345 (6)?

answer: b=|{(c d): ct+d=a & exists e £ (e+f=d)}|

Starting with n=24
disquise=0.0, complexity=4

