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Foreword 
 

The Society for the Study of Artificial Intelligence and Simulation of Behaviour (SSAISB) is 
the UK's largest Artificial Intelligence society and, having been established in 1964, one of 
Europe's oldest. Consequently the SSAISB has a long history of sponsoring “Good Old Fash-
ioned AI”. The convention theme we have selected for AISB'06 is “Adaptation in Artificial 
and Biological Systems”, a theme that reflects an approach to AI and related disciplines that 
is much more of the late 20th and early 21st centuries. We have chosen this theme both be-
cause it captures what we feel is an important zeitgeist in computer science, mathematics, en-
gineering and the life sciences, and because Bristol has very strong interdisciplinary research 
groups in all these areas. Indeed, world-leading bio-mimetic research in the Bristol area dates 
back at least to the 11th century with the flight, and crash, of Eilmer of Malmesbury [1]. More 
recently Grey Walter built his first bio-inspired autonomous turtle robots in Bristol between 
1948 and 1949. 
 
The development of Western science since the 17th century has seen a transition from poly-
maths and a field of general science to rigid disciplinary boundaries. In the 21st century we 
expect this fragmented approach to science to tend back to the earlier holistic approach.  Re-
cent decades have seen exciting developments in the study of biology from a systems per-
spective, making use of advances in computing and mathematical techniques. At the same 
time there has been an increased interest in applying solutions from biological systems to en-
gineering problems. For example the uncertain, massively parallel computing environment 
presented by the internet is much closer to the kind of environment biological systems inter-
act with than the highly centralised computing paradigm initiated by Babbage when he de-
signed the first calculation engines. 
 
These recent developments in biological study and biological inspiration are a continuation of 
a much older tradition, the seed of which can be traced back very far indeed – Eilmer’s flight 
was inspired by that of Daedalus and Icarus. More practical was Marc Burnel’s tunnelling 
shield said to have been inspired by shipworms which bore through wood. The shield was 
first used to excavate a tunnel under the Thames which, begun in 1825, still carries the East 
London line of the London underground. Even a paradigm as sophisticated as artificial life 
was articulated as far back as 1787 when Goethe described to a friend the idea for an arche-
typal plant thus; “With this model and the key to it, one will be able to invent plants... which, 
even if they do not actually exist, nevertheless might exist and which are not merely pictur-
esque or poetic visions and illusions, but have inner truth and logic. The same law will permit 
itself to be applied to everything that is living” (letter of 1787, quoted in [3], p.14). 
 
The importance of adaptation has long been recognised by some of the greatest figures in the 
history of AI. In 1950, Alan Turing proposed that artificial intelligence be pursued through 
adaptation when he outlined his idea of an artificial child [2].  In 1975, John Holland pub-
lished an influential monograph on 'Adaptation in Natural and Artificial Systems'; needless to 
say it is no coincidence that the theme for AISB'06 coincides with this title very closely! Ad-
aptation is fundamental to AI, as adaptation is key to intelligence. Seemingly intelligent be-
haviour is brittle unless it is adaptive. Robust intelligence in biological systems has arisen as 
a result of adaptation on multiple levels, including evolutionary, social, and individual. 
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While biological inspiration has long played a role in engineering artificial systems, the flow 
of ideas and tools in the other direction has been increasing. Neural networks were inspired 
by brain function and in turn are used to model it. So too with reinforcement learning. Ge-
netic algorithms were inspired by evolutionary processes and now form the basis of models 
used to investigate evolutionary theory. Algorithms derived from social insect research find 
applications in engineering, while computer models of insect colonies advance understanding 
of the decision-making capabilities of these natural systems. More radically, recent work on 
DNA and cellular computing has blurred the lines between the implementation details of arti-
ficial and natural systems. 
 
The convention theme for AISB'06, and most of its constituent symposia, reflects this rich 
interaction between the study of adaptation in the artificial and the biological. We hope you 
find these proceedings to be an illuminating record of current research activity in the area. 
Before we leave you to enjoy them we would like to report the widespread support we re-
ceived for retaining the format of AISB. Obtaining feedback on research in its early stages 
can clearly be of enormous benefit. The AISB conventions provide a venue in which work-
in-progress can be presented, something that is all too rare in computer science, in contrast to 
the life sciences. At the same time the option to publish abstracts and papers under a non-
exclusive copyright allows us to disseminate a record of the event. 
 
Finally we would like to thank all the people who have helped us make AISB'06 possible, 
including the symposia organisers, members of the SSAISB committee, the organisers of 
AISB’05 and in particular those members of the University of Bristol who have assisted in 
various ways, from the Machine Learning and Biological Computation group, Department of 
Computer Science, and from the AI Group, Department of Engineering Maths. Special thanks 
go to Robert Egginton and Tobias Larsen for helping produce these proceedings, Sophie Be-
noit for administrative assistance, and the MLBC volunteers for manning registration desks 
and providing other help during the convention itself. We are grateful to the Engineering and 
Physical Sciences Research Council and to HP Labs for their support. 
 

Tim Kovacs 
James Marshall 

March 14th 2006, Bristol, UK 
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Evolutionary Design of Complex Chemical Systems 
Mark A. Bedau 

Protolife SRL, Venice 
Reed College, Portland OR, USA 

European Centre for Living Technology, Venice 
 

Abstract 
 

Complex chemical systems are difficult to design, largely because of unanticipated and unwanted 
side reactions. This is an instance of the well-known reality gap problem that afflicts evolutionary 
design. This talk describes a very general design method that circumvents the reality gap. The 
method is illustrated in two contexts: a dissipative particle dynamics (DPD) model chemistry for 
self-assembling lipid structures, and a laboratory realization of such a chemistry. This methodology 
has commercial value as a general and automated high-throughput method for creating such things 
as designer biosensors or designer liposomes for drug delivery. It also shows significant scientific 
promise as a way to attack the holy grail of wet artificial life - creating a living artificial cell wholly 
from non-living chemical materials. 
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Life and Mind: A Union without Divorce? 
Maggie Boden  

Centre for Research in Cognitive Sciences 
University of Sussex 

 
Abstract 

 
Why should people primarily interested in the human mind bother with A-Life? Why can't psycho-
logically-oriented cognitive scientists ignore these technological advances? There are two answers, 
one more problematic than the other. 

The first answer is that A-Life, considered as a methodological sub-species of AI, studies a number 
of phenomena that are psychologically interesting. These include distributed cognition (ant trails, 
and the like), situated robotics (motor behaviour in cockroaches, for instance), computational neu-
roethology (such as aspects of mating in crickets and hoverflies), and evolutionary systems (from 
co-evolution in Tierra to evolutionary computer art). 'Natural' ethology and psychology can learn a 
lot from artificial models of such matters. 

The second answer is that mind requires life. If that's true, it follows that the former can't be prop-
erly understood without understanding the latter. One could even say that AI is, at least in principle, 
a sub-species of A-Life. 

That mind requires life is often stated, and even more commonly assumed. Certainly, all the minds 
we know about are found in living things. But the link, and its supposed necessity, is very rarely ex-
plicitly argued. And when it is, the arguments are usually pretty thin. 

One problem here is that the concept of life itself is unclear. Does it necessarily involve embodi-
ment, for example? And if so, why? How does embodiment differ from mere physicality, which 
every robot satisfies? Is situatedness enough? Or is metabolism needed too? 

Even assuming that we know what we mean by "life", or anyway that we can recognize it when we 
see it, what has it got to do with mind? In autopoietic theory, for instance, the life-mind link is re-
peatedly stated but not clearly justified. In evolutionary philosophies of intentionality, it is tacitly 
assumed. If one accepts such accounts, one must conclude that evolutionary A-Life may be highly 
relevant for understanding mind. (That it is relevant for understanding neural selection is a different, 
though related, matter.) 
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From Individual to Collective Intelligence 
Nigel R. Franks 

School of Biological Sciences 
University of Bristol 

 
Abstract 

 
Social insect colonies exhibit both individual and collective intelligence. I will illustrate this with 
decision-making during house hunting in rock ants. Each worker, among the 200 or so in a colony, 
has less than 100,000 neurones (compared to 1011 neurones in humans) yet these ants employ the 
most sophisticated of all consumer strategies when choosing a new nest. Indeed, they can choose 
the best-of-N among alternative nests even though each has many different and important attributes. 
I will show how information can cascade through these social networks enabling colonies to benefit 
from both individual and collective intelligence. They use quorum sensing to facilitate collective in-
telligence and to achieve flexible speed accuracy trade-offs. These ants also fulfil all of the criteria 
of teaching. We have been able to show teaching through experimental manipulations and detailed 
quantitative analyses. Certain information is so valuable in these ant societies that individual work-
ers conserve and propagate it by teaching others. Indeed, these ants and humans are the only ani-
mals in which teaching has been demonstrated. 
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Artificial Consciousness and the Simulation of Behaviour 
Owen Holland 

Department of Computer Science 
University of Essex 

 
Abstract 

 
In the last few years a new discipline has begun to emerge: machine consciousness. This talk will 
describe the background to this movement, and will present a line of thought showing how the prob-
lem of constructing a truly autonomous and intelligent robot may also constitute an approach to 
building a conscious machine. The basis of the theory is that an intelligent robot will need to simu-
late both itself, its environment, and its own behaviour in order to make good decisions about ac-
tions, and that the nature and operation of the internal self model may well support some conscious-
ness-related phenomena. 
 
As part of an investigation into machine consciousness, We are currently developing a robot that we 
hope will acquire and use a self-model of the right kind. We believe that this requires a robot that 
does not merely fit within a human envelope, but one that is anthropomimetic - with a skeleton, 
muscles, tendons, eyeballs, etc. - a robot that will have to control itself using motor programs quali-
tatively similar to those of humans. The early indications are that such robots are very different 
from conventional humanoids; the many degrees of freedom and the presence of active and passive 
elasticity do provide strikingly lifelike movement, but the control problems may not be tractable us-
ing conventional robotic methods. 
 
The project is limited to the construction and study of a single robot, and there are no plans for the 
robot to have any encounters with others of its kind, or with humans. Without any social dimension 
to its existence, and without language, could such a robot ever achieve a consciousness intelligible 
to us? 
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Gene Libraries: Coverage, efficiency and diversity 
 

Steve Cayzer         Jim Smith  

               HP Laboratories  University of the West of ngland E
Bristol BS34 8QZ   Bristol BS16 1QY 

UK    UK 

steve.cayzer@hp.com  james.smith@uwe.ac.uk 

 
Abstract 

 

Gene libraries are a biological mechanism for generating combinatorial diversity of antibodies. However, they 
also bias the antibody creation process, so that they can be viewed as a way of guiding lifetime learning mecha-
nisms. In this paper we examine the implications of this view using two AIS performance measures: coverage 
and avoidance of self. We show how low numbers (in our case 2) gene libraries may drastically reduce compu-
tational expense while having negligible effect on performance. In addition to this efficiency/coverage trade-off, 
we also illustrate a trade-off between safety (ease of self avoidance) and diversity. The implications of these 
findings are discussed. 

1   Introduction 

In artificial immune systems, gene libraries can be 
used to take advantage of the fact that antigens are 
not uniformly distributed in non-self space. From a 
computational point of view, libraries introduce 
initialisation bias and provide a ‘species memory’ to 
tackle the antigen mapping task. What could this 
mean for AIS? Could gene libraries be used to intel-
ligently seed our algorithm? In a previous paper 
(Cayzer et al 2005) we postulated that gene libraries 
might: 
1.  improve non-self space coverage – through better 
placement of detectors (antibodies), over and above 
random creation; 
2.  reduce the cost of detector generation by more 
effectively avoiding self; 
3. map the antigen population more accurately; and 
4. help deal with co-evolving antigens 
In that paper, we showed that option 2 is somewhat 
easier to achieve than option 1. Here we extend 
these results, showing that there is a trade-off be-
tween self avoidance and diversity, and between 
encoding efficiency and coverage. Future work will 
concentrate on hypotheses 3 and 4, with the aim of 
shedding light on the sort of real world problems for 
which gene libraries should be considered.  
 
2   Gene libraries for coverage 

The most naïve way of looking at antibody creation 
is a way of covering a multidimensional area (anti-
gen space). This is somewhat complicated by the 
necessity of avoiding self. We tested a number of 
different library configurations using 8 bit r con-

tiguous matching on antibodies/antigens of 32 bits, 
as shown in table 1: 
 
Number 
libraries 

Segments 
in each 
library 

Size of 
each 
segment 

Number 
antibodies 

Genome 
size 

1 1089 32 1089 34848 
2 33,33 16,16 1089 1056 
3 11,11,9 10,11,10 1089 321 
4 6,6,6,5 8,8,8,8 1080 184 
  

Table 1: configuration of gene libraries. We kept the number of 
antibodies and their size (almost) constant in each case. Each row 

shows how we created these antibodies using a combination of 
gene library segments, and how we changed the segment size and 
number of genes per library in each case. Genome size is calcu-

lated as the sum of (#segments* size of segment) for each library. 
 

 
Figure 1: Mean coverage over 2000 generations (x axis). Each 

result shows the % antigens matched (y axis) by antibodies cre-
ated from a varying number of libraries. The results using random 

creation are shown for comparison. Values averaged over 25 
runs. Over the last 500 generations, 1 library is statistically supe-

rior (1% level, one sided t test)  
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Coverage was assessed using a static universe of 
1024 antigens while the self set comprised 128 pro-
teins. Figure 1 shows how the use of gene libraries 
comprehensively outperforms random creation on 
this basic task. Interestingly, although the use of 1 
library gave the best result (97.8%), 2 libraries pro-
vide a comparable (97.0%) performance. 

 

2   Gene libraries for avoiding self 

In the human immune system, avoidance of self is 
essential to protect against autoimmune reactions. 
Could gene libraries provide a bias to assist negative 
selection; that is, make the creation process 
cheaper? Our previous results (Cayzer et al 2005) 
showed that gene libraries indeed had a profound 
effect on the cost of negative selection. However, 
subsequent analysis (figure 2) shows that this is at 
the expense of reducing diversity. In other words, 
one gets a high proportion of ‘safe’ (non self reac-
tive) antibodies – but also a large number of dupli-
cates.  Clearly there is a trade-off between coverage 
and cost of creation. 
 

 
Figure 2: Effect of using avoidance of self as a fitness function 

(self), as opposed to coverage (antigen), combined (both) or 
simply using a random creation strategy. The top figure shows 
that AIS individuals can evolve gene libraries with a far higher 

(36%) chance of producing valid antibodies than one whose 
fitness function measures only coverage (antigens; 13%) and far 

above random creation (5%). All differences are statistically 
significant (wilcoxon). Experiments were run using 3 libraries, 16 

bit strings and 6 bit r-contiguous matching. In the lower figure, 
the ‘self’ AIS individuals have roughly half the diversity of the 
others (unique number of antibodies; 470 cf 950 antigen, 983 
random). All differences significant except antigen/random. 

 

3   Coverage and encoding effi-
ciency 

In the above analysis, one library gave superior cov-

gives no combinatorial advantage at all, requiring a
genome of almost 35 thousand bits (table 1). Con-
versely, the same number of antibodies can be cre-
ated from 4 libraries using less than 200 bits. Even 
using 2 libraries gives a 35 fold reduction in genome
length, and in view of the comparable performance 
this is one result we will be investigating further.  
 

erage. Yet this is at considerable cost. One library 

 

 

   Mapping antigen 

We are currently investigating the performance of 

n. 

   Conclusions 

Gene libraries are clearly beneficial for introducing 
 

e have shown the use of gene librar-

 the 

two impor-

ov-

-

Steve Cayzer, Jim Smith, James Marshall & Tim 
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gene libraries when faced with an inhomogeneous 
antigen environment. Our expectation is that de-
pending on the nature of self and antigen space, 
gene libraries may prove either a boon or a burde
Our results should give guidance as to the region of 
problem space amenable to the use of gene libraries. 
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initialisation bias to antibody creation. Whether they
are superior to state of the art algorithms, or indeed 
computationally tractable, is the subject of ongoing 
investigation. 
In this paper w
ies to perform a coarse grain mapping on antigen 
space. Although the results are clearly superior to 
random creation, it seems an expensive way to 
achieve a simple result, even when one includes
complication of avoiding self (see Cayzer et al 2006 
for fuller discussion). There are specialised algo-
rithms (Wierzchon 2002) which may be more suit-
able for this task; the true advantage of gene librar-
ies may only be evident in more complex environ-
ments. The representation and mapping operators 
may also make a significant difference. 
We have also have shown that there are 
tant trade-offs: diversity vs safety; and encoding 
efficiency vs coverage. Our results suggest that a 
low number of gene libraries appears to provide 
considerable advantage in efficiency while not pr
ing overly detrimental to coverage. Whether the 
same benefit can be demonstrated in dynamic envi
ronments is a topic for future investigations. 
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Artificial Immune Tissue using Self-Organizing Networks

Jan Feyereisl? and Uwe Aickelin?
?School of Computer Science

University Of Nottingham, Nottingham,
NG8 1BB, UK

jqf,uxa@cs.nott.ac.uk

Abstract

As introduced by Bentley et al. (2005), artificial immune systems (AIS) are lacking tissue, which
is present in one form or another in all living multi-cellular organisms. Some have argued that this
concept in the context of AIS brings little novelty to the already saturated field of the immune inspired
computational research. This article aims to show that such a component of an AIS has the potential
to bring an advantage to a data processing algorithm in terms of data pre-processing, clustering and
extraction of features desired by the immune inspired system. The proposed tissue algorithm is based
on self-organizing networks, such as self-organizing maps (SOM) developed by Kohonen (1996) and
an analogy of the so called Toll-Like Receptors (TLR) affecting the activation function of the clusters
developed by the SOM.

1 Introduction

A number of immune inspired systems have been
developed over the years. From negative selection
based algorithms to the self vs. non-self (Forrest
et al., 1996) and the danger model (Aickelin et al.,
2003). Bentley et al. (2005) argue that tissue is one
missing component of AIS, as it is the first line of
defence against viruses and bacteria, which possibly
initiates the activity of the whole immune system.

1.1 Tissue

Tissue is any part of a multi-cellular organism, which
provides an environment, that can be affected by
viruses and bacteria and thus initiate an immune re-
sponse. It is an intermediate layer between a prob-
lem and the actual immune system, which provides a
certain interpretation of the occurring problem to the
AIS in order to better protect itself.

1.2 TLRs

TLRs are a set of receptors on the surface of immune
cells, such as dendritic cells, which act as sensors
to foreign microbial products essential to their exis-
tence. When encountering one or more of such prod-
ucts, they trigger a cascade of events potentially re-
sulting in an immune response. Different combina-
tions of activated TLRs perform different actions.

2 SOM and Intrusion Detection

SOMs have been used as part of an IDS on a number
of occasions, nevertheless their main application so
far has been in the area of network packet analysis.
Our proposed method looks at the use of the SOM
algorithm in a number of distinctly different ways.
Firstly, the SOM algorithm is only a part of an over-
all tissue algorithm comprising of a set of functions
analogous to biologically real tissue, e.g. the notion
of inflammation, TLRs, antigens, etc... Secondly, the
aim of an artificial tissue is not to act as an IDS on
its own, but rather as an initial pre-processing of sys-
tem data. Thus it supplies the AIS with ’interesting
data’, making it easier, quicker and more reliable for
the AIS to make a decision about a potential threat to
the system. As in the human body, the artificial tissue
is an environment in which the initial interactions and
alarms are raised when ’something’ is happening.

3 The Link

There are four main areas of the biological analogy;
Tissue, cells, TLRs and inflammation. A general
overview of the proposed algorithm design can be
seen in Figure 1.

3.1 Artificial Tissue

Tissue is a layer between the problem and the AIS,
represented in terms of a pre-processing algorithm. It

5



is an environment, within which malignant organisms
(i.e. malicious code) invade cells in order to survive
and eventually cause damage. In this way, tissue acts
as an encoding and reduction layer for the incoming
data into the AIS. It analyses the data based on an
immunological concept and only passes the ’interest-
ing’ data to the AIS. By ’interesting’, we mean data
which is of potentially unknown nature to the tissue
environment. Tissue can be seen as a grid of neurons
within a SOM.

3.2 Artificial Cells

Tissue comprises of cells, each of which might have
slightly different functionality. We can imagine an
artificial cell in terms of a neuron within a self or-
ganizing map. This means, that a cell has a number
of inputs, which are used to compare the incoming
data to the tissue to the data that the cell holds, in or-
der to find the most suitable cell to which to relate.
Such a cell comes in contact with data that is simi-
lar to the cells’ content and is eventually adjusted, as
well as its neighbouring cells, according to the incom-
ing data, based on the SOM algorithm. The outcome
of this automatic cell ’growth’ results in the tissue
being compartmentalized according to similar types
of cells, based on the correlation of the multidimen-
sional input features incoming into the tissue. In other
words, similar system behaviour is grouped together
within the tissue. This results in a constantly updated
map, which holds information about the normal be-
haviour of a system as a whole. Once an unusual
action occurs, this should affect cells within the tis-
sue, that have not been affected before or that have
not been affected in such a dramatic way.

3.3 Artificial TLRs

The analogy of TLRs is based on the enhancement of
the functionality of the tissue cells described above.
In the immune system, TLRs sense specific prede-
fined chemicals, which are released by malignant or-
ganisms. In a similar way, we can specify a set of
potentially hazardous system features, each of which
can be represented as a receptor. The TLRs will be
associated with the cells within the tissue, as in real
life, and based on their activation, they will affect the
’growth’ of the cell in a more dramatic way. Similarly
to the natural functionality of TLRs, the artificial re-
ceptors will have a different impact on the underlying
cell if a combination of them are activated at the same
time.

Figure 1: SOM Tissue Design, Cells represented
as intersections of white lines, Inflammation as the
bandwidth of the tissue I/O streams

3.4 Artificial Inflammation

Inflammation proposes the possibility of signalling
where the AIS should possibly focus its attention on,
or where priority is to be set, thus possibly enabling
the notion of problem locality. For example as a re-
sult of a rapid cell ’growth’, the system can increase
or decrease the priority of an associated process. Sim-
ilarly a technique described by Somayaji and Forrest
(2000) can be used in order to give the AIS a better
chance at making a correct decision.
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Dendritic Cells for Real-Time Anomaly Detection

Julie Greensmith? and Uwe Aickelin?

?School of Computer Science, University of Nottingham, UK
jqg, uxa@cs.nott.ac.uk

Abstract

Dendritic Cells (DCs) are innate immune system cells which have the power to activate or suppress the
immune system. The behaviour of human DCs is abstracted to form an algorithm suitable for anomaly
detection. We test this algorithm on the real-time problem of port scan detection. Our results show a
significant difference in artificial DC behaviour for an outgoing portscan when compared to behaviour
for normal processes.

1 Introduction

Intrusion detection systems (IDS) are a method used
in computer security for detection of unauthorised use
of machines. The Danger Project proposed by Aick-
elin et al. (2003) aims to improve on results previ-
ously seen with artificial immune systems (AIS) by
applying concepts from the Danger Theory to IDS.
Danger theory proposes that exposure to danger sig-
nals or pathogenic bacteria causes the activation of
the immune system, not pattern matching of antigen.
The cells responsible for combining these various sig-
nals are Dendritic cells. We use the ‘signals plus con-
text’ processing power of Dendritic Cells (DCs) to
perform anomaly detection.

Abstraction of certain properties thought key to
DC function was performed, with algorithmic de-
tails and sources of biological inspiration detailed in
Greensmith et al. (2005) . The properties we abstract
from DC behaviour include their existence in differ-
ent states, depending on their environmental condi-
tions. As immature DCs, they collect multiple an-
tigens and are exposed to signals, derived from dy-
ing cells in the tissue (safe or danger signals). DCs
can combine these signals with bacterial signatures
(PAMPs) to generate different output concentrations
of costimulatory molecules, semi-mature cytokines
and mature cytokines. Exposure to signals generates
an increase in co-stimulatory molecules and causes
the maturation of a DC to two different states: mature
and semi-mature. DCs process a multitude of signals
generated by the presence of bacteria or generated by
damage to the tissue. PAMPs, based on a pre-defined
signature, and danger signals (released on damage to
the tissue) cause an increase in mature DC cytokines.
Safe signals cause an increase in semi-mature DC cy-
tokines and have a suppressive effect on both PAMPs

and danger signals.
A key feature of the DCs is an ability to combine

signals with antigen. In order to provide an environ-
ment suitable for the collection of signals and anti-
gen, we use a system developed for the Danger Pro-
ject (Aickelin et al. (2003)) known as libtissue.
Using libtissue we can create a tissue compart-
ment, to house a population of DCs. This compart-
ment, known as a tissue server, is used to update the
DCs on exposure to signals and antigen. A tissue cli-
ent transforms raw values into normalised signal con-
centrations. A weighted signal processing function
(described in detail in Greensmith et al. (2005)) is
used to combine these signals to determine the out-
put signal concentration of a DC. The exposure of a
DC to PAMPs, danger or safe signals causes an in-
crease in co-stimulatory molecules (CSM) on the DC.
Once the CSM value exceeds a given threshold, the
DC ‘matures’ and is removed from the sampling pop-
ulation. The concentrations of mature or semi-mature
cytokines expressed by the DCs are calculated. An-
tigen is collected during the period of signal expos-
ure in the sampling pool. Once a DC has matured,
any antigen collected is labelled with presented DC
context (mature or semi-mature) for each antigen. A
mean percentage mature antigen value can be calcu-
lated, indicating the number of times an antigen was
presented in a mature context.

2 Port Scan Experiment

For this experiment an ICMP (ping) scan is used to
provide an example of malicious behaviour. System
calls for a monitored secure shell (ssh) session are
captured using a tissue client. This includes normal
processes such as the controlling shell, x-forwarding
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agent and ssh demons. The process IDs of these sys-
tem calls form the antigen. Signals are captured from
different aspects of system behaviour. PAMPs are
signature based and are derived from the number of
ICMP errors received per second. Danger signals are
derived from the number of packets per second sent
by the machine. Safe signals are represented as the
rate of change of packets per second, based over a 2
second moving average.

These incoming signals are used to convert DCs to
either semi-mature or mature, measured by the relat-
ive concentrations of their output cytokines. For the
duration of the experiment, the IDs of running pro-
cesses, the output cytokines and the presented antigen
are recorded. Post-hoc analysis allows us to measure
the mean % mature context antigen for each process.
Each experiment is repeated 10 times and an average
value for the mean % mature context antigen is cal-
culated, per process.

Three experiments are performed, using different
combinations of signals and variations on the weight
of the suppressive safe signal. Experiment 1 uses
danger and safe signals alone, with a -1 value for the
suppression by safe signals; experiment 2 uses danger
and safe signals in combination with PAMPs; and
finally, experiment 3 uses PAMPS, danger and safe
signals, but with an increased value of suppression,
a value of -2, to allow for exploration between this
value and the detection of normal processes.

2.1 Results and Analysis
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Figure 1: Experimental results, showing the % ma-
ture context antigen for each process

The five processes of interest presented in Figure
1 include: the bash shell from which the scan was
performed; the ssh demon; the nmap performing the
port scan; the graphical forwarding agent for the re-
mote shell; and finally, the file transfer (scp). The

detection of the nmap was significantly greater than
the value derived for the normal file transfer, espe-
cially in experiment 3. The addition of signals did not
significantly alter the mean % mature antigens of the
nmap process. Conversely, the mean % mature anti-
gens for the normal file transfer was significantly re-
duced when the safe signal weight was changed to -2
(all significance assessed through paired t-tests, with
95% confidence demonstrated).

In each experiment the nmap process generated
significantly more mature context antigen than any
other process. The addition of PAMPs did not sig-
nificantly increase the detection of the ‘anomalous’
nmap but combined with a higher safe signal weight,
lowered the detection of the normal processes. In fu-
ture experiments, a much higher level of safe signal
could be used without reducing the detection of the
misbehaving process (lower rate of false positives).

3 Conclusions
In this paper we have demonstrated the use of a Dend-
ritic cell inspired algorithm on a small-scale, real-
time problem. The promising results shown in the
port scan experiments imply that the DC algorithm
plus libtissue framework can be used for the pur-
pose of anomaly detection under real-time conditions.
Future work involves the use of a replay client, so
data from real-time experiments can be captured for
the purpose of testing the parameters and limitations
of the system in a controlled manner.
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Abstract 

 
Artificial Immune Systems (AIS) have been proposed to solve binary classification problems; 
distinguishing between instances of self and of non-self. For any classification system such as 
AIS, the choice of classifier representation used impacts substantially on the kind of classifica-
tion problem that can be handled. Despite this, most classication systems such as AIS make use 
of only one representation, frequently without explicit consideration of its suitability to the clas-
sification problem of interest. As many AIS make use of binary encoding, AIS are thus fre-
quently being applied to boolean functions. One other notable field of classification system re-
search is also applied extensively to boolean functions, namely Learning Classifier Systems 
(LCS). Here we consider boolean functions and the suitability of different representations for 
their classification. We compare a simple representation proposed for use in AIS, Hamming-
distance based matching, with a traditional representation from Learning Classifier Systems 
(LCS), binary classifiers with wildcards. These different representations realise different shapes 
in a high-dimensional instance space; hyperspheres (AIS) and hyperplanes (LCS). In fact, hyper-
planes are a more general case of the kind of classifiers implemented for use with the r-chunks 
matching rule in AIS (Balthrop et al., 2002). We consider the different characteristics of these 
representations, analysing how their size (number of instances covered) and instance space size 
(number of distinct classifiers) varies differently with both problem size (instance string length) 
and classifier size (hyperplane dimension or hypersphere radius). As well as these differences, 
we consider how hyperspheres and hyperplanes differ in the way in which they generalise. These 
differences are likely to mean that the traditional hypersphere-based AIS representation is of lim-
ited applicability. For example, it is likely that many boolean functions cannot be well covered 
by sets of general hypersphere classifiers, unless specificity of matching is used to arbitrate be-
tween multiple classifiers matching a single instance. Similarly, differences in the generalisation 
mechanisms of the two representations mean that increasing the dimensionality of a problem, 
through increasing the number of its attributes, will have different consequences according to 
which representation is used. As well as the usefulness per se of analysing differences between 
classifier representations, implementing a suite of alternatives may enable a classification system 
to learn to use the most appropriate one when faced with a particular classification problem 
(Marshall and Kovacs, 2006), or even to evolve new representations. While the maintenance of 
detectors using different representations has already been proposed for AIS, this has been 
achieved by random permutations on bit order of the detector strings (Hofmeyr and Forrest, 
2000). Our results show, that as the number and size of classifiers is different when using hyper-
plane or hypersphere representations (Marshall and Kovacs, 2006), a simple permutation on the 
detector string is insufficient to map between the different representations. The different repre-
sentations have different informational content, and hence offer genuine differences to each 
other. We thus propose going beyond simple permutation in maintaining diversity of representa-
tions in an AIS. 
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Abstract 

 
We model the optimal allocation of limited resources of an animal during a transient stressful event 
such as a cold spell or the presence of a predator. The animal allocates resources between the com-
peting demands of combating the stressor and bodily maintenance (e.g. maintaining immune func-
tion). Increased allocation to combating the stressor decreases the mortality rate from the stressor, 
but if too few resources are allocated to maintenance, damage builds up. A second source of mortal-
ity (disease in the case of reduced allocation to immune function) is associated with high levels of 
damage. Thus, the animal faces a trade-off between the immediate risk of mortality from the 
stressor and the risk of delayed mortality due to the build up of damage. We analyse how the opti-
mal allocation of the animal depends on the mean and predictability of the length of the stressful pe-
riod, the level of danger of the stressor for a given level of allocation, and the mortality conse-
quences of damage. We also analyse the resultant levels of mortality from the stressor, from damage 
during the stressful event, and from damage during recovery after the stressful event ceases. Our re-
sults highlight circumstances in which most mortality occurs after the removal of the stressor. Re-
sults also highlight the importance of the predictability of the duration of the stressor and the poten-
tial importance of small detrimental drops in condition. Surprisingly, making the consequences of 
damage accumulation less dangerous can lead to a reallocation that allows damage to build up by so 
much that the level of mortality caused by damage build up is increased. Similarly, because of the 
dependence of allocation on the dangerousness of the stressor, making the stressor more dangerous 
for a given level of allocation can decrease the proportion of mortality that it causes, whilst the pro-
portion of mortality caused by damage to condition increases. These results are discussed in relation 
to biological phenomena. 
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Abstract 
 

We report here a simple simulation of the immune system in which we analyse the behaviour of re-
sponder cells in the presence of target cells. If target cells are recognised, the responder cells divide 
and become effector cells with the capacity to kill targets. Variable parameters determine the behav-
iour of the cells within the simulation, and many simulations using the same parameters ensure that 
statistical variability is achieved. When the number density of responding cells is increased, target 
cells are cleared more efficiently, but there is an increased likelihood of a prolonged response. This 
leads to a significant increase in the probability of persistence in circumstances in which the im-
mune response fails to clear infection during the first period of clonal expansion, which suggests 
that pathogen independent mechanisms might contribute to the development of chronic infection. 
 
 
 
 

1   Introduction  

The mammalian immune system is comprised of 
many parts. In the face of external stimulation, these 
interact together in a response which is often effec-
tive in eliminating infection. Defining the immune 
response is a challenge that has been addressed in 
many ways, and we have a detailed understanding of 
many of the mechanisms that regulate immunity 
down to the level of molecular structure and interac-
tion. But complex systems may be more than the 
sum of their parts, and investigating the collective 
behaviour of an immune response may yield addi-
tional insights to those obtained from the study of its 
components. 

One way to connect constituent elements to the 
whole is to build models. By extracting essential 
elements and putting them together in a system 
whose behaviour can be controlled and analysed, we 
may be able to make a quantitative analysis of the 
relationship between the components and the system 
as a whole. Model building has played an important 
role in our understanding of the dynamics of infec-
tion. The most widely used models describe ele-

ments of the system in terms of partial differential 
equations that express the evolution in time of vari-
ous components in the system. This approach is very 
successful at describing global properties, but it is 
not able to address effects dependent on local non-
equilibrium aspects such as co-operation and clus-
tering, or describe rare behaviours arising due to 
stochastic variation. We have designed a simple 
simulation model in which spatial distribution forms 
a central feature and have used it to model responses 
to a pathogen. 

 

2   Results 

The model we have chosen simulates the behaviour 
of responder cells in the presence of target cells. If 
the target cells are recognised, the responder cells 
expand and become effector cells with the capacity 
to kill targets. Effector cells proceed through a fixed 
number of divisions and then die unless they en-
counter further stimulation because of the continued 
presence of target cells. Variable parameters  are 
defined in an input file and determine the behaviour 
of the cells within the simulation. A random number 
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seed, which generates a sequence of pseudo random 
numbers, is used for probability testing.  The seed is 
set prior to each run from a predetermined sequence 
and averages over many runs (typically 100) ensure 
that statistical variability has been achieved.  

In this model the results of all our simulations are 
defined by a bounded environment. When the simu-
lation is complete, we observe three possible out-
comes. Target cells may have been eliminated, they 
may have filled the system, or they may be present 
at intermediate levels. In the model we assume that 
an optimal immune response is one that produces 
clearance. We find that even under parameter sets 
where there is a high probability of clearance, per 

sistence beyond the duration of the simulation is 
observed. When we test what factors are associated 
with persistence we find that low peak proliferation, 
but high total proliferation which leads to higher 
average number densities, plays a significant role. 
The number density of responder cells also influ-
ences the probability of persistence. Based on these 
observations, we propose that chronic immune re-
sponses may be fundamentally different from acute 
responses in terms of their population biology, and 
suggest that pathogen independent mechanisms 
might contribute to the development of chronic in-
fection. These results may also have implications for 
understanding the development of chronic autoim-
munity.  
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Abstract

This paper proposes a hybrid, supervised, anomaly detection system using association rules and a
variant of the negative selection algorithm (NSA). The aim of this hybridization is two-fold: first, to
provide more comprehensible detection results and second, to improve the quality of the NSA detector
generation process so as to obtain more accurate detection results. We have applied the algorithm
to both the UCI and the Kdd ’99 cup data sets. Our experimental results show that the algorithm
can obtain high detection rates although with varying false positive rates. The detection results, as
expected, demonstrated very good comprehensibility.

1 Introduction

Anomaly detection systems (ADSs) are popular in
many application domains including fraud detection
and intrusion detection. In general, ADSs can be clas-
sified into supervised and unsupervised. A supervised
ADS relies on the availability of a clean system/data
log for training. There are two steps to a supervised
ADS. The first is to define and select a representation
of self, and the second is to tag deviations from self as
anomalies. Regardless of the application domain and
the type of ADS employed, a successful ADS should
be accurate and comprehensible. In this paper, we
propose a hybrid supervised ADS with these prop-
erties by combining the negative selection algorithm
(NSA) and association rule mining (ARM).

Our motivation for building the hybrid ADS is
twofold. First, many current techniques such as
neural networks and statistical measures rarely pro-
vide good, comprehensible, detection results. In most
ADSs, users still have to review and act upon the
anomalies detected. Having more comprehensible
detection results will greatly improve user’s under-
standing and speed up any action required. We be-
lieve that an association rule based system provides
better comprehension because it is well known that
rules are more easily understood by a user than raw
transactions are. Second, there have been many criti-
cisms on the NSA Aickelin et al. (2004) Stibor et al.
(2005), questioning the NSA’s suitability for anomaly
detection. We believe that part of the weakness of the

NSA lies in the initial definition and representation of
self.

Since a supervised ADS needs to identify and rep-
resent the self present in a system/data log, selecting
the right representation for the “normal” pattern (self)
is crucial. Maxion and Tan (2000) state “If detec-
tor performance is indeed a function of environment
regularity, it would be critical to match detectors to
environmental characteristics”. Currently, the NSA
does not do more than just use the raw, self data as
this “normal” pattern and we believe that the provi-
sion of some structure in the definition of self should
assist in targeting detectors of anomalies more accu-
rately and ultimately lead better detection rates. We
argue that association rules are a good representation
of self, since it shows the regular behaviour within
self data and that it should be used to guide the detec-
tor generation process.

Our hybrid ADS first transforms the training data
into a set of association rules. Then candidate detec-
tors are generated in the form of itemsets (potential
anomalous signatures) that detect anomalous individ-
ual transactions.

2 Algorithm Description
There are three main components in our hybrid su-
pervised ADS. The first component is the self pro-
file builder. We define our self profile as a set of as-
sociation rules, generated using a Apriori algorithm
(Agrawal et al., 1996). The second component of the
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system is the candidate detector generation. A can-
didate detector is an itemset that combines the an-
tecedent attribute-value pairs of an association rule
and the contradicting consequent attribute-value to
the same association rule. Then, candidate detec-
tors are compared to the self data in the process of
filtering candidate detectors. If a candidate detec-
tor matches any self data instance, it is eliminated.
The remaining candidate detectors become the final
detectors representing potential anomalies. For ex-
ample, {venomous=no, milk=no} is a detector gen-
erated from the association rule, {venomous=no →
milk=yes}. The final component of the system is the
detection component of the system. The task of this
component is to apply the final detectors to the test
data. A user pre-defined threshold level is used for
raising alarm. Basically, if a data instance “matches”
more than a threshold of detectors, an alarm is raised.
Also, if a detector “matches” more than a threshold
of data instances, an alarm will also be raised. The
data instances detected along with the detectors and
the paired association rule are presented to a user for
judgment.

3 Discussion and Results
We have redefined the boundaries of self with the in-
troduction of association rules and in doing so we
have split the space of anomalies into two; interest-
ing anomalies (non-self that matches detectors) and
non-interesting anomalies (non-self that are not de-
tected by detectors). More specifically, interesting
anomalies are data instances that indicate patterns
that are infrequent and contradict frequent occurring
highly correlated rules. For example, we applied the
algorithm to the zoo data set from the UCI reposi-
tory (Blake and Merz, 1998) where the class mam-
mals is treated as self. One of the successful detec-
tors generated is {fins=no,hair=yes,venomous=yes}.
On it’s own, it is difficult to comprehend why the
detector represents anomalous behaviour. How-
ever, if we look at the paired association rule,
{fins=no,hair=yes→venomous=no}, we note that the
specific contradiction lies with the attribute ven-
omous. Interestingly, the detector demonstrates a spe-
cific behaviour of the “insect” subclass of the anom-
alous class.

By introducing the creation of a self profile into the
algorithm, we effectively increase the storage space
required. It is our conjecture that, the self profile
aside, our hybrid algorithm is more computationally
efficient than the original NSA because it needs less
iterations to generate the candidate detectors. On the

other hand, clearly, there is a cost involved in apply-
ing Apriori algorithm to generate the self profile in
the first place.

We also ran our algorithm on the larger Kdd’ 99
cup (Lee et al., 1999) data set to test the accuracy of
detection. First, we randomly split the normal data
into 10 sets, using a single set as self for training and
9 other set for testing along with the anomalous data.
In our best results, we obtained a detection rate of ap-
proximately 95% with 1% false positive rate. In the
worse case, for the same level of detection rate, we
obtained a false positive rate of 38%. The volatility
of the false positive rate is far from ideal. However
we argue that this could be due to our over optimism
of the amount of training data required and that fur-
ther experiments are required in which the amount of
training data is increased. In addition, the system cur-
rently discussed is a static system, however we have
seen signs of suitability for further extending the sys-
tem to ensure continuous learning and adaptability of
the the association rules and detectors to cope with
changing data behaviour.
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Abstract

Network Intrusion Detection Systems (NIDS) are computer systems which monitor a network with the
aim of discerning malicious from benign activity on that network. While a wide range of approaches
have met varying levels of success, most IDSs rely on having access to a database of known attack
signatures which are written by security experts. Nowadays, in order to solve problems with false
positive alerts, correlation algorithms are used to add additional structure to sequences of IDS alerts.
However, such techniques are of no help in discovering novelattacks or variations of known attacks,
something the human immune system (HIS) is capable of doing in its own specialised domain. This
paper presents a novel immune algorithm for application to the IDS problem. The goal is to discover
packets containing novel variations of attacks covered by an existing signature base.

1 Introduction

Network intrusion detection systems (NIDS) are usu-
ally based on a fairly low level model of network traf-
fic. While this is good for performance it tends to
produce results which make sense on a similarly low
level which means that a fairly sophisticated knowl-
edge of both networking technology and infiltration
techniques is required to understand them.

Intrusion alert correlation systems attempt to solve
this problem by post-processing the alert stream from
one or many intrusion detection sensors (perhaps
even heterogeneous ones). The aim is to augment
the somewhat one-dimensional alert stream with ad-
ditional structure. Such structural information clus-
ters alerts in to scenarios sequences of low level alerts
corresponding to a single logical threat.

A common model for intrusion alert correlation al-
gorithms is that of the attack graph. Attack graphas
are directed acyclic graphs (DAGs) that attempt to
represent the various types of alerts in terms of their
prerequisites and consequences. Typically an attack
graph is created by an expert from a priori informa-
tion about attacks. The attack graph enables a corre-
lation component to link a given alert with a previ-
ous alert by tracking back to find alerts whose con-
sequences imply the current alerts prerequisites. An-
other feature is that if the correlation algorithm is run
in reverse, predictions of future attacks can be ob-

tained.
In implementing basic correlation algorithms us-

ing attack graphs, it was discovered that the output
could be poor when the underlying IDS produced
false negative alerts. This could cause scenarios to be
split apart as evidence suggestive of a link between
two scenarios is missing. This problem has been ad-
dressed in various systems by adding the ability to
hypothesise the existence of the missing alerts in cer-
tain cases. Ning et al (2004) go as far as to use out of
band data from a raw audit log of network traffic to
help confirm or deny such hypotheses.

While the meaning of correlated alerts and pre-
dicted alerts is clear, hypothesisd results are less easy
to interpret. Presence of hypothesised alerts could
mean more than just losing an alert, it could mean
either of:

1. The IDS missed the alert due to some noise,
packet loss, or other low level sensor problem

2. The IDS missed the alert because a novel varia-
tion of a known attack was used

3. The IDS missed the alert, because something not
covered by the attack graph happened (totally
new exploit, or new combination of known ex-
ploits)

This work is motivated specifically by the problem
of finding novel variations of attacks. In our case a
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variation is determined to be an attack which exploits
the same vector as an attack detected by an existing
rule. The basic approach is to apply AIS techniques
to detect packets which contain such variations. A
correlation algorithm is taken advantage of to pro-
vide additional safe/dangerous context signals to the
AIS which would enable it to decide which packets
to examine. The work aims to integrate a novel AIS
component with existing intrusion detection and alert
correlation systems in order to gain additional detec-
tion capability.

2 Intrusion Alert Correlation

Although the exact implementation details of attack
graphs algorithms vary, the basic correlation algo-
rithm takes an alert and an output graph, and modifies
the graph by addition of vertices and/or edges to pro-
duce an updated output graph reflecting the current
state of the monitored network system.

For the purposes of discussion, an idealised form
of correlation output will be defined which hides spe-
cific details of the correlation algorithm from the AIS
component. This model, while fairly simple, ade-
quately maps to current state of the art correlation
algorithms. Due to space constraints we do not de-
scribe the full model here.

3 Danger Theory

The advent of Polly Matzingers Danger theory in has
inspired a great deal of research in to the functioning
of the innate immune system. A subsystem of the hu-
man immune system (HIS) which is apparently able
to distinguish between benign and pathogenic mate-
rial within the organism and initiate an adaptive im-
mune response.

For this purpose our “libtissue” AIS framework,
a product of a danger theory project (Aickelin et al,
2003), will model a number of innate immune system
components such as dendritic cells in order to direct
an adaptive T-Cell based response.

Dendritic cells (henceforth DCs) are of a class of
cells in the immune system known as antigen present-
ing cells. They differ from other cells in this class in
that this is their sole discernable function. As well
as being able to absorb and present antigenic mate-
rial DCs are also well adapted to detecting a set of
endogenous and exogenous signals. These biological
signals are abstracted in our system under the follow-
ing designations:

1. Safe: Indicates a safe context for developing tol-
eration

2. Danger: Indicates a change in behaviour that
could be considered pathological

3. Pathogen Associated Molecular Pattern
(PAMP): Known to be dangerous

All of these environmental circumstances, or in-
puts, are factors in the life cycle of the DC. A suf-
ficient concentration of signals may trigger matura-
tion along one of two differented pathways. One of
which is associated with a reactive and the other with
a tolerogenic T-cell response.

In the proposed system, DCs are seen as liv-
ing among the IDS environment. This is achieved
by wiring up their environmental inputs to certain
changes in the IDS output state. Populations of DCs
are tied to the prediction vertices in the correlation
graph, one DC for each predicted attack. Packets
matching the prediction criteria of such a vertex are
injested by the corresponding DC.

A prediction veretex can either be upgraded to an
exploit vertex, changed to a hypothesised vertex, or
be deleted depending on subsequent alerts. These
possibilities will result in either a PAMP, danger or
safe signal respectively.

These signals initiate maturation and consequent
migration of the DC to a virtual lymph node where
they are exposed to a population of T-cells generated
using the IDSs signature base in much the same way
as in a gene library. This is combined with partial
matching algorithms to find a T-cells to bind to the
antigen being presented by the DC.

Upon successful binding, the original packet corre-
sponding to the culprit antigen is tagged and logged
much like a normal alert.
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Experimenting with innate immunity

Jamie Twycross (jptcs.nott.ac.uk) and Uwe Aickelin (uxacs.nott.ac.uk)

Abstract

libtissue is a software system for implementing and testing AIS algorithms on real-world com-
puter security problems. AIS algorithms are implemented asa collection of cells, antigen and signals
interacting within a tissue compartment. Input data to the tissue comes in the form of realtime events
generated by sensors monitoring a system under surveillance, and cells are actively able to affect
the monitored system through response mechanisms.libtissue is being used by researchers on
a project at the University of Nottingham to explore the application of a range of immune-inspired
algorithms to problems in intrusion detection. This talk describes the architecture and design of
libtissue, along with the implementation of a simple algorithm and itsapplication to a computer
security problem.

1 Introduction

One of the achievements of immunology over the last
decade has been the uncovering of the innate immune
system as of central important both as the initiator
and the director of immune system processes Ger-
main (2004). Artificial immune systems are begin-
ning to take inspiration from this work and attempt to
model some aspects of innate immunity. In Twycross
and Aickelin (2005), the authors presented a concep-
tual framework for innate immunity. The framework
highlighted a number of key general properties ob-
served in the biological innate and adaptive immune
systems, and discussed how such properties might
be instantiated in artificial systems. The next logical
step was to take these ideas and build a software sys-
tem with which systems with these properties could
be experimentally evaluated. This talks reports the
progress made in taking that step.

2 Innate immunity

The authors have discussed innate immunity from a
biological perspective in detail in Twycross and Aick-
elin (2005) and it is only briefly reviewed here. Cells
are the principal actors in the immune system. Many
immune system cells have access to their environ-
ment on two levels: the level of antigen and the level
of signals. Antigen are the markers by which the im-
mune system senses the structure of its environment.
The structure is tightly coupled to the context of the
environment, which is reflected by levels of signals.
Perhaps it is too strong to say that a different structure
always implies a different function, since there is al-

most certainly some duplication of function, but gen-
erally the immune system seems to follow this princi-
ple. Signals reflect what entities are doing on a higher
level than antigen, which reflect what entities are do-
ing on a structural level.

Almost all immune processes involve the interac-
tion of groups of different types of cell. The type of
a cell is really a label for its phenotypical and func-
tional characteristics. The following characteristics
were chosen as initial areas of experimental study:
antigen processing, signal processing, cell binding,
antigen matching and antigen response. The reasons
for choosing these have already been discussed at de-
tail in Twycross and Aickelin (2005).

3 Implementing innate immunity

libtissue is a software system which allows re-
searchers to model and experiment with novel AIS
algorithms and to apply them to realtime computer
security problems. It is specifically designed to ex-
plore the characteristics of innate immunity described
in the previous section. An AIS algorithm is im-
plemented as a collection of cells, antigen and sig-
nals interacting within a tissue compartment. While
designed for computer security problems in the first
case, its design has been kept general with a view to
applying it to realtime problems from other domains.
libtissue has a client/server architecture pic-

tured in Figure 1. The AIS algorithm is implemented
as alibtissue server, whilelibtissue clients
provide input data to the algorithm and provide re-
sponse mechanisms. This client/server architecture
separates data collection by thelibtissue clients
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Figure 1: The architecture oflibtissue. Hosts
are monitored bylibtissue antigen and signal
clients, which in turn provide input data to the AIS al-
gorithm, implemented as alibtissue server. Al-
gorithms are able to change the state of the monitored
hosts through response clients.

from data processing by thelibtissue servers and
allows for relatively easy extensibility of the exist-
ing system to new data sources. Client and server
APIs exist, allowing new antigen and signal sources
to be easily added tolibtissue servers, and the
testing of the same algorithm with a number of dif-
ferent data sources. Client/server communication is
socket-based, allowing clients and servers to poten-
tially run on separate machines, for example a signal
client may in fact be a remote network monitor.

4 An example algorithm

A relatively simple AIS algorithm was imple-
mented to validatelibtissue and to illustrate how
libtissue can be used to explore the behaviour of
an artificial system on a realworld problem. This ex-
ample has cells of two types, labelled type 1 and 2,
and is shown in Figure 2. Type 1 cells are designed
to emulate two key characteristics of biological APC
cells: antigen and signal processing. In order to pro-
cess antigen, each type 1 cell is equipped with a num-
ber of antigen receptors and producers. A cytokine
receptor allows type 1 cells to respond to the value
of an external signal. Type 2 cells emulate three of
the characteristics of biological T cells: cellular bind-
ing, antigen matching, and response to antigen. To
accomplish this, each type 2 cell has a number of cell
receptors specific for type 1 cells, VR receptors to
match antigen, and a response producer which is trig-
gered when antigen is matched.

A tissue compartment is created and populated
with a number of type 1 and 2 cells. The tissue
compartment also stores antigen and signals received

cell
type 1

receptor
cytokine

antigen
producer

antigen
receptor

cell

response
producer

cell
type 2

receptor

vr
receptor

Figure 2: An example two-celllibtissue algo-
rithm.

from libtissue clients, which provides the in-
put data to the system. Type 1 cells ingest antigen
through their antigen receptors and present it on their
antigen producers. The period for which the antigen
is presented is determined by a signal read by a cy-
tokine receptor on these cells. Type 2 cells attempt
to bind with type 1 cells via their cell receptors. If
bound, VR receptors on these cells interact with anti-
gen producers on the bound type 1 cell. If an exact
match between a VR receptor lock and antigen pro-
ducer key occurs, the response producer on type 2
cells produces a response.

5 Results

A number of experiments were carried out with
the example algorithm on a realistic computer se-
curity problem, that of detecting anomalous pro-
cess behaviour. The aim of these experiments
was to validatelibtissue and to highlight the
methodology employed when attempting to under-
stand the behaviour of algorithms implemented with
libtissue. These experiments produced many in-
teresting results, which will be presented in this talk.
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Oil Price Trackers Inspired by Immune Memory

William Wilson?, Phil Birkin?, and Uwe Aickelin?
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Abstract

We outline initial concepts for an immune inspired algorithm to evaluate and predict oil price time se-
ries data. The proposed solution evolves a short term pool oftrackers dynamically, with each member
attempting to map trends and anticipate future price movements. Successful trackers feed into a long
term memory pool that can generalise across repeating trendpatterns. The resulting sequence of track-
ers, ordered in time, can be used as a forecasting tool. Examination of the pool of evolving trackers
also provides valuable insight into the properties of the crude oil market.

1 Introduction

The investigation of time series data to predict future
information is a well studied area of research. This
paper proposes an immune inspired solution to this
problem. Inspiration for memory development was
taken from the biological theory proposed by Dr Eric
Bell. The theory indicates the existence of two sep-
arately identifiable memory populations (Bell, 2005),
one long term and the other short term. Their dif-
fering characteristics make them ideal in recognising
long and short term trends prevalent in time series
data. These trends can then be sequenced for use in
forecasting and prediction.

2 Development of long and short
term memory

The flexible learning approach offered by the im-
mune system is attractive as an inspiration for prob-
lem solving. However without an adequate memory
mechanism the knowledge gained from the learning
process would be lost. Memory therefore represents
a key contributing factor in the success of the im-
mune system. A difficulty arises in extracting im-
mune memory properties however, because very lit-
tle is still known about all the biological mechanisms
underpinning memory development (Wilson and Gar-
rett, 2004). Theories such as antigen persistence and
long lived memory cells (Perelson and Weisbuch,
1997), idiotypic networks, and homeostatic turnover
of memory cells (Yates and Callard, 2001) have all at-
tempted to explain the development and maintenance
of immune memory but all have been contested.

The attraction of the immune memory theory pro-

posed by Dr Eric Bell is that it provides a simple,
clear and logical explanation of memory cell develop-
ment (Bell, 2005). This theory highlights the evolu-
tion of two separate memory pools. The first is a short
term memory pool containing short lived, highly pro-
liferative, activated cells that have experienced an
antigen. The purpose of this pool is to drive the affin-
ity maturation process to cope with the huge diver-
sity of potential antigen mutations. The second pool
consists of those short term memory cells that have
evolved to homeostatically turnover to sustain knowl-
edge of an antigen experience over the long term.
This long term pool identifies and maintains knowl-
edge of more generalised antigen trends.

3 Analysis of oil price trends

The price of WTI crude oil (a world marker price for
oil price movements) was selected as the time series
for investigation. This data set was chosen because
there is considerable economic, financial and govern-
ment interest in investigating oil price forecasting due
to its influence on so many other market sectors. In
addition, oil prices have historically exhibited a num-
ber of short and long term trend patterns which could
map to our long and short term memory concepts,
providing an ideal case study for this analysis.

4 An immune inspired forecast-
ing solution

The proposed solution comprises a population of
”trackers” that correspond to B cells from the im-
mune system. The trackers attempt to identify and
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record trends in the oil price data. Price data, as mea-
sured by the change in price from one time period
to the next, is encapsulated within an artificial anti-
gen object and presented to the population of trackers.
The antigens are constructed to show current and his-
torical price movements over a particular period. In
order to recognise price trends over time, each tracker
is allocated a random length ”review period”. This
allows the tracker population to identify a variety of
potential price movements over a range of time inter-
vals.

Following the traditional clonal selection approach
(de Castro and Von Zuben, 2002), trackers attempt
to bind to antigens, and undergo proliferation if suc-
cessful. The resulting clones mutate in relation to the
strength of the bind, with mutation taking one of three
forms. One subset of clones has a random price value
within their review periods mutated from its original
value. A second subset has their review period ex-
tended by the addition of a randomly generated price
movement to anticipate future potential price move-
ments. A third subset of clones has a random price
value removed from their review period to allow them
to attempt a better fit to previously experienced anti-
gens.

The degree proliferation is proportional to the
strength of the bind and the length of the bound
tracker. Initially trackers have relatively short review
periods, to enable them to assess a wide variety of
price trends. If successful, trackers proliferate and the
review periods lengthen to anticipate additional price
movements. Excessively long tracker review periods
are prevented because trackers become more specific
as they lengthen and are therefore less likely to bind.
Without successful binds these trackers are likely to
be removed via apoptosis. This leads to the evolution
of a dynamic population of trackers.

The population of proliferating trackers can be
seen to represent the short term memory of experi-
enced price data, as knowledge of an identified price
trend is carried forward through the generations of
tracker clones. Interrogating the composition of this
memory pool provides valuable insight into the dy-
namics of the oil market.

The process of filtering the short term memory
pool to a long term memory subset is achieved
through development of the ”‘tracker sequence”’.
The tracker sequence is a list of trackers, ordered in
time, that best represents the data presented up to
the current point in time. Dominant tracker candi-
dates, based on their degree of proliferation, are se-
lected from the short term memory pool and trans-
ferred to the tracker sequence for use as a source of

long term memory. Generalisations can be made in
the tracker sequence for repeating patterns of track-
ers to highlight recurring price trends. The tracker
sequence provides the forecasting mechanism in the
system. When new price data becomes available the
tracker sequence is examined to identify whether a
previously identified trend is recurring again.

5 Conclusion

Inspiration was taken from the principles of mem-
ory within the immune system to build a system that
would identify trends within an oil price time series.
This data showed evidence of short term price fluc-
tuations as well as exhibiting underlying long term
trends. Detailed inspiration was taken from the theory
of immune memory proposed by Dr Eric Bell which
identifies two forms of memory, short term and long
term. We indicate that these could in principle pro-
vide a mechanism to identify and map the short and
long term trends evident in the crude oil market which
could then be used for forecasting.
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Abstract 

The Mouse Reaching and Grasping Performance Scale (MoRaG) experiment is aimed at observing 

the effect of certain gene mutations on the cognitive abilities of the mice. In this experiment a 

mouse is placed in a transparent cage with an opening so small that food pellet placed on the other 

side cannot be reached by the mouse by nose poke but only by hand-reach. The main observation 

noted down during the MoRaG experiment was the number of nose pokes performed by each mu-

tant mouse in an attempt to reach the target food pellet. This nose-poking action was followed by 

the hand-reach action which eventually led the mice towards successful retrieval of the food pellet. 

The sequence and number of nose-pokes and hand-reach actions performed by the animal during the 

MoRaG experiment is a result of two parameters: (i) speed of learning and (ii) amount of preference 

for exploratory behaviour. To enable the easy quantification and analysis of these two parameters a 

computational model was built. The model assumes that the mouse selects one of two actions: hand-

reach or nose-poke, and each action is associated with a weight determining the probability of its se-

lection, which is updated according to the Rescorla Wagner rule. For each type of mutant mice used 

during the MoRaG experiment the two parameters (describing speed of learning and preference for 

exploration) have been estimated using maximum likelihood method. The model was able to repli-

cate the behaviour of the mice as observed during the MoRaG experiment and to quantify the cogni-

tive abilities of the mutant mice successfully. Thereby helping the scientist involved with the 

MoRaG experiment to assess the effect the genetic mutation had on the mice  

 

1   Introduction 

The ability to use limb movements to reach, 

grasp and retrieve food is widespread 

amongst mammals suggesting a common 

evolutionary origin of such movements. 

The control of multi-joint arm movements, 

such as placing the hand on a visually de-

tected target, grasping and retrieving, re-

quires the transformation of visually derived 

information (position of the target). This in-

formation is then further transformed into a 

motor command to position the hand and 

perform the grasping action. 

Reaching, grasping and releasing functions 

are therefore goal-directed movements. 

Such highly complex dynamical processes 

are comprised of two main steps: (1) plan-

ning, and (2) execution.  

Planning requires the use of the cognitive 

abilities to learn from past experiences and 

applying them in decisions regarding future 

actions. On the other hand, execution of 

goal directed movements involve the effec-

tive use of limbs. 

Both planning and execution of goal di-

rected movements are controlled by the cen-

tral nervous system. Genetic mutations can 

affect this central nervous system in a way 

that may diminish the ability to execute 

goal-directed movements, at different levels 

of severity.  

To study the effects of specific gene muta-

tions on the functioning of the central nerv-

ous system, the Mouse Reaching and Grasp-
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ing performance scale experiment (MoRaG) 

was devised. This MoRaG experiment aims 

to monitor the motor activity and the cogni-

tive abilities of mutant mice when placed in 

the experimental setup. 

To determine the degree to which the mice 

have been affected by the mutations, close 

analysis of their behaviour during the 

MoRaG experiment have to be carried out.  

In comparison to the task of observing the 

mutant mice behaviour, quantifying the ef-

fects of the mutation proved to be extremely 

time consuming given the large volumes of 

experimental data. 

 

To help with the analysis and quantification 

of the effect of genetic mutation on the cog-

nitive abilities of the mice, a computational 

model was built. 

Before embarking upon the description of 

this computational model, the MoRaG ex-

perimental setup is described in detail. Fol-

lowing which a detailed description of the 

computational model is given. 

 

2 The Mouse Reaching and Performance 

Scale Experiment 

In the Mouse Reaching and Grasping Per-

formance Scale (MoRaG) experiment, 

mutant mice are placed in Plexiglas 

chambers that are 11.4 cm in height, 6.4 

cm wide and 3.8 cm thick. In the front 

wall of each cubicle there is a 9mm hole 

and through which a Plexiglas feeding 

plane can be accessed.  

On this feeding plane, small food pellets 

(approximately 2-3 mm diameter) are 

placed in such a way that the mice can 

withdraw the food only by reaching out 

one of its paws. 

The diagram below presents a pictorial 

view of the MoRaG experimental setup. 

 

 

 

                            

 

 

 

 

 
                     

Figure I: Experimental setup for MoRaG 

 

In the MoRaG experiment the upper-arm 

movement of the mouse is analysed in 

three sequential phases: 1) the reaching 

(the hand proceeds out of the trunk, on the 

horizontal plane, to approach an object); 

2) the grasping (the object is grasped) and 

3) the retrieval (the hand moves toward 

the mouth, with the retrieved object in its 

grasp). 

 

To reach the food pellet, at first the mouse 

tries to poke its nose through the feeding 

hole. On failure, the mouse learns to reach 

out its paw to grasp the food. 

A successful reaching is considered when 

the animal reaches the food pellets with-

out any distortion or deviation from the 

target. The reaction time, that is the inter-

val between the mouse seeing the food 

pellet and reaching it, is considered for all 

the trials except for the first one. This is 

mainly because at the first trial the mouse 

is completely unaware of the situation and 

the reaction time in that trial does not 

provide any information regarding the ac-

tual response time of the mouse. 

 

A grasp is considered to be successful if 

the mouse can grasp the food pellet and 

most importantly, hold on to it. 

  

Finally the behaviour of the mice during 

the experiment is measured using 26 pa-

rameters. The parameters measured dur-

ing the MoRaG experiment are catego-

rized as shown below:- 

 

(1) Quantitative parameters (which are most 

relevant for the model): - During the 

MoRaG experiment, the quantitative pa-

rameters measured are the number of nose 

pokes before a hand reach action, number 

of successful reaches, number of success-

ful grasps etc.  

 

(2) Assessment of behaviour in the box: - 

Under this category are those parameters 

that were accessed before the mouse starts 

to perform any goal-directed motor be-

haviour. For instance body posture, sniff-

ing and/or grooming and also the rate of 

activity in the box.  

 

(3) Assessment of behaviour while the mouse 

is approaching the target: - For this cate-

gory, the behaviour of the mice are ob-

served under three phases - outward, re-

versal and inward phase. For the outward 

phase, parameters like trunk displace-

ment, body rotation, and arm movements 

are measured. While for the reversal 

Feeding 

hole 

5.7 cm  
from  

the floor 

Plexiglas 

feeding plane 

Mutant 

mouse 

Plexiglas 

chamber 

31



phase, parameters like grasping prepara-

tion, grasping closure are measured. And 

finally for the inward phase, parameters 

like strategies are measured.   

The MoRaG experiment was performed 

upon 6 different categories of mutant 

mice namely the C3H, BALB/c, SvPas, 

129SVEVM, BI/6 and 129NM. 

 

The assessment of mutant mice behaviour 

during the MoRaG experiment showed 

considerable differences in the cognitive 

and motor abilities of the mice. These dif-

ferences can be attributed to the differ-

ence in their gene mutations.  

 

In the MoRaG experiment, two action 

choices were available to the mutant mouse.  

One option was to try and reach the target 

food pellet through nose pokes, generally re-

ferred to as the nose poke action throughout 

this paper.  And the other option was to reach 

out its arm and try to grasp the target, referred 

to as the hand reach action in this paper. 

 

It was observed during the MoRaG experi-

ment that the mice usually tried to reach the 

food pellet through nose pokes and finally, 

realising that the food pellet was too far 

away, performed a hand reach action. 

 

Repeated trials showed a constant decline in 

the number of nose pokes before the first 

hand reach suggesting the ability of the mice 

to learn from experience. 

 

In a broader sense, the behaviour of the mice 

during the MoRaG experiment are influenced 

by two parameters - (i) speed of learning and 

(ii) amount of preference for exploratory be-

haviour. These two parameters may be influ-

enced by different genes; hence it is useful to 

separate these two parameters on the basis of 

behavioural data. The means for such separa-

tion is provided by a computational model of 

reinforcement learning which has been suc-

cessfully used to describe behaviour of ani-

mals and humans during sequences of choices 

between two alternative actions (Montague et 

al, 1995; Montague & Berns, 2002; 

O’Dorethy, 2004).This model provides prob-

abilistic description for animal behaviour, 

hence the two parameters in question can be 

estimated using Maximum Likelihood 

method, as the values which maximize the 

likelihood of observed sequence of nose-

pokes and hand-reaches given the model.  

 

3   The Computational Model 

As mentioned earlier, the computational 

model built for the MoRaG experiment was 

aimed at quantifying the degree to which the 

cognitive abilities of each group of mice were 

affected by the genetic mutations. 

 

To enable close analysis of this learning abil-

ity of the mutant mice, their behaviour was 

modelled into a computational system as de-

scribed below. 

 

In the computational system, the two action 

choices, nose poke and hand reach, are given 

individual weights.  

Since, the mutant mice always try to reach 

the food through nose pokes before attempt-

ing a hand reach, the nose poke (np) action 

was allotted an initial weight of wnp = 1. And 

intuitively, the weight associated with the 

hand reach (hr) action was initialized to  

whr = 0.  The values of these weights con-

trolled the probability of the associated action 

being selected.  

 

Moreover, as a result of the weight initializa-

tions, the probability of selecting the nose 

poke action at the beginning of a trial was 1 

while the probability of selecting the hand 

reach action at the beginning was 0. 

 

Throughout each run of the computational 

system, the weights and probabilities associ-

ated with each action were continually up-

dated.  

 

If an action i is selected (where i is np or hr), 

the corresponding weight wi is updated on the 

basis of the Rescorla–Wagner rule (Rescorla 

& Wagner, 1972) as shown below: 

 
  wi = wi + Learning rate * δ    (1) 

 

The above equation suggests that the change 

in a weight is a product of two terms: the 

learning rate, describing the speed of learn-

ing, and δ – equal to the difference between 

reward obtained and reward predicted by the 

animal. The model assumes that the weight 

associated with an action is actually equal to 

the predicted reward for this action. Hence δ 

is equal to (Montague et al., 1995): 

 δ = Reward obtained – wi     (2) 

 

In the computational model built the ‘Reward 

obtained’ is set to 1 when animal chooses 
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hand-reach and is set to 0 when the animal 

chooses the nose-poke. 

Now, the probability of choosing the two ac-

tions is computed from the following equa-

tion (Montague et al., 1995): 

  

Probability of nose poke (Pns ) = exp(µwns )/ 

(exp(µwns )+ exp(µwhr))  

 

Probability of hand reach (Phr ) = exp(µwhr )/ 

(exp(µwns )+ exp(µwhr))  

 (3) 

 

The probability associated with each action 

depends on three parameters: two weights 

wns, whr associated with the actions, and µ – 

the Threshold value which characterizes the 

animal’s preference for exploration: the 

higher µ, the less likely the animal is to 

choose action associated with lower weight.  

 

Along the lines of the mutant mice behaviour 

observed during the MoRaG experiment, the 

probability of the nose poke action is at its 

peak at the start of the trial. And as the trial 

progresses, every time the nose poke action 

does not result in a reward, its probability of 

being selected the next time around is re-

duced.   

On the other hand, the probability of the hand 

reach action is being simultaneously in-

creased. This continues until there comes a 

point in time where the probability of select-

ing the hand reach action is higher than that 

of the nose poke action. In this case, the ac-

tion hand reach will be selected, thereby end-

ing the trial with the retrieval of the food tar-

get. 

 

Having outlined the basics of a computational 

model that is capable of imitating the mutant 

mice behaviour, there are still two important 

factors to be decided upon. One of them is the 

value of the Learning Rate, used in equation 

1 above, and second is the value of the 

Threshold parameter (µ) used in equation 2 

above. 

Since each category of mice used in the 

MoRaG experiment differs from one another 

in their type of genetic mutation, they will 

show varying cognitive abilities. Thus, each 

category of mutant mice would have their 

unique Learning rate and Threshold value. 

And these are the values that need to be esti-

mated by the computational model. 

 

The basic idea behind this is an optimization 

method where those values of Learning Rate 

and Threshold are sought that produce behav-

iour (i.e. sequences nose pokes and hand 

reaches) that is exactly the same as the behav-

iour of that category of mutant mice whose 

cognitive abilities are being quantified. 

 

Since obviously this is a very tedious process 

if done manually, a more automated approach 

is adopted following along the lines of the 

Maximum Likelihood parameter estimation 

theory. 

Very briefly, the main idea of the Maximum 

Likelihood parameter estimation theory is to 

calculate the parameter values that maximize 

the probability of the given sample of data. 

The likelihood of data from a given category 

of mutant mice is equal to: 

( )∏∏
= =

=
nt

t

nh

h

hth modeldPLikelihood
1 1

, | (4) 

where nh is the number of MoRaG trials per-

formed by the mice, and each dt is a record of 

the behaviour of that particular category of 

mutant mice during trial t. In particular, dt is a 

vector of the length equal to the number of 

hand reaches nh performed by the mice in a 

given trial.  Each entry dt,h in this vector con-

tains the number of nose-pokes performed by 

the mice before hand reach h. 

For example, during the first trial on say the 

C3H type of mutant mice, i.e. t=1, the C3H 

mice are repeatedly placed in the MoRaG ex-

perimental setup. For each of those times, the 

number of nose pokes they perform before a 

hand reach is recorded to form d1. 

Below is an example of what d1 may look 

like: 

     Table I:Example MoRaG Data 

                
 
The probability distributions Ph(d|model) 

describe the probability of performing d 

nose pokes before hand reach h for given 

Hand Reach 

Index, h 

 

No. of Nose 

Pokes before a 

Hand Reach,  d1,h  

 

1 12 

2 9 

3 4 

4 0 

5 0 

6 0 

7 0 

8 0 

9 0 

10 0 
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parameters of the model. They are esti-

mated by simulating the model with a 

given set of parameters 1000 times.  
Basically, a table t compromising of the 

hand reach index (h) by nose pokes (d) is 

maintained.  

During the 1000 repetitions for the given 

set of parameter values, this table is up-

dated continually according to the ob-

served model behaviour. This is done by 

incrementing the counter of t[h,d] by 1 

every time the model performs d nose 

pokes before the h
th 

 hand reach. 

Thus, at the end of the 1000 repetitions, 

the probability of observing d nose pokes 

during the hth hand reach can be easily es-

timated by the value of the counter in 

t[h,d]/1000. 

These values are then used to compute the 

value of  Ph(d|model). 

In simpler terms the entire computational 

model for the MoRaG experiment can be 

viewed as a two part system. 

 Part 1 of the system is given as input- 

randomly chosen values of Learning rate 

and Threshold parameters. It then uses 

these two values, as shown in equations 1, 

2 and 3 above, to produce 1000 sequences 

of model generated behaviour that is simi-

lar to the mutant mice behaviour. 

The generated behavioural data is then 

passed onto the second part of the compu-

tational model where the probability dis-

tributions, Ph(d|model), are calculated. 

This ultimately produces the likelihood 

value, as shown in equation 4, for the 

given set of parameter values.   

 

In a larger view, the main task of the sec-

ond part of the model is to repeatedly try 

various combinations of input values of 

the Learning Rate and Threshold parame-

ters and pass it on to Part 1 of the model.  

And each time, the outputs of Part 1, i.e. 

the behavioural data, are used by the sec-

ond part of the model to calculate the like-

lihood for the set of parameter values 

given as input to the computational model 

at that time. 

The combination of Learning Rate and 

Threshold values that produce the maxi-

mum likelihood is considered as the re-

quired value of these two parameters for 

the category of mutant mice being consid-

ered at that point. 

The results or values of the Learning Rate 

and Threshold parameter, estimated by 

the computational model, for each cate-

gory of mutant mice used in the MoRaG 

experiment are described in the following 

section. 

3.1   Results of the Computational Model 

In the MoRaG experiment, there were six dif-

ferent types of mutant mice. The SvPas 

strain, the BALB/c strain, the C3H strain, the 

129SVEVM strain, the BI/6 and the 129NM 

strain. For each of these strains or types of 

mutant mice, the Threshold value provides a 

measure of how deterministic this category of 

mice was when choosing between the two ac-

tions, nose pokes and hand reach. Thus, in 

more general terms, the Threshold value 

quantifies the animal’s preference for ex-

ploratory behaviour after the genetic muta-

tion. 

The Learning Rate calculated for each of the 

six types of mutant mice quantify the ability 

of the mice to learn  the correct action i.e. the 

hand reach action, in order to retrieve the 

food. 

The table below shows the values of Thresh-

old and Learning Rate calculated for each 

category of mice by the computational model. 

 

 Table II: Results  

 

 

 

 

 

 

 

 

 

 

To verify the plausibility of the estimated 

learning rate and threshold values, the se-

quence of nose pokes and hand reach actions 

produced by the computational model are 

plotted. And on each such plot, the corre-

sponding MoRaG data were visualized to see 

if the actual data points fit the model gener-

ated behaviour (as shown in Figure II).  

It was found that while for the SvPas, C3H, 

129SVEVM, BI/6 and 129NM  the estimated 

threshold and learning rate values were plau-

sible, for the BALB/c, the results were incor-

rect and the plot of the computational model 

generated behaviour could not fit the actual 

MoRaG observations for this type of mice. 

This failure was attributed to the fact that the  

  

Threshold 

 

Learning Rate 

SvPas 4.855385 0.025823 

C3H 30.11 0.244 

BALB/C 39.5032 4.2966 

129SVEVM 7.8 0.00102 

129NM 7.575 0.00877 

BI/6 23.0 0.3 
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Figure II: Plots for testing the results of 

the SvPas Strain 
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MoRaG experimental data also displayed 

completely random behaviour by the mice 

under this BALB/c group and thus their be-

haviour could not be generalised as being of a 

certain type. Moreover, the learning rate and 

threshold factor value for each mouse in this 

group was varied and thus could not be gen-

eralised as one value. 

 

4   Critical Evaluation and Summary 

The computational model built to help the 

scientists in analyzing the effects of genetic 

mutations on mice was successful to a con-

siderable extent.  

 

However, it was observed from the MoRaG 

data that the BALB/c strain of mutant mice 

displayed behaviour opposite to what was ob-

served with the rest of the mice. Out of the 10 

BALB/c mice, 4 of them failed to learn from 

past trial experiences and the remaining, 

managed to learn the correct action to reach 

the food after 4-5 trials. In contradiction to 

this behaviour, it took just 1 to 3 trials for the 

other strains of mutant mice to learn the cor-

rect action to retrieve the food.  

 

While the behaviour of the BI/6, C3H, 

129NM, 129SVEVM and 129NM strains of 

mutant mice could be imitated by the model 

with the help of the Rescorla Wagner rule, 

the random behaviour of the BALB/c strain 

could not be reproduced by this model. Thus 

as a part of future development, the computa-

tional model can be modified such that it is 

able to quantify the results of the BALB/c 

type of mice as well. 

 

In addition, the Threshold and Learning rates 

calculated by the computational model were 

computed using 10-14 sets of MoRaG ex-

perimental data for each type of mutant mice. 

Larger volumes of experimental data would 

obviously add to the confidence in the results 

of the computational model.  

 

Moreover, during the quantification of the ef-

fects of mutation on the mutant mice, indi-

vidual characteristics of the mice were not 

taken into consideration.  

Thus, another scope of development is to cal-

culate the Learning Rate and Threshold value 

for each mouse in the MoRaG experiment. 

This will help in studying the role of individ-

ual characteristics like age, weight etc on the 

degree to which genetic mutation can affect 

each mouse. 

While examining the MoRaG data it was ob-

served that the data did not contain informa-

tion on whether the same mutant mouse has 

been tested upon on another date. 

If this information could be gathered, the ef-

fect of mutation on the ability of the mice to 

remember past experiences and use the 

knowledge from those experiences to guide 

actions during future trials, could also be 

quantified.     

 

In Conclusion, automating the process of 

identifying the effect of different types of ge-

netic mutations on mice is capable of drasti-

cally cutting down the overall time spent on 

an experiment. Such was the case during the 

MoRaG experiment. However, there still re-

mains ample scope of improving the current 

computational model, enabling it to better its 

own performance. 
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Abstract

If a problem is low-dimensional and discrete then it is straight-forward to apply reinforcement learning
techniques to find optimal policies. Many interesting problems are continuous and/or high-dimensional
though. Reinforcement learning in a continuous time, stateand action formulation requires the use of
function approximators. Often, local linear models have been preferred over distributed non-linear
models for function approximation in this instance. Coulom(2002) suggests that a major reason for
this is that the optimisation problem, that must be solved inorder to train a non-linear, distributed
function approximator, is often ill-conditioned, resulting in slow or unstable learning. We suggest
that another reason for the difficulty in learning a value function using a distributed architecture, is
the problem of negative interference, whereby learning of new data disrupts previously learned map-
pings. A continuous Temporal Difference (TD) learning algorithm, TD(λ), (Doya, 2000), was used
to learn a value function in a limited torque, pendulum swing-up task using a Multi Layer Perceptron
(MLP) network for function approximation. Three differentapproaches were examined for learning
in the MLP networks; 1) simple gradient descent, 2) vario-eta (Neuneier and Zimmermann, 1998), the
method suggested by Coulom to reduce the effects of ill-conditioning of the learning problem, and 3)
a pseudopatternrehearsal strategy (Robins, 1995), that attempts to reducethe effects of interference.
Our results show that MLP networks can indeed be used for value function approximation in this task,
but, require long training times. More interestingly, we found that vario-eta destabilised learning and
resulted in a failure of the learning process to converge. Finally we showed that thepseudopattern
rehearsal strategy drastically improved the speed of learning. The results indicate that interference
is a greater problem than ill-conditioning for this task. And also, that most acceleration techniques
that address the problem of ill-conditioning will actuallyexacerbate the problems of interference when
attempting to learn a value function using a distributed feedforward neural network.

1 Introduction

A continuous formulation of the reinforcement learn-
ing problem provides a nice framework for address-
ing problems in motor learning. Maximising a, pos-
sibly, delayed reward over over a continuous series
of continuous actions extended in time is exactly the
situation we have in many motor learning situations,
consider for example, throwing at a target. A cur-
rent issue in reinforcement learning is therefore, how
best to deal with continuous and/or high dimensional
problems of the sort likely to be encountered in mo-
tor control? The issue is interesting for at least two
reasons. Firstly, from a purely engineering perspec-

tive, a continuous formulation allows reinforcement
learning techniques to be applied to a wider range of
problems. Secondly, in TD models of the basal gan-
glia the TD error is proposed to represent the reward
prediction error. If a continuous TD error could be
shown to match a dopamine signal, then continuous
TD models might ultimately shed light on the role of
the basal ganglia in the control of movements.

One way to handle continuous states and actions
is to discretise the state and action spaces and then
use one of the standard discrete reinforcement learn-
ing algorithms to solve the problem [see Sutton and
Barto (1998) or Kaelbling et al. (1996) for a survey
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of reinforcement learning approaches]. The number
of discrete states that must be mapped grows expo-
nentially with the size of the input dimension and this
approach is therefore unsuitable for all but the most
basic of motor behaviours.

Alternatively, a function approximator can be em-
ployed to learn a value function and there are numer-
ous examples of the successful use of function ap-
proximators in the reinforcement learning literature
(Anderson, 1987; Baird, 1993; Tesauro, 1995; Gor-
don, 1995; Bertsekas and Tsitsiklis, 1996; Sutton and
Barto, 1998; Sutton et al., 2000). In principal any
function approximator can be used to learn and es-
timate a value function, however, local linear mod-
els have proved to be the method of choice in much
of the work. There are good reasons for this. Lo-
cal linear models are able to make better incremen-
tal use of training data than distributed or non-linear
function approximation schemes. This is because lin-
ear models are easier to learn than non-linear models,
and because local models are less susceptible to ”un-
learning” due to interference than distributed mod-
els are. Interference occurs when learning in a small
region of input space disrupts learning outside this
small area. Resistance to interference means that lo-
cal models can employ higher learning rates safely,
which in turn, allows faster convergence of the rein-
forcement learning algorithm.

The main drawback to applying local linear mod-
els is that the number of models grows rapidly with
the dimension of the input. The smaller the region
of trust for each individual local linear model is, then
the greater the resistance to interference becomes, but
at the cost of requiring more local models in order to
span the input space. The problem becomes exponen-
tially worse with increasing dimensionality, quickly
leading to an unfeasibly large number of local mod-
els if the whole input space is to be covered. This
would appear to be one of the main stumbling blocks
preventing reinforcement learning from being scaled
up for use in higher dimensional continuous problem
domains.

In this paper we explore the suitability of learning a
value function using a Multi Layer Perceptron (MLP)
network. The main motivation for choosing to use a
MLP is that in general they deal better with high di-
mensional problems than local linear models do (Bar-
ron, 1993). This can be particularly true if there are
irrelevant dimensions and/or global constraints, such
as one particular dimension passing a threshold sig-
naling failure irrespective of the values of all other
input variables. MLP networks are also generally
more compact, meaning that there are fewer parame-

ters that need to be determined by the training data.
This provides another potential motivation for using
MLP networks as opposed to local linear models.

The algorithm we employed in order to learn a
value function in our experiments is Doya’s contin-
uous TD(λ) (Doya, 2000). This is a continuous
time and state formulation of Sutton original discrete
TD(λ) (Sutton, 1988). We implement the pendulum
swing up task used in Doya’s original work as a test-
bed for examining alternative schemes.

We employ a standard 3 layer MLP network with
sigmoid activation functions and linear output units.
Three different approaches are used to train the
MLP networks; simple gradient descent, vario eta,
a method that attempts to speed learning by reduc-
ing the ill-conditioning of the training problem, and
finally a pseudopatternrehearsal strategy that is de-
scribed below.

The approach using vario eta is similar to that
employed by Coulom (2002) who uses continuous
TD(λ) in combination with a cascade correlation
function approximator to learn a high dimensional
motor control task. Coulom reports mixed results,
with performance increasing initially, before a subse-
quent collapse. We note that the mean squared tem-
poral difference (TD) error appears to diverge in his
experiments. We examine Coulom’s approach and
posit a possible explanation for his results.

The third training regime attempts to reduce the
problems of interference using apseudopatternre-
hearsal strategy (Robins, 1995; Ans and Rousset,
1997; French, 1997). As with allpseudopatternap-
proaches, interference is reduced by rehearsing with
self-generated data. Usually the data, orpseudopat-
terns, are generated by presenting input to the trained
network and recording the output with thepseudopat-
terns then interspersed with the incoming data. We
make two changes to this standard approach which
we describe later in the chapter.

The paper has the following structure. We begin
with a description of Doya’s continuousTD(λ) al-
gorithm and specify in detail the pendulum swing up
task. Three experiments are then reported that de-
scribe the use of different approaches to learning us-
ing a MLP. Firstly, we show that it is possible to learn
a value function using a MLP and simple vanilla gra-
dient descent in this task. Secondly, we describe the
results obtained using the vario eta algorithm to train
MLP networks in an approach similar to that used
by Coulom (2002). Finally, we show that using a
pseudopatternrehearsal strategy, we can greatly im-
prove learning performance in this instance. We con-
clude with a summary of results and a discussion of
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their implications.

2 Continuous TD(λ)

For the experiments reported in this chapter we im-
plemented Doya’s (2000) continuousTD(λ) algo-
rithm to learn a value function. The algorithm
is a continuous version of Sutton’s (1998) discrete
TD(λ). In this formulation a function approximator
is used to learn a value function using a continuous-
time counterpart of the TD error that is derived as fol-
lows.

Optimal Value Function for a Discounted
Reward Task

Consider a continuous-time deterministic system
governed by the following differential equation

ẋ(t) = f(x(t), u(t)) (1)

wherex ∈ X ⊂ <n is the state andu ∈ U ⊂ <m is
the action (control input). The immediate reward for
a given state and action is

r(t) = R(x(t), u(t)) (2)

The goal is then to find a policy or control law

u(t) = π(x(t)) (3)

that maximises the discounted future rewards

V π(x(t)) =

∫

∞

t

e
s−t

τ R(x(s), u(s))ds (4)

for any initial statex(t). V π(x(t)) is the value func-
tion of the state x under policyπ andτ is a time con-
stant for discounting future rewards. The value func-
tion for the optimal policyπ∗ can then be defined as

V ∗(x(t)) =

max
t,∞)

[

r(x(t), u(t)) +
∂V ∗(x)

∂x
f(x(t), u(t))

]

(5)

where[t,∞) is the time courseu(s) ∈ U of all fu-
ture controls fort ≤ s < ∞. The condition for the
optimal value function at timet is then given by

1

τ
V ∗(x(t)) =

max
u(t)∈U

[

r(x(t), u(t)) +
∂V ∗(x)

∂x
f(x(t), u(t))

]

(6)

which is the discounted Hamilton-Jackobi-Bellman
(HJB) equation (Peterson, 1993). The optimal policy

is specified by the action that maximises the right-
hand side of the HJB equation.

u(t) = π∗(x(t)) =

arg max
u∈U

[

r(x(t), u(t)) +
∂V ∗(x)

∂x
f(x(t), u(t))

]

(7)

2.1 Learning the Value Function

When using function approximators, learning the
value function involves changing the adjustable pa-
rameters of the function approximatorV (x(t); w) in
order to minimise a continuous time version of the
TD error. TD learning works by attempting to satisfy
a consistency condition that is local in time and space.
By differentiating definition (4) with respect to time
we arrive at consistency condition that should be met
when the estimate of the value function is perfect.

V̇ π(x(t)) =
1

τ
V π(x(t)) − r(t) (8)

If the estimate is not perfect then the discrepancy

δ(t) = r(t) −
1

τ
V (t) + V̇ (t) (9)

is used to adjust the estimate. This is the continuous
time counterpart of the TD error described by Sutton
(1988).

2.2 Exponential Eligibility Traces: The
Full TD(λ) Algorithm

In principle the value function could be learned by
gradient descent on an objective function of the form
E(t) = 1

2 [δ(t)]2 (Baird, 1993). Resulting in the fol-
lowing update equation:

ẇi = −η
∂E

∂wi

=

ηδ(t)

[

1

τ

∂V (x; w)

∂wi

+
∂

∂wi

(
∂V (x; w)

∂x
)ẋ(t)

]

(10)

where η is the learning rate. However, eligibility
traces have been shown to speed learning consider-
ably by allowing updates to be dependent on recent
experience as well as the current state of the system.
In continuousTD(λ) updates are made according to

ẇi = ηδ(t)ei(t), (11)

ėi = −
1

κ
ei(t) +

∂V (x(t); w)

∂wi

(12)

whereei is the eligibility trace for parameterwi, and
0 < κ ≤ 1 is the time constant for the eligibility
trace.
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2.3 A Value Gradient Based Policy

In most reinforcement learning approaches (Sutton
and Barto, 1998; Kaelbling et al., 1996), learning
consists of an iterative process, called policy itera-
tion, with two distinct phases:

1. In the first phase the value function is estimated
for the current fixed policy.

2. In the second phase the policy is updated to
make it greedy with respect to the current value
function estimate. Meaning the action that max-
imises value function is chosen as the action to
perform in each state.

While there are convergence proofs for this process in
the discrete case, the use of function approximators
complicates the situation and convergence has only
been proved for certain forms of function approxima-
tors (Sutton et al., 2000). In practice, there are numer-
ous examples of function approximators successfully
being used to approximate and learn a value function.

In Doya’s approach a value gradient policy is
used where the steepest ascent direction of the value

function ∂V (x)
∂x

T
is transformed by the gain matrix

∂f(x,u)
∂u

T
of the system dynamics into a direction in

action space, the amplitude of the control action is
controlled by an inverse sigmoid function. This re-
sults in the following control policy:

u = umaxs

(

1

c

∂f(x, u)

∂u

T
∂V (x)

∂x

T

+ σ

)

(13)

whereumax is the maximum allowable action am-
plitude, s() is a sigmoid function that saturates as
s(±∞) = ±1, c is the action cost andσ is noise
included to encourage exploration. In the limit where
c → 0, the control will be abang−bang policy (Bell-
man et al., 1956).

u = umaxsign

[

∂f(x, u)

∂u

T
∂V (x)

∂x

T
]

(14)

3 Experiments

The problem: Pendulum Swing Up with
Limited Torque

The control task that we used in our investigation was
the pendulum swing up task (Doya, 1996, 2000). The
task involves swinging a pendulum up into the ver-
tical position and balancing it there. There are two
state variables that describe the system, the angular

position (θ) and velocity(ω), and a single control
variable(u) that determines the torque that is applied
about the fixed end of the pendulum. The dynamics
of the system are fully described by the following dif-
ferential equation.

ω̇ =
u + mgl sin(θ) + µω

ml2

Whereu is the commanded torque,m is the mass
of the pendulum,g is gravity, l is the length of the
pendulum,θ is the angle of the pendulum,µ is the
coefficient of friction andω is the angular velocity.
If the maximum allowable controlled torqueumax

is less than the maximum load torquemgl then this
simple one degree of freedom system provides a non-
trivial control problem. In order to perform the task
successfully the controller has to swing the pendulum
several times in order to build up momentum and also
to decelerate the pendulum fast enough to stabilise
the pendulum in the upright position. The reward was
given as the height of the free end of the pendulum:

R(x) = cos(θ)

Each trial was started from an initial statex(0) =
(θ(0), 0), whereθ(0) was selected randomly from the
range[−π, π]. Each trial lasted 20 seconds unless the
pendulum was over-rotated(θ > 5π), in which case
the trial was terminated and a reward of -1 was given
for 1 second. In all experiments the following para-
meter values were used. Maximum torqueumax=5,
m = 1, g = 9.81, l = 1, µ = 0.01.

3.1 Solution 1: Learning a Value Func-
tion Using a MLP Network

Having fixed upon an MLP architecture with which
to learn a value function a series of evaluations were
performed in order to determine an approximately op-
timal learning rateµ to use for on-line learning of
the value function in an implementation of continu-
ousTD(λ). It was immediately obvious that learning
would be slow, and long training times were therefore
necessary. In order to explore various different learn-
ing rates, performance was assessed by measuring the
total accumulated reward following 500 episodes of
learning. A range of different learning rates were ex-
amined and the results are shown in figure 1. Having
determined an approximately optimal learning rate,
TD(λ) was run to convergence to determine whether
the approach would actually converge to a solution
sufficient to solve the control problem.
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Figure 1: Comparison of different learning rates for
a MLP network with 15 hidden units trained to ap-
proximate the value function for the task of swinging
up a pendulum with limited torque. Performance is
measured in terms of sum total reward following 500
episodes with a cumulative reward of 500000 repre-
senting the maximum possible. Although the overall
performance is quite poor, there is a peak in perfor-
mance for a learning rate ofµ ≈ 0.008.

Experiment 1: Results

Figure 1 shows the performance of the continuous
TD(λ) algorithm using a 15 hidden unit MLP net-
work and various different learning rates for the pen-
dulum swing up task. The results show that, although
the overall performance is quite poor for all learning
rates, there is a peak in performance for a learning
rate ofµ ≈ 0.008. Figures 2 and 3 show the perfor-
mance of the controller when learning is run to con-
vergence using a MLP network with 15 hidden units
and a learning rate of 0.008. Performance is mea-
sured in terms of sum total reward during a 20 sec-
ond episode, withdt = 0.02 the maximum reward
per episode was 1000. Figure 2 shows that it takes
around 3500 episodes for the learning process to con-
verge to the correct solution. Inspection of the sum
squared TD error [figure 3] also reveals convergence.
The landscape of the learned value function is shown
in figure 4.

3.2 Solution 2: Vario-Eta - Investigat-
ing Ill Conditioning of the Learning
Problem

In (Coulom, 2002), it was suggested that one of the
main problems that needs to be addressed in order
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Figure 2: The reward performance of the controller
when learning is run to convergence using a MLP
network with 15 hidden units and a learning rate of
0.008. Performance is measured in terms of sum total
reward during a 20 second episode, withdt = 0.02
the maximum reward per episode was 1000.
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Figure 3: The sum squared TD error performance of
the controller when learning is run to convergence us-
ing a MLP network with 15 hidden units and a learn-
ing rate of 0.008.
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Figure 4: The landscape of the learned value function
approximated using a MLP network.

for feedforward neural networks to be employed ef-
ficiently for learning a value function, is the problem
of ill-conditioning. Ill-conditioning describes a sit-
uation where learning is made hard due to the ap-
proximation error being far more sensitive to some
parameters than others. Therefore if we make para-
meter updates using gradient descent on the squared
approximation error and a global learning rate, some
parameters will adapt too fast while others will adapt
too slowly. This results in a situation where it is
difficult to determine a global learning rate that is
suitable for all parameter updates and consequently
leads to poor learning performance. The solution to
the problem of ill-conditioning involves taking into
account the curvature of the error surface and there
are many approaches to doing this (Moller, 1993;
Bishop, 1995; Levenberg, 1944; Marquardt, 1963;
Amari, 1998; Riedmiller and Braun, 1993). The cur-
vature is described by the matrix of second partial
derivatives of the squared approximation error with
respect to the weights of the network, the so called
Hessian matrix. By scaling a global learning rate by
the inverse of the Hessian, we can get better condi-
tioning. Thus, we take larger steps along dimensions
where the gradient is changing slowly and smaller
steps when the gradient is changing more quickly.

Calculation of the Hessian requiresO(W 2) op-
erations per pattern to evaluate, (Bishop, 1995),
which can become prohibitive for larger networks.
The vario-eta algorithm (Neuneier and Zimmermann,
1998), attempts to address this issue by taking a
slightly different approach to the problem of ill-
conditioning. Individual learning rates can be set
by making the observation that weights that exhibit

a high degree of variance during learning require a
lower learning rate than those that are relatively sta-
ble. Therefore, by dividing a global learning rate,
µglobal, by a by an estimate of a weight’s variance,
V AR(wi), a local learning rateµi =

µglobal

V AR(wi)
, can

be defined for each individual weight. It is hoped that
improved conditioning of the learning process can be
achieved using this approach resulting in faster con-
vergence.

If, as Coulom suggests, ill-conditioning is the main
problem that needs to be addressed, then we should
expect that using vario-eta will improve performance
when compared with simple gradient descent. In the
next set of experiments we explored whether using
the vario-eta algorithm could speed up learning of a
value function approximated using a MLP. A MLP
with 15 hidden units was trained using the continu-
ousTD(λ) approach with the learning rate for each
weight determined by the vario-eta algorithm. Vari-
ous different global learning rates were investigated
in order to determine an approximate optimum value.
As in the previous experiment the performance was
assessed by measuring the total accumulated reward
following 500 episodes of learning. Having deter-
mined an approximately optimal learning rate, a long
run of 5000 episodes was performed to investigate
convergence of the approach.

Experiment 2: Results

Figure 5 shows the results of an exploration of dif-
ferent global learning rates for the vario-eta algo-
rithm when employed for learning a value function
with a MLP using continuousTD(λ). There is no
clear peak as was the case when a single global
learning rate used for all weight updates, however,
there is some suggestion of a peak aroundµ ≈

0.0001. The two approximately optimal learning
rates, for straightforward gradient descent and vario-
eta, produce comparable performance following 500
episodes of learning, suggesting that learning has
not been improved significantly. Figure 6 shows the
progress of learning using a global learning rate of
0.0001 for 5000 episodes. Performance appears to
improve initially but soon becomes unstable and does
not appear to converge. Examination of the sum
squared TD error in figure 7 shows a similar pattern
with a failure to converge. These results are similar
to the pattern of results experienced by Coulom in
his experiments with feedforward networks. It would
appear that employing vario-eta, may actually hinder
learning rather than helping, in this instance.
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Figure 5: Results of an exploration of different global
learning rates for the vario-eta algorithm (blue *)
when employed for learning a value function with a
MLP using continuousTD(λ). Performance using
different learning rates and simple gradient descent
are included for comparison (red .). Performance is
measured in terms of sum total reward following 500
episodes.
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Figure 6: Progress of learning using a MLP net-
work containing 15 hidden units and trained using
the vario-eta algorithm with a global learning rate
of 0.0001 for 5000 episodes. Performance is mea-
sured in terms of sum total reward during a 20 second
episode, withdt = 0.02 the maximum reward per
episode was 1000. Performance appears to improve
initially but soon becomes unstable and does not ap-
pear to converge.
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Figure 7: The sum squared TD error plotted against
the episode number for a MLP network containing 15
hidden units and trained using the vario-eta algorithm
with a global learning rate of0.0001. Performance is
unstable and does not converge.

3.3 Solution 3: A pseudopattern re-
hearsal strategy

If we wantpseudopatternrehearsal strategies to work
effectively, it is important to usepseudoinputsthat re-
semble draws from the input distribution. In order to
crudely approximate the input distribution we discre-
tised the input space into 20x20 bins and kept a record
of when the input was in each of the 400 regions of in-
put space. At each time step the current TD error was
used to set the value stored in the currently occupied
bin usingBIN(θ, ω) = min(100, 1

δ2 ) and all bins
were then decremented usingBIN = 0.997 ∗ BIN .
This update scheme results in a biased approxima-
tion of the input distribution, where the bias is toward
more recent inputs for which the TD error was small.
The values in the bins were normalised to sum to one,
so that each bin value represented the probability of
choosing to sample from it and samples were then
made based on these probabilities.

Twenty fivepseudoinputswere generated at each
iteration using the above sampling procedure with
the added restriction that anypseudoinputsthat were
within a small radius of the current training point
were rejected. The minimum squared distance be-
tween the current input and apseudoinputwas0.03
in the normalised input space, where normalisation
involved a linear scaling of the input into the range
[-1,+1]. Since the gradient of the squared error
with respect to the network weights is zero for the
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pseudopatterns, we instead used the Hessian ma-
trix to incorporate the information contained in the
pseudopatternsinto the training process. We used the
inverse of the Hessian to scale the gradient informa-
tion that was used for parameter updates. Thus, pro-
viding better conditioning of the problem at the same
time as reducing interference.

A MLP with 15 hidden units was trained using
the continuousTD(λ) approach. Various different
global learning rates were investigated in order to de-
termine an approximate optimum value. Since per-
formance was much better than in the previous two
experiments the performance was assessed by mea-
suring the total accumulated reward following 100
episodes of learning.

Experiment 3: Results

Figure 8 shows an attempt to determine an optimal
learning rate for thepseudopatternrehearsal strategy.
Performance was somewhat inconsistent, but the best
performance was achieved for a learning rate of0.01.
In other longer runs, that are not shown here, the
learning process always converged eventually with a
learning rate of0.01 and suggests that the initial con-
ditions can have a major effect on performance. In
the original work by Doya (2000) using normalised
Gaussian networks to approximate the value function,
it is easy to initialise the value function to zero every-
where to encourage learning to focus on anygood
surprises that are experienced. In fact, convergence
can take much longer if the value function is not ini-
tialised in this way. For ourpseudopatternapproach
it is less clear how to initialise the learning system
best. If we make all of the second layer weights small
then the value function will have a value close to zero
as we require. However, once we start training, the
value function will quickly be pulled away from zero
where it is not actively maintained by thepseudopat-
tern rehearsal process. Figure 9 shows the course of
learning on one of the more successful runs. There
is a rapid improvement in performance following the
first few successful episodes. This same pattern was
observed in most of the runs that were examined, al-
though the time it took to achieve the first success
varied. This explains the high variance in perfor-
mance we saw in our search for an optimal learning
rate. Figure 10 shows that the squared TD error is
decreasing as learning progresses, consistent with the
convergence of the reinforcement learning process.
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Figure 8: Comparison of different learning rates for
a MLP network with 15 hidden units trained using a
pseudopatternrehearsal strategy to approximate the
value function for the task of swinging up a pendu-
lum with limited torque. Performance is measured
in terms of sum total reward following 100 episodes
with a cumulative reward of 100000 representing the
maximum possible. Performance was somewhat in-
consistent, but the best performance was achieved for
a learning rate of0.01
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Figure 9: The course of learning using apseudopat-
tern rehearsal strategy and a learning rate of0.01.
There is a rapid improvement in performance follow-
ing the first few successful episodes and thereafter
performance remains close to optimal.
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Figure 10: The sum squared TD error plotted against
the episode number for a MLP network containing
15 hidden units and trained using apseudopatternre-
hearsal strategy with a global learning rate of0.01.

4 Conclusions

Our main results are as follows:

• We were able to learn a compact value function
using a MLP.

• Training of the MLP using simple gradient de-
scent is very slow and requires low learning
rates.

• Using the vario-eta algorithm causes instability
of the learning process.

• But, a pseudopatternrehearsal strategy greatly
improved performance.

These results show that the continuousTD(λ) can
be successfully applied using non-linear, distributed
function approximators such as MLP’s. The fi-
nal result suggests that interference rather than ill-
conditioning presents a greater handicap to the learn-
ing of a value function. In fact, interference is likely
to be exacerbated by using vario-eta. If we consider
what the vario-eta algorithm does, then we can see
why. Since it works by scaling individual learning
rates by an estimate of their variance, weights which
do not have a strong influence on thecurrent pre-
diction, and are consequently changing little, will
have their learning rates increased. This will re-
sult in larger weight changes for these weights, for
only a small decrease in thecurrent prediction error.
This is a good recipe for interference. The fact that

Coulom achieved some success was possibly due to
the fact that following initial trials he made the obser-
vation that all weights fell into one of two groups. All
hidden to output weights’ variances were of a sim-
ilar magnitude and all remaining weights’ variances
were also of a different but similar value. He there-
fore choose to scale his learning rates according to
these fixed ratios and not, in fact, use the full vario-
eta algorithm.

If we compare the performance using a MLP with
the performance achieved by Doya (2000) in the orig-
inal work, where learning took only 20 or so episodes
to converge, it is apparent that for this particular task
local linear models are indeed far better suited to the
task of learning a value function than a MLP network
is. Can we conceive of a situation where this is not
the case?

Local linear models can learn fast and are less
susceptible to interference but suffer from the curse
of dimensionality and deal poorly with irrelevant in-
puts. MLP networks are compact but require greater
amounts of careful training. Therefore it is possi-
ble that there exist high dimensional reinforcement
learning tasks, where data is plentiful, and speed
of learning not critical, for which a MLP network
might prove better suited than a local linear model.
Coulom’s swimmer task, (Coulom, 2002), may be
one such problem. With 12 state variables and 5 con-
trol variables it would be difficult to cover the entire
input space efficiently with local linear models. It is
likely that this problem could be finessed by using a
constructive incremental approach to local model cre-
ation and placement. However it would be interesting
to see if it the problems of stability and convergence
that Coulom experienced could be removed simply
by resorting to standard gradient descent as opposed
to employing vario-eta or some variant thereof.

Reinforcement learning in high dimensional con-
tinuous systems is always going to be a challenging
problem. This suggests that from an engineering per-
spective we should do all we can to reduce the di-
mensionality of the problem as much as possible be-
fore performing reinforcement learning. For exam-
ple, if we want an autonomous mobile agent to learn
where in its environment good things and bad things
are, we could in theory use the raw sensor input as in-
put into a reinforcement learning process. However,
more sensible would be to pre-process the raw sensor
data to form some spatial, 2D, representation of the
environment and then perform reinforcement learn-
ing in this lower dimensional space. If we can do this
it would seem sensible to always employ local linear
models. If not, then we can use MLP networks, and
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rehearsal strategies or slow learning rates, to tackle
higher-dimensional reinforcement learning problems.

In conclusion, we showed that interference rather
than ill-conditioning was a greater handicap to learn-
ing, when using a distributed function approximator
to learn a value function in a continuous reinforce-
ment learning task. An attempt to improve learning,
by addressing the problem of ill-conditioning using
vario-eta, resulted the learning process failing to con-
verge. In contrast apseudopatternrehearsal strat-
egy greatly improved learning performance in this
task.
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Abstract 

 
Recent experimental and theoretical work on reinforcement learning sheds light on the neural bases 
of learning from rewards and punishments.  One fundamental problem in reinforcement learning is 
the credit assignment problem, or, how to properly assign credit to actions that lead to reward or 
punishment following a delay.  Temporal difference learning solves this problem, but its efficiency 
is significantly improved by the addition of eligibility traces (ET).  In essence, ETs function as de-
caying memories of previous choices that are used to scale synaptic weight changes.  It has been 
shown in theoretical studies that ETs which span a number of actions may improve the performance 
of reinforcement learning.  However, to our knowledge, reinforcement learning models incorporat-
ing ETs persisting over a number of actions have not been tested in the behaviour of biological or-
ganisms, including humans.  This paper reports such a study.  We report an experiment in which 
human subjects performed a sequential economic decision game in which the long-term optimal 
strategy is different from the strategy that leads to the greatest short-term return.  We demonstrate 
that human subjects’ performance on the task is significantly affected by the time between choices 
in a surprising and seemingly counterintuitive way.  However, this behaviour is naturally explained 
by a temporal difference learning model with ETs persisting across actions.  Furthermore, we dem-
onstrate that recent accounts of short-term synaptic plasticity in dopamine neurons may provide a 
realistic biophysical mechanism for producing ETs that persist on a timescale consistent with be-
havioural observations. 
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Abstract 

The idea that synaptic plasticity holds the key to the neural basis of learning and memory is now widely 

accepted in neuroscience. The precise mechanism of changes in synaptic strength has, however, remained 

elusive. Neurobiological research has led to the postulation of many models of plasticity, and among the 

most contemporary are spike-timing dependent plasticity (STDP) and long-term potentiation (LTP). The 

STDP model is based on the observation of single, distinct pairs of pre- and post- synaptic spikes, but it is 

less clear how it evolves dynamically under the input of long trains of spikes, which characterise normal 

brain activity. This research explores the emergent properties of a spiking artificial neural network which 

incorporates both STDP and LTP. The direction of future work, which will include the addition of a 

volume signalling element based on the postulated actions of nitric oxide in neural learning mechanisms, is 

then outlined. 
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Embodied Learning : Investigating synaptic weight distributions in a spiking neural network Daniel Bush 

 

1 Introduction 
The ability of the brain to translate ephemeral 

experience into enduring memories has long been 
attributed by neuroscientists to activity-dependent 
changes in synaptic efficacy. One of the first to 
suggest a mechanism that could govern this 
plasticity was Donald Hebb, who hypothesised that 
‘when an axon of cell A is near enough to excite a 
cell B, and repeatedly or persistently takes part in 
firing it, some growth process or metabolic change 
takes place … such that A’s efficiency as one of the 
cells firing B, is increased’ (Hebb, 1949). This 
concept of ‘Hebbian’ learning has become a 
mainstay of neural theories of memory, but more 
precise rules of synaptic change have been difficult 
to elucidate.  
 It has become clear, however, that there are 
certain features which are crucial to a successful 
model of plasticity (Roberts and Bell, 2002 ; Song, 
Miller and Abbott, 2000 ; van Rossum, Bi and 
Turrigiano, 2000). It must generate a stable 
distribution of synaptic weights, and stimulate 
competition between inputs to a neuron, in order to 
account for the processes of activity-dependent 
development and forgetting, and to maximize the 
capacity for information storage (Miller, 1996). 
Pure Hebbian learning cannot achieve this, because 
those inputs which correlate with post-synaptic 
firing are repeatedly strengthened, and grow to 
infinitely high values, while those which do not are 
persistently weakened. This creates an inherently 
unstable, bimodal distribution of synaptic weights. 
Earlier plasticity models have had to resort to a 
variety of means in order to solve this problem. 
Often these promoted competition through the use 
of global signalling mechanisms, such as limiting 
the sum of strengths of pre-synaptic inputs to a cell, 
but the biophysical realism of such protocols can be 
questioned. The exact nature of the additional 
constraints used can also strongly influence the 
behaviour of the model (Miller and McKay, 1994). 

In considering the neural basis of memory, it is 
long-lasting alterations in synaptic strength that are 
of most interest. Experimental evidence for such 
changes was first found in the hippocampus – a 
region of the brain long identified with learning – 
when it was shown that repeated activation of 
excitatory synapses by high frequency spike trains 
caused an increase in synaptic strength which lasted 
for hours, or even days (Lomo and Bliss, 1973). 
This phenomena - known as long-term potentiation 
(LTP) - has since been the subject of a great deal of 
investigation, because it exhibits several features 
which make it an attractive candidate as a neural 
learning mechanism. It is synapse specific, vastly 
increasing the potential storage capacity of 
individual neurons. It is also associative, in that the 
repeated stimulation of one set of synapses can 

simultaneously facilitate LTP at adjacent sets of 
synapses. This has often been viewed as analogous 
to the process of classical conditioning.  

The processes which trigger LTP are relatively 
well understood, but experimental limitations have 
made the biological mechanisms underlying it’s 
expression difficult to clarify (See Malenka and 
Nicol, 1999, for a review). Contrasting research 
findings have exacerbated this problem and 
provoked a great deal of debate. The locus of 
expression of plasticity is one issue that has been 
particularly controversial. It is generally accepted 
that post-synaptic changes, such as an increase in 
the number or function of AMPA receptors, occur, 
but debate surrounds the possibility that there are 
also changes in pre-synaptic operation. Some 
evidence has suggested that LTP is at least partially 
mediated by an increase in neurotransmitter release, 
but it is far from conclusive. If plasticity is 
expressed at some level on both sides of the 
synaptic cleft, however, then some signal must pass 
from post- to pre- synapse, carrying the message 
that LTP has been induced. Many candidates have 
been proposed for this role - among them the 
diffusible, gaseous neuromodulator nitric oxide 
(Arancio et al., 1996). 

The wealth of research into LTP has helped to 
inform and inspire new plasticity models which are 
more easily reconcilable with the tenets outlined 
earlier. The ‘BCM’ model, named after its creators 
(Bienenstock, Cooper and Munro, 1982) and based 
on their consideration of input selectivity in the 
visual cortex, is a good example. It is Hebbian, but 
achieves stability through the existence of a 
‘threshold’ firing rate, a crossover point between 
depression and potentiation which is itself slowly 
modulated by post-synaptic activity. This makes the 
strengthening of a synapse more likely when 
average activity is low, and vice versa, thus 
generating competition between inputs.  

Another contemporary plasticity model, based 
on the more straightforward empirical observation 
of distinct pairs of pre- and post- synaptic action 
potentials (Roberts and Bell, 2002 ; Bi and Poo, 
1998), has also generated a great deal of interest. It 
is known as spike timing dependent plasticity 
(STDP), because it dictates that the direction and 
degree of changes in synaptic efficacy are 
determined by the relative timing of pre- and post- 
synaptic spiking. Only pre-synaptic spikes which 
provoke post-synaptic firing within a short temporal 
window potentiate a synapse, while those which 
arrive after post-synaptic firing cause depression. 
Those inputs with shorter latencies or strong mutual 
correlations are thus favoured, at the expense of 
others.  

The most pertinent feature of STDP is that it 
implicitly generates competition between synapses, 
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and experiments with artificial neural networks 
(ANNs) have shown that this consequently 
generates inherently stable weight distributions. The 
shape of the resulting distribution is dependent on 
the exact nature of the STDP implementation, and 
the values of parameters used. Some researchers, 
for example, include the experimental observation 
that stronger synapses seem to undergo relatively 
less potentiation than weaker synapses, or an 
activity dependent scaling mechanism such as that 
outlined by the BCM model (van Rossum, Bi and 
Turrigiano, 2000). These features help to generate a 
weight distribution that more closely resembles the 
stable, unimodal, and positively skewed distribution 
found in vivo (see fig 1.2). Their omission tends to 
produce a bimodal distribution (Song, Miller and 
Abbott, 2000 ; Iglesias et al. 2005) more similar to 
that produced by purely Hebbian learning, but 
stabilised by innate competition and the inclusion of 
hard limits on the maximum achievable strength of 
a synapse (see fig 1.1). 
 

 
Fig 1.1 – Typical weight distribution generated by STDP 
 
The analysis of STDP is based on isolated pairs 

of pre- and post- synaptic action potentials, while 
observations of LTP are mediated by the application 
of prolonged spike trains more characteristic of 
normal brain activity. It is not clear how the STDP 
model causes synaptic weights to develop 
dynamically with such input, which involves many 
possible spike pairings. We can presume that both 
forms of plasticity arise from the same underlying 
biophysical mechanisms, and some recent work has 
attempted to reconcile both models within a single 
theoretical framework (Izhikevich and Desai, 2003). 
By making a few biologically plausible 
assumptions, this research has demonstrated  that 
the parameters of STDP can be linked directly with 
the sliding threshold of the BCM model.  

This paper explores the emergent properties of 
an artificial neural network which implements spike 
timing dependent plasticity. The form of STDP used 
is compatible with the BCM model of long-term 
potentiation, and thus the threshold firing rate can 

effectively be manipulated. The effects this has on 
synaptic weight distributions and dynamics are 
examined. Size-dependent potentiation is 
introduced, in order to observe the effects that this 
has on the behaviour of the network. Results 
obtained from the input of random, uncorrelated 
spike trains are also compared with those generated 
by input taken from performance of a simple, 
embodied, sensorimotor task. The latter will have 
correlated temporal patterns that are perhaps more 
representative of firing regimes found in vivo, and 
which STDP has previously been shown to make 
use of (Izhikevich, Gally and Edelman, 2004). 

 
Fig 1.2 – Synaptic weight distribution found in vivo 

 
Previous research findings are replicated in 

most instances, and some interesting additional 
properties of the network also noted. Along with a 
discussion of these preliminary results, the direction 
of, and motivation for, future work is outlined. As 
well as elaborating on the interesting findings made 
so far, this will include the use of additional 
robotics tasks, in order to further assess how the 
nature of synaptic input affects resulting weight 
distributions; and genetic algorithms, to optimise 
the performance of the network on these tasks. 
Hopefully this will help to identify which features 
of the network and plasticity model are most 
important to simple learning behaviour. A volume 
signalling element which can dynamically modulate 
STDP parameters will also be introduced, to 
investigate the postulated role of  a retrograde 
messenger in LTP. This will build on the work of 
Gally et al. (1990) and Husbands et al. (1998), who 
developed connectionist neural networks which 
incorporated abstract models of a diffusing, 
neuromodulatory gas.  
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2 Methods 
2.1 Neural Controller 

The neural network consists of 20 neurons, 
which are divided into 9 sensory, 9 intermediate and 
2 motor neurons. The network is realistic of the 
mammalian cortex in that these are 80% excitatory 
and 20% inhibitory, and that each has a randomly 
chosen axonal delay in the range [1ms, 20ms]. Each 
neuron has 5 randomly assigned post-synaptic 
connections. Motor neurons have no post-synaptic 
connections, and sensory neurons have no pre-
synaptic connections. Initial synaptic weights are 
assigned, according to the nature of the test, 
between 0 and a maximum (for excitatory neurones) 
or minimum (for inhibitory neurones) weight, 
which vary between tests. Fig 2.1 below illustrates 
the network morphology, with neurons represented 
as nodes, and typical post-synaptic connections for 
three neurons shown as straight lines. In the real 
network, the total number of connections (and thus 
the total number of synapses) is 90, which 
corresponds to 5 post-synaptic connections per 
neuron, excluding the two motor neurons. 
 

Fig 2.1 
 
The neurons operate using the Izhikevich 

(2004) spiking model, which dynamically calculates 
the membrane potential (v) and a membrane 
recovery variable (u), based on the values of four 
constants (a,b,c and d)and an applied current (I) 
according to the equations below. 
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Eqn. 2.1 

 
This model was chosen for three reasons. Firstly, it 
uses very few floating point operations, and so is 
computationally advantageous. Secondly, it can 

exhibit firing patterns of all known types of cortical 
neurons, by varying the parameters a, b, c and d. 
The values used for a standard excitatory neuron are 
[0.02,0.2,-65,6] respectively, and those for an 
inhibitory neuron are [0.02,0.25,-65,2]. It is also 
one of the most contemporary spiking models 
available.  

In order to introduce neural noise into the 
system, one neuron is selected at random each time 
step, and a small current applied to it. A value of 
10mA was used in most tests, although this was 
varied to assess the effects of neural noise. When 
distributed randomly over 20 neurons, an applied 
current of 10mA produces a spiking rate of 
approximately 3Hz per neuron.  
 
2.2 STDP 

Mathematically, with s = tpost - tpre being the 
time difference between pre- and post- synaptic 
spiking, the change in the weight of a synapse (∆w) 
due to spike timing dependent plasticity can be 
expressed as:- 
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Eqn. 2.2 
 

The method of implementing this plasticity is 
similar to that used by Song et al (2000) and others. 
Two recording functions (P+ and P-) are kept for 
each synapse. Whenever a spike arrives at a 
synapse, the relevant P+ value is reset to the value 
of the constant A+, and whenever a post-synaptic 
spike is fired the relevant P- values are decreased to 
the constant A-. In the absence of any spikes, these 
functions decay exponentially with the time 
constants τ+ and τ-. Concurrently, whenever a spike 
arrives at a synapse, P- is used to decrease the 
synaptic weight, and whenever the post-synaptic 
neuron fires, P+ is used to increase the synaptic 
weight, as shown below. 

 

wij (t) = wij (t) + P+e−kwij  
Eqn. 2.3 

 
Research aimed at reconciling the BCM model 

of long-term potentiation and STDP (Izhikevich and 
Desai, 2003) dictates that only nearest neighbour 
pairs of spikes should be used to direct the plasticity 
of a synapse. It also allows the calculation of a 
value for the threshold firing rate, using the formula 
below. 
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Eqn 2.4 
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This in turn means that the expressions A+ > | A- | 
and | A-  τ- | > | A+  τ+ | should be satisfied, to ensure 
that the threshold has a positive value at all times. 
The values of these STDP parameters that were 
used to generate each set of results are given in 
section 3. 
 Size-dependent potentiation was also 
introduced into the plasticity model in some 
experiments. Previous research (Bi and Poo, 1998) 
has shown that the relationship between the level of 
potentiation and initial synaptic weight is most 
likely inverse exponential, but a linear relationship 
was also tested. The formulae governing increases 
in synaptic weight in these experiments are given 
below. 

wij (t) = wij (t) + P+e−kwij  
Eqn. 2.5 

 
2.3 Task 

The network was first examined with 
uncorrelated Poissonian spike trains of varying 
frequencies as input. In later experiments, a simple 
robotics task was used to assess the behaviour of the 
network with input that had more temporal 
correlation and widely varying spike frequencies. 
The task chosen was the falling block task, 
employed previously by Goldenberg et al (2004).  
An agent of radius r=15 moves horizontally in an 
arena which is 400 units wide. The agent has 9 
sensory neurons with a range of 205, which are 
distributed evenly over a visual angle of π /6. These 
sensory neurons each have a randomly determined 
bias in the range [0.6:1.0] which is used to scale an 
applied current, relative to the distance of any 
object in their direct line of vision. The agent in it’s 
environment is illustrated by fig 2.2 below. 

 

 
Fig. 2.2 

 
 

Two blocks of radius r=13 fall from a height of 
198 at randomly assigned angles and from 
randomly assigned horizontal start positions, 
constrained only by the criteria that it must be 
possible for the agent to catch them both. The first 
object has a random velocity in the range 
v=[0.03:0.04] and the second object in the range 
v=[0.01:0.02]. The agent’s horizontal velocity is 
determined by the sum of the two opposing motors 
outputs, its maximum velocity being set at 0.05 
units/ms. The two motor neurons are leaky 
integrators, operating according to the equation 
below, where tº  is the time at which a spike was 
last received. Each has a randomly assigned gain in 
the range [0.01:0.05] and a decay constant (τ) in the 
range [20ms : 40ms].  
 

v = v e - ( t - t°) / τ 
 

Eqn. 2.6 
 

It is important to note that the capacity of the 
network to learn how to perform this task is not 
being tested in this paper. The embodiment is 
needed only to provide realistic sensorimotor input, 
which has correlated temporal properties that are 
considered important in assessing the properties of 
the plasticity model and network. In the future, 
evolutionary robotics techniques will be used to 
assess the learning capabilities of the network on 
this, and other, simple tasks. An outline of the 
motivations for this is given in section 4. 
 
2.4 Stability 

After each 100ms of experimental time, a 
histogram of synaptic weights is generated. If the 
values in each bin (which are of size 1) do not vary 
by more than ±1 for 10 of the 100ms steps (i.e. 1 
second), then the network is considered to have 
achieved a stable synaptic weight distribution. In 
order to test that this criteria was adequate, 30 tests 
were performed in which the network continued to 
operate for 100 seconds of simulated time after 
stability was flagged. In all cases, no further 
discernible change in the synaptic weight 
distribution occurred. 
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3 Results and Discussion 
3.1 Manipulation of threshold firing rate 

Figure 3.1 represents a standard synaptic weight 
distribution generated when the network was 
operated with purely uncorrelated input at a rate of 
30Hz, and the results replicate previous research 
findings (Song et al., 2000). The values of STDP 
parameters used in this case correspond to a 
threshold firing rate of approximately v=17Hz, and 
intermediate excitatory neuron firing rates had a 
mean value of approximately 12Hz. The effects of 
moving the threshold firing rate (by varying any of 
the four main STDP parameters) are intuitive, and 
demonstrated by figures 3.2 (where v=350Hz) and 
3.3 (v=6.25 Hz) below. A higher threshold for long-
term potentiation allows fewer synapses to reach the 
maximum possible strength, and a lower threshold 
has the reverse effect.  

However, results suggest that the relationship 
between weight distribution and STDP parameters 
is dictated by more complex factors than simply the 
position of the BCM threshold. Figure 3.4  shows a 
weight distribution for an identical threshold firing 
rate as 3.1, but with different STDP values (v=17 
Hz). The number of synapses which have been 
potentiated to saturation are fewer, and those which 
have been persistently depressed larger in 
frequency. The value of A+ τ+ is identical in both 
cases, but the longer temporal window for 
potentiation that existed in 3.4 clearly had a lower 
overall strengthening effect on weight values, 
compared with the higher degree of synaptic 
strengthening per spike which was present in the 
results for 3.1. Figure 3.5 represents a further 
manipulation of STDP parameters which again 
correspond to a threshold rate of approximately 
v=17Hz. The ratio of A+ : A- is equal in these two 
cases, and the distributions generated are almost 
identical.  

These results suggest that the position of the 
modification threshold may serve as a guide to the 
approximate shape of the distribution – or at least, 
the relative frequency of synapses which have been 
fully strengthened or weakened – but variations of 
STDP parameters have more of an influence than 
merely determining the position of this threshold.  

 

 
Fig 3.1 - A+=0.16 ; A-=-0.1 ; τ+ = 20ms ;  τ- = 40ms 

Fig 3.2 - A+=0.12 ; A-=-0.1 ; τ+ = 10ms ;  τ- = 40ms 

 
Fig 3.3 - A+=0.18 ; A-=-0.1 ; τ+ = 20ms ;  τ- = 40ms 

 
Fig 3.4 - A+=0.12 ; A-=-0.1 ; τ+ = 30ms ;  τ- = 40ms 
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Fig 3.5 - A+=0.2 ; A-=-0.125 ; τ+ = 20ms ;  τ- = 40ms 

 
3.2 Varying network input 

It is useful to make a comparison between the 
weight distributions arising from uncorrelated input 
and those generated by input from a closed-loop 
sensorimotor task. Figures 3.6 and 3.7 illustrate the 
results from the robotics exercise, when identical 
parameter values to figures 3.1 and 3.3 respectively 
were used. It seems that the input in the simple 
robotics task causes more synapses to adopt 
intermediate weight values, rather than be pushed to 
the bounds, and that changes in STDP parameter 
values have a much smaller effect. Distributions 
generated by input from the robotics task are 
generally much more consistent in shape. The 
effects of manipulating the threshold rate can still 
be seen, but rather than simply altering the size of 
the bimodal peaks (as seen in figures 3.1 – 3.3) it is 
the frequency and distribution of the intermediate 
strength synapses that are most affected.  

These discrepancies support the intuitive 
hypothesis that the nature of input to an ANN has a 
pronounced effect on the evolution of synaptic 
weights in that network. Much of the previous 
research in this area has made exclusive use of 
uncorrelated input, but results found here show that 
care must be taken in generalising from these 
findings. The resultant effects of any plasticity 
model are at least partially defined by the nature of 
the input it receives. 

The particular differences in this case could be 
explained by the nature of the simple robotics task 
employed. The activity of the sensory neurons 
during the task is characterised by relatively short 
bursts of spiking, interspersed with periods of 
relative silence, as objects move in and out of the 
line of sight. As post-synaptic activity is 
continuously present, the synaptic weights of the 
sensory neurons which are currently silent will be 
slowly depressed. This could account for the overall 
smaller number of very strong synapses, as it is 
impossible for all sensory neurons to be active 
simultaneously, and so depression will be 
perpetually incurred in some of the input neurons.  

Fig 3.6 
 

 
Fig 3.7 

 
3.3 Firing rates 

Various firing rates of uncorrelated Poissonian 
input were used during the course of the 
investigation. An analysis of the effects on the post-
synaptic firing rate (that in the intermediate, 
excitatory neurons) led to a surprising finding 
which contradicts previous research (Song, Miller 
and Abbott, 2000). It was observed that increasing 
the rate of input action potentials precipitated a 
small but noticeable decrease in their post-synaptic 
firing rate, as illustrated by figure 3.8.  

 
Fig 3.8 
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It is clear that the key to a good plasticity 
model, and one of the reasons why STDP is so 
highly regarded, is that it regulates network output 
in the face of wide fluctuations in input. However, 
one would expect this to be merely a damping 
effect, reducing the natural increase in output firing 
rate, rather than an inverse relationship such as the 
one generated by our network. This finding is also 
at odds with the notion of the sliding modification 
threshold of the BCM model. All STDP parameters 
were maintained at identical values when input 
firing rates were varied, and thus the position of the 
modification threshold also remained at a fixed 
point (v=100Hz in this case). An increase in input 
firing rate, one would then assume, would lead to an 
increase in the number of synapses which were 
persistently potentiated. 

In previous research, however, an increase in 
input firing rate with fixed STDP parameters has 
been observed to cause a slow decrease in the 
number of synapses saturating at the uppermost 
weight values (Song, Miller and Abbott, 2000). 
Interestingly, this finding was replicated, and figure 
3.9 shows how the relative frequency of synapses 
saturating at the upper bound varies with the rate of 
input. One may expect that fewer strong synapses 
would correlate with lower post-synaptic activity 
(as further data analysis showed that the number of 
intermediate strength synapses remained roughly 
constant), and this is in effect what has been 
demonstrated by our network. However, the 
findings in this area, and the reasons why they are 
inconsistent with previous work, certainly warrant 
further investigation. 

 
Fig 3.9 

 
3.4 Size-dependent potentiation 

The introduction of size-dependent potentiation 
into the plasticity model has a pronounced effect on 
synaptic weight distributions. Figures 4a and 4b 
(which were generated using eqn. 2.5, with a value 
of k=50) illustrate this, and more closely resemble 
results found in vivo. The peak at w=0 has been 
omitted, as these ‘silent’ synapses are not 
considered (and cannot be detected) when 

biological appraisals of weight distributions are 
made. It is interesting to note, however, that the 
frequency of synapses found at the lower bound was 
generally consistent between experiments with and 
without size-dependent potentiation. This implies 
that the larger number of synapses adopting 
intermediate weights was simply a product of the 
fact that fewer synapses were able to saturate at the 
upper bounds. Figures 4a (where v=100Hz) and 4b 
(where v=6.25Hz) also demonstrate that the value 
of the threshold rate has much less of an effect on 
the distribution when size dependent potentiation is 
present, although a small increase in the size of the 
maximum weight peak can still be clearly seen.  

 

 
Fig 4a 

 
Fig 4b 

 
3.5 Effect of initial weight values 

The results obtained with size-dependent 
potentiation also demonstrated that the initial 
synaptic weight values have some considerable 
influence on the stable weight distribution. Figure 
5a illustrates the synaptic weights adopted by the 
network, using identical STDP parameters to figure 
4a, but with initial synaptic weights all being 
assigned at the maximum value, rather than 
uniformly distributed between 0 and wmax. The 
distribution in this case even more closely 
resembles that found in vivo. The higher values of 
initial weights seem to shift the modal peak of the 
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weight distribution to a higher value, also increasing 
average post-synaptic firing rates.  

In the consideration of any dynamical system, it 
would be naïve to assume that initial conditions 
would not have a pronounced effect on the direction 
of evolution. In terms of learning, these findings 
could be explained, at a very abstract level, in that 
providing the network with any set of initial weights 
is equivalent to providing some form of ‘hard 
wired’ memory. When these initial weights are 
uniformly distributed, certain neural pathways are 
favoured over others from the outset. Plasticity will 
continue to make use of these synaptic connections 
at the expense of others, the network effectively 
‘building on what it knows’ during development. 
When all initial weights are set equally, however, 
one would assume that the network morphology and 
input alone would dictate the direction of plasticity, 
as all neural pathways are balanced equally at the 
outset. These results certainly warrant further 
investigation, and it would seem sensible to do this 
by examining the dynamics of individual synapses. 
This should help to ascertain whether those that are 
originally assigned low weight values are capable of 
being significantly strengthened over time, or if 
their initial weight and the nature of the plasticity 
model make persistent depression inevitable.  

 
Fig 5a 

 
3.6 Conclusions 
 The results obtained mostly support previous 
findings in this area. Manipulation of the BCM 
threshold firing rate directs synaptic weights in an 
intuitive manner. The STDP model has a strong 
regulatory effect on post-synaptic output, though 
surprisingly it seems to reduce the firing rate in the 
face of an increased frequency of input. The initial 
conditions of the network underlying the plasticity 
model, and the nature of input used, seem to have a 
pronounced effect on the direction in which it 
develops, which is to be expected from any 
dynamical system. Although STDP implicitly 
generates competition between synapses, the weight 
distribution it creates is still not representative of 
that found in vivo unless additional experimental 

observations are included. The use of size-
dependent potentiation generates a weight 
distribution which closely resembles that which 
occurs naturally in the mammalian cortex. It is left 
to future work to see whether this, and other 
phenomena identified by this paper, are beneficial 
to simple learning behaviour in ANNs. 
 
4 Plan for future work 

The next step in this research is to pursue and 
elaborate on the interesting results which have 
arisen, and then to extend the scope of the work to 
allow further insight into the nature and properties 
of contemporary synaptic plasticity models. In 
terms of the former, a number of tests have 
naturally suggested themselves in the course of the 
research so far. A greater number of embodied 
robotics tasks should be used to glean any further 
insight possible into how various forms of input 
direct synaptic plasticity. The relationship between 
input and post-synaptic firing rate needs to be 
clarified, and the implications of this unexpected 
finding explored. A greater variety of initial 
synaptic weights should be tested, to further 
delineate the nature of their effect on the final 
distribution. There are certain properties of the 
network which it would also be interesting to 
experiment with. Timing is clearly critical in this 
plasticity model, and so the effects of varying or 
removing axonal delays may generate some 
interesting results. It is also intended that the 
morphology of the network be varied. This will 
include the use of re-entrant connections to more 
closely model the structure of the hippocampus, 
which is a region of the brain in which synaptic 
plasticity is most frequently observed. 

It is also considered very important that, in the 
near future, evolutionary algorithms are used to 
optimise the performance of our network on the 
various robotics tasks used. This will build on the 
work of Floreano and Urzelai (2001), who explored 
the development of plastic control networks through 
evolutionary techniques, and help to assess the 
robustness of various incarnations of this network. 
It will also hopefully allow the identification of the 
exact properties of the plasticity model which are 
exploited to achieve simple learning behaviour. The 
adaptive abilities of such robots are clearly 
valuable. 

After these examinations, it is felt that the 
addition of a volume signalling element to the 
network which reflects the operation of nitric oxide 
(NO) in the brain would be a useful elaboration. 
The debate over the function of this gas has 
provoked a wealth of research, which has made it 
clear that NO plays some role in neural learning 
processes, whether or not as a retrograde messenger 
(see Holscher, 1997 for a review). Experiments with 
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animals have shown that NO-synthase (NOS) 
inhibitors impair learning in chicks performing a 
passive-avoidance task (Holscher and Rose, 1993), 
and cause amnesia in rats in a water maze task 
(Chapman et al, 1992). NO has also been identified 
as a key intracellular messenger in imprinting and 
odour learning in sheep (Kendrick et al, 1997). In 
invertebrates, NO has been found to play a critical 
role in associative learning (Müller, 1996); in the 
formation of long term proboscis extension 
response in the honey bee (Hammer, 1997); in 
tactile learning in the octopus (Robertson et al, 
1994); food attraction conditioning in the snail 
Helix pomatia (Teyke, 1996); and the consolidation 
of memory following appetitive conditioning of 
Lymanaea (Kemenes et al, 2002). In Aplysia, it has 
been implicated in multiple memory processes after 
learning that a food is inedible (Katzoff et al, 2002). 
It has also been shown that the gas facilitates LTD 
in the cerebellum (Schweighofer and Ferriol, 2000) 
- a neural correlate of motor learning. Simulation 
studies which model cerebellar learning (Calabresi 
et al, 1999) have also demonstrated that the 
inclusion of an abstract gas signalling mechanism 
enhances learning and improves performance. 
Studies on the rat hippocampus (Malen and 
Chapman, 1997) have led to an interesting 
hypothesis regarding a possible alternative role of 
NO in the neural correlates of learning. It is possible 
that NO signalling may mediate the BCM firing 
threshold, as findings show that NO donors 
facilitate LTP induction by stimuli that would 
normally only produce short term potentiation. 

With the results obtained in this study, a 
volume signal could be used to directly modulate 
STDP variables, dynamically altering the position 
of the BCM model threshold firing rate, and thus 
indirectly manipulating individual synaptic weights 
online. The action of NO as a retrograde messenger, 
or in any other postulated role that it may have in 
neural learning processes, can thus be modelled and 
investigated. This will build on the work of Gally et 
al. (1990) and Husbands et al. (1998), who 
developed connectionist neural networks that 
incorporated abstract models of a diffusing, 
neuromodulatory gas. Hopefully, the use of 
evolutionary robotics techniques, in conjunction 
with a four-dimensional signalling element such as 
this, will allow the development of a new class of 
spiking ANN’s which can more successfully 
replicate neural learning mechanisms. 
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Abstract 

In the natural environment, competing signals for an event of biological significance are 

likely to convey different temporal information about when that event will occur, and this 

may influence the ease with which these signals are learned about. An experiment will be 

described in which a compound of a noise and a light signalled the delivery of a food 

pellet to rats. This procedure, known as overshadowing, results in less learning to the 

light than would occur if it had been conditioned in isolation. The temporal information 

conveyed by the two stimuli was manipulated, in order to investigate the impact of this 

factor on the overshadowing effect. Specifically, two control groups were trained with a 

single light conditioned stimulus (CS) of fixed (F) or variable (V) duration, whereas four 

overshadowing groups received a noise-light compound. For two overshadowing groups 

the light was of fixed duration (30s), and for two it was variable (with a mean duration of 

30s); for one of each of these pairs of groups the noise was fixed and for the other it was 

variable. This yielded two control groups (F and V) and four overshadowing groups 

(F(noise)F(light), V(noise)F (light), V(noise)V(light), F(noise)V(light). The dependent 

measure used in the study was the number of head entries to a food cup made by rats 

during the course of the stimuli. Date were analysed using a factorial model; the first 

factor was the distribution, either fixed or variable, of the target (light) while the second 

factor was whether the overshadowing (noise) stimulus was absent, fixed or variable . 

There was less responding to the target light when it was variable than when it was fixed, 

and less overshadowing of the light when the overshadowing noise was variable duration 

than when it was fixed. These results imply that conditioning is weaker under conditions 

of temporal uncertainty. Standard models of learning (e.g. Rescorla & Wagner, 1972) do 

not generally incorporate the effects of time on conditioning and as such they do not 

predict a difference in conditioning between fixed and variable stimuli. There are, 

however, models that attempt to explain both conditioning and timing within the same 

theoretical framework – hybrid models. The theoretical predictions of these models are 
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considered; it is argued that the best account is in terms of an adaptation of the temporal 

difference model of classical conditioning (Sutton & Barto, 1990). 

 

65



 
 

The locus of learned predictiveness effects in human learning 
 

 M. E. Le Pelley M. B. Suret T. Beesley 
 lepelleyME@cf.ac.uk suretMB@cf.ac.uk beesleyT@cf.ac.uk 

 

School of Psychology, Cardiff University 
Cardiff CF10 3AT 

 
Abstract 

 
Many previous studies of learned predictiveness effects in animal and human learning indicate an 
advantage for cues that have previously been experienced as good predictors of outcomes over those 
that have been poorer predictors. These studies do not, however, reveal whether learned predictive-
ness exerts its effects at the level of learning or performance (or both). An experiment using human 
participants and a novel “mutant scientist” paradigm was used to investigate this issue. Results indi-
cated that altering the learned predictiveness of cues after a stage of critical learning influenced re-
sponding to those cues, demonstrating that learned predictiveness must exert an influence on per-
formance, in terms of responding to cues. 
 

1   Introduction 

It is thought to be relatively well-established in the 
field of animal conditioning that the amount of proc-
essing power devoted to learning about a given con-
ditioned stimulus (CS) is influenced by its past his-
tory of predictiveness at an associative level. Estab-
lishing a CS as a predictor of a reinforcing event 
seems to alter the readiness with which that stimulus 
will engage in later learning (see Le Pelley, 2004, 
for a recent review). One model of such learned 
predictiveness effects is that of Mackintosh (1975), 
which states that the change (∆) in associative 
strength of cue A (VA) on each learning episode is 
given by: 
 

   (1) ( )A AV S Vα λ∆ = − A
 

where S is a constant learning-rate parameter, λ is 
the asymptote of conditioning supportable by the 
unconditioned stimulus (US) occurring on that trial, 
and αA is the associability of cue A. The associ-
ability of a cue varies as a function of that cue’s 
experienced predictive ability. Mackintosh proposed 
that αA increases if A is a better predictor of the US 
on trial T than are all other presented cues; αA de-
creases if A is a poorer predictor of the current US 
than are other presented cues. 

A number of recent studies have indicated that 
learned predictiveness processes also exert an influ-
ence on human learning (e.g. Bonardi, Graham, 
Hall, & Mitchell, 2005; Kruschke & Blair, 2000; Le 
Pelley & McLaren, 2003; Le Pelley, Oakeshott, & 

McLaren, 2005). These human experiments all indi-
cate that people devote more “processing power” to 
cues that have previously been established as reli-
able predictors of outcomes than those that have 
been established as poor predictors. The current 
paper represents a first effort to establish the level at 
which this learned predictiveness exerts its effects 
on cue processing – at the level of learning (as sug-
gested by the Mackintosh model) or performance. 

We will consider the study of Le Pelley and 
McLaren (2003) in more detail here, as it forms the 
focus of the current experiment. The basic design of 
this study is shown in the three left-hand, italicised  
columns of Table 1. In this table, letters A-Y refer to 
cues, and O1-O6 refer to outcomes that can be 
paired with those cues. Thus “AV  O1” indicates 
that cues A and V were presented together, and were 
paired with outcome O1. 

During the first stage of this experiment, cues A 
and D were consistently paired with O1, cues B and 
C were consistently paired with O2, and cues V-Y 
provided no basis for discrimination between the 
two outcomes, being paired with O1 and O2 an 
equal number of times. As such, during Stage 1 cues 
A-D were the best available predictors of the out-
come occurring on each trial and hence, according 
to the Mackintosh model, should have maintained a 
high α. The α of cues V-Y meanwhile should have 
decreased, as these were the poorer predictors of the 
outcome occurring on each trial. 

On each of the Stage 2 trial types shown in Table 
1, a good predictor from Stage 1 (A, B, C, or D) was 
paired with a poor predictor (V, W, X, or Y) with 
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Table 1: Design of Le Pelley and McLaren (2003), and current experiment 
 

Stage 3 
Stage 1 Stage 2 (Test) 

Grp Consistent Grp Inconsistent 
Test 

AV  O1 AX  O3 (AC) AV  O5 AV  O5 AC 
AW  O1 BY  O4 (BD) AW  O5 AW  O6 BD 
BV  O2 CV  O3 (VX) BV  O6 BV  O5 VX 
BW  O2 DW  O4 (WY) BW  O6 BW  O6 WY 
CX  O2   CX  O6 CX  O6  
CY  O2   CY  O6 CY  O5  
DX  O1   DX  O5 DX  O6  
DY  O1   DY  O5 DY  O5  

 
Note:  Entries in italics show trial types used by Le Pelley and McLaren (2003); whole table shows design of current ex-
periment (except test in column 3, which was used only by Le Pelley & McLaren, 2003).

OR

which it had not been presented in Stage 1, and this 
novel compound was paired with a novel outcome; 
compounds AX and CV with O3, and compounds 
BY and DW with O4. 

Following Stage 2, participants were asked to 
rate how likely each of outcomes O3 and O4 was to 
follow various cue compounds. Following Dickin-
son, Shanks and Evenden (1984), these ratings pro-
vided an index of the strength of the cue–outcome 
associations developed over the course of training. 

The Mackintosh model predicts that, at the end 
of Stage 1, cues A-D (good predictors in Stage 1) 
will have higher associabilities than cues V-Y (poor 
predictors in Stage 1). According to this model, this 
will promote more rapid learning of associations 
between these good predictors and the Stage 2 out-
comes than between the poor predictors and Stage 2 
outcomes. Therefore participants should develop 
strong associations from A and C to O3, strong as-
sociations from B and D to O4, weak associations 
from V and X to O3, and weak associations from W 
and Y to O4. In line with these predictions, partici-
pants rated compound AC as a strong predictor of 
O3 and compound BD as a strong predictor of O4, 
while VX and WY were perceived to be weak pre-
dictors of O3 and O4 respectively. This was exactly 
the pattern of results observed by Le Pelley & 
McLaren (2003). 

This study clearly indicates a difference in the 
processing afforded to cues A-D and cue V-Y, and 
that this difference arises as a result of the difference 
in their experienced predictiveness during Stage 1. 
The question now becomes one of exactly where 
this learned predictiveness exerts its influence. The 
Mackintosh model as presented above (and as pre-
sented originally by Mackintosh, 1975) states 
clearly that associability influences learning, deter-
mining how rapidly a cue undergoes changes in as-
sociative strength. If two cues with different α val-

ues are presented simultaneously and reinforced, the 
cue with the higher α will develop a stronger asso-
ciation to the outcome than will the cue with the 
lower α. In this conceptualisation of the model, re-
sponding to cue A, RA, is simply a function of that 
cue’s associative strength, i.e.: 
 

 AR kVA=  (2) 
 

where k is a constant. 
There exists an alternative view of the locus of 

learned predictiveness, however. Mackintosh (1975) 
raised the possibility that learned predictiveness 
might also influence performance, in terms of re-
sponding to a cue. That is, as opposed to Equation 2, 
Mackintosh tentatively suggested that responding 
might also be a function of α, i.e.: 
 

 A AR k VAα=  (3) 
 

In the absence of compelling experimental evidence 
to support the idea that α influences performance as 
well as learning, however, Mackintosh remained 
agnostic on this issue1. 

This raises the issue of how best to interpret the 
findings of Le Pelley & McLaren (2003). In the dis-
cussion above (and in the original paper) we ap-
pealed to a model implicating α in learning only. 
That is, cues that were experienced as good predic-
tors in Stage 1 engaged the learning process more 
strongly in Stage 2 than those that were experienced 
as poorer predictors. Responding to the good predic-
tors would then be greater on test, as these cues 
would have higher associative strengths. It is, how-
                                                 
1 Mackintosh (1975) did cite evidence from Wagner, Logan, 
Haberlandt and Price’s (1968) study of the relative validity effect 
in support of the idea that α can influence performance. How-
ever, it is possible to explain this data using a model that makes 
no appeal to learned predictiveness effects at all (e.g. Rescorla & 
Wagner, 1972), and hence this evidence is not persuasive. 

67



ever, also possible to account for these data using a 
model that implicates α in performance only, with-
out influencing learning at all. Suppose that, as be-
fore, cues A-D develop higher α values than cues V-
Y during Stage 1 (by virtue of the fact that the for-
mer cues are consistently paired with the same out-
comes). If α does not influence learning, then during 
Stage 2 all cues will form equally strong associa-
tions to the outcomes with which they are paired. If 
α influences responding as in Equation 3, then re-
sponding to the good predictors from Stage 1 on test 
will be greater than that to the poor predictors. For 
example, for cues A and X at the time of test: 
 

If αA > αX and VA = VX 
Then, by Equation 3, RA > RX 

 

Thus it is theoretically possible to account for these 
data using a model that makes no recourse to α in 
the learning mechanism. 

These predictions were tested by computational 
simulation, using two different models. In the first 
model α influenced learning only, with performance 
being directly proportional to associative strength. 
This model, then, effectively combined Equations 1 
and 2, although it was modified slightly to allow for 
the multiple-outcome design of this experiment. In 
the second model, α exerted no influence on learn-
ing, but did influence performance. This model ef-
fectively combined the learning equation: 
 

   (4) ( )A AV S Vλ∆ = −
 

with performance as specified in Equation 32. Again 
the model was modified slightly to deal with a mul-
tiple-outcome design. It was found that both models 
could reproduce faithfully the results observed by 
Le Pelley and McLaren (2003). The exact formula-
tion and parameterisation of these models is unim-
portant for the current discussion. The simulations 
merely provide an existence proof that both ap-
proaches are able to explain the advantage for good 
predictors over poor predictors observed in this ex-
periment. It would also, of course, be possible to 
have α influence both learning and performance 
(i.e. combine Equations 1 and 3), with the resultant 
model also able to account for these results. 

The idea that learned predictiveness might influ-
ence performance as well as learning has been taken 
up explicitly by Kruschke (1996; 2001) in his ADIT 
                                                 
2 We are not wedded to a particular formalization of either of 
these models. For example, the models could be instantiated with 
an aggregated error term (λ – ΣV) in the learning equation in-
stead of a separable error term (λ – VA), which would render 
them capable of explaining more examples of cue competition in 
learning (see Le Pelley, 2004). Our aim is to contrast models 
involving α in either learning or performance components, and 
we have chosen the simplest models that illustrate these points. 

and EXIT models. Despite these strong claims re-
garding the locus at which α exerts its effects, to the 
best of our knowledge there currently exists no con-
clusive empirical evidence bearing on this issue. All 
of the empirical effects of learned predictiveness at 
present described in the literature, in both animal 
and human studies, could be explained by a model 
implicating α in learning only, in performance only, 
or in both learning and performance. The experi-
ment described in this paper represents a first at-
tempt to decide between these alternative views in a 
study of human learning. 

The design of our experiment is shown in Table 
1 (whole table apart from the third column, shown 
in parentheses). Stages 1 and 2 are as for Le Pelley 
and McLaren (2003). Immediately following Stage 
2, participants receive a third stage of training, in 
which cue compounds are paired with novel out-
comes (O5 and O6). For participants in Group Con-
sistent, cues A-D are once again good predictors of 
outcomes in this stage (A and D are consistently 
paired with O5; B and C are consistently paired with 
O6), while cues V-Y are poor predictors (being 
paired with O5 and O6 an equal number of times). 
For these participants, then, predictiveness in Stage 
3 is consistent with what was learnt in Stage 1. For 
participants in Group Inconsistent, on the other 
hand, cues A-D are poor predictors, whereas cues 
V-Y are good predictors in Stage 3. For this group, 
predictiveness in Stage 3 is inconsistent with what 
was learnt in Stage 1. Following Stage 3, partici-
pants are asked to rate how likely it is that each of 
the Stage 2 outcomes (O3 and O4) would follow 
compounds AC, BD, VX, WY. This is the same test 
as used by Le Pelley and McLaren (2003). The 
question of interest is what effect Stage 3 training 
has on the pattern of responding to these com-
pounds. 

For both groups, at the outset of Stage 2 the α 
values for cues A-D should be higher than those for 
V-Y as a result of the higher predictiveness of the 
former cues during Stage 1. If α influences learning, 
then this will promote more rapid learning of asso-
ciations between A-D and the Stage 2 outcomes 
than associations between V-Y and the same out-
comes. The α values of the cues should diverge in 
the two groups during Stage 3. In Group Consistent 
cues A-D will maintain a high α during Stage 3, and 
cues V-Y will maintain a low α. In Group Inconsis-
tent, on the other hand, we might expect the α of V-
Y to rise over Stage 3, and the α of A-D to fall (re-
flecting the reversed predictiveness of these cues). 
Nevertheless, if α affects learning only, then there is 
no way for these subsequent changes in α to influ-
ence participants’ reports of the relationship be-
tween test cues and Stage 2 outcomes (they will not 
directly influence the associations formed in Stage 2 
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as training in Stage 3 is with different outcomes to 
those used in Stage 2). In other words, if responding 
is purely a function of associative strength, then 
there is no way that subsequent changes in α can 
influence this responding. Therefore, if α influences 
learning only then we would expect similar results 
in Group Consistent and Group Inconsistent, with 
both groups providing higher ratings for compounds 
AC and BD than compounds VX and WY. 

Suppose instead that α affects performance only. 
In that case, all cues will develop equally strong 
associations to whichever of outcome O3 or O4 they 
are paired with during Stage 2. However, changes in 
α during Stage 3 will influence the extent to which 
these associations are expressed in ratings made on 
test. In Group Consistent, we would expect stronger 
responding to compounds made up of cues A-D (as 
these cues maintain high α during Stage 3) than to 
compounds made up of cues V-Y (which maintain 
low α during Stage 3). In Group Inconsistent, how-
ever, the pattern of α values at the time of test will 
be quite different. To the extent that the α of cues 
V-Y ends Stage 3 higher than that of cues A-D, we 
would expect that participants would give higher 
ratings for compounds VX and WY than for AC and 
BD. That is, the reversal of the α values of the com-
ponent cues during Stage 3 should interfere with the 
effect observed by Le Pelley and McLaren (2003), 
reducing (and possibly reversing) the advantage for 
AC/BD over VX/WY. 

This selective influence on the pattern of re-
sponding to the different compounds will only be 
observed if α influences performance. As noted 
earlier, it is possible that α influences both learning 
and performance. On this view we would still expect 
Inconsistent training to reduce the advantage for 
AC/BD over VX/WY. However, we might expect 
the interfering effect of Stage 3 training to be 
slightly less, as AC/BD will retain the advantage of 
having higher associative strengths, but will lose out 
in terms of having lower α values on test. 

This experiment used a novel “mutant scientist” 
paradigm. Participants played a scientist who spe-
cialises in creating mutants. They were told that 
mutants are created by combining certain chemicals 
with a special “goo” substance. Thus the letters A-Y 
`in Table 1 were represented by different chemicals, 
and outcomes O1-O6 by different types of mutants 
that could be created. 
 
2   Method 
2.1 Participants, Apparatus and Materials  Thirty-
eight Cardiff University undergraduates participated in 
exchange for course credit. Participants were randomly 
assigned to groups, with 19 in each of Group Consistent 
and Group Inconsistent. Participants were tested individu-
ally, with stimuli presented on a 17-inch computer moni-

tor, and all responses made via the mouse. The eight 
chemical names were Bizancrine, Daktyre, Halorite, 
Kluphane, Nelomine, Ontone, Quezalin, and Yestimox. 
These were randomly and independently assigned to the 
letters A-Y in the experimental design shown in Table 1 
for each participant. The six mutant names were Draguts, 
Goygle, Jominoid, Necromon, Rargon and Snarlig, which 
were again randomly assigned to outcomes O1 to O6 for 
each participant. Pictures of the different mutants were 
obtained from the web, with pictures being randomly 
assigned to mutant names for each participant. 
 
2.2 Procedure  At the outset of the experiment, partici-
pants read the following on-screen instructions: 
 

“In this experiment you take on the role of a scientist who 
specialises in creating mutants. A mutant is created by 
combining different chemicals with a special blue ‘goo’ 
substance. When certain chemicals are combined with the 
blue goo a mutant is born. Different chemicals can pro-
duce different types of mutants, but some chemicals might 
have no effect at all. 

You have just been given a newly-discovered set of 
chemicals to experiment with. In an attempt to discover 
which chemicals result in the creation of the different 
types of mutants, you arrange a series of trials. On each 
trial, the chemicals to be used are displayed at the top of 
the screen. On all trials you use two different chemicals at 
the same time. 

Your aim is to predict which mutant will be created 
when you mix the chemicals with the goo. 

On each trial, click on the mutant that you think will be 
created when the chemicals displayed at the top of the 
screen react with the goo. When you have made your deci-
sion, click the OK button. The computer will then tell you 
whether your prediction was correct or incorrect. A blue 
box will appear, indicating the mutant that was actually 
created on that trial. If you make an incorrect prediction 
the computer will beep. 

Since nobody currently knows the effect of these new 
chemicals (or in fact whether any of them are capable of 
creating mutants at all) you will start out guessing, but 
with the aid of the feedback your predictions should start 
to become more accurate. 

Your reaction times are not important: you may take as 
long as you like on each trial.” 

 
A typical Stage 1 trial is shown in Figure 1. On each trial 
the message “The following chemicals are used:” ap-
peared at the top of the screen, above the names of two 
chemicals, followed by the message “What sort of mutant 
do you think will be created? Click on the mutant that you 
predict, then click OK”. Below this were pictures of two 
mutants, along with their corresponding names. Partici-
pants entered their predictions by clicking on one of these 
pictures, and then clicking an OK button. Immediate feed-
back was then provided: a blue box highlighted the correct 
answer for that trial. If participants had made a correct 
prediction, the word “Correct” appeared in place of the 
“What sort of mutant…” question; if they had made an 
incorrect prediction, the word “Wrong” appeared and the 
computer beeped. 

Stage 1 comprised 14 blocks, with each of the eight 
trial types occurring once per block. Trial order within a 
block was randomized, with the constraint that there could 
be no immediate repetitions across blocks. For each trial 
type the order of presentation of the chemicals (left/right) 
was counterbalanced across blocks. For example, for trial 
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type AV→O1, there would be seven presentations with 
chemical A to the left of chemical V, and seven presenta-
tions with V to the left of A (the order of these presenta-
tions was randomized). The two mutants presented on 
each Stage 1 trial were always O1 and O2. For each trial 
type, the order of presentation of mutants (left/right) was 
counterbalanced across blocks. So for trial type AV→1, 
there would be seven presentations with mutant O1 to the 
left of mutant O2, and seven presentations with mutant O2 
to the left of mutant O1 (again in random order). 

After Stage 1, the following message appeared: 
  
“The next phase of your research involves using a slightly 
different type of goo. This red goo creates new types of 
mutants. Some of the chemicals that you mix with this red 
goo are the same as those that you used earlier. Once 
again your aim is to predict what type of mutant will be 
created when each combination of chemicals is mixed 
with the red goo, by clicking on the appropriate mutant 
and then clicking OK. Feedback will be provided, and 
should allow your predictions to become more accurate.” 
 

The form of each Stage 2 trial was the same as that for 
Stage 1, except that (i) the goo pictured on each trial was 
red, rather than the blue used in Stage 1, and (ii) the two 
mutants pictured on each trial represented O3 and O4. 
There were six blocks in Stage 2, with each of the four 
trial types appearing once per block. Counterbalancing 
and randomization of trial order, chemical presentation 
order and mutant presentation order were as for Stage 1. 

The message appearing at the end of Stage 2 was the 
same as that appearing at the end of Stage 1, except that 
now participants were told that, in the following stage, 
they would be using a yellow goo. The form of each Stage 
3 trial was the same as for the previous stages, except that 
(i) the goo pictured on each trial was yellow, and (ii) the 
two mutants on each trial represented O5 and O6. Stage 3 
comprised 10 blocks, with counterbalancing and randomi-
sation as in previous stages. 

After Stage 3, the following message appeared: 
 

“Your work in creating mutants is starting to be recog-
nised and you are becoming an esteemed professional in 
the field! However, some people are a little sceptical about 
your scientific understanding of the experiments you are 
conducting. As a test you are asked to make decisions for 
certain individual chemicals. 

You should rate how likely you think it is that each type 
of mutant will be created when THIS CHEMICAL 
ALONE is mixed with the red goo, on a scale from 0 to 
10. A rating of 0 means that mixing this chemical alone 
with the red goo is VERY UNLIKELY to create that type 
of mutant, while a rating of 10 means that mixing this 
chemical alone with the red goo is VERY LIKELY to cre-
ate that type of mutant. You may use any value from 0 to 
10 to indicate your opini on. 

When you have entered your rating, click OK to con-
tinue. Note that you will end up rating each chemical 
twice, giving one rating for each type of mutant. You will 
not receive feedback on these ratings.” 

 
Each of the four test compounds shown in Table 1 was 
presented in random order for rating. On each test trial, 
the message “The chemicals used are:” appeared above 
the names of two chemicals, which were pictured being 
poured onto the red goo that had been used during Stage 
2. Below that came the message “How likely is it that the 
following mutant will be created?”, along with a picture 

and name of one of the Stage 2 mutants (O3 or O4). Par-
ticipants entered their rating by clicking one of 11 radio 
buttons labelled from 0 to 10, the leftmost being 0 (la-
belled “Chemicals very unlikely to create this mutant”), 
and the rightmost being 10 (“Chemicals very likely to 
create this mutant”). Participants rated the ability of a 
given pair of chemicals to create one type of mutant (e.g. 
O3), and on the succeeding trial rated the ability of that 
same compound to create the other type of Stage 2 mutant 
(O4 in this case). Whether participants rated mutant O3 or 
O4 first was consistent across all test compounds, and was 
determined randomly for each participant. 
 
3   Results and Discussion 
Figure 2 shows mean percent correct of participants’ 
predictions during each block of the three training 
stages (chance = 50% correct). Learning is evident 
in all stages. Over Stages 1 and 2, performance is 
very similar in Groups Consistent and Inconsistent 
(which receive identical training during this time). 
T-tests conducted on the overall percent correct (av-
eraged across all blocks) for each participant in each 
stage found no difference in performance for Stage 
1 or Stage 2, both ts < 1. During Stage 3, however, 
learning is considerably more rapid in Group Con-
sistent than in Group Inconsistent. A t-test on the 
overall performance for each group revealed a sig-
nificant difference, t(36) = 2.27, p < .05. The differ-
ence between the groups decreases as training con-
tinues, however, with no significant difference in 
performance on the final block of Stage 3, t < 1. 

This difference in performance of the two groups 
during Stage 3 is predicted by both views of the 
locus of α, in learning or performance. According to 
both models, cues that were better predictors during 
Stage 1 (A-D) will begin Stage 3 with higher αs 
than those that were poorer predictors (V-Y). On the 
learning-based view of α, this will tend to favour 
cues A-D over cues V-Y in the learning process 

Figure 1:  Screenshot of a typical Stage 1 trial.
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during Stage 3. This will produce faster learning in 
Group Consistent (for whom A-D are the cues that 
predict the correct answer and so must be learnt 
about for performance to improve) than in Group 
Inconsistent (for whom cues A-D are irrelevant, and 
instead V-Y must be learnt about). On the perform-
ance-based view of α, responding to cues A-D will 
tend to be amplified relative to that for cues V-Y. 
This will enhance performance in Group Consistent, 
as A-D are the cues that will eventually come to 
control responding (by virtue of consistent pairings 
with the same outcomes during Stage 3). Perform-
ance will be relatively impaired in Group Inconsis-
tent, however, as cues V-Y (which will be only 
weakly responded to by virtue of their low αs) are 
those that must ultimately come to control respond-
ing. As such, the observation of a performance dif-
ference during Stage 3 training cannot decide be-
tween learning- and performance-based views of α. 

The difference in performance of the two groups 
during Stage 3 relates to studies of intradimensional 
and extradimensional shift learning in animals and 
humans (e.g. Schwartz, Schwartz, & Teas, 1971; 
Shepp & Schrier, 1969; Whitney & White, 1993). 
The difference is that in these more traditional de-
signs it is the cues that change between pre-shift and 
post-shift discriminations while the outcomes re-
main the same: in the current design, the cues re-
main the same while the outcomes change. 

The results of main interest from this study con-
cern the ratings given to compounds during the test 
phase. Participants provided two ratings for each 
compound: one for how strongly that compound 
predicted O3, the other for how strongly it predicted 
O4. Following Le Pelley and McLaren (2003; see 
also Le Pelley, Oakeshott, & McLaren, 2005) we 
used these ratings to calculate difference scores for 
each compound. This was done by taking the rating 
for each compound with respect to the outcome (O3 

or O4) with which its constituent cues were paired 
in Stage 2, and subtracting from that the rating for 
the same compound with respect to the outcome 
with which its cues were not paired in Stage 2. For 
example, the difference score for AC is given by the 
rating for AC with respect to O3 minus the rating 
for AC with respect to O4, because A and C were 
paired with outcome O3 during Stage 2. Likewise, 
the difference score for BD is given by BD’s rating 
for O4 minus its rating for O3, because B and D 
were paired with O4 during Stage 2. These differ-
ence scores index the differential predictiveness of 
compounds with respect to Stage 2 outcomes – that 
is, the extent to which a compound predicts the out-
come with which it was paired more than it predicts 
the outcome with which it was not paired. High dif-
ference scores indicate strong, selective perform-
ance, while a difference score of zero indicates no 
selective performance. The advantage of using dif-
ference scores over raw rating data is that the former 
are free from influences of generalization that would 
otherwise render the results uninterpretable (see Le 
Pelley, Oakeshott, Wills, & McLaren, 2005). 

Finally, we averaged difference scores for com-
pounds AC and BD (which both consist of cues that 
were good predictors during Stage 1), and for com-
pounds VX and WY (which both consist of cues that 
were poor predictors during Stage 1). These mean 
difference scores are shown in Figure 3. 

In Group Consistent, responding to compounds 
made up of good predictors from Stage 1 (AC/BD) 
is considerably better than that for compounds made 
up of poor predictors from Stage 1 (VX/WY). The 
pattern of responding in Group Inconsistent is quite 
different, however. In this latter group, responding 
to AC/BD is, if anything, poorer than that for 
VX/WY. These data were initially analysed using 
ANOVA with one between-subjects factor of Group 
(Consistent vs Inconsistent) and one within-subjects 

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

 c
or

re
ct

Group Consistent Group Inconsistent

Stage 1 Stage 2 Stage 3 

Figure 2:  Percent correct (averaged over all trial types) across blocks during the 3 training stages. 
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factor of Compounds (AC/BD vs VX/WY). This 
revealed that there was no main effect of Group, F < 
1, or Compounds, F (1, 36) = 1.33, p = .26. The 
interaction of these two factors, however, was 
highly significant, F (1, 36) = 8.06, p < .01, indicat-
ing a significant difference in the pattern of per-
formance in the two groups. 

Pre-planned t-tests were used to analyse this in-
teraction further. Paired t-tests revealed that, in 
Group Consistent, compounds AC/BD received dif-
ference scores that were significantly higher than 
those of VX/WY, t (18) = 3.20, p < .01, while in 
Group Inconsistent the apparent reversal in per-
formance to these compounds (with mean difference 
score for VX/WY higher than that for AC/BD) 
failed to reach significance, t (18) = 1.08, p = .30. 

Group Consistent showed a clear learned predic-
tiveness effect in line with that observed by Le Pel-
ley and McLaren (2003), with better performance to 
compounds made up of cues that were good predic-
tors during Stages 1 and 3. This confirms that α is 
exerting effects in this study, but does not tell us 
whether it is exerting these effects in learning or 
performance. The Stage 3 training received by 
Group Inconsistent, during which cues that had pre-
viously been experienced as predictive (A-D) were 
now found to be nonpredictive, and vice versa, ex-
erted a selective influence on the pattern of results. 
In this latter group, there was no longer any advan-
tage for compounds AC/BD over VX/WY on test. 
Thus it would seem that changes in α of cues after 
the critical learning phase during Stage 2 are suffi-
cient to alter responding to those cues. These results 
therefore lie beyond a model in which α only affects 
learning. Instead they demand that α is able to influ-
ence performance, in terms of responding to cues. 

Before we can be completely confident in this 
conclusion, however, we must rule out two alterna-
tives. One possibility is that the Stage 3 training of 
Group Inconsistent (which, as evidenced by Figure 
2, is somewhat harder than that for Group Consis-
tent) caused them to “give up” at this task, with per-
formance on test falling to floor levels such that no 
advantage for AC/BD over VX/WY could be ob-

served. Two aspects of the data contradict this sug-
gestion. The first is the failure to find a significant 
main effect of Group in the ANOVA, indicating that 
overall level of performance of the two groups on 
test was comparable. The second is that perform-
ance to VX/WY is, if anything, better in Group In-
consistent than in Group Consistent. One-sample t-
tests of the VX/WY score against a hypothesised 
mean of zero (indicating no learning) reveal a sig-
nificant effect for Group Inconsistent, t (18) = 1.58, 
p < .05, but no significant effect for Group Consis-
tent, t < 1. Thus we have evidence for appropriate 
responding to VX/WY in Group Inconsistent, but 
not in Group Consistent (although direct comparison 
of the two groups on responding to VX/WY fails to 
reach significance, t < 1). If the failure to observe a 
difference in responding to AC/BD and VX/WY in 
Group Inconsistent were the result of a generally 
lower level of responding than in Group Consistent, 
then we would expect performance on VX/WY to 
be nonsignificant, given that it is nonsignificant in 
Group Consistent. That this is not observed is a sign 
that the difference between these two groups is more 
selective, in that responding to AC/BD is impaired 
in Group Inconsistent compared to Group Consis-
tent, but responding to VX/WY is, if anything, en-
hanced in the former group. 
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Figure 3:  Mean difference score for the test compounds 
of Groups Consistent and Inconsistent. 

A second alternative is that the difference be-
tween groups reflects some form of associative in-
terference arising from Stage 3 training. Up to this 
point we have assumed that the only influence of 
Stage 3 training on responding to the Stage 2 rela-
tionships will be in terms of changes in α exerting 
an influence on the extent to which Stage 2 associa-
tions are expressed. It is possible, however, that 
Stage 3 training will exert a more direct effect in 
terms of retroactive interference: associations devel-
oped during Stage 3 could interfere with retrieval of 
information learnt in Stage 2 at the time of test. 
However, it is hard to see how this could produce 
the results that we observed. During Stage 3, cues 
that are good predictors will doubtless develop 
stronger associations to their respective outcomes 
than will cues that are poorer predictors. In Group 
Inconsistent, this would produce greater interference 
for cues V-Y than for cues A-D, with the prediction 
that (compared to Group Consistent), we should see 
a greater impairment in responding to VX/WY than 
to AC/BD. This is, of course, the opposite of the 
results observed. 

Our results therefore seem to demand that α is 
able to influence performance as suggested in Equa-
tion 3, providing the first evidence to bear specifi-
cally on the locus of learned predictiveness effects. 
As acknowledged earlier, it remains to be seen 
whether α also influences learning. The fact that the 
level of responding to AC/BD and VX/WY did not 
reverse significantly in Group Inconsistent might be 
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seen as indicating that there is a persistent advantage 
for AC/BD in terms of higher associative strengths 
developed as a result of the higher αs of these cues 
during Stage 2. The influence of α on responding 
may then be insufficient to completely reverse this 
advantage. However, it is also possible that changes 
in α during Stage 3 are sufficiently slow that rever-
sal on the basis of responding is not seen even if all 
cues have equal associations to the Stage 2 out-
comes. As it stands, then, a model incorporating α at 
the response level only is able to incorporate all of 
our current data, and that of all other studies of 
learned predictiveness effects that have taken as 
support of the Mackintosh (1975) model in both 
human and animal learning. Whether α also influ-
ences learning remains as an issue for future re-
search. 
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Abstract 

 
We present a computational model to simulate the findings of a series of experiments using the Se-
rial Reaction Time paradigm on the problem devised by Maskara and Noetzel (1993). In contrast to 
other hybrid architectures, the model presented here simulates the experimental findings rather 
closely, although the predictions made by the model are counter-intuitive with respect to variants of 
the problem. The general finding is less counter-intuitive and can be predicted by the model as well: 
shorter and less numerous sequences can be better represented cognitively, whilst associative learn-
ing drives performance on longer and more numerous sequences. 
 

1   Introduction 

In this paper we have two main aims: To present 
evidence that humans are able to make use of both 
cognitive and associative learning strategies based 
on different task conditions, and to show that this 
requires a hybrid architecture where cognitive and 
associative parts of the model interact. This model 
differs from other cognitive architectures that exist 
for similar problems, but were not applicable to 
fully simulate human performance in our task (e.g. 
Anderson, 1993; Hofstadter, 1995; Marshall, 1999; 
Mitchell, 1993; Slusarz & Sun, 2001; Sun et al. 
2001). 

Our approach will be to take a sequence learning 
problem, devised by Maskara and Noetzel (1993), 
that can be learned associatively (e.g. Spiegel & 
McLaren, in press) and simulated with an associa-
tive model such as the Simple Recurrent Network 
(SRN, Elman, 1990). The SRN not only predicted 
human learning in this task, but also the way people 
generalised to variants of the problem. In this paper 
we will present further variations to the task pa-
rameters and show conditions where the SRN still 
learns the problem, but does not generalise the way 
people do. Briefly, we will also discuss conditions 
when learning breaks down and, as a consequence, 
no generalisation is observed. In order to capture 
learning as well as generalisation in this task para-

digm, a new model was created. It is based on 2 
initial experiments and was cross-validated with 5 
further experiments. Whilst the model will be dis-
cussed in detail, not all experimental data will be 
presented here, as the results supporting associative 
performance have already been published (Spiegel 
& McLaren, in press). The model will be easier un-
derstood with the knowledge of the experimental 
paradigm and the SRN, which is a sub-component in 
our hybrid cognitive-associative architecture. 

Consequently, we will start by briefly describing 
the SRN and its predictions for Maskara and Noet-
zel’s sequence learning problem, followed by the 
experimental paradigm to test human performance. 

The SRN belongs to the family of associative 
learning models, because apart from its general 
learning algorithm, it does not contain any pre-
implemented rules or strategies that tell it how to 
solve particular problems. As a consequence, it has 
often been applied to model different kinds of hu-
man learning without awareness, sometimes termed 
implicit learning, e.g. (Cleeremans, 1993). The ar-
chitecture of the SRN can be found in Figure 1. 

The SRN receives sequential information in the 
form of vectors containing binary numbers. A se-
quential element is presented to the SRN at the input 
units and the purpose of the SRN is to predict the 
next input (i.e. the next sequential element) at the 
output units. The present input is processed by the 
hidden units. These capture it along with a blended 
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copy 

representation of all previous sequential steps com-
ing from the context units. The hidden units then 
drive the output unit activations. At the output units, 
the desired activations of output units are contrasted 
with the current activations of output units. This 
discrepancy is applied to tell the SRN which weight 
values to update through an associative learning 
algorithm called backpropagation (Rumelhart et al. 
1986). 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
Figure 1:  Jeffrey Elman’s Simple Recurrent Net-
work (SRN) 
 

2   Experiments 

In all the experiments reported in this paper, human 
participants were trained on a serial reaction time 
task (Nissen & Bullemer, 1987), where they were 
asked to press keys on their keyboard corresponding 
to sequences of signals on a computer screen. Learn-
ing was assessed via changes in reaction times and 
accuracy, and also indexed by measuring generalisa-
tion to novel sequences. At no time were the partici-
pants told that there was structure in the sequences 
they were exposed to. The participants’ task was 
simply to respond as rapidly as possible to the signal 
(a circle filling) by pressing the appropriate key. The 
screen turning black at the end of each sequence was 
the only segmentation occurring. In the model, set-
ting context units to zero marked the end of a se-
quence. Hence, this was an incidental learning para-
digm as far as our human subjects were concerned, 
in that they believed themselves to be engaged in 

nothing more than a choice reaction time task. In the 
model tests, changes in unit activations were taken 
to be equivalent to reaction time and accuracy 
changes in humans. We chose the simple recurrent 
network (SRN) as our associative model, because it 
is a widely recognised associative model of se-
quence learning (Cleeremans, 1993; Marcus et al. 
1999; Pinker, 1999) that had been applied to simu-
late other types of learning without awareness be-
fore (Cleeremans, 1993). Human subjects were 
trained on sequences using three screen locations. 
For ease of exposition, the screen locations can be 
denoted by the first three letters of the alphabet, 
with each letter standing for a different screen loca-
tion. The experimental sequences we applied had 
the following structure: 
 
1st sequence type: 

AB(varying numbers of Cs)BA 
 
2nd sequence type: 

ABB(varying numbers of Cs)BBA 
 
Humans, as well as the associative model, were ex-
pected to learn that the number of B flashes was 
always the same before and after the varying num-
bers of C flashes. In all the experiments (apart from 
where noted) 18 Experimental and 18 Control par-
ticipants / models were trained on two consecutive 
sessions. The Experimental groups received 100 
percent of their training on the sequences displayed 
above, whose grammar we denote as: AB(C+)BA 
and ABB(C+)BBA (each letter corresponding to a 
particular circle on the screen). Because the experi-
ment was counterbalanced across participants, all 
three letters could correspond to any of the three 
circles, depending on the counterbalance condition. 
In what we call consistent sequences, there were 
always as many Bs before as after the Cs. Thus, 
although the number of Cs is variable, the Experi-
mental group was expected to learn to anticipate the 
final A in the first sequence type once the B fol-
lowed the Cs and the final B in the second sequence 
type once the preceding B followed the Cs. In con-
trast, the Control group just received 50 percent of 
their training on the consistent sequences, and the 
other 50 percent of training on the following incon-
sistent sequences: AB(C+)BB and ABB(C+)BAA. 
Hence, for the Control group, the rule that there are 
as many Bs before as after the Cs does not hold true. 
As a result, the Control group was not expected to 
learn to anticipate the final location in the first se-
quence type and the location preceding the final 
location in the second sequence type. The training 
phase was followed by a testing phase, in which 

Output units (predict activi-
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(blend information 
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both Experimental and Control groups received an 
equal number of consistent and inconsistent se-
quences. If the Experimental group had learned the 
rule inherent in the consistent sequences, they 
should perform significantly better than controls on 
the respective locations in the consistent sequences 
than in the inconsistent sequences (which they had 
not received throughout the training phase). 

When the SRN was run on this problem it soon 
became clear that, first of all, it was able to solve it. 
This finding stood in contrast to earlier predictions 
by Maskara and Noetzel (1993). In other words, the 
network was able to predict the final A in a single B 
sequence, and the second B after the intervening C 
elements in a double B sequence. In all our simula-
tions the same numbers of Experimental and Control 
SRNs (each with a different random seed) as hu-
mans were trained to facilitate direct comparison 
between human and model learning. All SRNs were 
trained with 6 hidden units, a learning rate of 0.1, no 
momentum term and 40,000 training trials (= total 
number of sequence presentations during training). 
We chose these parameters because this is the 
minimum number of hidden units and training trials 
that the SRNs needed to converge on this problem, 
and more hidden units or training trials did not lead 
to better generalisation to the novel sequences. Oth-
erwise our simulations were entirely standard and 
for more information about the chosen parameters, 
see Rumelhart et al. (1986). 

The only way the following experiments and 
simulations varied was with respect to the interven-
ing number of C elements. In Experiment 1, we start 
by training and testing participants on 1 and 3 inter-
vening C elements. In addition, we will test their 
generalisation performance to 2 C elements. In Ex-
periment 2, we train and test participants on 1, 3, 5 
and 7 C elements and will check generalisation to 2, 
4 and 6 C elements.  
 

2.1   Experiment 1 
2.1.1   Method 
 
Participants 

Participants (aged 18-40 years) were randomly 
assigned to two groups, Experimental and Control. 
There were 15 participants in each group, who were 
paid for their participation. 
 
Apparatus 

The experiment was programmed in the Future 
Basic II programming language, was run on a Mac-
intosh computer and took place in a quiet room. Its 
light was dimmed to a level that had been indicated 

as convenient by other participants in a pilot test. 
The participants’ distance from the screen was ap-
proximately 80cm, which was roughly at eye level. 
The screen’s diagonal was 30cm in size. White out-
lines of circles were arranged in a triangular forma-
tion on a black background (Figure 2). The circles 
flashed by filling with white colour one at a time. 
Circles were two centimetres in diameter and the 
centres of the circles on the bottom of the triangle 
were approximately 5.5cm apart. The centre of the 
upper circle was approximately 4cm apart from the 
centres of the two lower circles. We chose this dis-
crepancy in distance because pilot work had indi-
cated that an equilateral triangular shape would 
probably confuse participants in terms of the hori-
zontal assignment of keys. The horizontal assign-
ment consisted of the adjacent “v”, “b” and “n” keys 
on each participant’s keyboard, with the v-key cor-
responding to the lower left circle, the b-key to the 
upper middle circle and the n-key to the lower right 
circle. The three outlines were located in the middle 
of the computer screen. A triangular layout was cho-
sen instead of other possibilities. This was to avoid 
any particular stimulus appearing in the foveal area, 
because this might have had the effect of biasing 
participants on where to look (see Lewicki et al. 
1987; Nelson & Loftus, 1980). 
 

 
 
 
 

Figure 2: The three circle outlines with their three 
corresponding keys from a conventional computer 
keyboard underneath the display (note that in the 
experiment, the entire background of the screen is 
black whilst the circles appear in the middle of the 
screen). Participants were instructed to use index, 
middle and ring fingers of their preferred hand. 
 
Procedure 

During the experiment, the entire screen back-
ground was black, with the outlines of three white 
circles in the middle. Each circle was assigned a 
particular key on the keyboard, and participants 
were instructed to press the respective key as 
quickly and accurately as possible once a circle 
filled with white; only one circle at a time filled 

v b n 
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with white colour. After each key press, the three 
outlines reappeared for 180ms until the next circle 
filled. An auditory signal sounded if the subject had 
pressed the wrong key. After the last response of a 
sequence the screen turned black for 600ms until the 
outlines reappeared so that the next sequence could 
begin. 

The Experimental groups received 100 percent 
of their training on consistent sequences: 
AB(C+)BA and ABB(C+)BBA (with each letter 
corresponding to a particular circle on the screen or 
key on the keyboard respectively). All three letters 
could correspond to any of the three circles, depend-
ing on the counterbalance condition. The Control 
group only received 50 percent of their training on 
the consistent sequences, and the other 50 percent of 
training on the following inconsistent sequences: 
AB(C+)BB and ABB(C+)BAA. The experiment 
consisted of 4 training blocks. The Experimental 
groups received 18 randomly selected presentations 
of each consistent sequence in each block, whilst the 
Control groups received 9 presentations of all con-
sistent and 9 presentations of all inconsistent se-
quences in each block.  

The training was followed by 2 test blocks in 
which both Experimental and Control groups re-
ceived 6 presentations of all sequences in each block 
(i.e. consistent and inconsistent sequences, including 
those with 2 Cs to test generalisation). In both train-
ing and testing phase, Experimental and Control 
groups had received an equal number of consistent 
and inconsistent sequences. So if the Experimental 
group had learned the rule inherent in the consistent 
sequences, they should perform significantly better 
on the respective locations in the consistent se-
quences than in the inconsistent ones (which they 
had not received during training). In the Control 
group, we do not expect a significant performance 
difference between consistent and inconsistent se-
quences as they had experienced both during the 
training phase. After the last trial on the second day, 
an interview was carried out exploring to what ex-
tent the participant was able to verbalise the sequen-
tial structure or fragments of it. We also investigated 
whether s/he had become aware of particular rules 
or the number of C flashes during training and/or 
testing.   
 
2.1.2   Results 
 
For the trained sequences, the tests using the SRN 
simulations resulted in the difference Consistent 
minus Inconsistent activities being greater in the 
Experimental group simulation than in the Control 
group simulation. Activities increase with training in 

the SRN, whereas reaction times and errors should 
decrease (= faster and greater accuracy) with train-
ing in humans. As will be seen in the context of the 
experimental results, the SRN did not show gener-
alisation to the sequences with 2 Cs. 

The human experiments measured the average 
reaction time and accuracy differences between 
inconsistent and consistent sequences in the testing 
phase on the locations where consistent and incon-
sistent sequences diverged (i.e. on the final letter in 
the first sequence type and on the letter preceding 
the final letter in the second sequence type, which 
are the same locations where activity differences 
were measured in the SRN). Both reaction times and 
accuracy were assessed to rule out the possibility of 
a speed-accuracy trade-off. We expected the Ex-
perimental group to be slower (= higher reaction 
times) and more likely to make errors on these loca-
tions in the inconsistent sequences, i.e. Inconsistent 
minus Consistent Reaction times and Inconsistent 
minus Consistent Error numbers should be greater 
in the Experimental group than in the Control group. 
The results for reaction times, errors and the SRN 
simulations are displayed in Figure 3. In the analy-
ses that follow we report tests on the reaction time 
followed by accuracy data. 

Participants showed learning on the trained se-
quences with 1 and 3 Cs, F1,28=9.01, p<.01 (individ-
ual comparisons for both 1 and 3 Cs: p<.05). Testing 
generalisation to 2 Cs revealed a significant result as 
well, F1,28=2.83, p=.05. The results for the accuracy 
data complement those obtained with the reaction 
time measure, as there was a significant result for 
the trained sequences, F1,28=4.44, p<.05 (with both 
individual comparisons pointing in the expected 
direction and the post-hoc test of the 3 C case re-
vealing a significant result p<.05). The generalisa-
tion test for the 2 C case also showed a trend in the 
expected direction. Whilst the SRN simulations had 
also predicted learning on the trained sequences, 
F1,28=8.89, p<.01 (individual comparisons for both 1 
and 3 Cs: p<.05), they did not generalise to the 
novel sequences containing 2 Cs, F1,28=.44, p=.52. 
 
2.1.3   Discussion 
 
Whilst the SRN performs well in simulating learn-
ing performance on the trained sequences, it does 
not model the generalisation to sequences with 2 Cs. 
Note that this is not a peculiarity of the SRN. As has 
been shown in Spiegel and McLaren (in press) as 
well as Spiegel and McLaren (2003), any associa-
tive model that successfully extracts the statistical 
regularities of the trained sequences would perform 
this way. Note that 2 Cs were never experienced in 
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training. Thus, the SRN is able to exploit this fact by 
developing a flip-flop representation that is tuned to 
1 and 3 Cs (more details on this representation can 
be found in Spiegel et al. (2002)). Based on these 
results, one might be tempted to hypothesise that 
human performance on this task was not entirely 
associative. The possible reasons for human per-
formance in this task will be discussed in the light of 
the other experiments. 
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Figure 3: Results for both trained and novel se-
quences in Experiment 1. White/black bars stand for 
Experimental/Control conditions. (RT) Average 
Reaction-time-differences in humans in millisec-
onds (RT_inconsistent minus RT_consistent). (Er-
rors) Average Error-differences in humans (Er-
rors_inconsistent minus Errors_consistent). (SRN) 
Average Activity-differences in the SRNs (Activ-
ity_consistent minus Activity_inconsistent). 
 

2.2   Experiment 2 
In Experiment 2, experimental participants were 
trained on 1, 3, 5 and 7 Cs and their generalization 
to 2, 4 and 6 Cs was tested. The method was the 
same except where noted. 
 
2.2.1   Method 
 
Participants 

There were 12 per group aged 16 to 38 years. 
Since we are dealing with more numerous and, at 
least in part, longer sequences, it was not possible to 
train and test the participants on the same day. Pilot 
work had indicated that this would have made our 
participants too tired. Consequently, we chose a 2 
session experiment with 4 training blocks on the 
first day, two training blocks on the second day and 
3 test blocks on the second day as well. During 
training, the Experimental group received 10 ran-
domly selected presentations of each consistent se-
quence per block, whilst the Control group received 
5 presentations of all consistent and 5 presentations 
of all inconsistent sequences. In each of the 3 test 
blocks, both Experimental and Control group re-
ceived 3 presentations of all sequences including the 
novel ones to test generalisation performance. 
 
2.2.2   Results 
 
There was overall learning of the trained sequences 
(1, 3, 5 and 7 Cs) when considering the results of the 
error differences F1,22=3.44, p=.0385. Though all of 
the individual post-hoc comparisons pointed in the 
expected direction, none of them reached signifi-
cance when applying the somewhat conservative 
Bonferoni procedure (without the Bonferoni proce-
dure the 5 C case would have reached significance 
at p<.05). The reaction time differences pointed in 
the same direction, but did not reach significance, 
F1,22=1.48, p=.12. 

There was no overall sign of generalisation to 
the novel sequences (2, 4, 6 Cs), neither when con-
sidering the error differences F1,22=.82, p=.19, nor 
when taking into account the reaction time differ-
ences F1,22=.12, p=.37. None of the post-hoc com-
parisons reached significance either. 

In this experiment, the SRN models the learning 
of the trained sequences (F1,22=8.27, p<.01) and the 
absence of generalisation (F1,22=.1, p=.38) to the 
novel sequences rather closely (the discussion of 
Experiment 1 provides a possible reason why). 
Similar to the human data, none of the individual 
post-hoc comparisons reached significance apart 
from one: the trained 1 C case (F1,22=7.92, p<.01). 
The results are displayed in Figure 4. 
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Figure 4: Results for both trained and novel se-
quences in Experiment 2. White/black bars stand for 
Experimental/Control conditions. (RT) Average 
Reaction-time-differences in humans in millisec-
onds (RT_inconsistent minus RT_consistent). (Er-
rors) Average Error-differences in humans (Er-
rors_inconsistent minus Errors_consistent). (SRN) 
Average Activity-differences in the SRNs (Activ-
ity_consistent minus Activity_inconsistent). 
 
2.2.3   Discussion 
 
The results of this experiment, where training was 
on longer and more numerous sequences, stand 
broadly in line with the associative model, whilst the 
results of the first experiment could not be explained 
by the associative model. It would be dangerous, 
though, to interpret the findings of the first experi-
ment as non-associative and the ones of the second 

experiment as associative based on just two experi-
ments and its simulations. Consequently, we aimed 
for further experiments by testing variants of this 
task. We believe that it is a much more critical test 
to develop specific hypotheses about the nature of 
the learning in a particular task, to make predictions 
based on these hypotheses and to finally test these 
predictions. This could be done by creating a com-
putational model based on our hypotheses and let 
the model predict the results of future experiments. 
Those predictions could then be cross-validated with 
future experimental data. In the next section we will 
briefly discuss already existing computational mod-
els and make our case for designing a new model, 
which will be discussed subsequently. 
 
 
3   The hybrid cognitive-associative 
model 

In order to generate hypotheses about the nature of 
learning in our task, we had interviewed participants 
after the first two experiments. We asked whether 
they believed the signals had appeared in random or 
sequential order. In case they had realised a particu-
lar sequential structure, we asked them to describe 
this order or to show it on the screen. We are aware 
that post-test interviews are not considered a par-
ticular strong technique by implicit learning theo-
rists, as there might exist a discrepancy between the 
learning mechanism during the task and what is ac-
tually verbalised after the task. In order to generate 
hypotheses that can subsequently be implemented in 
a computational model and tested in independent 
future experiments, however, we nevertheless regard 
them a useful addition. This belief is further sup-
ported by the fact that none of our participants in 
Experiment 2 (where we hypothesised associative 
learning) was able to verbalise the underlying rule. 
Though most subjects had realised that there was 
some kind of structure, much of the verbalised in-
formation was wrong. Because their learning is in 
line with the associative model, one could hypothe-
sise that they did not find a particularly efficient 
cognitive strategy that would help them on this task. 
So their learning might have been driven by acquir-
ing the statistical regularities of the sequences asso-
ciatively, without any particular insight in the under-
lying structure of the sequential problem. In Ex-
periment 1, where learning was on shorter and less 
numerous sequences, one might hypothesise that 
this problem should be easier to represent cogni-
tively. Indeed, participants verbalised a lot more 
correct information about the sequences. In the Ex-
perimental group, where the previously mentioned 
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rule was present throughout all training trials, 2 out 
of 14 participants (14.29 percent) verbalised this 
rule right away1. They became aware of the symme-
tries of the number of As and Bs across the Cs, i.e. 
the fact that there were always as many As and Bs 
before and after the Cs. They realised that the se-
quences were analogous to each other with respect 
to the rule and they considered the rule more impor-
tant than the intervening numbers of C. There were 
4 participants (28.57 percent) who had realised repe-
titions such as BB or CCC, but not the underlying 
rule. 7 subjects (50 percent) said that the sequences 
flashed in the order ABCBA, but they were unaware 
of the number of repetitions on particular locations. 
The amount of verbalised information is not the 
only reason why one might assume that at least 
some people had formed an efficient cognitive rep-
resentation throughout Experiment 1. When looking 
at the individual results of those 2 subjects who had 
verbalised the rule correctly, it becomes clear that 
they showed the largest effects in terms of both 
learning and generalisation. Note that the probability 
of picking the 2 subjects with the largest effects at 
random from a sample of 15 is 0.00952, i.e. p<.01. 
Consequently, there is a case for taking the correla-
tion between verbalisation of the rule during the 
interview and the ability to generalise in the experi-
ment seriously. Eliminating the data generated by 
these 2 participants from the statistical analysis still 
revealed learning of the trained sequences by the 
remaining subjects, but no longer significant gener-
alisation to the 2 C sequences. The result of the re-
maining participants would be broadly in line with 
an associative explanation, but note that there was 
still a strong descriptive trend towards generalisa-
tion, which was absent in the SRN. So one could  
hypothesise that the verbalised information from the 
remaining subjects who provided incomplete yet 
correct information about the sequential structure 
had influenced generalisation performance as well. 
Something similar could be said about Experiment 
2, where subjects provided a non-significant trend 
toward generalisation and verbalised some (though 
often incorrect) aspects about the sequential struc-
ture. In contrast, the purely associative model did 
not even show a trend towards generalisation (see 
Figure 4). 

Our hypotheses were that humans are able to 
make use of both cognitive and associative mecha-
nisms when performing on this task. When se-
quences are shorter and less numerous, the problem 

                                                 
1 Although there were 15 participants in the Experimental group, 
only 14 agreed to take part in the interview. The interview result 
of the 15th participant would have been less relevant anyway, as 
the results of this participant did not indicate learning. 

appears somewhat easier to represent and they are 
more likely to make use of cognitive learning strate-
gies along with associative mechanisms. When se-
quences are longer and more numerous, the problem 
will be harder to represent cognitively so that par-
ticipants are less likely to make use of cognitive 
strategies and more prone to associative learning. 

The question is how to implement these hy-
potheses into a computational model that can then 
be tested empirically. To enhance clarity, we will 
give a brief overview before we explain the model 
in detail. The model consists of two components, an 
associative one and a cognitive one. Because the 
SRN seems to be a good associative model for part 
of the human performance on this task, the SRN will 
act as the associative subcomponent. Based on the 
data we gathered in the experiments and post-test 
interviews, we assume several aspects for the activa-
tion of cognitive mechanisms: We assume a thresh-
old of activity until a stable cognitive representation 
is formed. As long as this threshold is not reached, 
the model will be driven by the associative subcom-
ponent alone. There is a higher probability that this 
threshold is reached when the model is trained on 
less numerous sequences. For less numerous se-
quences it will take, on average, a shorter time until 
the same sequence recurs on the screen. There will 
also be less sequences competing for activation with 
each other. Along with many theories on learning, 
memory and cognition, we argue that activity de-
cays if it is not refreshed. So the interplay of activa-
tion and decay will be in favour of activation when 
trained on less numerous sequences, because the 
recurring sequence presentations will have the con-
sequence that the threshold is passed earlier. Hence, 
a cognitive representation will be formed more eas-
ily in this case. With more numerous sequences, on 
the other hand, there will be a stronger weight on 
decay. This will prevent a cognitive representation 
to be formed as easily as for fewer sequences. Apart 
from the number of sequences during training, 
length also plays a role, but things are more compli-
cated in this regard. Both human experiments and 
the simulations with the SRN had shown that shorter 
sequences are not always learned more easily than 
longer sequences. In addition, sequence length is 
already part of the SRN-subcomponent and, as will 
be seen later, this associative subcomponent inter-
acts with the cognitive part. Consequently, we did 
not implement another parameter controlling se-
quence length into the cognitive part of the model. 

Having provided a brief overview, we will de-
scribe the model in greater detail now. Being one of 
the most cited papers in psychology (Marcus, 2001, 
p. 25), the associative learning mechanisms of the 
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SRN (Elman, 1990; Rumelhart et al. 1986) are well-
known in the Experimental Psychology community 
(and were briefly described above). Of particular 
interest will be the cognitive part of the model and 
how it interacts with the SRN-subcomponent. Simi-
lar to the SRN, the cognitive part computes an activ-
ity for every step in the sequence. This holds true for 
each sequence that occurs during training. Say there 
are 4 sequences, ABCBA, ABBCBBA, ABCCCBA, 
ABBCCCBBA. In this case each letter is repre-
sented by a different, position-specific activity, e.g. 
all final letters A would hold a different activity 
value depending on how many times the particular 
sequences had been presented during training and in 
which order these sequences had been presented. If 
one sequence is presented and then it takes 4 se-
quences until this sequence recurs, the particular 
activity of the final letter in our example will hold a 
different value than the activity of the final letter in 
another sequence that is presented twice in a row. If 
a sequence is presented twice in a row, the activity 
of this letter will not be influenced by decay, whilst 
decay has an influence in the other sequence. How-
ever, the cognitive part does much more than that. 
As the interviews had revealed, people are able to 
form analogies between sequences if these share an 
underlying structure. In the sequences of our ex-
periments, there is a high overlap between se-
quences. As we hypothesised based on the inter-
views where participants verbalised common struc-
ture that even led to the formation of a rule in a mi-
nority of subjects, those analogies help people form 
a cognitive representation. Consequently, the cogni-
tive part of the model computes more than just ac-
tivities of the individual sequential elements. There 
are relations between the letters, e.g. the As and Bs 
in those sequences are symmetric across the Cs. 
Some elements repeat, such as the BBs and the 
CCCs. As a result, additional activities are com-
puted for every symmetry in the model, more activi-
ties are computed for every repetition in the model 
etc. 

Now we have symmetries and repetitions in all 4 
sequences and the question is how they can be seen 
as analogous to each other. Similarly, in other learn-
ing tasks there might be hundreds of different se-
quences and the question could be how they can be 
related to each other. This is only possible if the 
person spots which sequences share a common 
structure. The common structure apart from the pre-
viously mentioned symmetries and repetitions is the 
order of screen flashes, which was ABCBA in all 4 
sequences. Combining the order of screen flashes 
with symmetries and repetitions helps seeing analo-
gies in terms of symmetries and repetitions between 

the sequences, because it frees the individual se-
quences from their position-specific activation val-
ues. This will be clarified with an example. All 4 
sequences’ final letter is an A, but this letter is lo-
cated on sequence position 5 in ABCBA, on se-
quence position 7 in ABBCBBA and ABCCCBA 
and on sequence position 9 in ABBCCCBBA. When 
taking into account the order of screen flashes (AB-
CBA) and neglecting repetitions, all 4 would be on 
position 5. Likewise, when considering the BBs in 
sequences ABBCBBA and ABBCCCBBA, there is 
a BB on positions 2 and 3 in both sequences, but 
another BB on positions 5 and 6 in the first example 
and on positions 7 and 8 in the second example. 
When taking into account the order of screen 
flashes, however, the BBs would be on positions 2 
and 4 in both sequence types. This makes it easier to 
spot the common structure. In fact, none of the par-
ticipants in our experiments had counted the exact 
positions. Rather, they had often verbalised the or-
der of screen flashes and explained where repeti-
tions and symmetries were located with respect to 
this order. So repetitions and symmetries are relative 
with respect to the order of flashes. When being 
given a new yet overlapping sequence that had not 
been experienced during training before, such as 
ABBCCBBA, the model would be able to perform 
generalisation when considering repetitions and 
symmetries with respect to the order of flashes 
rather than with respect to their absolute position in 
the sequence. We already know that the SRN would 
not generalise to this sequence (the reasons were 
stated above). The question is how the cognitive part 
of the model manages this problem. In order to gen-
eralise, it is vital that the cognitive part is able to 
recognise the analogy between the novel sequence 
and the trained sequences. This is only possible if at 
least one of the trained sequences is represented 
cognitively, i.e. if the activities for the previously 
mentioned symmetries, repetitions and the activities 
representing order of screen locations all pass a par-
ticular threshold value. 

When simulating human performance with a 
computational model, we consider it necessary that 
this threshold value is a constant value that is not 
changed from simulation to simulation. Changing 
parameter values between experiments would make 
it easier to simulate experimental data. To give our 
model the hardest possible test, we chose an a-priori 
threshold value of 0.95 that was subsequently ap-
plied to all our simulations. 

When implementing the model’s mechanisms 
that helped to find symmetries, repetitions and the 
order of screen flashes, we drew a lot of inspiration 
from the codelet-type approach proposed by FARG, 
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the Fluid Analogies Research Group (Hofstadter, 
1995; Marshall, 1999; Mitchell, 1993). In their ap-
proach, each codelet represents a small piece of 
code. Combining all codelets in a joint effort will 
come up with a structure for a previously unstruc-
tured problem. One single codelet just searches for 
all symmetries, another codelet searches for all repe-
titions, etc. The FARG approach is not directly 
transferable to our task (e.g. their aim was to model 
perception rather than learning and hence their mod-
els neither related to cognitive nor to associative 
learning). Computationally, however, codelets of 
this type inspired us how to develop part of the pro-
gram code for the cognitive component in our 
model. Codelets look through all sequences and find 
all symmetries, repetitions, etc., regardless of the 
sequential task’s size. How these codelets are pro-
grammed is probably of little interest to the Experi-
mental Psychology community, but detailed 
instructions can be found in the previously men-
tioned papers of the Fluid Analogies Research 
Group and in Spiegel (2002). The learning taking 
place based on the interplay of activation and decay 
will be of greater interest here. Therefore, the learn-
ing function of the cognitive part will be considered 
next. This part is inspired by findings reported in the 
literature on human memory, interference and de-
cay, e.g. Baddeley (1990). We argue that the cogni-
tive part is necessary not only because the associa-
tive model does not fully account for our experi-
mental findings, but also because curves combining 
memory, interference and decay do not have the 
shape of those in connectionist models (Baddeley, 
1990). These frequently follow linear or logistic 
activation functions. When trying to remember new 
information, for example, there is a lot of decay, 
partly caused by interference with other information 
and partly caused by the fact that new information is 
not consolidated in memory yet. Once information 
gets consolidated in memory through rehearsal, de-
cay becomes less. This does not mean, however, that 
this information cannot be lost, i.e. decay can still 
cause this information to be forgotten. Once previ-
ously well-established and then forgotten informa-
tion is refreshed a single time, however, it can be-
come very active again. Refreshing this information 
a single time can re-establish the memory trace. 
Once the trace is re-established, decay has a differ-
ent impact on this memory trace than it used to have 
when this trace was newly established. This is based 
on the fact that a memory trace that had been acti-
vated many times in the past decays more slowly 
than a newly established trace. As argued in 
Baddeley (1990), combining these differential pa-
rameters (that all seem to play a role in cognitive 

processing) will require the consideration of other 
equations and computational models than the previ-
ous ones. Figure 5 displays one attempt of such an 
equation (above) and its resulting curve (below). 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
Figure 5: The equation of the cognitive part’s acti-
vation function (above) and its resulting curve (be-
low), with the Y-axis displaying activity and the X-
axis displaying the trials with activation (curve go-
ing up) and decay (curve going down). 
 
In the equation, αi+1 stands for the activity that re-
sulted from either excitation or decay of the memory 
trace αi. The equation further contains the exponen-
tial, i.e. Euler’s number e (2.718), the number of 
previous excitations η of this particular memory 
trace and the number of competing sequences ς that 
are experienced during the training phase. The pa-
rameters β and λ take on values of 1 (excitation) or 0 
(decay), with β being 1 during excitation and 0 dur-
ing decay and λ being 0 during excitation and 1 dur-
ing decay. Thus, the activity of a memory trace 
ranges between values of 0 and 1. The power of e 
would be undefined for an activity value of  αi =1, 
which is prevented by subtracting 0.001 from 1 (re-
sulting in an activity value of 0.999 in this case). As 
can be seen at the start of training, a newly estab-
lished memory trace will decay fast when it is not 
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activated again. The fact whether the trace is acti-
vated again is based on the probability of its particu-
lar stimulus appearing once more at the next se-
quence presentation. If the probability is low, decay 
will be catastrophic as it takes, on average, a longer 
time until this particular stimulus is presented again. 
Another reason why decay will be large is that the 
number of previous activations of this stimulus will 
be small at the start of training. The more often a 
stimulus has been presented in the past, the less in-
fluential the decay. As a result, the activation func-
tion will be applied anytime a memory trace gets 
activated or decays. Eventually, several parts of the 
sequences will be represented cognitively because 
their activity values pass the previously mentioned 
threshold of 0.95. All information that lies above 
threshold is permitted to look for sequences with 
analogical structure. 

As previously mentioned when referring to the 
interviews, not all aspects were verbalised the same 
number of times. Symmetries, for instance, were 
only verbalised by 2 participants (14.29 percent), 
repetitions by 4 participants (28.57 percent) and the 
order of screen flashes by 7 participants (50 per-
cent). So people were more likely to become aware 
of some aspects (e.g. repetitions) than of other as-
pects (e.g. symmetries). In order to take into account 
these proportions, appropriate probabilities were 
assigned to those aspects, e.g. each symmetry got 
activated with the previously mentioned activation 
function in 14.29 percent of the cases, each repeti-
tion got activated in 28.57 percent of the cases. In 
terms of the order of screen flashes, the activation 
function was applied in 50 percent of the cases a 
flash changed the screen location (e.g. from A to B, 
from B to C, from C to B or from B to A). Another 
reason for assigning these probabilities is that peo-
ple do not typically become immediately aware of 
every symmetry, repetition or change of screen loca-
tion. Since codelets work by recognising all of these 
in 100 percent of the cases, a model based on 
codelets alone, i.e. without taking into account pro-
portions, would be an inappropriate model of human 
performance on this task. 

Having described the activation function, the 
question is how the sequences with activity values 
above threshold can be combined with each other. 
Let us imagine we train the model on the four se-
quences ABCBA, ABCCCBA, ABBCBBA and 
ABBCCCBBA. Let us further assume that these 
sequences are represented cognitively in terms of 
the previously explained symmetries, repetitions and 
order of screen locations, i.e. activities representing 
these aspects all have passed threshold values. A 
new sequence with overlapping sequential structure 

such as ABCCBA can be seen as analogous to these 
trained sequences. The activity values of this new 
sequence are, of course, unknown. Now an example 
will be provided how the activity values of the 
trained sequences are combined in order to get ac-
tivity values for the new sequence. Up to the step 
where only ABCC is presented to the model, it 
would assume that this is the trained sequence 
ABCCCBA. If one C less had been presented 
(ABC), there would be 2 candidates among the 
trained sequences: ABCBA and ABCCCBA. Where 
things get interesting is when the sequence ABCCB 
is presented to the model, as there are no candidates 
among the trained sequences that have this particu-
lar structure. So let us assume an incomplete se-
quence with the structure ABCCB is presented to 
the model. What does this new sequence have in 
common with the trained ABCBA, ABCCCBA, 
ABBCBBA and ABBCCCBBA sequences? It has 
symmetries between the Bs across the Cs. What do 
all the trained (old) sequences have in common? 
They not only have symmetries between the Bs 
across the Cs, but also carry symmetries between the 
As across the Bs and Cs. Therefore, all four trained 
sequences predict a symmetry between the As to 
follow a symmetry between the Bs (irrespective of 
the fact whether there is a symmetry between the 
individual Bs or the BBs). The incomplete sequence 
ABCCB has an A as its first letter. As a conse-
quence, the addition of another A would be the only 
possible answer in terms of analogy-making to the 
other sequences. It would not be possible to add 
another B, because all Bs are symmetric across the 
Cs in the trained sequences and a sequence 
ABCCBB would partly violate this symmetry. But 
how would the model settle on a solution to predict 
the letter A in the sequence ABCCB_? It would 
make analogies to all four trained sequences, by 
calculating numerical values for all of them. Con-
sider the first sequence ABCBA. Until the penulti-
mate letter in its sequential order, this sequence is 
equivalent to the sequential order of screen flashes 
in the incomplete ABCCB sequence, which has the 
order ABCB (repetitions on letters are ignored when 
expressing the order of screen locations. What has to 
be kept in mind is that all trained sequences in our 
example have ABCBA as the order of screen loca-
tions). The first numerical value would therefore be 
the activity of the penultimate letter (shown in 
Italic) in this ABCBA sequence (recall that all these 
letters have activities greater than the threshold .95). 
What follows this screen location is a switch to 
screen location A, which also has an activity greater 
than .95. In addition, this screen location carries 
another important aspect. There is the previously 

83



mentioned symmetry between the As across the Bs 
and the C (ABCBA). This symmetry is also ex-
pressed in terms of a numerical value greater than 
.95. Both the first and the second numerical value 
are then multiplied with each other. 

The same would be done with the next analo-
gous sequence, i.e. the ABCCCBA sequence. It 
would again take the activity of the penultimate let-
ter in its order of screen locations ABCBA and mul-
tiply this activity with the other activity, which is 
again the symmetry between the As. It would then 
do the same for the ABBCBBA sequence and the 
ABBCCCBBA sequences. Note the fact that two Bs 
appear before and after the Cs does not affect the 
analogies. As a result, we have four numerical val-
ues, each representing an analogy to one of the four 
trained sequences. We will later see how these 
analogies help the novel and incomplete sequence 
ABCCB to come to the solution ABCCBA. Each of 
those 4 activities, which will be termed analogy 
values αj (with j ranging from 1 to 4) consists of the 
product of two activities (first numerical value rep-
resenting screen location times second numerical 
value representing symmetry). There are further 
examples, e.g. the new sequence ABBCCB-? could 
draw analogies to the 2 sequences 
ABBCBBA/ABBCCCBBA (in this example j 
ranges from 1 to 2), but now the 2 analogy values α1 
and α2 would be calculated by the product of three 
activities (first numerical value representing screen 
location ABCBA, second numerical value represent-
ing repetitions ABBCBBA/ABBCCCBBA, third 
numerical value representing symmetries 
ABBCBBA/ABBCCCBBA). Formally, αj can be 
described using equation 1. 
 
Equation 1: 
 
αj = φ ⋅ νm

m
∏  

 
The activity of the penultimate letter in the order of 
screen locations ABCBA is denoted by the symbol 
φ. The numerical values (e.g. activities representing 
symmetries or repetitions) are denoted by the ν. In 
our example, there were never more than 2 ν values 
(symmetries or repetitions), hence the subscript m 
was 2 at maximum. 

Having shown how the numerical analogy values 
are calculated, we have yet to show how they are 
combined with each other in order to predict the 
next step in the sequence. This will also involve a 
demonstration how the cognitive part of the model 
interacts with the associative SRN. How both parts 
of the model interact with one another and jointly 

produce the output is specified in Equation 3. First, 
however, we need to explain how the SRN produces 
the output (Equation 2). 
 
Equation 2: 
 

outi =
1

1+ e
− ω ihoh+ζi

h
∑

⎛ 

⎝ 
⎜ 
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⎠ 
⎟ 
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Equation 2 represents the logistic activation function 
for a particular output unit in the classical back-
propagation algorithm, which is applied in the SRN. 
This function is applied to all output activities of the 
SRN and ensures values within the range 0 to 1. The 
Σ-sign is the sum over the weights (ωih) leading to 
this particular output unit from each hidden unit οh 
plus the bias ζi on this particular output unit. How 
this squashing function was derived can be found in 
Rumelhart et al. (1986). The interaction between the 
cognitive part and the associative SRN is nothing 
more than an elaboration of Equation 2 (which was 
the associative part alone) and is described in Equa-
tion 3. The first part of the numerator in Equation 3 
is entirely the same as Equation 2. The value N in 
the denominator indicates how many analogies in 
other sequences could be found. Take one of the 
examples from above. We had assumed four se-
quences to be analogous to the novel (and incom-
plete) sequence ABCCB. Since there are four se-
quences, N would take the value 4. If there had not 
been any analogies (= no cognitive representation, 
e.g. due to activities below threshold), N would have 
taken a value of 0 and the equation would reduce to 
that of an ordinary SRN (= entirely associative out-
comes). In our example, however, the cognitive part 
of the model was strong enough to perceive analo-
gies to other sequences (= the cognitive part had 
indicated values above threshold to form analogies). 
As a result, all the analogies will be incorporated in 
the prediction of the following sequential element. 
This is done in the second part of the numerator in 
Equation 3. How the analogy value αj is calculated 
has already been explained in Equation 1. This value 
(in our case the values for 4 analogies, hence j=1 to 
j=4) will be combined with the related outputs of the 
SRN (hence ojh instead of oh). These are the SRN-
generated outputs of the 4 sequences to which 
analogies were formed. The reason why αj stands in 
the numerator is that normal backpropagation has 
the number 1 in the numerator (see equation 2) and 
multiplying the value αj with 1 equals αj. 
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Equation 3: 
 
 
 
 

 
 
The Σ-sign over the analogies j indicates that all 
analogies having been formed by the cognitive part 
are taken into consideration, and in order to ensure 
that the output of the model is bounded between 0 
and 1, the number of analogies appears in the de-
nominator. Here, the number of analogies is repre-
sented by N, which carries a value of zero in case no 
analogies are formed (= the output reduces to the 
one of an SRN, as αj would also be zero in this 
case). 
 
 
4   Simulations of Experiments 1 
and 2 

Because the model was inspired by the first two 
experiments, the first test will be to check whether it 
successfully simulates learning and generalisation in 
both experiments, i.e. will the cognitive part of the 
model play a sufficiently large role to simulate gen-
eralisation in Experiment 1? Likewise, will the as-
sociative part of the model dominate in Experiment 
2? The description of these tests will be very brief, 
as successful simulation in these cases would not 
mean much. A more powerful test will certainly be 
to cross-validate the model with novel experiments 
(i.e. ones that have not been applied to design the 
model). These will be discussed in the next section. 

When considering the trained sequences with 1 
and 3 Cs, the analysis of variance on the simulation 
results for Experiment 1 revealed a significant over-
all effect, F1,28=14.45, p<.001 (individual compari-
sons for both 1 and 3 Cs: p<.01). The critical com-
parison, i.e. whether the model generalises to the 
novel sequences with 2 Cs, produced a significant 
difference between Experimental and Control 
groups, F1,28=7.78, p<.01. According to the overall 
findings, the model simulated human performance 
in Experiment 1 better than a purely associative 
model such as the SRN, which had not shown gen-
eralisation to the 2 C case. 
Referring to the simulation of Experiment 2, there 
was significant learning of the trained sequences, 
F1,22=7.23, p<.01, but no generalisation to the novel 
sequences with 2, 4 and 6 Cs: F1,22=.16, p=.35 (with 
all individual comparisons p>.1). The simulation 
stands in line with the human data as well as the 

associative model. When inspecting the previously 
mentioned activity values of the cognitive part, it 
became clear that they lay below threshold to an 
extent that made it impossible to form a correct cog-
nitive representation of the complete structure. As 
had been described earlier, this seemed similar to 
the representation of our participants. The simula-
tion results of both experiments are displayed in 
Figure 6. 
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Figure 6: Average activity differences between Ex-
perimental and Control group in Experiment 1 
(above) and Experiment 2 (below). The hybrid 
model simulated both learning of 1 and 3 C se-
quences and generalisation to 2 C sequences in Ex-
periment 1, and learning of trained sequences (1, 3, 
5 and 7 Cs) with no generalisation to novel se-
quences (2, 4 or 6 Cs) in Experiment 2. 
 
 
5   Further experimental data and 
simulations 

5.1   Experiment 3 
Thus far, both experiments contained 1 and 3 Cs 
during training. The question arises how people 
would perform if we trained them on 2 and 4 Cs and 
tested their generalisation performance to 3 Cs. 
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5.1.1   Method 
 
The experimental procedures of Experiment 3 were 
the same as in the first experiment, with the only 
exception that a total of 36 subjects aged 16 to 39 
took part in this experiment. We also chose 36 par-
ticipants for this and all further experiments. In this 
respect, Experiments 1 and 2 helped us to find out 
about a good sample size. The reason we went for a 
slightly larger sample size was based on exploratory 
data analyses, e.g. among other parameters, these 
analyses had indicated that distributions represented 
the bell shape much better with slightly larger sam-
ples. 
 
5.1.2   Results 
 
In order to test our hybrid model, we made predic-
tions first. The cognitive model predicted overall 
learning of the trained sequences, F1,34=15.88, 
p<.001, with post-hoc tests (Bonferoni) on individ-
ual 2 and 4 C sequences being significant at p<.05. 
The model also predicted a significant effect for the 
3 C sequences, F1,34=15.54, p<.001 (Figure 7b). 
This finding stands in contrast to the purely associa-
tive SRN, that had predicted learning of the trained 
sequences, F1,34=10.99, p<.01, but no generalisation 
to 3 Cs, F1,34=1.52, p=.11, where the Control group 
even had a slightly larger activity difference than the 
Experimental group (Figure 7a). 

In the human experiment, we turn to the reaction 
times first. There was a significant result for the 
trained sequences, F1,34=7.58, p<.01. Considering 
the individual comparisons, the 4 Cs case revealed a 
significant result (p<.01), taking into account the 
Bonferoni specifications, whilst the 2 and 3 C se-
quences showed non-significant results pointing in 
the same direction (Figure 7c). Considering the error 
differences next, the trained sequences revealed 
once more a significant difference between Experi-
mental and Control group, F1,34=4.53, p<.05. In 
terms of the individual comparisons, the 2 Cs case 
revealed a significant result according to the Bon-
feroni specifications, F1,34=4.72, p=.019. The error 
differences for the other trained sequences with 4 Cs 
were not significant, but pointed in the expected 
direction as well. Referring to the novel sequences 
with 3 Cs, there was a significant effect of generali-
sation performance, F1,34=5.62, p=.012. The error 
data are displayed in Figure 7d. To summarise the 
results, there was evidence of learning the trained 
sequences with 2 and 4 Cs as well as generalising to 
the novel 3 Cs sequences.  
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Figure 7: Experiment 3. Training was on 2 and 4 Cs. 
Generalisation to 3 Cs was tested. Making use of 
average activity differences, predictions by the SRN 
(Figure 7a) are contrasted with predictions by the 
Hybrid Model (Figure 7b). In the human experi-
ment, average reaction time differences (Figure 7c) 
are displayed along with average error differences 
(Figure 7d). 
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The evidence for this consisted of all reaction time 
and error differences pointing in the same direction 
and having significant results in at least one of the 
dependent variables. Both generalisation and learn-
ing were predicted by the hybrid model, whilst the 
SRN had only predicted learning. After having had a 
closer look at the hybrid model by inspecting the 
previously mentioned activity values of the cogni-
tive part, it became clear that they lay above thresh-
old. This allowed the model to draw analogies be-
tween the novel 3 Cs sequences and the trained 2 
and 4 Cs sequences. 
 
5.1.3   Further tests of the model’s predictions 
 
Following Experiment 3, we applied the model to 
predict the results of several other experiments. In 
both Experiments 4 and 5, we trained the model on 
1, 3 and 5 Cs. Generalisation to 2 and 4 Cs was 
tested in Experiment 4, whilst generalisation to 6 
and 7 Cs was tested in Experiment 5. In Experiment 
6, training was on 1, 3, 4 and 6 Cs, whilst generali-
sation to 2 and 5 Cs was tested. Experiment 7 was 
similar to Experiment 2 in so far as training was on 
1, 3, 5 and 7 Cs, but generalisation was tested to 2 
and 6 Cs only. Experiment 7 acted as a Control for 
Experiment 6 (i.e. same sample size, overall gener-
alisation was tested based on a blend of 2 sequence 
types (2 and 6 Cs) instead of 3 (2, 4 and 6 Cs)). To 
anticipate a bit, there was evidence for associative 
performance in all these experiments. The associa-
tive sub-component of the model, i.e. the SRN, suc-
ceeded in predicting both learning and generalisa-
tion in all these experiments. The simulation data of 
the SRN and the experimental results are described 
in a separate manuscript on associative sequence 
learning in humans (Spiegel & McLaren, in press). 
Because the paper presented here is on the hybrid 
cognitive-associative model, the simulation results 
of the hybrid model will be demonstrated (they are 
not contained in Spiegel and McLaren (in press), 
where only associative simulations with the SRN are 
demonstrated). 

In Experiment 4, the hybrid model predicts sig-
nificant learning of the trained sequences with 1, 3 
and 5 Cs, F1,34=6.43, p<.01. There was no overall 
effect of generalisation to the novel sequences with 
2 and 4 Cs, F1,34=.15, p=.35. Likewise, none of the 
individual comparisons revealed a significant result 
towards generalisation, neither the 2 Cs case, 
F1,34=.03, p=.43, nor the 4 Cs case, F1,34=.87, p=.18. 
These simulation results were confirmed with ex-
perimental data. When inspecting the previously 
mentioned activity values of the cognitive part, it 
became clear that they lay below threshold, which 

prevents analogy-making to the successfully learnt 
trained sequences. As the interviews with partici-
pants in this experiment later revealed, people had 
not verbalised any analogies either (even after 
prompting them about possible analogies). 

In Experiment 5, the model once more predicted 
learning of the trained 1, 3, 5 Cs sequences, 
F1,34=8.56, p<.01. This was the first time, however, 
that generalisation outside the training range (which 
was 1 to 5 Cs) was tested. Thus far, generalisation 
was only tested to numbers of C that were larger 
than the smallest number of C elements (1) during 
training and smaller than the largest number of C 
elements during training. The model predicts gener-
alisation to the novel sequences with 7 Cs, 
F1,34=4.13, p=.025, and the absence of generalisa-
tion to the novel sequences with 6 Cs, F1,34=2.29, 
p=.07. The 6 C case comes close to showing a sig-
nificant result in the expected direction. In contrast, 
a purely associative SRN shows no trend in the ex-
pected direction for novel sequences with 6 Cs. 
Having analysed the activities in the cognitive part 
of the hybrid model, it became clear that the positive 
trend had been caused by a small number of activi-
ties passing threshold values, hence opening the 
door for analogy-making. This number, however, 
was not large enough to cause significant generalisa-
tion due to the cognitive part of the model (even 
though we had performed one-tailed tests). Al-
though the model simulates other experimental data 
better than in this case, its predictions are in line 
with the experimental data. 

In Experiment 6, training was on 1, 3, 4 and 6 
Cs, whilst generalisation was assessed on sequences 
with 2 and 5 Cs. The model predicted significant 
learning of the trained sequences, F1,34=27.08, 
p<.001. There was significant overall generalisation 
to the novel sequences, F1,34=8.63, p<.01. Among 
the individual comparisons, both the 2 Cs case, 
F1,34=5.44, p=.013 and the 5 Cs case, F1,34=9.94, 
p=.0015 revealed significant generalisation per-
formance. Providing training on both odd and even 
numbers of C revealed generalisation to novel odd  
(5) and novel even (2) numbers. These predictions 
were confirmed in the human experiments. Had the 
previously mentioned threshold values been passed, 
the results would have been similar, as analogy-
making to successfully learned (trained) sequences 
would have resulted in successful generalisation as 
well. In this experiment, however, the activities of 
the cognitive part of the model essentially stayed 
below threshold. 

As in Experiment 2, training in Experiment 7 
was on 1, 3, 5 and 7 Cs (odd numbers only). The 
generalisation test was on sequences with 2 and 6 
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Cs. The model predicted successful learning of the 
trained sequences, F1,34=8.73, p<.01 and the absence 
of generalisation to 2 and 6 Cs, F1,34=.17, p=.34. 
Neither the 2 C case, F1,34=.23, p=.32, nor the 6 C 
case, F1,34=.01, p=.47 revealed evidence of generali-
sation. These predictions are in line with the asso-
ciative perspective and the experimental data 
(Spiegel & McLaren, in press). They are counter-
intuitive, because generalisation is dependent on the 
intervening number of C elements. These interven-
ing elements were irrelevant to application of the 
rule governing the sequences, i.e. the rule that B 
flashes are the same before and after the C flashes. 
Yet, the intervening flashes heavily impact on the 
model’s predictions and on human performance. If 
the participants had only been exposed to sequences 
with an odd number of Cs in training, they learned 
the trained sequences, but were unable to generalise 
to novel sequences with an even number of C ele-
ments. If there had been both odd and even numbers 
of Cs during training, they learned the trained se-
quences and generalised to novel sequences with 
both odd and even numbers. 

Thus far, we had only presented experiments 
where the model and participants succeeded in 
learning the problem. There was no presentation of 
an experiment where the model or people failed to 
learn the problem in the first place. Such a case does 
exist. When training the model on 2, 4, 6 and 8 Cs 
and testing generalisation to 3, 5 and 7 Cs, neither 
the SRN, nor our hybrid model, nor participants 
showed any signs of learning or generalization. This 
finding is even robust to parameter variations, as 
giving the model more power through longer train-
ing or raising the number of hidden units in the 
SRN-subcomponent showed no improvement. The 
data of these findings are already published in 
Spiegel and McLaren (2003). 
 
 
6   General Discussion 

The generalisation present in Experiment 6 and ab-
sent in Experiment 7 is in complete agreement with 
the predictions of our model, which were predomi-
nantly driven by the SRN-subcomponent. In the 
human case, however, it may perhaps be explained 
by the observation that the trained sequences with 5 
and 7 Cs were slightly longer than the ones with 4 
and 6 Cs, or perhaps because generalisation to the 
novel (but shorter) sequence with 5 Cs is easier than 
that to the novel sequence with 6 Cs. Equally, it 
could be that in Experiment 6 there was more train-
ing on shorter and thus less complex sequences (if 
we classify sequences with 1, 3 and 4 Cs as short 

ones and 5, 6 and 7 Cs as long ones). These poten-
tial confounds are controlled by Experiments 4 and 
5, where training was on 1, 3 and 5 Cs. These se-
quences experienced during training were, on aver-
age, shorter than for the 1, 3, 4 and 6 Cs problem. 
Furthermore, the use of 2 and 4 C element generali-
sation tests in Experiment 4 meant that the novel test 
sequences were also shorter than those used for Ex-
periment 6. Because we still found no generalisation 
to even numbers of C elements in Experiment 4, we 
were able to exclude the potential confound that the 
length or the amount of training on shorter se-
quences was responsible for generalisation to even 
numbers in Experiment 6 and the absence of gener-
alisation in Experiment 7. Indeed, the striking fea-
ture of Experiment 7’s results is how similar they 
are to Experiment 4, despite the changes in design 
between the two experiments. Also noteworthy is 
the fact that in both experiments, the pattern of re-
sults obtained with human participants is closely 
modelled by our hybrid model, which was driven by 
the associative sub-component in these experiments. 
We think that the contrasting generalisation shown 
by participants trained on the 1, 3, 5, 7 Cs and 1, 3, 
4, 6 Cs problems is due to the different associa-
tively-generated representations formed as a conse-
quence of training. The results of Experiment 5 are 
of particular interest, because they show that hu-
mans as well as the model do not generalise to the 6 
C case, but do generalise to 7 Cs after training on 1, 
3 and 5 Cs sequences. It must be acknowledged that 
finding generalisation to the sequence that is more 
distant from the trained sequences in the absence of 
any generalisation to a closer sequence is quite re-
markable. Taken in combination with the results 
from Experiment 6, these findings establish that 
generalisation of some kind can be obtained with 
either training sequence. This makes an explanation 
of the results based on non-transferable or weaker 
learning occurring with one training sequence rather 
than the other untenable. Instead, the pattern of gen-
eralisation obtained is simply that predicted by the 
model throughout. This also applies to those tasks 
where training was on shorter and less numerous 
sequences. When the cognitive part of the model 
played a large role by producing activity values 
above threshold, the model generalised to 3 Cs se-
quences after having been trained on 2 and 4 Cs. We 
believe that this combination of predictions and its 
confirmation by the human experiments are quite 
remarkable, for the model’s parameters were not 
changed a single time. Instead, the model’s imple-
mentation that was originally derived from the re-
sults produced in Experiments 1 and 2, led to suc-
cessful predictions in the following experiments. It 
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not only predicted successful learning and generali-
sation, but also learning in the absence of generali-
sation as well as the total breakdown of learning. 
We believe that our model therefore contributes to a 
better understanding of how cognitive and associa-
tive processes interact in this type of sequence learn-
ing problem. Certainly, there need to be more ex-
periments to better understand how these cognitive 
and associative processes interact in detail. In spite 
of its predictions, which were correct in so far as the 
model’s results were successfully cross-validated 
with further empirical tests, it might turn out that the 
model needs to be modified based on future data. 
This is particularly important with respect to tests of 
the cognitive sub-component of the model. With the 
exception of Experiment 3, more experiments were 
predicted by the associative sub-component of the 
model rather than by an above-threshold influence 
of the cognitive part. We nevertheless believe that it 
is necessary to introduce this model to the Experi-
mental Psychology Community at this stage, for its 
results have now been successfully applied to a total 
of 8 experiments (which implies over 500 hours of 
testing human subjects). Moreover, it provides an 
alternative to present hybrid computational models. 
Take ACT-R (e.g. Anderson, 1993) or Clarion (Slu-
sarz & Sun, 2001; Sun et al. 2001), which are pow-
erful approaches in Cognitive Science and have 
been adapted to psychology experiments. Apart 
from learning, the ACT-R architecture has been 
applied to problems as diverse as driving and flying 
behaviour, graphical user interfaces, programming, 
video games, just to name a few. The Clarion archi-
tecture has also been applied to the management of a 
sugar production factory or a minefield navigation 
task. The variety of successful applications of these 
models had the consequence that they were held 
relatively general. Their cognitive component in the 
form of a symbolic production system requires tell-
ing the model the rules it has to adhere to. These 
two models thus act on a higher level, being more 
general and thus applicable to a wider range of prob-
lems rather than being more specific to a particular 
learning task. Because our aim was to understand a 
particular learning task, we aimed for a model that 
acts on a lower level. We therefore did not tell the 
model any particular rules, nor did we adjust the 
model’s parameters once we had specified parame-
ters following the first 2 experiments. In this par-
ticular class of serial reaction time experiments, we 
believe that our model has the advantage that it 
might contribute to a more detailed analysis of how 
cognitive and associative processes interact, for it 
was designed with this particular problem in mind, 
whilst the other models were adjusted to these tasks 

after they had been designed with other tasks in 
mind. Our particular experiments, however, might 
not be of general interest across several scientific 
disciplines, which is where the strength of ACT-R 
and Clarion lies. Nevertheless, our sequence learn-
ing task has found some resonance in the psychol-
ogy community (e.g. Russell, 2004, pp. 347-349). 
The reason we developed a new model in the first 
place was because taking one of these existing mod-
els, telling these models the rules they have to ad-
here to and making parameter adjustments would 
have been a less stringent test criterion. 

We do not believe that our model’s cognitive 
mechanism is entirely correct (we even believe that 
parts of it will be falsified in the long run). How-
ever, we believe that it is important to implement 
models that are based on present knowledge of ex-
perimental psychology, and that can be critically 
evaluated on present and future data. Future knowl-
edge from psychology experiments will probably 
contribute to modifications or entirely new models. 
Our model is not neurally plausible either, as neuro-
scientific findings on those cognitive mechanisms 
are still lacking and the model’s associative sub-
component relies on backpropagation, which con-
tradicts current neurobiological knowledge. On the 
other hand, the first author of this paper compared 
the associative sub-component with a class of mod-
els that are considered neurally plausible according 
to Koerding and Wolpert (2004), and found no dif-
ference in terms of the overall results apart from the 
duration it takes the models to converge on this 
learning task (Spiegel, 2002). 

Referring to psychological plausibility, the error 
correcting training algorithm present in the associa-
tive sub-component is psychologically plausible to 
some extent, as participants receive feedback after 
every response, indicating whether they have 
pressed the right or the wrong key. In summary, this 
paper mainly deals with a psychologically inspired 
model that will hopefully be applied to simulate the 
interaction of cognitive and associative processes in 
future serial reaction time experiments. When nam-
ing our model, we have chosen the name SARAH, 
an acronym for Sequential Adaptive Recurrent 
Analogy Hacker (the original, neutral connotation of 
the word hacker is implied here, i.e. someone who 
enjoys perfecting an algorithm). 
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Abstract 

 

Determining the extent to which a cue predicts an outcome is one of the most fundamental forms of 

learning. Some algorithms (e.g. Hebbian learning) assume that the rate of learning is solely deter-

mined by cue-outcome contiguity, but empirical work in humans and other animals indicates that 

cue competition can also affect learning rate (e.g. the phenomenon of blocking, Kamin, 1969, where 

presentation of a novel cue in compound with a cue that is already known to predict the outcome re-

tards the formation of an association between the novel cue and the outcome).  Aspects of cue com-

petition are captured by a number of associative algorithms, including the Widrow-Hoff (1960) al-

gorithm (a.k.a. LMS rule, delta rule, Rescorla-Wagner (1972) model), and by some reasoning-based 

(propositional) accounts (e.g. De Houwer et al., 2005). Given the wide range of models that predict 

cue competition, it seemed productive to ask what processes are employed by one highly successful 

predictive learning system – the human brain. In the current work, we investigated a hypothesis, 

suggested by the Mackintosh (1975) associative algorithm, that cue competition is a result of atten-

tion being selectively directed to cues that are known good predictors of the outcome. Specifically, 

we employed measurements of the EEG and of eye movements as our indices of attention in a cue 

competition experiment with adult humans. Support was found for our hypothesis, with features of 

the event-related EEG that have previously been implicated in selective attention being modulated 

in the expected manner. Looking time measures from eye-tracking, generally believed to be an in-

dex of overt attention, were also modulated in the expected direction. The EEG data implicates a 

relatively fast process (~120ms), possibly located in areas of the brain that deal with vision and ob-

ject recognition (inferior occipital and temporal regions). The timing and location of these effects 

makes it unlikely they are the direct product of a high-level reasoning-based process, although the 

possibility remains that they are the top-down product of previous high-level reasoning. 
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Abstract

One of the most perspective ideas of further development of Reinforcement Learning (RL) re-
search involves using associative learning models to improve performance of reinforcement
learning agents. Learning Classifier Systems (LCS) have proved to be one of the most suc-
cessful classes of RL methods that have been applied to maze environments. However, so far
LCS have shown their effectiveness for small sized and simple maze environment tasks only.
We try to overcome the limits by tying up the connection between LCS performance and prin-
ciples of established psychological phenomena, those of associative learning in particular. We
bring together the ideas of imprinting, laws of organization and stimulus generalization to
create a basis for introducing an associative perception and recognition to the LCS frame-
work. As a result, we develop the Associative Perception Learning Model, a new concept
for modelling the learning process in autonomous learning agents. The model has been im-
plemented as AgentP, a new LCS with Associative Perception and its performance has been
evaluated on existing and new maze problems.

1 Introduction

The ability to adjust behaviour through learn-
ing process in complex environments is inher-
ent in all living creatures (Dayan and Balleine,
2002). Using sequential interactions, an organ-
ism acquires knowledge about its environment
and about the effects of its behaviour on it. All
research in the Reinforcement Learning (Sutton
and Barto, 1998; Dayan, 2001) field are based on
this principle. However, how exactly the learn-
ing is achieved, depends on a particular learn-
ing model. The importance of designing of a
thought-through learning model based on an
appropriate research methodology has been dis-
cussed by many authors (Sutton, 1991; Bryson,
2004; Nehmzow, 2006).

Learning Classifier Systems (Holland and Re-
itman, 1978) is a reinforcement learning class of
machine learning techniques created on a mix-
ture of psychological and biological ideas. LCS
are a promising direction of machine learning
research that have been experiencing great in-
crease of interest in the recent years (Bull and
Kovacs, 2005). However, as LCS research has ad-

vanced, the connection between the algorithm
used and the biological inspiration has weak-
ened.

In recent years LCS proved to be one of the
most promising classes of RL methods that have
been applied to maze environments, an essen-
tial kind of the reinforcement learning problem.
However, so far LCS have shown their effective-
ness for small sized and simple maze environ-
ment tasks only, and there is a need for improv-
ing of their performance.

One of the most perspective ideas for fur-
ther development of RL research is incorpo-
rating associative learning models (Hall, 1991;
Dickinson and Balleine, 1993; Alonso and Mon-
dragon, 2004) into the Reinforcement Learning
framework. As an approach to the problem
we present the Associative Perception Learning
(APL) Model, a new concept for modelling the
learning process in autonomous learning agents.
The APL model has been implemented as a
Learning Classifier System with Associative Per-
ception and evaluated on a set on maze environ-
ments with promising results.

The rest of the paper is structured as fol-
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lows. Section 2 defines mazes as a reinforcement
learning problem. Section 3 introduces Learning
Classifier Systems and performs a short review
of their performance in maze environments. Sec-
tion 4 gives a brief background into the prin-
ciples of imprinting, laws of organization and
stimulus generalization and explains how these
principles are incorporated in the Associative
Perception Learning Model. In Section 5 we an-
alyze how the model, implemented in AgentP, a
new LCS with Associative Perception, performs
in action. Finally, conclusions are provided.

2 Maze Environments as a Re-
inforcement Learning Task

Learning from interaction is a fundamental idea
underlying nearly all theories of learning and in-
telligence (Sutton and Barto, 1998; Dayan, 2001)
and is essential in designing and building au-
tonomous software systems for real-life applica-
tions (Alonso and Mondragon, 2004). Reinforce-
ment Learning attempts to formalize the prob-
lem of learning from interaction. The learner
and decision-maker is called the agent (Sutton
and Barto, 1998). The agent interacts with the
environment and the latter provides it with a
signal which comprises information about the
agent’s surrounding. The agent and the environ-
ment interact continually; the agent selects ac-
tions, the environment responds to those actions
by providing an occasional reward and presents
new situations to the agent. In other words, the
agent try to learn how to solve a problem or
perform a certain task through trial and error in-
teractions. It knows nothing about the task it
has to learn, and it is only interested in maxi-
mizing the reward it receives. There are many
different research approaches to emulating the
reinforcement learning process in artificial cog-
nitive systems, from neural nets (Kamo et al.,
2002; Niv et al., 2002) to Learning Classifier Sys-
tems (Holland and Reitman, 1978; Wilson, 1995;
Stolzmann, 2000; Bull and Hurst, 2001).

The phenomenon of spatial learning has been
extensively studied in psychology (Prados and
Redhead, 2002; Pearce et al., 2004). The maze
problem serves as a formalized spatial learning
model on the one side, and as a reinforcement
learning task on the other. They are usually
represented as grid-like two-dimensional areas
that may contain different objects of any quan-

tity and various quality. Figure 1 presents an ex-
ample of a maze environment, a virtual equiva-
lent of the classic T-maze used in psychological
experiments to assess a rat’s ability to remember
spatial information.

Figure 1: T-maze.

Maze environments serve as a simplified vir-
tual model of the real world, and a learning
agent in a maze environments is an example of
an intelligent system modelling an animal try-
ing to reach its objectives. The relative simplic-
ity of mazes allows us to control the process of
learning and trace the behaviour of the learn-
ing agent at every stage. At the same time
the idea of maze environments includes a virtu-
ally unlimited number of graduated complexity
levels, enabling researchers to use as simple or
as complex environments as they need. These
two factors make maze environments a good
research paradigm for many navigation-based
problems (Nehmzow, 1995) of Artificial Intelli-
gence, from domestic appliance robots and au-
topilots for the automotive industry to network
routing agents and autonomous walking robots
for space research.

The process of learning begins when the agent
is randomly placed in the maze on an empty
cell. At each step it performs an action by at-
tempting to move to an adjacent cell. The agent
is allowed to move in all directions, but only
through empty cells. The task is to learn how to
reach food as fast as possible from any square.
Once an external reward is received (usually by
reaching a food cell), the agent’s position is ran-
domly reset and the task repeated. The agent
uses a learning algorithm to form a policy to
minimize the steps taken to food based on its
ability to perceive the environment and the re-
wards received.

Usually a learning agent in maze environment
is able to perceive not the whole picture of the
environment, but the surrounding cells only. It
may make mazes harder to solve because of
the aliasing problem: some cells look exactly the
same, but are in different places and demand
different actions. Presence of aliasing cells may
lead to a non-optimal behaviour in the maze
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and decrease the agent’s performance. Alias-
ing mazes represent a task of increased difficulty
for learning agents, and so far the problem of
learning in aliasing environments has not been
resolved.

More detailed description of the maze prob-
lem and characteristics of maze complexity can
be found in (Bagnall and Zatuchna, 2005).

3 Learning Classifier Systems

The maze problem has been widely used in ma-
chine learning research (Cassandra et al., 1994)
to assess the performance and learning abilities
of adaptive agents. The majority of RL tech-
niques applied to mazes, as well as those with
the most promising performance, belong to the
class of Learning Classifier Systems (Holland
and Reitman, 1978). Learning Classifier Sys-
tems are rule-based reinforcement learning sys-
tems, where an agent learns to perform a cer-
tain task by modifying its rule-based knowledge
about the world through interacting with an un-
known environment. LCS have proved their
ability to solve optimally simpler mazes (Wilson,
1995; Stolzmann, 2000; Bull and Hurst, 2001)
and some more intricate environments (Lanzi
and Wilson, 1999; Métivier and Lattaud, 2002).
However, so far the problem of learning in com-
plex aliasing maze environments has not been
resolved.

Another problem of the LCS performance in
maze environments concerns computational re-
sources. Traditionally Learning Classifier Sys-
tems (Holland and Reitman, 1978) include a
generalization mechanism that randomly omits
some part of the environment information be-
fore memorizing. The main purpose of the
process is to find the main underlying regula-
tions of the maze, evolve generalized knowl-
edge of the environment and make the algo-
rithm more scalable. However, LCS that have
been used on mazes have tended to have the
number of rules two orders of magnitude larger
than the number of cells available for the learn-
ing agent in the maze. For example, LCS needed
6000 rules to solve maze Woods102 (Lanzi and
Wilson, 1999) (Fig. 2, left) and 2800 rules to solve
maze E1 (Métivier and Lattaud, 2002) (Fig. 2,
right).

The larger sets of rules demand not only
large amount of memory, but also significantly
larger amount of learning time. For example,

Figure 2: Woods102 (left); E1 (right).

Bull reported his system needed 10,000 trials
for Woods1 maze environment (Bull and Hurst,
2002) (Fig. 3, left), and 25,000 trials for small
Woods101 environment (Bull and Hurst, 2003)
(Fig. 3, right). Thus, the present approach to gen-
eralization in LCS, when a learning agent tries to
evolve the optimally generalized rules from the
beginning, before it has learnt the environment,
seems to be damaging for the learning process
and may actually make it more difficult.

Figure 3: Woods1 (left); Woods101 (right).

4 The Associative Perception
Learning Model

As we discussed in previous sections, there are
two major problems associated with the perfor-
mance of LCS learning agents in maze environ-
ments. First, to our best knowledge so far none
of them has proved its ability to solve complex
aliasing mazes. Second, the published results of
the experiments in maze environments suggest
that the architecture of most LCS agents may re-
quire prohibitively large rule sets to solve larger
mazes.

Trying to overcome the problems and im-
prove the performance of Learning Classifier
Systems in maze environments we reviewed the
major psychological approaches to explaining
learned behaviour in humans and animals and
developed the Associative Perception Learning
Model, a new concept for modelling the learning
process in autonomous learning agents that ap-
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proaches the problem of learning through mech-
anism of associative perception and recognition
in a complex environment. The APL model is
based on the following psychological principles:

Imprinting. Imprinting is an especially rapid
and relatively irreversible learning process first
observed and described by Konrad Lorenz
(1935). In the process of imprinting, distinctive
attributes of external objects are memorized by
an individual and become connected with his
behavioural reactions. The imprinting phenom-
enon has been extensively studied in psychol-
ogy and biology (Honey and Bolhuis, 1997; En-
quist et al., 2002). According to the principle,
the learning agent in the Associative Perception
Learning model absorbs the environment sig-
nals as they are perceived, without any changes
or generalization.

Laws of Organization. Gestalt theory empha-
sizing higher-order cognitive processes was cre-
ated early in the XX century (Wertheimer, 1938).
The focus of the theory was the idea of group-
ing, which occurs when characteristics of stimuli
cause an individual to structure or interpret a vi-
sual field or problem as a global construct. The
rules of interpretation may take several forms,
such as grouping by proximity, similarity, clo-
sure, etc. These factors were called the laws of
organization and explained in the context of per-
ception and problem-solving. In the APL model
environment signals, received sequentially, are
grouped according to the rules of interpretation
and perceived as a single indecomposable im-
age, employing the associative way of learning.

Stimulus Generalization. The ability to gen-
eralize plays an important role in both natural
and artificial cognitive systems (Ghirlanda and
Enquist, 2003) and has been extensively stud-
ied in the reinforcement learning research (Sut-
ton, 1996; Balkenius and Winberg, 2004). The
behavioural phenomenon termed stimulus gen-
eralization was first described and interpreted
by Pavlov (1927) and later extensively studied
by Skinner (1953). According to their research,
an individual that has learnt a certain behaviour,
responds in a similar manner to stimuli that are
similar to the one on which he was trained. In
terms of maze learning, stimulus generalization
would mean creating a post-learning generaliza-
tion mechanism that allows to transfer the ex-
perience obtained in a certain maze section to
another maze area with similar attributes. Ex-
periments with rats demonstrating the effect in

action were recently performed by Pearce et al.
(2004).

4.1 Image Creation

The Associative Perception Learning Model op-
erates perceptive images where the sensory in-
put perceived at the initial position of the agent
is connected with both the sensory input per-
ceived at the result position and the agent’s ac-
tion. I.e., the model links the input at time t, St,
the action taken a and the next input St+1 to-
gether, creating a single image (Figure 4).

Figure 4: Image creation in the Associative Percep-
tion Learning Model.

The image is perceived non only as a time vec-
tor reflecting the cause-and-effect relations but
also a united information structure describing
the attributes of its components through their in-
terconnections.

4.2 Image Connection

The associative perception mechanism employs
a sliding image formation principle (Fig. 5). Each
representation of an environment state St is as-
sociated with two others, the previous St−1 and
the following one St+1. Thus, the formation of
images occurs under sliding state-to-state atten-
tion. As a result, the system is always able to
keep track of the connections between images
and place a perceived state in the context of
the surroundings. In the case of reinforcement
learning, it allows the system to share any re-
ceived reward among the associated images.

Figure 5: Sliding image formation.

4.3 Differentiation

In the real life, we can distinguish two similar
objects, such as houses, based on their surround-
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ings. Other buildings or trees growing beside
become associated with the original object and
give us a clue to differentiate it correctly. In-
fluence of associative processes on differentia-
tion has been extensively studied by Murphy
et al. (2004). To disambiguate aliasing cells, the
Associative Perception Learning Model uses the
same principle. To decide whether two images
are the same, it matches them against each other
element by element. If at least one of the el-
ements of the first image does not match the
corresponding element of the second image, the
rest of the elements are considered to be non-
matching also, even if they replicate each other
perfectly. To draw the conclusion about the im-
age match, all elements of both images have to
be consistent.

Figure 6 illustrates the process: in the course
of differentiation, memorized images are in turn
compared to the current perceptive image. For
the performed action a the current initial state
St

cur is compared with the memorized initial
state St

imp, and the current result state St+1
cur is

compared with the memorized result state St+1
imp.

If one state matches and the other does not, the
matching state is considered to be aliasing and
marked with a distinguishing sign to allow it to
be correctly disambiguated in the future.

Figure 6: Differentiation based on association.

4.4 Generalization

A generalization mechanism would be required
for extensive tasks that include dozens of thou-
sands states. Generalization in the APL model is
based on the post-learning principle and is ap-
plied when the agent has been showing a stable
performance in the maze for a certain period of
time. The mechanism attempts to find general
patterns in the images that performed best in the
past. The found patterns are then memorized
and used as a reference set of the first choice.
If there is no suitable pattern found, the system
operates in the regular learning mode. Thus, be-
ing placed in a vast maze environment, the sys-

tem would start from exploring the immediate
surrounding, extract valuable information from
its present images into a more compact repre-
sentation and then use the extraction at the next
stages of learning. This mechanism allows the
agent to extrapolate the knowledge obtained in
one area of the environment to the others areas
of the same environment, or, alternatively, trans-
fer the knowledge obtained in a certain environ-
ment to other similar environments.

5 Experiments and Results

The Associative Perception Learning Model de-
scribed in Section 4 has been implemented as a
Learning Classifier System with Associative Per-
ception, called AgentP. Perceptive images of the
APL model have been supplemented with a re-
ward prediction coefficient to form the set of be-
haviour rules in AgentP.

AgentP has been tested on the maze envi-
ronments discussed in Section 3 and shown the
optimal performance results with significantly
smaller amount of rules in comparison to the
other LCS. For example, AgentP needs only
82 rules to solve Woods102 (compare to 6000
rules reported by Lanzi and Wilson (1999)) and
only 240 rules to solve E1 (2800 rules reported
by Métivier and Lattaud (2002)). Overall, the al-
gorithm performs on minimal memory require-
ments: the number of rules required for solving
a maze is usually a value of the same order as
the size of this maze.

AgentP also outperforms the other LCS in
terms of learning time. It needs around 25 trials
to solve aliasing Woods101 environment (com-
pare to 25,000 trials reported by Bull and Hurst
(2003)) and 18 trials on average to solve Woods1
(10,000 trials reported by (Bull and Hurst, 2002)).

We also tested AgentP on several other mazes
used in LCS/RL research before (31 mazes in
total). The results of these tests indicate that
in the majority of cases (94%) AgentP has been
able able to solve them optimally. The results
were compared to other agents where appropri-
ate and the comparison conformed (Zatuchna,
2004; Zatuchna and Bagnall, 2005b) that AgentP
solves the mazes in less time and with less mem-
ory than similar agents.

To perform more thorough tests of the agent
architecture we have have evaluated AgentP on
a large set of new mazes. Figure 7 (left) shows
AliasIIMaze17, one of the 80 new mazes used
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in the experiment. The maze is toroidal and
contains one hundred cells in total, including
15 aliasing squares. Aliasing cells which pro-
duce the same sensory input are marked with
the same numbers. AgentP has reached the op-
timal performance of 2.72 steps to food after 723
trials in average (all experiments consisted of 50
runs in a row). AliasIIMaze20 (Figure 7, right)
includes 19 aliasing squares that produce 9 dif-
ferent sensory inputs. The maze has a longer av-
erage distance to food, and has been successfully
solved by AgentP (7.31 steps to food) after 484
trials in average.

On the whole, AgentP has solved 72 of
80 available mazes (optimal performance on
90% of environments). The full collection of
mazes, specification of their parameters as well
as a complete set of correctness, convergence
and memory statistics for AgentP is available
at (Zatuchna and Bagnall, 2005a).

Figure 7: AliasIIMaze17 (left); AliasIIMaze20 (right).

The architecture of AgentP discussed in this
paper represents a simulation of the learning
process in its early stages only and does not
involve the post-generalization mechanism de-
scribed in the original APL model. The idea of
this stage of the research is to rectify whether
the model of Associative Perception Learning in-
corporated into the LCS framework is able to
sharpen the learning ability of Learning Clas-
sifier Systems in maze environments and cre-
ate a system capable of differentiating of com-
plex aliasing patterns. To verify the viability of
the idea of post-generalization for maze learn-
ing and test the learning advantages of the APL
model in full, more advanced experiments are
required.

6 Conclusions

In this paper we presented the Associative Per-
ception Learning Model, a new concept for mod-
elling the learning process in autonomous learn-
ing agents. The model approaches the prob-
lem of learning through mechanism of associa-
tive perception and recognition in a complex en-
vironment. The model operates perceptive im-
ages where information about the environment
state at the initial position of the agent is con-
nected with both information about the environ-
ment state at the result position and the agent’s
action. The system employs a refined differen-
tiation mechanism, that allows to provide more
precise and accurate recognition of the environ-
ment information. The Associative Perception
Learning Model includes the sliding image for-
mation principle, that allows the system keep
track of the connections between images.

The model has been implemented as AgentP,
a new LCS with Associative Perception. Its per-
formance has been evaluated on existing and
new maze problems. AgentP has been able to
show the optimal performance on 90% of the
mazes The results of the experiments show that
AgentP is capable to solve the majority of the
mazes optimally, and for existing mazes it does
it in less time and with less memory than other
LCS-based agents. It allows us to suggest that
the presented learning model is a promising de-
sign in the area of learning agents for maze envi-
ronments and supports the idea of benefits that
can bring psychologically justified algorithms
for autonomous learning agents in general.
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Abstract

The idea of temperament refers to the essential properties of the central nervous system that
can produce variations in behaviour and influence the ability of an individual to learn and
adapt itself to a complex environment. The research represents an attempt to model certain
biological aspects of temperament as alternative learning mechanisms. We investigate the
influence of the ‘virtual temperament’ on the effectiveness of the learning in maze environ-
ments and evaluate the performance of the learning algorithms on two extensive sets of maze
problems.

1 Introduction

Temperament refers (Pavlov, 1927, 1957) to ba-
sic dimensions of personality that are grounded
in biology and explains individual differences
in the developmental process. In the research
we use the idea of temperament to improve
the learning results of autonomous adaptive
agents. More specifically, we model certain bio-
logical aspects of temperament as alternative ap-
proaches to extracting knowledge from interac-
tions with an environment and investigate how
it influences the performance results of a learn-
ing agent in maze environments.

Artificial cognitive systems have been exten-
sively studied in the reinforcement learning re-
search (Sutton and Barto, 1998; Sutton, 1991;
Dayan, 2001; Balkenius and Winberg, 2004) and
include many different approaches, from neural
nets (Kamo et al., 2002; Niv et al., 2002) to Learn-
ing Classifier Systems (Holland and Reitman,
1978; Wilson, 1995; Stolzmann, 2000; Bull and
Hurst, 2001). Our interest lies in improving of
learning abilities of Learning Classifier Systems
(LCS), a group of rule-based machine learning
algorithms that produce adaptive systems for
different kinds of learning problem. For our ex-
periments we use AgentP, a reinforcement learn-
ing agent with associative perception (Zatuchna,
2004, 2005). AgentP is a recently introduced
variation of LCS which has shown promising

results in the area of maze learning (Zatuchna,
2004).

Mazes were originally used in psychological
experiments involving primarily small labora-
tory animals, such as rats (Tolman, 1932; Prados
and Redhead, 2002; Pearce et al., 2004), to study
characteristics of the learning process and the
role of reward in learned behaviour (Dayan and
Balleine, 2002; Bryson, 2004). Later mazes were
adopted in machine learning research and now
serve a reinforcement learning task (Sutton and
Barto, 1998; Dayan, 2001) that involves learning
actions to optimize some objective in an environ-
ment.

Virtual mazes consists of cells, each of which
can be either empty and available for the agent
or occupied by a barrier. The learning agent is
usually able to see only the nearest cells around
itself, perceived as a sensory input, and in cer-
tain mazes it results in the problem of aliasing.
Aliasing occurs when some maze squares look
exactly the same for the agent, despite the fact
that they are in different locations. In other
words, the sensory inputs the agent receives in
these cells are identical, but the actions that need
to be taken in them may be different. Aliasing
may significantly disrupt learning and result in
the agent’s inability to solve the maze.

Learning Classifier Systems have been suc-
cessfully applied to maze problems (Wilson,
1995; Stolzmann, 2000; Bull and Hurst, 2001;
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Lanzi and Wilson, 1999; Métivier and Lattaud,
2002) and are a promising direction of machine
learning research that has been receiving an in-
crease in interest in the recent years (Bull and
Kovacs, 2005). However, the problem of learn-
ing in aliasing environments has not been re-
solved yet and we hope our temperament-based
approach will advance the LCS performance to-
ward the goal.

The rest of the paper is structured as follows.
Section 2 gives a brief introduction to Learn-
ing Classifier Systems and AgentP in particular.
Section 3 offers background information on the
idea of temperament and introduces two differ-
ent learning modes for AgentP, Self-Adjusting
and Gradual, which represent variations in mo-
bility of the nervous system. In Section 4 we an-
alyze how the two different models perform on
an extensive range of maze environments. Fi-
nally, conclusions are provided.

2 AgentP: a Learning Classifier
System with Associative Per-
ception

Learning Classifier Systems (LCS) are rule-based
systems, where an agent learns to perform a cer-
tain task by interacting with an unknown envi-
ronment. Occasionally it receives some feedback
from the environment, usually in the form of a
reward and uses this reward to guide an inter-
nal learning process and modify its rule-based
knowledge about the world. Fig. 1 represents an
example of a typical rule structure used by LCS.
It includes a coded sensory input, received from
the environment, action directions and a reward
expectation.

Figure 1: Example of a rule structure used by LCS.

The great importance of model design in de-
velopment of artificial cognitive systems has
been discussed by many authors (Sutton, 1991;
Bryson, 2004; Nehmzow, 2006). One of the
most promising ideas for further Reinforce-
ment Learning research is integrating it with
the principles of associative learning (Hall, 1991;
Alonso and Mondragon, 2004). AgentP is a

Learning Classifier System with Associative Per-
ception (Zatuchna, 2005), that retains and ex-
tends the tradition of biologically inspired de-
signs for learning agents. It employs the As-
sociative Perception Learning Model (Zatuchna,
2004) and incorporates psychological principles
of imprinting (Lorenz, 1935; Honey and Bolhuis,
1997; Enquist et al., 2002) and the laws of orga-
nization (Wertheimer, 1938), that have not been
previously used with LCS.

The rules in AgentP are extended with a pre-
diction part (Stolzmann, 2000), thus, each rule
contains not only the initial sensory input and
the performed action (as shown in Fig 1), but
also the result sensory input. In other words,
AgentP tries to predict what consequences will
have a certain action in a particular situation and
what picture of the environment it will see if it
performs the action.

The rule structure in AgentP also includes a
new ID system. Each rule has reserved space
for an additional ID of each sensory input (see
Fig. 2; parts of the rules representing IDs are
marked with X). The ID system allows the so-
lution of the problem of aliasing squares: each
confusing input is processed by the differentia-
tion mechanism (Zatuchna, 2004) and receives a
unique number.

Figure 2: Example of a rule in AgentP.

An ID of a particular sensory input in a cer-
tain rule can then be transferred to another rule
which contains the same sensory input through
the mechanism of association. In such way the
knowledge about the true identity of an aliasing
sensory input can be spread in the rule popula-
tion allowing it to unambiguously identify the
aliasing cell from whatever side the agent ap-
proaches it. The transfer of the ID information
takes place every time when the agent is ‘sure’
about its position in the environment. However,
the regulations on when it is ‘sure’ and when it
is ‘not sure’ may differ.

3 Modelling of Temperament

Pavlov (1927) explained differentiations in hu-
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man states based on the assumption that essen-
tial properties of the central nervous system can
produce variations in behavioural and psycho-
logical outputs. According to his conclusions,
the brain activities on a microscopic level come
down to the intensity, homeostasis and mobil-
ity of nerve cell stimulation and inhibition. He
called the essential properties of the nervous
system strength, equilibrium and mobility.

Strength refers to the capacity of the cere-
bral cells to endure intense stimulation and their
resistance to powerful external disruptors and
stress. Equilibrium refers to the ability to main-
tain a balance between excitation and inhibi-
tion. Mobility defines the ease with which brain
processes could shift from one state to another
to keep pace with changing environmental de-
mands and determines the speed at which an
individual can adopt specific appropriate re-
sponses to environmental stimuli. Thus, mo-
bility is a characteristic of the nervous system
that is directly connected with the quality of the
learning process and reflects the adaptive capa-
bilities of an individual.

We have introduced two alternative proce-
dural techniques to the learning process that re-
flect the idea of mobility. It has resulted in cre-
ation of two variations of AgentP of ‘different
temper’. The first, Self-Adjusting AgentP, is flexi-
ble and adapts rapidly to changing information;
the second, Gradual AgentP, is more conserva-
tive in drawing conclusions and rigid when it
comes to revising strategy.

3.1 Self-Adjusting AgentP

Let us assume there are three consecutive alias-
ing cells, visited by Self-Adjusting AgentP in
a learning run. The sensory inputs the agent
receives in the squares are 0000000100110101,
0000010101000000 and 1111111111000000 ac-
cordingly, rules A and B consecutively describe
the movement of the agent in these cells. As
soon as both rule A and rule B are the only rules
that match the actions of the agent, the agent
is considered to be ‘sure’ about its location in
the maze and may transfer the ID information
from one rule to another. Figure 3 illustrates
the process: the ID of the intermediate state
0000010101000000 is transferred from rule A to
rule B. As a result, rule B is changed as shown.

The only restriction on the learning process in
the Self-Adjusting learning mode is the presence

Figure 3: Self-Adjusting AgentP: transferring ID.

of multiple rules in an uncertain situation. Thus,
if the agent has two or more consistent rules for
each action, no ID transference takes place.

Under these conditions the agent performs as
a rapidly adjusting system: IDs are immediately
transmitted with no precautions and mistakes
are adjusted for without checks. This means
AgentP can explore all aliasing squares at the
same time, but also means that incorrect infor-
mation may be transmitted.

Figure 4 illustrates the exploration of alias-
ing cells in a maze by Self-Adjusting AgentP.
It initiates spreading of IDs at many places at
once (aliasing squares are marked with num-
bers, those in development are marked with a
tint), rapidly covering the maze with its labile
learning process.

Figure 4: Exploration of aliasing cells by Self-
Adjusting AgentP.

3.2 Gradual AgentP

Gradual AgentP is only ‘sure’ about its posi-
tion in the environment when, firstly, it has been
‘sure’ on every step since the last non-aliasing
square and, secondly, when at least one rule of
the two last ones has no uncertainty about the
identities of the aliasing states it includes. Re-
ferring to the example in Section 3.1, Gradual
AgentP will not transmit the ID from rule A to
rule B because rule A does not satisfy the condi-
tion (Fig. 5). However, if the cell, that produces
the initial sensory state 0000000100110101 in rule
A were non-aliasing, the ID would be transmit-
ted.

The restriction of presence of multiple rules
also applies to the Gradual learning mode. In
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Figure 5: Gradual AgentP: no ID transfer because the
initial state of rule A is uncertain.

addition, Gradual AgentP does not include any
direct correction of mistakes; if a cell that was
previously considered as a reliable non-aliasing
square has been freshly discovered to be an alias,
all rules including the unreliable information
about the cell, are deleted, and its exploration
begins from scratch.

The Gradual agent uses its rules as a thread
to orient itself in aliasing surrounding. Under
these settings AgentP is a cautious learning sys-
tem that explores the aliasing environment grad-
ually, building up a consecutive bridge from re-
liable non-aliasing squares through an aliasing
conglomerate. Figure 6 illustrates the process of
exploration of aliasing cells in a maze by Grad-
ual AgentP. It moves from one cell to a neigh-
bouring one slowly (marked with a tint), and
does not draw any conclusion about the next
piece of puzzle until it has finished with the pre-
vious one.

Figure 6: Exploration of aliasing cells by Gradual
AgentP.

4 Experiments and Results

To test the learning abilities of the agent with
different temperament settings, we repeatedly
ran it on two sets of maze environments. Each
stage of the experiments involved running the
system in two learning modes sequentially, first
Self-Adjusting and then Gradual.

The majority of LCS research has been eval-
uated on a small number of mazes (1-3 mazes
only) (Bagnall and Zatuchna, 2005). To improve
validity of the experiments and provide a firm
basis for comparing our results to those of other
learning algorithms we use two extensive sets of

maze environments.
The first set consisted of 80 medium mazes up

to 100 cells in total. Figure 7 presents examples
of medium mazes (aliasing cells that produce the
same sensory input are marked with the same
numbers). AliasIIMaze20 (to the left) has the
optimal performance of 7.31 steps to food and
comprises of 19 aliasing cells reflected in 9 alias-
ing states (sensory inputs). The optimal perfor-
mance on AliasIIIMaze20 (to the right) is 4.28
steps to food in average. The maze includes 31
aliasing squares represented as 11 different sen-
sory inputs.

Figure 7: (a) AliasIIMaze20; (b) AliasIIIMaze20.

Both, Self-Adjusting and Gradual AgentP,
were able to solve the majority of mazes from
the medium maze set. The number of mazes for
which AgentP was not able to find an optimal
policy is virtually the same for the two learning
modes. Self-Adjusting reached optimal perfor-
mance on 89% of mazes, while Gradual showed
90% result.

The major difference in the performance of
the two agents in medium environments was
the learning time: on average Gradual AgentP
needed more time to learn a maze. Figure 8
shows the scatter plot of average steps to food
against trials before the learning was accom-
plished. This graph demonstrates the longer
time required by Gradual AgentP. Thus, after
the first stage of the experiments Self-Adjusting
AgentP seemed to be a more effective problem
solver than Gradual.

The second set contained 271 larger mazes
that vary from 120 up to 1140 squares in total.
Figure 9 presents examples of larger mazes. En-
vironment LargeAliasIIIMaze15 has the optimal
performance of 7.73 steps to food in average and
includes 62 aliasing squares that produce 27 sen-
sory inputs. LargeAliasIIMaze5 has the optimal
performance of 11.5 steps to food and contains
60 aliasing cells (24 aliasing sensory inputs).

The experiments on larger mazes clearly
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Figure 8: Steps to food plotted against average tri-
als before learning for Self-Adjusting and Gradual
AgentP on medium mazes.

Figure 9: LargeAliasIIIMaze15 (left); LargeAliasI-
IMaze5 (right).

showed that there was a significant difference
in the abilities of Self-Adjusting and Gradual
AgentP to solve them. The performance of Self-
Adjusting AgentP dropped significantly com-
pared to the previous results (down to 23%).
Gradual AgentP, on the contrary, still performed
well and demonstrated three times better perfor-
mance than Self-Adjusting (71%). Table 1 gives
the number of mazes solved every time (for 50
runs) by both types of agent and its percentage
equivalent. A complete set of correctness, con-
vergence and memory statistics for both sets of
mazes is given at (Zatuchna and Bagnall, 2005).

Table 1: Number of mazes solved by Self-Adjusting
and Gradual AgentP

Maze Set Self Adjusting Gradual
Medium 71 / 89% 72 / 90%

Large 62 / 23% 193 / 71%

Analysis of the results suggests that enlarging
of a maze results in the increasing of not only the
average steps to food value, but also the number

of aliasing squares. The distribution of the opti-
mal runs against the number of aliasing squares
(not shown) have demonstrated a clear depen-
dance between the latter and ability of the agents
to solve the maze. The more aliasing squares a
maze contains, the better proportion of optimal
runs is demonstrated by Gradual AgentP, com-
pared to Self-Adjusting.

Another indicative point of the problems
faced by the agents in large maze environments
is the amount of knowledge extracted by them
by the end on a learning run. The average num-
ber of rules created by Self-Adjusting AgentP is
noticeably smaller compare to Gradual. More
precisely, the size of the rule population created
by Gradual agent on the larger maze environ-
ment was 255 on average. Meanwhile, the aver-
age rule set created by Self-Adjusting was only
252 rules. This suggests that the ability of Self-
Adjusting agent to recognize all significant reg-
ulations in an environment drops down as the
maze size enlarges.

5 Conclusions

In this research we incorporate the idea of tem-
perament into a machine learning framework to
improve learning abilities of autonomous adap-
tive agents. We base our model on the idea of
mobility, a significant characteristic of the ner-
vous system that reflects the adaptive capabil-
ities of an individual. The experiments were
performed using AgentP, a Learning Classifier
System with Associative Perception. We in-
troduce two alternative learning techniques to
AgentP and create two systems of ‘different tem-
perament’. Self-Adjusting is flexible and adapts
rapidly to changing information; Gradual is con-
servative and rigid. Then we test AgentP in the
two different learning modes on a number of
maze environments.

There were two stages of the experiments:
first involved 80 medium mazes; second in-
cluded 271 large-sized mazes, up to 1140 cells
in total. So far these are the most extensive maze
sets used in research.

The results of the experiments show that both
versions of AgentP can solve the majority of the
medium mazes quite easily and with virtually
equal performance. Gradual AgentP, though,
needed more time compared to Self-Adjusting
to complete the learning, therefore, seems to be
less effective. Larger mazes, however, provide
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us with a different result. Gradual AgentP is still
able to solve the majority of the environments,
while the performance of Self-Adjusting drops
significantly.

Analysis of the results suggest that the more
aliasing cells in a maze, the larger is the proba-
bility that Self-Adjusting agent will become con-
fused and not able to recognize the significant
regulations in the environment because of its
careless leaning style. At the same time the
cautious and deliberate approach of Gradual
AgentP proved to be more reliable in the situ-
ation of large and complex maze environments.

Overall, Gradual AgentP takes longer to con-
verge than Self-Adjusting, but performs better
on some of the medium mazes and on the vast
majority of the larger mazes. However, on some
of the medium mazes Self-Adjusting AgentP
finds a better policy than Gradual. This indi-
cates that Gradual AgentP is at times discount-
ing useful information because it cannot deter-
mine its meaning with certainty. Thus, the first
priority for future work would be investigating
in more detail what makes different mazes that
can be easily solved by Self-Adjusting AgentP
hard for Gradual, and vice versa. As a next step
in the research, hybridizing the Gradual agent
with the Self-Adjusting may lead to improved
performance.

The research has brought out three valuable
outcomes. First, the model represents a success-
ful simulation of the influence of temperament
on the learning process and offers an approach
to modelling of temperament in artificial lean-
ing systems. Second, it has resulted into devel-
opment of two versions of AgentP, one of which,
Gradual, seems to be one of the most promising
reinforcement learning design for maze environ-
ments for the present moment. Finally, the re-
search has demonstrated the advantage that can
be had bringing established psychological phe-
nomena to the design of learning algorithms.
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On Architectures for
Synthetic Phenomenology 

Abstract 

Is synthetic phenomenology a valid concept? In approaching consciousness from a computational 
point of view, the question of phenomenology is not often explicitly addressed. In this paper we re-
view the use of phenomenology as a philosophical and a cognitive construct in order to have a 
meaningful transfer of the concept into the computational domain. Two architectures are discussed 
with respect to these definitions: our ‘kernel, axiomatic’ structure and the widely quoted ‘Global 
Workspace’ scheme.  The conclusion suggests that architectures with phenomenal properties genu-
inely address the issue of modelling consciousness and indicate and the way that a machine with 
synthetic phenomenology may benefit from the property 

1   Introduction 
In searching for computational models of being 
conscious, the detailed nature of internal represen-
tation is an important facet of the way that model-
ling is to be approached.   Synthetic phenomenol-
ogy is involved when two conditions are fulfilled: 
first there is a meaningful sense in which a first 
person may be ascribed to the model and second, 
when the architecture caters for an explicitable and 
action-usable representation of “the way things 
seem” within the machine.  We take the view that 
rather than this being an idealist stance, it repre-
sents as close an approximation to “the way things 
are” as is permitted by the sensory apparatus of 
that organism. This is assumed to be sufficiently 
close to reality to enable the organism to take ap-
propriate action in its world.  So one expects to 
find accurate phenomenological representation in 
successfully evolved organisms, as a major dis-
tance between the representation and reality does 
not augur well for successful evolution.   

The paper first reviews the reason that in phi-
losophy, phenomenology had a firm foothold de-
spite the fact that the appellative became used in a 
variety of ways.  A brief discussion is included on 
Block’s use of the word in the notion of ‘Phe-

nomenal consciousness’ as being distinct from 
‘Access consciousness’ and, particularly in the 
way that such concepts could feature in computa-
tional systems.   
 The concept of a ‘depictive’ representa-
tion is developed in this paper beyond that which 
has been discussed to date (Aleksander, 2005) to 
show that this is a central requirement for an archi-
tecture that could be said to be synthetically phe-
nomenological.   A set of architectural definitions 
is then developed that determines whether an ar-
chitecture could be said to be phenomenological or 
not. Two known architectures are scrutinised from 
the point of view of these definitions: are own ker-
nel architecture   (Aleksander, 2005) and  
Shanahan’s embodied version of Baars’ Global 
Workspace architecture (Shanahan, 2005). This 
reveals that the issue of phenomenology can be 
considered for differing mechanistic descriptions, 
of which the two architectures are distinct exam-
ples.  In the conclusion we argue that the material 
in the paper indicates that architectures that are 
phenomenological have characteristics of being 
conscious that enhance their use both as explana-
tory tools and, possibly, functional artefacts. We 
shall first review issues that go under the heading 
of Phenomenology and italicise strands that are 

Igor Aleksander 
Dept. Of Electrical and Electronic  

Engineering,
Imperial College , London SW7 2BT 

i.aleksander@imperial.ac.uk

Helen Morton 
School of Social Sciences and Law 

Brunel University, Uxbridge UB83PH 
Also, Imperial College , London SW7 2BT 
helen.morton@brunel.ac.uk

108



taken up in discussing the implication for synthetic 
systems and their architectures discussed later in 
the paper. 

2 Phenomenology

2.1  Definition
In the broadest terms, phenomenology is the word 
given to studies of consciousness which specifi-
cally start with the first person. In other words, 
introspection is an important facet of the discus-
sion. This distinguishes phenomenology from 
other forms of philosophy, say, ontology, which 
asks what it is for an object to be conscious.  One 
should also distinguish ‘a phenomenon’ from other 
philosophical constructs such as ‘qualia’ which 
relate to sensational primitives such as ‘redness’ or 
‘the sweet smell of a rose’.  In general, phenome-
nologists like to extend the definition beyond the 
immediate sensation to more compositional struc-
tures of experience such as enjoying a game of 
tennis or the experience of having tried a new res-
taurant.  This also aids action in the world  and the 
generation of descriptive language in the case of 
humans or human-like machines. 

Conforming with the above definition, the 
‘kernel’ architecture we shall discuss in this paper 
was synthesised through a process of using intro-
spection to discover design principles. This led to 
a consideration of  ways that this work contributes 
to the formation of a synthetic phenomenology 
paradigm.  

2.2 Past Usage
It is noted that in the history of philosophy, phe-
nomenology is sometimes treated as the study of 
consciousness itself.  For Franz Brentano (1874 
trans. 1995) phenomena are acts of consciousness, 
they are the contents of mind.  They stand in rela-
tion to physical phenomena that are perceived in 
the world by intentionally creating meaning of  
physical elements of the world in the mind. This 
first-person, descriptive character of a phenome-
non has remained the hallmark of the work of later 
phenomenologists.  Of these, Edmund Husserl 
(1913 trans. 1989), also focuses on the meanings 
the mind creates when contemplating the real 
world.  This position addresses the mental object 
beyond just its real-world shape.  So a stick may 
have the ability to dislodge a banana off the branch 
of a tree, enhancing the phenomenology of the 
stick by a mental vignette of the action of dislodg-
ing the banana.   

Martin Heidegger (1975, trans. 1982) main-
tained that setting ontology (what it is to be con-
scious) apart from phenomenology could be an 

error.  He suggests that it is actually linked to the 
phenomenology of the first person sensation of 
being a self in an external world. See the influence 
of this in what we shall call ‘axiom 1’. Given Sar-
tre’s socio-philosophical observations on phe-
nomenology as a literary examination of one’s 
own experience and Maurice Merlau-Ponty’s link-
ing of phenomenology to personal experiences of 
one’s own body (1945, trans. 1996) this becomes 
important particularly for those who discuss con-
sciousness in the context of embodied robots.   

The body’s muscular activity is a key element  
in the ‘kernel’ architecture to create ‘depictions’, 
that is sensations of being an entity in an out-there 
world. As will be seen, Shanahan argues that em-
bodiment is essential to have an experiencer. 

2.3  Materialist Concerns 
Gilbert Ryle in  Concept of Mind (1949) argued 
that linguistic descriptions of mental states are a 
direct way of expressing phenomenology. This 
was possibly erroneously discredited by many 
materialists who identified the mental state with 
the neural state.  Clearly only some neural states 
support phenomenology as identified by Crick and 
Koch (2003).  Only some parts of the entire neural 
state are responsible for personal sensation, the 
parts that are not, have been called by the authors 
the ‘Zombie’ regions of the brain.  This appears to 
beg the question of how one distinguishes a neu-
ron that contributes to conscious sensation from 
one that does not.  A possible  answer was devel-
oped by Aleksander and Dunmall (2003) and Alek-
sander (2005).  This draws attention to the fact 
that in the visual system only some neurons, those 
indexed by the motor areas of the brain, can fire in 
a way that correlates with  elements of  the visual 
sensation of being  an entity in an ‘out-there’ 
world. This is summarised later in this paper.

2.4   Access and Phenomenal Aspects 
Ned Block (1995) has identified at least two sali-
ent functions of consciousness. The first he calls 
‘phenomenal’ or P-consciousness to indicate the 
personal function of experiencing a mental state.  
He contrasts this with ‘Access’ or A-
consciousness which is that function of conscious-
ness which is available for use in reasoning, being 
‘poised’ for action  and the generation of language.  
Although he argues that both are present most of 
the time, conflating the two when studying con-
sciousness is a severe error.  Some evidence of 
Block’s distinct forms of is drawn from the phe-
nomenon of ‘blindsight’ where individuals with a 
damaged primary visual cortex can respond to 
input without reporting an experience of the input.  
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This is A without P.  P without A is the effect that 
some unattended experience had happened previ-
ously (e.g. a clock striking) but the individual had 
only realised this later. That is, P without A covers 
the case that unattended input can be retrieved.  
This creates a mechanistic difficulty for the defini-
tion of phenomenal consciousness as, were it never 
to be brought into access format, it could not in 
any way be described as ‘the way things seem’.  In 
hard-nosed synthetic phenomenology it might be 
politic to concentrate only on things that have 
seemed  or seem to be like something.   

This implies that in architectures it is impor-
tant to be clear about the way in which immediate 
perceptual consciousness interacts with awareness 
of  past experience, which bears on the A/P dis-
cussion.

Blindsight has also entered the theories of ‘en-
acted’ vision proposed by Kevin O’Regan and 
Alva Noë (2001) who have broadly argued that  
‘representing’ the visual world  in any architecture, 
living or synthetic, is an error, as the world itself is 
representation enough for the system to act on in a 
physical way.  Consciousness is then a ‘breaking 
into’ this somewhat reactive, autonomic process 
through mechanisms of attention. 

It is known that in the brain there are  uncon-
scious sensorimotor processes of the O’Regan and 
Noë description that work in conjunction with con-
scious phenomenal processes. For example the 
oculo-motor loop that involves the superior col-
liculus is such a mechanism. We are not conscious 
of the retinal maps that are projected onto the su-
perior colliculus. They lead, also unconsciously, to 
the saliency maps that partly determine eye move-
ment which eventually leads to reconstructions of 
world-fixed representations much deeper in the 
visual cortex (the extrastriate regions according to 
Crck and Koch, 2003). The enacted-
unconscious/depicted-conscious interaction  is a 
useful concept that may be used in synthetic sys-
tems. We find it difficult to accept the ‘hard’ sen-
sorimotor view that complete access to a visual 
world can be achieved without any  phenomenal 
representation at all. 

3. Phenomenology in Computa-
tional Models 

There are two important  computational issues we 
wish to stress here.  The first is the nature of a 
third-person design of an object that is capable of 
first-person  representation, and the second is the 
relationship of depiction to synthetic phenolenol-
ogy. 

3.1  The Third Person Design with First 
Person Within It. 

Where, in philosophy, phenomenology starts with 
the first person sensation, we suggest that in com-
putational modelling, a phenomenological model 
must, in the broadest terms, sustain   representa-
tions that have first person properties for the model 
itself.  There is no dualist slight of hand here as the 
designer of the system can happily retain a third-
person view of what is being designed, given a 
theory of what in the design is necessary to 
achieve a first person for the mechanism. That is,  
despite starting with our own first-person sense,  
we can speak of the first person of others.  Simi-
larly, we can speak of the first person of a machine 
and, indeed, set out to search for mechanisms of 
such. This implies that, in vision, for example, 
there is a need to differentiate mechanisms that 
mediate the sense of presence of the organism in 
the world from those that are due to previous ex-
perience: memory of various kinds and 
imagination (for example, states induced by 
literature).  That is, there needs to be 
computational clarity about how a first-person 
phenomenal state relates to the current world 
event, how meaning is assigned to this, how 
meaningful states arise even in the absence of 
meaningful sensory input and how a personal sen-
sation of  decisions about ‘what to do next’ can 
arise.  In Aleksander  and Dunmall, 2003 and 
Aleksander 2005 we have referred to a necessary 
property for the machine having a first person at 
all as being a ‘depiction’.  Here we set out  this 
concept as a logical sequence.  
3.2   Depiction and Phenomenology. 
It is useful to define what we mean by a syntheti-
cally phenomenological system.

Def 1:   To be synthetically phenomenol-
ogical, a system S must contain machinery 
that represents what the world and the sys-
tem S within it seem like, from the point of 
view of S. 

The word seem has been transferred from the phra-
seology of the earlier parts of this paper to stress 
that perfect knowledge of the world cannot be 
achieved if only because of  the weaknesses of  
sensory transducers.  But, it is stressed that living 
creatures, if we believe that they have phenome-
nological representations, will come to our notice 
only through successful evolution.  Again we 
stress that this is due to some sufficiency in the 
similarity between what things seem like and how, 
in a sense important to the organism, they not only 
seem like but, as far as the organism is concerned,  
they are. To achieve this it is necessary that such a 
representation should fully compensate for trans-
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ducer and body mobility. In earlier work we have 
called this a ‘depiction’ rather than a representa-
tion. To advance this prior work we develop a se-
ries of definitions and assertions about depictions 
that positions this work within the framework of 
phenomenology addressed earlier. 

Def 2:   A depiction is a state in system S 
that represents, as accurately as required by 
the purposes of  S, the world from a virtual 
point of view within S. 

Assertion 1:  A depiction of Def. 2 defines the 
mechanism that is necessary to satisfy that a sys-
tem be synthetically phenomenological according 
to Def. 1. 

Assertion 2:  If S is mobile and has mobile 
sensors, a depiction of Def. 2 can only be achieved 
if the mobile nature of S is combined with the in-
formation carried by the sensors.  That is the 
‘where’ of the elements of the world needs to be 
predicated on the ‘body’ parameters of S. (In vi-
sion, eye-movement clearly needs to be compen-
sated to achieve a depiction). 

Assertion 3:  ‘As accurately as required ..’  in 
Def. 2, indicates that, given effectors with which 
to act on the world, the depiction should carry all 
the information needed for such effectors to be 
successfully deployed on  the attended and desired 
elements of the world. 

Assertion 4: ‘As accurately as required ..’ also 
sets determines the granularity with which the de-
piction may be achieved.   

Assertion 5:  While Def. 2 makes no call on a 
topological representation, it does require that dif-
ferently positioned elements within the representa-
tion be indexed by the predicates introduced in 
assertion 2.  In animal vision it is known that dif-
ferent attributes of a visual element (e.g. the colour 
and motion of a dot) are represented in different 
parts of the brain.  What ‘binds’ them in our analy-
sis is the indexing as clarified in the example be-
low (see Aleksander and Dunmall, 2000). 

Example of indexing:   Participant X is fixating a 
cross in the centre of a screen.  She is asked to 
identify the shape s and colour c of an object that 
will appear briefly on some other part of the moni-
tor screen.  Shape is represented in area P of her 
brain and colour in area Q.  The eye driven by the 
superior colliculus will saccade to the position of 
the object.  The signal issued by the eye movement 
is, say, a 2-dimentional vector v. Then the depic-
tion in P will be s, indexed by v, say sv . Similarly, 
in Q we have cv .  Assertion 5 states that the bind-
ing of s and c is due to the common indexing by v:
that is, (s,c)v.

It is the deeper contention of the depictive ap-
proach that (s,c)v uniquely encodes X’s phenome-

nal experience of the appeared object. Of course, 
away from this experimental example, the index-
ing, as indicated by a great deal  of physiological 
evidence (e.g. Galletti & Battaglini, 1989) occurs 
over  many areas of the cortex, giving the phe-
nomenal experience of one sensory modality sev-
eral dimensions possibly bound across modality 
boudaries.  Touch together with vision are a com-
monly bound experience.

4. Architectures 

By ‘architecture’ we refer to a structure that first,  
is made of several internal parts each of which 
performs a specified distinct function, and  second, 
includes a full specification of the interconnections 
among these parts the inputs and a variety of out-
puts (e.g. language generators, physical actuators 
etc..).  It is the contention of this paper that there 
exists a set of architectures that can support  phe-
nomenology for the organism that embodies the 
architecture.  We shall first look at two specific 
architectures to assess some of the definitional 
material presented in section 3. 

4.1  The ‘Kernel’ Architecture 
It is hardly a coincidence that a prototypical archi-
tecture we have recently suggested  (Aleksander, 
2005) should be based on the notion of a depiction 
and can, therefore, be said to have phenomenal 
consciousness according to our criteria.  We take a 
closer look at this scheme that is shown in Fig.1 

Figure 1.  The ‘kernel’ architecture. 

This architecture is based on the axioms of con-
sciousness  published in Aleksander and Dunmall 
(2003).  For completeness, they are briefly listed in 
the Appendix of this paper.    

These axioms start from a phenomenological 
standpoint as they are derived through an intro-
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spective decomposition of the most significantly 
felt aspects of being conscious.  Then it has been 
argued that the decomposition eases the transfer of 
these features  into the synthetic domain.  

Fig.1 is the result of this process.  It consists of 
five modules each of which is considered to be a 
neural state machine (NSM) that operates in binary 
mode.  That is, each connection carries a binary 
signal. We have ofen argued that any loss of gen-
erality due to the binary synthesis will be minor 
with respect to the behaviours that are being re-
searched. 

The binary NSM is specified as a six-tuple: 
<Ci,Co,Cf,Ct, I, O, F, T>n where, 
n is the module index, 
Ci is a connection pattern of inputs (which may 
come from other modules or sensory inputs); 
Co is a connection pattern of outputs (to other 
modules or system outputs); 
Cf is the pattern of internal feedback connections.  
Ct is the set of ‘teaching connections’ that deter-
mine the state of Co and Cf that becomes associ-
ated with Ci. 
I, O, F, and T are the state sets of  Ci,Co,Cf and Ct 
respectively.

Then, in the usual way with neural state ma-
chines, the states of F(t)  and O(t) become func-
tions of F (t-1) and I(t).  These functions are de-
termined by a training strategy which  is expressed 
through T during a ‘training phase’.   

For example, an ‘Iconic’ mode of training is 
conventional with neural state machines of this 
kind (Aleksander and Morton, 1995).  This ensures 
that, given that Ct and Cf have the same dimen-
sions and Co=Cf, the network learns F(t)=T(t) as a 
function of I(t) and F(t-1).   

Returning to Fig.1, the four axioms are imple-
mented as follows.  P is a ‘Perceptual’ NSM  
which is made to be phenomenological in the 
sense of the earlier definitions of this paper 
through the following design. The state F(t) is a 
reconstruction of the sequences of attended world 
inputs from sensory transducers over defined time 
windows (sometimes sliding time windows).  The 
muscular effort required to attend to the elements 
of the world is shown as the link from the action 
NSM, A.  In the animal visual system it is sur-
mised that attentional shifts are driven by saliency 
maps in the superior colliculus. In specific studies 
of the visual system, this has been modelled as an 
additional part of the kernel architecture (See Igor 
Aleksander et al. 2001)

M is the memory and ‘imagination’ module.  It 
is connected to P in such a way that for every re-
construction in P, a  state in M is created.  Se-
quences of reconstructed states  in P can therefore 
be stored as state trajectories in M – they will have 

inherited the depictive, hence phenomenal proper-
ties of P.  

P and M together form what we have dubbed 
‘the awareness areas’ of the architecture.  In the 
sense that one can perceive and recall at the same 
time, the two areas both contribute to the same 
phenomenal state The remaining modules of the 
kernel architecture are not depictive, hence not 
phenomenal, but add to the phenomenal existence 
of the system in the following way. As mentioned, 
A is the action area in which links between the 
state trajectories of the phenomenal areas are 
translated into action. But this is not automatic, it 
is surmised that volition and emotion as imple-
mented in module E mediate this link.  This was 
the subject of the contribution by Aleksander, La-
hnstein and Lee in the AISB 2005 symposium on 
machine consciousness. 

In summary, the kernel architecture is based 
ab initio on the intention of synthesising an archi-
tecture with phenomenological properties.  This 
has also been guided by those who like Crick and 
Koch (2003) have been researching the neural cor-
relates of consciousness  in living  organisms.  We 
now consider a model that is more closely related 
to computational approaches of the functional 
kind.  

4.2   Embodied Global Workspace 
Bernard Baars’ (1988, 1997) Global Workspace 
models have held sway in computational model-
ling of consciousness for some years. Baars con-
sidered how a large number of unconscious proc-
esses might collaborate to produce a continuum of 
conscious experience. In very broad terms, he an-
swers the question through the architecture of Fig. 
2.

Figure 2  A sketch of Baars’ Global workspace 
architecture.

The separate processes, P1 to Pk, said to be uncon-
scious,  compete to enter ‘The Global Workspace’.  

P1 P2 Pj Pk

Compet.
World
input

GLOBAL
WORKSPACE Action
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Such processes are often thought of as memory 
activities, say, episodic memory, working memory 
and so on. The competition is won by the process 
that has the greatest saliency  at a given moment.  
This saliency is predicated by world input which 
sets the context for the competition. Of course, 
world input is also assumed to have direct influ-
ence on the unconscious processes P1 - Pk. Having 
entered the global workspace, the winner of the 
competition becomes the conscious state of the 
system.  This is continuously ‘broadacast’ back to 
the originating processes that change their state 
according to the conscious state.  This results in a 
new conscious state and so on, linking sensory 
input to memory and the conscious state.  It is both 
general and useful for these separate processes to 
be modelled as NSMs as was done for the kernel 
architectures
 Murray Shanahan (2005) points out that 
modelling of a conscious organism cannot proceed 
without that organism being embodied  in some 
palpable world.  Using the above Global Work-
space model he argues that there can be no ‘ex-
periencer’ in GW unless the model takes account 
of the “spatial unity of the body”.  It is this 
localisation in space that for Shanahan gives the 
model its “viewpoint on the world” which 
according to def. 1 makes it a candidate for 
phenomenal consciousness.  Shanahan argues that 
denying this possibility, as is done by Block 
(1995), revives the dualist stance, putting  
phenomenal consciousness in the  Chalmers-like 
‘hard problem’ class, that is, a problem that cannot 
be reduced to  physical structure and hence cannot 
be synthesized. And yet, the claimed ‘point of 
view’ of the embodied organism is undoubtedly a 
claim that this accords with  definition 1 above of 
a phenomenal system. In terms Block’s division 
into access and phenomenal consciousness, 
Shanahan implies that the embodied GW model 
addresses access consciousness, treating the 
phenomenal element as being an unnecessary 
appeal to a dualistic concept. 
4.3 GW and Synthetic Phenomenology 
While it seems entirely correct that without em-
bodiment, GW does not include an experiencer, 
the question remains of how the experience stream 
in GW relates to the real world. We recall that in 
section 3.2 we have argued that a synthetic phe-
nomenological system is achieved through a com-
positional representation of the world that is suffi-
ciently accurate for the system be able to use its 
embodiment to control its world as accurately as 
possible.  That is, it is the contention of this paper 
that depiction is the missing ingredient in making 
GW phenomenal.  That is, phenomenal conscious-
ness can occur in functional, physical systems, and 

the implication for the embodied GW system is 
that all the P1-Pk states need to be depictive for  
the GW  state to be truly a model of a conscious 
state. Were this not the case, some translation into 
depiction would have to go along with the winning 
of the competition. Otherwise the spectre of  
purely arbitrary representations in GW remains.  
Shanahan is aware of this by requiring that the 
conscious broadcast back to the competing proc-
esses be in some way intelligible to these proc-
esses.  But this still makes it hard to see how the 
states of the processes remain non-depictive when 
the state of GW might be depictive. 

5. Discussion 

In this paper we have explored the concept of syn-
thetic phenomenology mainly by attempting to 
define the necessary features of an architecture 
that supports phenomenal consciousness within the 
broadest definition of the term. We brought the 
definitions to ground by considering two models 
that might be candidates for possessing these fea-
tures.   To conclude we raise and, using the mate-
rial of this paper, attempt to answer five general 
questions that may be central to the existence of a 
synthetic phenomenology.  The first of these ad-
dresses the architectures presented in the paper. 

Can non-depictive representations be phe-
nomenal? 
It is the firm implication of this paper that this 
cannot be the case.  It is depiction in a functional 
area which determines that the area contributes to 
the phenomenal sensation of the organism. Were 
this not the case, a human description of a state 
would require translation into phenomenal terms 
as such descriptions are of phenomena and not 
encoded states. 

What is the difference between ‘depictive ker-
nel’ and GW architectures in terms of synthetic 
phenomenology?           
Clearly the depictive kernel architecture was de-
signed with the purpose of creating a phenomenal 
representation within the system according to the 
definitions set out in this paper.  This has the com-
putational advantage of being able to be display on 
a screen the current phenomenal state of the ma-
chine enabling a designer’s assessment of the in-
teractions between both postulated conscious and 
postulated unconscious mechanisms in the genera-
tion of the phenomenology.  The rules used in the 
synthesis involve depiction. Originally no phe-
nomenal claims were made for GW, particularly in 
its practical form as synthesised by Stan Franklin 
(2003).  However with the embodied GW work of 
Murray Shanahan, the question of the presence 
synthetic phenomenal consciousness acquires a 
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new urgency.  In this paper we have maintained 
that were an architecture based on GW to have a 
phenomenal character, there must be a depictive 
activity  in the processes that  compete for entering 
the global workspace if the system is to be phe-
nomenological.  This creates problems as in our 
scheme of things, depiction in an area of the archi-
tecture implies phenomenal consciousness and 
GW sees the competing processes as being non-
conscious.  Therefore a phenomenal GW implies 
some sort of coming into consciousness in the GW 
area for reasons other than depiction. These have 
not yet been explained.  Of course, the depiction 
idea can be rejected, but if not depiction, then 
what? 

What is the use of synthetic phenomenology? 
Given the difficulties mentioned with embodied 
GW above, it is proper to ask why bother with 
phenomenology and why not settle for just access 
consciousness as implied by Shanahan (2005)?  In 
the arguments of the current paper, phenomenol-
ogy actually includes the purposes that are attrib-
uted to access consciousness. But such purposes 
are explicit and searchable through attentional 
mechanisms for reasons of accurate interaction 
with the environment (see assertions 3 and 4).  
This is not a Blockian confusion, but rather a sug-
gestion that there may not be as clear-cut a func-
tional/neurological distinction between access and 
phenomenal consciousness as Block seems to sug-
gest. The A without P and P without A cases may 
be extreme conditions of a central phenomenon. In 
summary we argue that accurate interaction with, 
and thought about the real world is the purpose of 
phenomenology in a synthetic system. 

Is  synthetic phenomenology an  oxymoron as 
it is the non-physical experiential side of con-
sciousness and therefore eschews synthesis? 
Everything we have submitted in this article is a 
denial of the above proposition.  Treating phe-
nomenology as the ‘hard’ part of consciousness 
simply kicks it out of touch of science into some 
mystical outfield.  We maintain that addressing it 
as a constructible concept removes the mysticism 
with which it might otherwise be associated. 

Is synthetic phenomenology an arbitrary de-
sign option for models of consciousness?
This paper regards models of consciousness with-
out synthetic phenomenology as being valid only 
in a behavioural sense.  That is, it is possible for a 
model to be given attributes of being conscious 
from its behaviour. Stan  Franklin’s Intelligent 
Distribution Agent (2003)is a good example of this 
class of system.  Users think that they are dealing 
with an entity conscious of their needs.  But if one 
were to argue that an architecture throws light on 
the mechanisms of consciousness in the brain it 

becomes mandatory to include phenomenal, that is 
depictive functions. 

What research needs to be done in developing 
architectures with synthetic phenomenology? 
Referring to the kernel architecture there is much 
work to be done on modes of interaction between 
the modules.  Current work includes a clarification 
of the way the emotion module E controls the link 
between the phenomenological P and M modules 
and the non-phenomenological action module, A.  
(fig. 1).   

Illusions, ambiguous and ‘flipping’ figures are 
situations where phenomenology and reality part 
company. We are pursuing the mechanisms that, in 
the kernel architecture, would lead to the kind of 
perceptual instabilities associated with perceiving 
the Necker cube. This underlines the usefulness of 
synthetic phenomenology, as perceptual reversals 
may be measured in the depictive machinery and 
the conditions for such reversals studied. This is 
revealing of the interaction between phenomenal 
and non-phenomenal processes in the brain 

In GW, architectures it would be interesting to 
clarify the causes of phenomenology in the GW 
area which are not present in the supporting com-
petitive processes. 

Appendix: Axioms of Being Con-
scious.

This is an introspective partitioning of  five impor-
tant aspects of being conscious 

1. I feel as if I am at the focus of an out-
there world. 

2. I can recall and imagine  experiences of 
feeling in an out there world. 

3. My experiences in 2 are dictated by atten-
tion and attention is involved in recall. 

4. I can imagine several ways of acting in 
the future. 

5. I can evaluate emotionally ways of acting 
into the future in order to act in some 
purposive way. 
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. Abstract 

 
There’s a lot of excitement about brain-scanning evidence for brain/consciousness 
correlations. Although the evidence is new, the idea isn't: Descartes formulated it nearly 
400 years ago. However, he didn't regard mind-brain correlations as explanations – and 
neither should we.  
 

Mere correlation between events in two domains is not enough for the one to be used as 
an explanation of the other. In addition, we need systematicity, isomorphism, and plausible 
(ideally, predictive) counterfactual conditionals. 
 

There are a few (very few) examples where we already have those features, in respect of 
correlations between brain events and consciousness. In general, however, they can't be 
expected. 
 

Even where we do have them, they leave the most difficult problem about conscious 
experience untouched. 
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Abstract 
This paper argues for the importance of inner speech in a proper understanding of the structure of 
human conscious experience. It reviews one recent attempt to build a model of inner speech based 
on a grammaticisation (Steels, 2003). The Steels model is compared with a self-regulation model 
here proposed. This latter model is located within the broader literature on consciousness. I argue 
the role of language in consciousness is not limited to checking the grammatical correctness of pro-
spective utterances, before they are spoken. Rather, it is more broadly activity structuring, regulat-
ing and shaping the ongoing structure of human activity in the world. Through linking inner speech 
to the control of attention, I argue the study of the functional role of inner speech should be a central 
area of analysis in our attempt to understand the development and qualitative character of human 
consciousness.  
 

1   Introduction 

To introspection, for many of us, our men-
tal life seems to have a constant accompa-
niment of inner speech. This speech is 
known in the literature under a number of 
names such as; the inner voice, the internal 
monologue, and is sometimes, subsumed 
into (the more general) stream of con-
sciousness (James, 1890). It may also be 
linked to the generally pejoratively associ-
ate notion of ‘voices in the head’. Under-
standing the nature of this phenomenon and 
its functional underpinnings, although of 
occasional interest in the history of psy-
chology, has, in the last few years drawn 
the attention of many researchers into 
mind. There is however, much controversy 
about the precise nature of inner speech, its 
epistemic status and possible functional 
role. 
 
Among psychologists, one means of ac-
counting for inner speech is Baddeley’s ar-
ticulatory loop (Baddeley & Hitch, 1974), 

later rechristened the phonological loop1 
(Baddeley, 1997). This is considered to be 
a speech related working memory system.  
 
Among philosophers, the notion of inner 
speech suggests privileged access to mental 
states, and this, at least in the 20th century, 
has invited great scepticism. The high-
water marks of this scepticism are probably 
Ryle’s  (1949) The Concept of Mind and 
Dennett’s (1991)  Consciousness Ex-
plained. Dennett’s view is complex on this 
question for although he ultimately doubts 
the strength of the epistemic warrant that 
can be given to the narrative stream of con-
sciousness, and especially the subject’s 
privileged position to report on its contents, 
he nevertheless argues that the subject’s 
self-reports should be our starting-point. 
This is fundamental to his heterophenome-
nological method. This approach advocates 
                                                 
1 Presumably this re-naming has something to do 
with thinking of inner speech as primarily an im-
aged sound, rather than unvoiced speech. The notion 
of a phonological loop seems to focus on the phe-
nomenology of the passive, rather than active aspect 
of inner speech. 
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we need to attempt to offer some explana-
tion of the importance attached to inner 
speech in phenomenological accounts. 
 
A window into the phenomenology of inner 
speech is provided by Russell Hurlburt’s 
Descriptive Experience Sampling technique 
(1990). Hurlburt uses an experimental tech-
nique in which subjects are cued by a small 
alarm device at various moments in their 
day, and then following protocols devel-
oped by Hurlburt, write down the details of 
their mental imagery at the moment that the 
alarm went off. He argues this technique 
allows us to systematically sample the 
qualitative characteristics of reported phe-
nomenology2. It also allows us to describe 
some of the characteristics of inner speech, 
and inner imagery in general, in a much 
more elaborated fashion. 
 
The content and form of this reported inner 
speech seems to be very diverse. Some 
people report the perception of being the 
author of voice-like inner speech; others, to 
hearing voices offering advice or consola-
tion. Sometimes this voice appears to be 
their own, and sometimes the voice of an-
other person. Some people report merely 
having the sense of experiencing language-
like cognitive episodes without necessarily 
hearing any voices or having the sense of 
being the author of this speech. The variety 
of this speech might serve as some justifi-
cation for the sceptics, or perhaps just evi-
dence of the complexity and variety of the 
roles played by speech in our mental lives. 
 
All of these phenomena seem to vary con-
siderably both across individuals, within 
individuals at different times and places, 
and with regard to whatever activities they 
are at that moment engaged in. Hurlburt’s 
                                                 
2 Although the beeps themselves are random, statis-
tical techniques can be used to understand the distri-
butions of reported mental-events types and indeed 
correlate them with other types of behavioural meas-
ures. (R. Hurlburt & Heavey, 2004) 

work reveals much of the contents of con-
sciousness appear to be composed of 
speech-like episodes. Except in cases of 
severe psychological disturbance or other 
abnormal functioning, the inner voice 
seems to be the constant accompaniment of 
human conscious life. But can we relate 
these accounts of the contents of conscious 
experience to language as vehicle?  
 
Some recent accounts of cognitive role of 
language have brought to the fore they way 
that language may play a role, in sculpting, 
stabilising, and supporting forms of thought 
which would be otherwise impossible 
(Carruthers, 2002; Clark, 2004). Trying to 
forge a link theoretically between the phe-
nomenological and functional aspects of 
inner-speech has proved so far a difficult 
task, but it is one upon which some pro-
gress has now started to be made.  
 
2 – A re-entrance model of inner 
speech 

Although traditional work on cognitive 
modelling made much use of more-or-less 
linguaform internal representations, follow-
ing (if sometimes implicitly) some version 
of Fodor’s (1975) Language Of Thought 
hypothesis, it has shied away from explic-
itly modelling the inner voice (cf. Dennett, 
1994). Perhaps this is because of a worry 
that the inner voice might be either an 
epiphenomenon or user “illusion” (Dennett, 
1991).  
 
Recently work in machine consciousness 
has begun to treat the phenomenon of inner 
speech and its possible functional role more 
directly (Steels, 2003). Steels’ earlier work 
used individual-based models in multi-
agent systems to investigate the develop-
ment of collective lexicons. More recently 
he has extended these models to attempt to 
model syntax.  
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In Steels’ newer models agents are able to 
check the intelligibility of their own sen-
tences by feeding back a prospective utter-
ance through their language interpretation 
machinery prior to communication. Sys-
tems of agent with such re-entrant loops 
appear to be able to self-organise more 
complex grammars than would otherwise 
be the case. (Steels, 2003, 2005) Re-
entrancy in Steels’ models serves the role 
of checking the intelligibility of an utter-
ance in their own reception systems. Sys-
tems of such “self-talking” agents seem to 
be able to achieve much more stable gram-
mars as a result. 
 
It seems that in order to develop the abili-
ties to use complex syntax, re-entrant loops 
may be necessary. Steels is thus able to 
persuasively link re-entrancy to the genera-
tion of complex grammars in natural lan-
guage and perhaps thereby provide a func-
tional role for the inner-voice.  
 
One problem for this work is that the eve-
ryday construction of grammatical sen-
tences is usually considered a largely un-
conscious activity. In fact, the construction 
of grammatically correct sentences is often 
given as the paradigmatic example of what 
an unconscious cognitive process is like. 
Thus, there seems a little prima facie im-
plausibility in correlating the phenomenol-
ogical inner voice with a mechanism whose 
principle cognitive role is the construction 
of grammatically correct utterances. While 
Steels’ arguments about the role of re-
entrancy in the generation of complex 
grammars are convincing, arguably how-
ever the link with the inner-voice is less 
well-made. 
 
One important caveat should be put on this 
observation. Insofar as we are treating the 
ontogenesis of language in young children, 
and the problems of developing capabilities 
to use a language for the first time, it may 
very well be the case that a large portion of 

the child’s cognitive resources  taken up in 
assembling and comprehending sentences 
and possibly they are much more conscious 
of this. It may turn out that the kinds of ac-
tivities that Steels models in his experi-
ments might very well turn out to play a 
central role in the consciousness of young 
children, and perhaps be the trailblazers for 
more elaborate forms of conscious inner 
loops to be developed later in their lives. 
A further task is to establish links between 
the Steels model and the account of the in-
ner voice posited by theorists seeking to 
understand the re-organisation of cognition 
by language? Arguably his account could 
be made to fit with some of the recent ac-
counts of language-for-thought that rely on 
the idea that language allows information to 
be passed between  modules which 
wouldn’t otherwise connect (cf- Carruthers, 
2002). As the Steels model seems to have 
the language production and reception sys-
tem rather separated from other forms of 
cognitive activity, it is difficult to say pre-
cisely how this relation could be estab-
lished. Yet if the development of grammar 
turns out to be linked in this way to a re-
entrant cognitive architecture, one can 
imagine how this architecture could be-
come appropriated by other cognitive func-
tions. 
 
Although the Steels model offers an inter-
esting attempt to show the functional im-
portance of inner speech in order to stabi-
lise the learning of grammars of certain 
complexity this model may be a special in-
stance of the more general case where self-
directed speech serves to scaffold and stabi-
lise a whole range of cognitive functions. 
Yet could such a system also be linked to 
the phenomenology of inner-speech and the 
role of language in consciousness? More 
work clearly needs to be done in order to 
establish such a connection.  
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3 – A self-regulation model of in-
ner-speech 

Recent research conducted with Tony 
Morse (2005)3 demonstrates how an alter-
native model of self-directed speech, still 
based on re-entrancy, might relate the in-
ner-voice to a range of broader cognitive 
activities. The starting assumption for this 
work is that the cognitive role of language 
is better understood as one of sculpting or 
regulating cognitive activity rather than ex-
haustively representing the world (cf. 
Clark, 1996). Inner speech could here be 
seen as serving as a scaffold for developing 
and sustaining cognitive functions beyond 
the parsing and construction of meaningful 
and grammatical utterances. 
 
In our model we compare a series of possi-
ble architectures for minimal cognitive 
agents which have to respond to instruc-
tions in order to fulfil externally indicated 
goals, i.e. moving objects around in a 
blocks world4. Our experiments compare 
several types of agents with differing archi-
tectures, some with word re-entrant loops 
and some without. All agents are imple-
mented with simple recurrent neural net-
works that are evolved with a genetic algo-
rithm in order to respond to commands by 
performing tasks. Some of the agents have 
architectures that allow the re-triggering of 
command reception systems internally.  
 
The cognitive architecture of the ‘re-
entrant’ agents is arranged such that they 
can re-use the channels which are being 
used to signal commands to them to re-

                                                 
3 A much more detailed examination of this work is 
now available in my unpublished DPhil thesis. 
4 NB. This is not exactly a blocks-world in the tradi-
tional sense. Rather, agents have extensive sensori-
motor couplings with their limited world rather than 
it being specified in a purely abstract way. The 
agent architecture itself is an extension of an active 
vision model reported in experiments by (Floreano, 
Kato, Marocco, Sauser, & Suzuki, 2003) 

trigger their own behaviours. These chan-
nels allow at least the possibility of estab-
lishing new control circuits that use the 
same nodes that have previously been used 
to receive input from external ‘words’. The 
thought here is that if there is some advan-
tage to be had by re-using circuits devel-
oped to respond to words then the agents 
will take advantage of this source of useful 
adaptation. We find this is the case. Even 
such minimal agents can take advantage of 
these contingencies to develop word-based 
modes of self-regulation. 
 
We show that agents with these ‘re-entrant 
speech’ capabilities (as illustrated in Fig-
ure 1) perform considerably better on cer-
tain tasks. This is explained in greater detail 
in (Clowes & Morse, 2005). The basic find-
ing is that agents that have architectures 
allowing the re-use of language for self-
regulation achieve higher levels of per-
formance more quickly and can stabilise 
them for longer that those that do not. 
Agents that are able to succeed in all task 
conditions make considerable use of auto-
stimulation with words, i.e. they use re-
entrant word nodes to self-trigger. 
 
Re-entrance does not function in our mod-
els to facilitate merely communicative suc-
cess or the generation and interpretation of 
complex linguistic constructions, but in the 
construction of more viable behaviours. 
Words here are appropriated in a way that 
is reminiscent of what Dennett calls auto-
stimulation but not as a complex self-
question (Dennett, 1991), but as new mode 
of self-regulation. This work then supplies 
at least a proof of concept that word-like 
constructs can be appropriated from a role 
in regulation from the outside (response to 
a command) to internal regulation (the 
agent self-regulating). 
 
But linking such quite basic modes of auto-
stimulation with words to inner speech, 
suggests a rather different picture of its un-
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derlying nature to that suggested by the 
Steels model. Inner speech is, I argue, the 
phenomenological dimension of internal-
ised, word-based self regulation. 
 
The phenomenological appearance of such 
speech, as speech, depends on it playing a 

similar attention focusing role as outer so-
cial speech often does. Further, I would 
conjecture that it relies on the same neural 
circuits, albeit appropriated for new self-
directed functions.  
 
 

 
Figure 1 - The diagram shows an outline of the neural-architecture that is used in the experiments. The 
salient aspect is that when a gating neuron is switched on, activity from the output of the network can be 
fed back through the nodes that are used as input instructions. More detail on the architecture and some 
tasks can be found in (Clowes & Morse, 2005).  Agents evolved in these conditions develop elaborate self-
control loops and develop and stabilise solutions to more tasks than those that do not have such loops. 
 
 
4 - A functional role for inner- 
speech 

Normal intersubjective speech can certainly 
play a role in orienting attention, so why 
not internal speech? A shout in the street 
can cause an immediate refocusing of atten-
tion, e.g., hearing someone shout “mind the 
car!” as you were about to cross the road, 
would cause a fundamental reallocation of 
your attention.  
 
If the inner voice could similarly be linked 
in some way to the allocation of attentional 
resources then there is the possibility that it 
may provide a window into the relationship 
between higher cognition and conscious-
ness more generally. According to Vygot-
sky the internalisation of speech forms a 

whole new mode of attentional re-
organisation. 
 
Vygotsky (1986) emphasized the role of 
language in the development of control of 
action and ultimately of attention. His work 
provides an interesting possible way into 
the relationship between inner-speech and 
consciousness by looking at it through a 
developmental prism. 
 
Vygotsky developed his ideas about the 
internalisation of language in part as a cri-
tique of Piaget’s ideas about so-called ego-
centric speech. What Piaget called egocen-
tric speech, and developmentalists tend to 
call today private speech, is a type of 
speech that children produce between the 
ages of about 4 and 7. It appears to be ad-
dressed toward the self and eventually 
seems to disappear. 
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For Piaget this speech occurs toward the 
end of his pre-operational stage and signi-
fieds a still undeveloped ability to take, or 
imagine, the perspective of others. Social 
speech was thought to be built form this 
egoistic basis as children gain more experi-
ence that the point of view of others can be 
different (especially through argument with 
peers). 
 
A longstanding controversy has arisen 
amongst developmentalists about the pro-
venance and direction of this speech. 
Whether it is ultimately a disappearing arte-
fact of early developmental egotism as Pia-
get argued in his early writings (1926), or 
alternatively the establishment of the bridge 
to linguistically controlled higher psycho-
logical function (Vygotsky, 1986 - origi-
nally 1934), either way this speech does not 
seem to serve a standard communicative 
function.  
 
If Vygotsky’s theory is correct, then inner-
speech has at least its developmental pre-
cursors in this particular form of practically 
oriented speech found in children. If more-
over inner-speech once fully internalised 
could come to play a role in allocating at-
tention then this could provide a strong link 
between the internalisation of language and 
the constitution of human consciousness. 
Understanding inner speech may yet prove 
to be the royal road to understanding con-
sciousness. 
 
5 – Self-Restructuring through in-
ternalisation 

Much of the theoretical work arguing that 
language plays a role in consciousness de-
pends on the idea that language reshapes 
our underlying cognitive mechanisms in 
some way. Exactly how and to what pur-
pose this functional re-organisation is a-
chieved is currently part of a lively debate. 
 

The potential for re-using language as an 
addition to the brain’s basic modes of or-
ganisation is something which is now start-
ing to be taken very seriously in the phi-
losophy of cognitive science (cf. Clark, 
2004; Wheeler, 2004). 
 
Dennett (1991) has argued that the devel-
opment of the self-questioning form of self-
directed speech is absolutely pivotal in the 
construction of human consciousness and 
its ability to sustain elaborate narrative 
threads. His view on this seems linked to 
his position that the form of human con-
sciousness is the effect of installing what he 
calls a ‘serial virtual machine’ on parallel 
processing hardware. A range of accounts 
of the functional role of inner speech and 
its relationship with consciousness have 
also been put forward (Carruthers, 2002; 
Clark, 1998; Frawley, 1997) which seek to 
expand upon or restructure in various ways 
the sort of picture developed by Dennett. 
Although it seems possible that episodes of 
inner speech are epiphenomenal and fulfil 
no functional role in the organisation of 
consciousness, it is certainly too early to 
rule out the contrary possibility. 
 
One can derive a further link between self-
directed speech and the functional structure 
of consciousness from the psychopatho-
logical literature. Evidence seems compel-
ling that the collapse of a normal inner 
voice in disorders such as ‘thought inser-
tion’ is often correlated with catastrophic 
breakdowns for the organisation of individ-
ual consciousness (R. T. Hurlburt, 1993; 
Stephens & Graham, 2000). Disorders such 
as schizophrenia are sometimes theorised 
as control disorders and this idea gives us a 
way into establishing a possible link with 
the functional role of internalised speech 
(Gallagher, 2000). It points towards some 
quite central role for self-directed speech in 
the organisation of human consciousness, if 
not necessarily along the lines of Dennett’s 
model. 
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One difficulty with this idea is that it is still 
very unclear at the level of sub-personal 
cognitive architecture how language can 
come to play the types of roles that are be-
ing ascribed it by the consciousness theo-
rists. Yet there is a dearth of cognitive 
models that even attempt to show how such 
a reorganisation might happen5. However, 
it is possible to further analyse the model 
described above to give some insight into 
how attentional control through language 
internalisation might be established. 
 
The model presented here gives one sug-
gestion as to how the sorts of complex 
modes of self-regulation that seem bound 
up with human consciousness can get un-
derway. 
 
The simulation work with minimal cogni-
tive agents shows that the re-use of public 
symbols in re-organising the ongoing ac-
tivities of self can have cognitive benefits. 
These appear to go beyond being able to 
interpret and sustain more complex lan-
guages. Rather the internalisation of lan-
guage in these models has more to do with 
the restructuring ongoing situated action. 
 
Analysing the models further we found that 
the development of the ability to re-use a 
system of commands appears to move 
through broadly three control regimes. 
 

1. Agents develop the capacity to re-
spond to instructions. At this stage 
of development agents might be de-
cribed as passive and do not use 
self-directed instructions very 
much. 

                                                 
5 Despite these lacuna in more general work on cog-
nitive modelling and the role of language some in-
teresting work linking linguistic and cognitive func-
tion is starting to be done (Sugita & Tani, 2002). 
This work however encompasses quite a distinct 
formulation of the idea of a role for language in 
cognition as does the work reported here. 

2. Agents start to auto-stimulate with 
instruction nodes. This regime of 
self-control tends to produce inef-
fective and unstable systems of ac-
tivity, (e.g. agents can sometimes 
perform the tasks well but very of-
ten do not). 

3. Finally agents develop much more 
robust forms of self-control that rely 
on the ability to use new regimes of 
action made available by the self-
directed loops. 

 
Can these results be linked with Vygotsky’s 
ideas about the establishment of new re-
gimes of self-control through the internali-
sation of speech? 
 
Vygotsky – to some extent developing the 
ideas of the Gestaltists6 - argued that the 
development of self-directed speech was an 
form of self-prompting by which children 
come to de-centre and move themselves 
from one domain of situated activity (or as 
he might have termed it practical thought) 
to another. He saw this development as be-
ing centrally involved in the establishment 
of self-control and attention-regulation that 
are characteristic of human consciousness. 
 
The work discussed above gives us a possi-
ble way of understanding the neural-
dynamics underlying the establishment of 
this linguistic self-regulation. 
 
6 – Inner speech and the modelling 
of consciousness 

Notwithstanding current attempts to de-
velop work in synthetic phenomenology 
(Chrisley & Holland, 1994), for now7, hu-

                                                 
6 Gestalt psychologists wrote a great deal on the 
problem of insight and how it was that a problem 
might suddenly be restructured such that it appears 
in an entirely new way. Kohler was one that held 
that tools could play a role  
 
7 Perhaps forever, cf, (Nagel, 1974) 
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man consciousness is the only type of con-
sciousness which we know intimately. It 
seems unlikely that we can afford to ignore 
the relevance of the role of language in at-
tempts to model it in machines, not to men-
tion the project of building actually con-
scious machines. 
 
Theorists as diverse and as historically dis-
tant as Vygotsky and Dennett have argued 
that self-directed speech plays a central role 
in the organisation and even the construc-
tion of human conscious experience. Work 
by Hurlburt and others appears to show that 
conscious experience abounds with epi-
sodes of internal speech. 
 
If they are right and we are serious in our 
attempts to understand human conscious-
ness with synthetic techniques, then we 
need to develop more advanced and explicit 
models of the role language might play in 
its functional organisation. The hypothesis 
defended here about the functional role of 
internalised speech is that it is a tool for the 
focusing or re-focusing of attentional re-
sources.  
 
Inner speech then appears to be of central 
importance because it gives an agent the 
capacity to restructure not just the external 
world but also itself. External activity in 
this way becomes redeployed toward inner 
restructuring. Simulation models such as 
those discussed above give us a unique 
mode of developing an understanding of 
the functional changes that underlie such a 
transition. 
 
This internalisation model of self-directed 
speech can be used to provide an explana-
tion of how language plays a role in creat-
ing the regimes of complex self-control and 
attention-regulation that are central to the 
sorts of consciousness that humans have (cf 
Donald, 2001). It does not attempt to ad-
dress the question of why any experiences 
are conscious at all. However, it may allow 

us a new vantage point on their qualitative 
character. 
 
According to the sensorimotor approach or 
‘skill theory’ of conscious experience, “ex-
perience is not something we feel but 
something we do” (O'Regan, 2001). The 
character of perceptual experience, accord-
ing to this theory, is given in the mastery of 
sensorimotor contingencies. These contin-
gencies of self have there own governing 
laws just as any other complex physical 
system. Developing a mastery of these laws 
through autostimulation-with-words might 
be considered akin to the development of a 
new perceptual modality. 
 
This mastery of the mechanisms of auto-
stimulation-with-words affords the refocus-
ing of one’s own attention on self. This ex-
ercise of the contingencies of self can 
therefore be linked, more generally, to the 
qualitative analysis of consciousness in 
terms of sensorimotor contingencies (cf - 
O'Regan & Noë, 2001). Understanding this 
refocusing of attention might help us ex-
plain the uniquely human mode of the 
self’s perceptual presence.  
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Abstract 
 

There is a widespread misconception among critics of the dynamical systems approach to 
cognition: the emphasis on embodiment and situatedness has given the wrong impression that the 
only cognitive activities that can be explained under this paradigm are those concerned with 
ongoing coping with the current situation. To say that the body is actively situated in a world is 
only to highlight the most fundamental aspect of all cognitive activity. There is no doubt that the 
dynamical systems approach has already proven immensely more successful in such cases than 
traditional computational approaches. Even so, as soon as we move to other, more human, 
cognitive performances, such as planning or imagining, we must, critics predict, return to the 
tenets of cognitivism/ computationalism in some updated form, or worse still, to some kind of 
hybrid stance. Here I briefly examine the foundations of this claim (and find there aren't really 
any). 
 

On the positive side, I raise the issue of what is the best route for connecting sensorimotor and 
situated intelligence with (some) human styles of cognitive activity (misleadingly characterized as 
"decoupled"). A dynamical systems approach is already useful because it forces us to formulate 
the questions that traditional representational approaches felt unnecessary to ask since they 
answered them almost axiomatically. What is to represent? How is it possible to alter the meaning 
of a situation? What sort of system is a cognizer such that the world is meaningful for her? How 
can a cognizer act autonomously in accordance with meanings not yet established by the situation 
but by her own actions? 
 

I will very briefly discuss the life/cognition continuity thesis and show how it reveals 
fundamental issues about agency and sense-making that allow us to begin to answer some of these 
questions. A powerful methodological guidance is found in Hans Jonas's work on value-generating 
activities and the evolutionary/historical thread of increased mediacy in cognition.  Following a 
developmental version of this thread, a large part of this presentation will be devoted to examining 
pretend play (in authors such as Lev Vygotsky, Maxine Sheets-Johnstone, and Margaret 
Donaldson) as a particularly relevant activity for understanding how transitions to freer forms of 
meaning manipulation are inherently embodied and dynamical in nature. This will suggest new 
vistas and new challenges to synthetical approaches like evolutionary robotics. 
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Abstract 

 
One of the major challenges in synthetic phenomenology is to find a way of systematically describ-
ing artificial non-conceptual phenomenal states. This paper puts forward a solution to this problem 
that uses three different XML files to describe a machine's structure, internal states and phenome-
nology. The advantages of XML are that it can be read by both machines and humans, it is good at 
capturing hierarchical relationships between data and it can be automatically generated, analysed 
and archived. XML could also be a useful tool for other methods of representing non-conceptual 
mental content, such as content realization and ability instantiation. Furthermore, as scanning tech-
nologies develop, the XML approach could be applied to the neurophenomenology of humans, 
which would serve as a foundation for a more scientific psychology of both humans and machines 
and facilitate precise comparisons between the two. The XML approach outlined in this paper will 
be used to describe the synthetic phenomenology of Holland’s and Troscianko’s CRONOS robot 
that is currently under development at the University of Essex and the University of Bristol.  
 

1  Introduction 

Synthetic phenomenology is a recently emerging 
discipline that aims to describe the phenomenal 
states of artificial systems. This is essential for the 
monitoring and debugging of machine conscious-
ness and it could also address concerns about the 
possibility of suffering in machines. This paper puts 
forward an approach to synthetic phenomenology 
that uses three different XML files to describe a 
machine's structure, internal states and phenomenol-
ogy. The advantages of XML are that it can be read 
by both machines and humans, it is good at captur-
ing hierarchical relationships between data, it can be 
automatically generated, analysed and archived, and 
it avoids many of the pitfalls and presuppositions of 
natural language. As scanning technologies develop 
it may also be possible to use XML in neurophe-
nomenology, which would allow detailed compari-
sons between human and artificial systems. 

The first part of this paper covers some of the 
limitations of natural language descriptions of the 
phenomenology of non-human systems. After set-
ting out the advantages of an XML approach, the 
central section outlines one way in which XML rep-

resentations could be used in synthetic phenomenol-
ogy. This is not intended to be a final and definitive 
methodology, since there are no doubt better ways 
of applying XML to this area. However, by present-
ing one way in which it could be done I hope to 
make the case that XML could be a very useful tool 
for the phenomenology of artificial systems.  

2. Problems with Describing the 
Phenomenology of Non-Human 
Systems 

Phenomenology, especially in the work of Husserl 
and Heidegger, derives its significance from the 
claim that the phenomena we experience are as im-
portant and substantial as the physical world de-
scribed by science, which is often portrayed as a 
secondary interpretation of the phenomena. In this 
way phenomenology sets itself up with an ‘objec-
tive’ field of phenomena that are assumed to be the 
same for everyone and can be unproblematically 
described in natural human language The problem 
with this approach is that these assumptions about 
common experience start to break down once phe-
nomenology is applied to the experiences of infants, 
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animals and robots. To illustrate this problem, I will 
consider a short extract from Wordsworth (2004), 
which contains a fairly straightforward description 
of daffodils in natural human language:  
 

When all at once I saw a crowd,  
A host, of golden daffodils, 
Beside the lake, beneath the trees, 
Fluttering and dancing in the breeze. 

 
Most people have had the experience of daffodils 
fluttering and dancing in the breeze and when 
Wordsworth’s description is read by humans, they 
can readily imagine a similar past experience and 
understand his words well enough. However, even 
this straightforward description presents problems 
since it is extremely vague and imprecise and each 
reader will imagine the daffodils differently. More 
serious problems start to arise when we try to use 
ordinary language to describe the experiences of an 
infant placed in front of a field of daffodils. As 
Chrisley (1995) points out, we cannot simply say 
that the infant sees a host of golden daffodils be-
cause the infant has a preobjective mode of thought, 
which is unable to locate the daffodils within a sin-
gle unified framework. Adults understand daffodils 
as something objectively located in three dimen-
sional space, whereas infants do not necessarily con-
tinue to believe in the existence of the daffodils 
when they are occluded. In the adult and infant the 
word “daffodils” refers to two different concepts 
and experiences. As Chrisley puts it: “The infant’s 
concepts are not fully objective and are therefore 
non-conceptual. To ascribe conceptual content to the 
infant in this case would mischaracterize its cogni-
tive life and would not allow prediction or explana-
tion of the infant’s behavior.” (Chrisley, 1995: 145). 
 These problems become even more difficult 
when the attempt is made to describe the phenome-
nology of a non-human animal, such as Nagel’s 
famous bat (Nagel, 1974). When a bat flies over a 
field of daffodils it receives a complex pattern of 
returning ultrasound pulses, which are processed 
into phenomenal experiences that are likely to be 
very different from our own. Sentences like “the bat 
is experiencing a host of golden daffodils” are at 
best an extremely misleading description of the bat’s 
phenomenology. 

The same problems are encountered when at-
tempting to describe the phenomenal experiences of 
artificial systems. Whilst we may have grounds for 
attributing phenomenal consciousness to some ro-
bots, we have almost no basis for believing that they 
will have the human phenomenal experience of yel-
low when daffodils are placed in front of them, or 
even that they will have the same experience of yel-
low as each other. Robots may also be built that 
have unconscious daffodil recognizers, so that they 

are only conscious of the abstract presence or ab-
sence of daffodils. Other robots might only be capa-
ble of processing stationary daffodils, leading to 
highly divergent phenomenal experiences that can-
not be captured in ordinary language. 

Natural language evolved to describe human ex-
periences and so it is not surprising that it is very 
bad at describing the phenomenology of bats and 
robots. Synthetic phenomenology needs a better and 
more systematic way of describing the phenomenal 
states of artificial systems and the central claim of 
this paper is that XML representations are more 
appropriate for this task. After setting out the advan-
tages of an XML approach, section 4 will demon-
strate how it can be used to describe synthetic phe-
nomenal experiences in a systematic manner. 

3. Advantages of XML for Syn-
thetic Phenomenology 

The eXtensible Markup Language (XML) is a plat-
form-independent way of structuring and organising 
data so that it can be easily shared between systems. 
XML is stored as plain text and it has a tightly struc-
tured format that enables the relationships between 
data items to be easily expressed. It is also possible 
to validate the structure of an XML file without any 
prior knowledge of its form. XML is starting to be 
used widely and there are a number of reasons why 
it would be suitable for synthetic phenomenology:1 

1. XML is much more precise and highly structured 
than natural language, which allows it to describe 
complex nested hierarchies and represent the re-
lationships between different pieces of informa-
tion. This also enables easy cross referencing be-
tween different files. 

2. XML can describe low level details of the sys-
tem’s hardware, but it can also abstract from 
them so that high level comparisons can be made 
between machines with different architectures 
and between humans and machines. Whilst two 
systems’ lower levels might be different – per-
haps using neurons or silicon - the higher levels 
are likely to be more similar, allowing direct 
comparisons between different systems once eve-
rything is encoded in XML. 

3. XML can be written and read by both machines 
and humans. When doing simple small scale 
analyses it is useful to be able to manually read 
and edit an XML description of a machine's inner 
state. However, it is also very easy to automati-
cally generate and analyse the state of a machine 
using XML, for example by writing programs 

                                                
1 A good XML tutorial can be found at: http://www.w3schools. 
com/ xml/default.asp 
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that look for phenomenal mental content using 
different theories of consciousness. 

4. Its human and machine readability also make 
XML good for debugging consciousness. Once 
you have a highly structured representation of a 
machine's inner state and a methodology for ana-
lysing this for phenomenal consciousness, you 
can see how the machine's phenomenal states can 
be improved or increased. 

5. XML is easy to archive, either by converting the 
XML files into a database format or by storing 
them directly. Sequences of mental content that 
are stored in this way can be examined later off-
line. 

6. XML is a good foundation for the other tech-
niques for representing non-conceptual mental 
content, such as those suggested by Chrisley 
(1995).  

7. XML is very flexible. In addition to tags and 
data, XML can contain references to external 
files, pieces of code and equations. This enables 
it to include features that cannot be precisely de-
scribed in human language. 

 
Although these advantages also apply to some of the 
alternatives to XML, such as JSON, YAML and 
OGDL, the popularity of XML and the availability 
of good parsers in most programming languages 
make it the best choice for the approach to synthetic 
phenomenology that I am setting out in this paper. 

4. The XML Approach 

This section outlines one way in which XML could 
provide a systematic framework for describing the 
phenomenology of artificial systems. This approach 
works using three separate but interlinked XML 
representations: 

1) System. A systematic description of the system 
and its sensors.  

2) Test Suite. Identifies active elements within the 
system that are systematically correlated with 
outside events impinging on the sensors. This 
treats the machine as a complete unknown that 
is systematically probed by exposing it to stim-
uli and measuring changes in its internal state. 
During the generation of the test suite no at-
tempt is made to say what the stimuli might be 
like for the machine, although human descrip-
tions are included to help with later analysis. 

3) Mental Content. If the test suite is constructed 
in enough detail, a good idea should be gained 
about the range of correlations between internal 
states of the machine and activation of the ma-
chine’s sensors by the outside world. However, 
at any point in time only a small proportion of 
the potentially active elements will be active 

and this set of currently active elements are re-
corded in a third XML representation of the 
machine’s mental content. This includes tags to 
indicate whether it is phenomenal mental con-
tent, which are filled in at a later stage by pro-
grams designed to analyse the system, test suite 
and mental content XML for signs of con-
sciousness. 

The XML structures that could be used to con-
tain the data for each of these stages will now be 
covered in more detail. 

4.1 System  

The system XML file describes the structure of the 
system, including sensors, actuators and internal 
components. This is needed to clarify the range of 
tests that could be applied to the system and to help 
with the identification of potential phenomenal 
states. Some extracts from an XML file describing a 
typical system are given below: 

<system> 
 <description>Robot</description> 
 <sensor id="1"> 
  <type>light</type> 
  <shape>rectangle</shape> 
  <width>400</width> 
  <length>300</length> 
  <coordinate_system>Cartesian 

</coordinate_system> 
  <wavelength_range>0.7–0.4 

</wavelength_range> 
 </sensor> 
 <!-- Add more sensors here --> 
 
 <actuator id="1"> 
  <type>motor</type> 
  <location>wheels</location> 
 </actuator> 
 <!-- Add more actuators here --> 
 
 <neuron id="1"> 
  <position>2,3,3</position> 
  <type>pyramidal</type> 
  <algorithm>Leaky integrate and  

fire</algorithm> 
 </neuron> 
 <!-- Add more neurons here --> 
 
 <connection id="1"> 
  <presynaptic_neuron>1 

</presynaptic_neuron> 
  <postsynpatic_neuron>3 

</postsynpatic_neuron> 
  <synapse_type>excitatory 

</synapse_type> 
  <weight>0.9</weight> 
  <delay>22</delay> 
 </connection> 
 <!-- Add more connections here --> 
 
</system> 
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Brief explanations of some of the more important 
tags are as follows:  

<sensor> A sensor sensitive to light, touch or 
sound, for example. 
<actuator> An actuator, such as a motor or hydrau-
lic piston. 
<neuron>, <connection> In this system the internal 
states are held in neurons, whose parameters are 
specified here along with the connections between 
them. Other systems might use Bayesian networks 
or first order logic to hold their internal states. 

4.2 Test Suite 

A test suite is a systematic way of linking the pres-
ence of events and objects in the environment to 
changes in the machine's inner state. To generate a 
test suite the system is probed using a number of 
different tests and correlations between the stimulus 
and the machine’s state are recorded as a list of ac-
tive elements. The behaviour of the machine is also 
treated as data that is correlated with its internal 
states. To avoid presuppositions about three dimen-
sional space, the input to the machine is specified in 
terms of changes in the machine’s sensors and not as 
the presentation of three dimensional objects. With 
systems based on real or simulated neurons the test 
suite could be created by following the traditional 
approach of recording from neurons or groups of 
neurons. Systems along the lines of Franklin’s IDA 
(Franklin, 1998) could be tested by using a debugger 
to monitor which variables or memory locations 
change in response to environmental stimulation. 
This avoids problems raised by Searle (1980) about 
the difference between manipulating a symbol and 
understanding a symbol since no assumptions are 
made about the meaning of any of the system’s in-
ternal states. 

A comprehensive test suite needs to be designed 
with care so that it can probe all possible sensitivi-
ties of the machine and specify them as precisely as 
possible. This could start with simple low level fea-
tures, such as points, lines, and edges and work its 
way up to more abstract stimuli, such as faces and 
houses. All of these single modality tests would 
have to be combined with input from other modali-
ties, such as audition, proprioception and sensation. 
They would also have to be carried out whilst the 
machine is engaged in different activities, such as 
looking to the left, moving forward, and so on, to 
take account of sensorimotor contingencies. Whilst 
this sounds like an enormous quantity of work, ini-
tial tests of this type are likely to be carried out on 
very simple machines and as the methodology de-
velops it will be possible to automate the creation of 
the test suite by writing programs that examine the 
system XML file and generate a comprehensive 

series of tests. The tests could also be automated in 
many cases by simulating the input to the sensors. 
Some sample extracts from a test suite XML file are 
given below: 

<test_suite> 
 <test id="1"> 
  <human_description>Moving  

forward towards point of 
light</human_description> 

  <sensor_input> 
   <sensor>1</sensor> 
   <type>light</type> 
   <size>5,5</size> 
   <location>55,44</location> 
   <wavelength>0.55</wavelength> 
   <file>Test1.dat</file> 
  </sensor_input> 
  <!-- Add more sensor inputs --> 
 
  <actuator_output> 
   <actuator>1</actuator> 
   <type>motor</type> 
   <direction>clockwise 

</direction> 
   <speed>5</speed> 
  </actuator_output> 
  <!-- Add more actuator outputs --> 
   

<active_element> 
   <type>neuron population</type> 
   <neuron id="27"> 
    <firing_rate>0.88 

</firing_rate> 
   </neuron> 
   <!-- Add more neurons --> 
 
  </active_element> 
  <!-- Add more active elements --> 
 
 </test> 
 <!-- Add more tests --> 
 
</test_suite> 

Some of the more important XML tags are as fol-
lows:  

<test> A test that is applied to the machine to probe 
its responses to a particular stimuli. Tests that do not 
activate any elements do not need to be included. 
<human_description> Description of the stimulus 
by humans, which may be useful as part of the proc-
ess of describing the phenomenology of the ma-
chine. 
<sensor_input> Input is defined in sensory rather 
than world coordinates. This is to avoid the presup-
position of three dimensional space that might be 
made if we talked about presenting a round object at 
a distance of three metres, for example.  
<actuator_output> Any actions carried out by the 
machine whilst the stimulus is being presented. 
<active_element> The part of the machine's inner 
state that is activated by the test. In a neural system 

131



this could be a single neuron or a population of neu-
rons with a particular distribution of firing rates. In a 
more traditional computer system this could be a list 
of memory locations that are altered by the stimulus. 
Active elements are defined in relation to the test 
stimuli that activated them and have no meaning 
outside of this context.  

4.3 Mental Content 

Only a small proportion of the elements inside the 
machine that respond to stimuli are likely to be ac-
tive at any point in time. The currently active ele-
ments are stored in the mental content XML file, 
along with the active connections between them. 
This mental content is capable of influencing actions 
and could be involved in planning. For example, if a 
machine has a group of simulated neurons that se-
lectively respond to images of houses, then these 
neurons could initiate motor patterns that cause the 
sound "house" to be emitted. The house-sensitive 
neurons could also become activated when the ma-
chine was offline, leading to an experience analo-
gous to imagining or dreaming about a house. Some 
of this mental content may be conscious and a tag 
has been included to record whether this is the case. 
The contents of this tag are filled in at a later point 
when the system, test suite and mental content XML 
files are examined according to a particular theory 
of consciousness (see next section). Sample extracts 
from a mental content XML file are given below: 

<mental_content id="66"> 
 <time>4010551056</time> 
 <active_element> 
  <id>2</id> 
  <intensity>0.7</intensity> 
  <phenomenal>yes</phenomenal> 
 </active_element> 

<!-- Add more active elements --> 
 

 <active_connection id="3"> 
  <type>synchronisation</type> 
  <from>1</from> 
  <to>2</to> 
 </active_connection> 
 <!-- Add more active connections --> 
 
</mental_content> 

Some of the more important tags are as follows: 

<active_element> Reference to one of the active 
elements defined in the test suite along with some of 
its current properties.  
<active_connection> An active connection could 
be synchronisation between firing neurons, active 
processing by the CPU or simultaneous broadcast 
along a radio link. Since active connections are not 
necessarily topologically bound they are defined 

separately from the static connections in the system 
file. 
<phenomenal> Records whether this active element 
is phenomenal mental content. The contents of this 
tag are filled in by examining the system, test suite 
and mental content XML files for signs of phe-
nomenal consciousness. 

4.4 Phenomenal Mental Content 

The final stage in the description of the phenome-
nology of the machine is the identification of the 
parts of the mental content that are likely to be phe-
nomenally conscious. This is done by analysing the 
system, test suite and mental content XML files 
using a theory of consciousness. It is highly likely 
that different theories of consciousness will make 
different predictions about the phenomenal mental 
content of the machine, which provides a good way 
of discriminating between them by comparing their 
different predictions with first person reports about 
phenomenal states.2 This process of identifying the 
phenomenal mental content will now be illustrated 
using Tononi’s φ, Aleksander’s axioms and Metz-
inger’s constraints. 

4.4.1 Tononi's φ  

According to Tononi (2004) consciousness is linked 
to a system's capacity to integrate information. This 
is precisely quantified by Tononi as the number φ, 
which is the amount of effective information that 
can be exchanged across the minimum bipartition of 
a complex, where a complex is the subset of ele-
ments with φ > 0 and no inclusive subset of higher φ. Whilst there is not space to go into the details 
here, the system, test suite and mental content XML 
representations outlined in this paper would make it 
easy to calculate the amount of φ and pinpoint the 
active elements with high φ that are likely to be phe-
nomenally conscious. It would even be possible to 
add a φ tag to the active elements within the mental 
content XML file. 

4.4.2 Aleksander's Axioms 

Aleksander (2003) put forward five axioms as a set 
of mechanisms that are thought minimally necessary 
to underpin consciousness. These are depiction, 
imagination, attention, planning and emotion. Al-
though these axioms are not necessarily sufficient 
for consciousness, they are a good starting point for 
deciding whether a machine might be capable of 
conscious states and the XML approach offers a 
good way of analysing a system for their presence. 
For example, the test suite XML of an agent that 

                                                
2 There may also be ways of indirectly testing the predictions 
made by different theories of consciousness.  
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was capable of depiction would contain active ele-
ments linked to external stimuli, and an agent would 
be experiencing imagination when its mental con-
tent XML contained active elements that were 
linked in the test suite to different stimuli from the 
ones that are currently present. For example, an ac-
tive element might be linked to apple stimuli in the 
test suite and yet be part of the agent’s mental con-
tent when only bananas are in its field of view. One 
way of identifying the axiom of attention would be 
follow Damasio (1999) and Metzinger (2003) and 
look for active connections between active elements 
linked to the agent's self model and active elements 
associated with external content. Emotion could be 
discovered by looking for active elements associated 
with certain body states.3 

4.4.3 Metzinger's Constraints 

Metzinger (2003) set out eleven constraints that 
mental content must conform to if it is to be con-
scious. There is not space to go into the constraints 
in detail here, but the three most important, which 
are used to define a minimal notion of conscious-
ness, are the activation of a coherent global model 
of reality (constraint 3) within a virtual window of 
presence (constraint 2) both of which are transparent 
(constraint 7). A system whose mental content con-
formed to these constraints would have a phenome-
nal experience of “the presence of one unified 
world, homogenous and frozen into an internal 
Now, as it were.” (Metzinger, 2003: 169).  
 The identification of which parts of the mental 
content conform to Metzinger's constraints is easier 
than it seems because Metzinger provides very de-
tailed descriptions of the informational, representa-
tional, computational and functional characteristics 
of the constraints along with some likely neural cor-
relates. All of this can be fairly easily extracted once 
detailed and systematic XML representations have 
been created for the system. For example, the pres-
ence of constraint 3 (integration within a global 
model of reality) could be established by looking at 
the active connections between active elements or 
possibly using Tononi's methodology. Some of the 
other constraints, such as transparency, may come 
for free on systems whose internal states do not have 
any sensors that could make them objects of repre-
sentations. 

                                                
3 The identification of planning in an agent's XML descriptions 
would require a fully temporalised version of the XML approach, 
which is not covered here. 

4.5  A Description of the Synthetic Phe-
nomenology? 

Given the history of phenomenology, we might ex-
pect the final outcome of synthetic phenomenology 
to be a natural language description. Even if we 
cannot achieve this at present, it might be thought 
that this should be the final goal of the procedures 
outlined in this paper. Viewed from this perspective, 
the system, test suite and mental content XML 
would only be the preparatory stages for a tradi-
tional phenomenological account of the experiences 
of COG, CRONOS or IDA.  

However, the problems discussed in section 2 
make it unlikely that we are ever going achieve fluid 
natural language descriptions of non-human sys-
tems. Instead, it might be much better to treat the 
XML representations as the best description that we 
are going to get of the phenomenology of an artifi-
cial system. This has the great advantage that it is 
possible to see what you cannot say. We don't have 
adequate words in human language to describe a 
system that can only experience vertical lines, but 
we can represent such a system accurately using 
XML, and by looking at the XML we can start to 
understand how much and how little we can imagine 
what it is like to be such a system. 

The XML descriptions also offer a good starting 
point for other ways of describing the phenomenol-
ogy of artificial systems. The suggestions made by 
Chrisley (1995) about conceptual subtraction, con-
tent realization, ability instantiation and self instan-
tiation could all be implemented automatically once 
the XML formats have been defined. XML would 
also enable precise comparisons with humans that 
have deficiencies in the same areas as a machine, 
and we could use the first person descriptions of 
these patients to help us imagine what it is like to be 
such a system. As scanning technology improves, 
the application of this approach to normal and brain 
damaged patients will become easier. Research by 
Kamitani and Tong (2005) on neurophenomenology 
using combinations of voxels suggests that it might 
even be possible to start this work today. 

5. Discussion 

One of the first issues that must be clarified about 
the XML approach to synthetic phenomenology is 
that it makes no presuppositions about whether any 
particular machine is the sort of system that is capa-
ble of supporting conscious states. Robots, stones 
and human beings are all systems that are capable of 
internal states; all three can be analysed using the 
XML approach that I have set out here and it will be 
an empirical outcome of this approach if it turns out 
that the mental content of a stone is always devoid 
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of phenomenal states. This empirical outcome must 
be distinguished from the a priori question about 
whether certain types of non-human system are ca-
pable of supporting conscious states, since it is pos-
sible that the XML approach will make predictions 
about consciousness in systems that we consider 
highly unlikely to be capable of consciousness – the 
economy of Bolivia, for example. This a priori 
question is tackled by the ordinal probability scale, 
set out in Gamez (2005), which evaluates the likeli-
hood that a machine can support phenomenal states 
by systematically comparing its architecture with 
the human brain.  

It has been suggested that this XML approach to 
synthetic phenomenology ignores behavioural crite-
ria of consciousness, such as reports that a system 
might make about its mental contents. If this was 
thought to be important, then it would be easy to 
include the actuator outputs in the mental content 
XML file, so that the external behaviour of the sys-
tem could be included in the analysis of its con-
sciousness on a moment to moment basis. However, 
the problem with behavioural criteria for conscious-
ness is that apparently conscious behaviour can be 
generated by systems that we are reluctant to attrib-
ute consciousness to (such as the population of 
China communicating with radios and satellites), 
which is why an internal architecture approach has 
been favoured here. 
 As this methodology develops there are likely to 
be a large number of ambiguities about what consti-
tutes an element, how to handle overlapping ele-
ments, how to define active connections, the best 
way to analyse mental content for phenomenal 
states, and so on. Although these might initially ap-
pear to be weaknesses of the method, they are actu-
ally strengths because they indicate that synthetic 
phenomenology has the potential to become a para-
digmatic science that can move forward by asking 
questions and resolving ambiguities such as these. 
At the moment synthetic phenomenology is so un-
clear that even its lack of clarity is unclear to it and 
tightening up the methodology through XML repre-
sentations would make it capable of asking and an-
swering precise questions and enable it to move 
forward in a sustainable manner. Different ways of 
resolving the ambiguities will make testable predic-
tions about the phenomenal states of a machine or 
organism and as neural scanning becomes better we 
will actually be able to test these predictions on hu-
man beings and eliminate inaccurate methods. In the 
early stages it is likely that different theories will 
generate conflicting XML representations. How-
ever, this will at least make differences explicit; 
whereas at present our descriptions of inner states 
are so woolly and imprecise that disagreement or 
comparison between methods is rarely an issue. 

For reasons of brevity and clarity this paper has 
set aside questions about the temporal nature of 
phenomenal experience. One solution to this would 
be to break the stimuli up into sequences of frames 
and separate the test suite and mental content into a 
list of associated XML files. Another temporal prob-
lem is that active elements may change as they de-
velop and so it may not be possible to generate a 
single test suite that is valid for all time. This type of 
system will have to be retested at regular intervals or 
have its adaptivity frozen whilst the description of 
its synthetic phenomenology is taking place. 

6. Previous Work 

The approach that I have set out in this paper is 
closest to some of the techniques for representing 
non-conceptual content discussed by Chrisley 
(1995). These include content realization, in which 
content is referred to by listing “perceptual, compu-
tational, and/or robotic states and/or abilities that 
realize the possession of that content” (Chrisley, 
1995: 156), ability instantiation, which involves the 
creation or demonstration of a system that instanti-
ates the abilities involved in entertaining the con-
cept, and two forms of self instantiation, in which 
the content is referred to by pointing to states of 
oneself or the environment that are linked to the 
presence of the content in oneself. Whilst all of 
these techniques are promising ways of referring to 
non-conceptual content, it will be very difficult to 
apply them in practice without a precise way of rep-
resenting and organizing the computational, and/or 
robotic states and/or abilities. It is here that XML 
would be a useful tool since it could represent the 
structure of the systems that are being analysed 
along with their inner states when they are exposed 
to stimuli from the environment. Within the precise 
framework offered by XML the specification of 
non-conceptual mental content using Chrisley’s 
techniques would be made considerably easier. 

Other related work includes the description of 
the synthetic phenomenology of Khepera robots by 
Holland and Goodman (2003) and Stenning, et. al. 
(2005). In these experiments the internal model of 
the Khepera is held in a neural network, which 
stores a linked series of concepts combining sensory 
and motor information. The synthetic phenomenol-
ogy of the Khepera is carried out by plotting a 
graphical representation of the sequence of sensa-
tions and movements stored in the neural network. 
The problem with this approach is that the Khepera 
is likely to have no notion of colour and a very lim-
ited idea about space and so this graphical represen-
tation is unlikely to be anything like the Khepera’s 
actual ‘mental’ content. Another problem is that the 
graphical representation contains the complete in-

134



ternal model, whereas only a small part of this 
would be active at any point in time. It is also hard 
to see how this representation of an internal model 
could be systematically analysed for signs of con-
sciousness. The XML approach could help with 
these problems since it offers a highly structured 
way of representing the current mental content of 
the Khepera, which could be compared with other 
robots and systematically analysed for signs of con-
sciousness . 

7. Conclusion 

This paper has briefly outlined an XML approach to 
synthetic phenomenology in which XML plays a 
key role in the description of the conscious and un-
conscious states of the machine. This has many ad-
vantages and could help to circumvent many of the 
problems associated with the representation of non-
conceptual mental content. By describing mental 
content this concretely it also forces us to face chal-
lenging theoretical and methodological questions, 
which will eventually open up the possibility of a 
systematic science of synthetic phenomenology that 
can pose and answer precise questions about the 
phenomenology of artificial systems. 

The XML extracts included in this paper are in-
tended as simple examples to illustrate the main 
ideas and a great deal more work is needed to turn 
these starting points into a usable method. Some of 
this development will be done as part of the work on 
the CRONOS robot at Essex and Bristol. In the 
longer term it may be possible to develop a single 
XML standard for both synthetic and neuro- phe-
nomenology, which would facilitate precise com-
parisons between humans, animals and machines 
and enable us to automatically examine all three for 
signs of consciousness.  
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Abstract 

 
The embodied and enactive approach to consciousness emphasises the role of the physical 
embodiment of naturally intelligent agents as crucial for a study of consciousness and the 
importance attributed to the body also tends to be carried over to the material out of which the body 
is created viz. “living” matter. This seems to put into doubt the relevance of the embodied and 
enactive approach to the field of machine consciousness. However, I shall argue that consciousness 
as manifested in embodied intelligent systems, natural or artificial, that enact their world of 
experience by interacting with the environment necessarily needs to be understood in the light of 
freedom/autonomy and imagination, and the application of the principles of embodiment and 
enaction in the light of these notions in the field of robotics and AI can be a big step towards 
creating conscious artificial agents.  

 
1   Introduction 

The attempt to understand cognition and 
consciousness by recognising the fact that they 
necessarily involve an embodied agent who enacts 
her world of experience by real-time interaction 
with a real-world situation has been propounded of 
late in an ever-increasing volume of literature in the 
field of consciousness studies. The emphasis laid on 
the notions of embodiment of the cognitive agent 
and her interaction with the environment as crucial 
elements even for a scientific study of 
consciousness, has come a long way from a 
philosophical idea first presented in continental 
philosophy in the works of philosophers like 
Husserl (Husserl, 1931, 1960) and Merleau-Ponty 
(Merleau-Ponty, 1962, 1963, 1964). When the ideas 
of these philosophers were being introduced to the 
philosophical analyses of consciousness, 
mainstream cognitive science in general had 
remained unaffected by the implications of such a 
phenomenological approach. The applications of 
the emerging principles of cognitive science in the 
field of robotics and artificial intelligence 
dominated by the information-processing view of 
cognition had largely ignored the possible 
implementations and crucial insights that a primary 
emphasis on the notions of embodiment and 
enaction could have provided. The necessity to 
stress the agent’s particular psycho-physical 
apparatus and the real-time interactions of the agent 
with the real-world environment for an adequate 

study of consciousness began to be realised for the 
first time in robotics and AI in the 1980s in the 
work of Brooks (Brooks, 1986, 1991, 1993, 1994). 
The development of what has come to be known as 
the autonomous-agent theory in AI emphasises that 
as a first step for artificial agents to exhibit mental 
characteristics typically associated with conscious 
agents, they must be created in such a way that they 
are capable of moving about, surviving and 
performing specific goal-directed actions in real 
time in a complex real-world environment.  

The embodied and enactive theories, as are 
gradually gaining ground in mainstream cognitive 
science, emphasise the kind of body the agent 
possesses as one of the first crucial elements to be 
considered by a satisfactory theory of 
consciousness and the importance attributed to the 
kind of body also tends to be carried over to the 
material out of which the body is created viz. 
biological matter. The environment of the agent, 
both natural and socio-cultural, also constitutes an 
indispensable dimension of embodied and enactive 
approaches to the study of consciousness. Indeed, a 
survey of the literature reveals that “embodiment” 
can be understood in a variety of ways and 
following Ziemke we can enumerate the different 
notions of embodiment as follows: 1) structural 
coupling between agent and environment, 2) 
historical embodiment resulting from a history of 
agent-environment interaction, 3) physical 
embodiment, 4) ‘organismoid’ embodiment i.e. 
organism like body and 5) organismic embodiment 
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of autopoietic living systems (Ziemke, 2001).     
However, for the present I shall consider the notion 
of embodiment in a rudimentary sense of physical 
embodiment i.e. having a particular kind of body as 
a fundamental determinant of consciousness. 
Having a kind of body means instantiating a 
specific biological model and a major contention of 
the embodied and enactive approaches is that the 
biological model of the agent crucially determines 
the characteristics associated with consciousness 
exhibited by the agent. While this claim is indeed 
justifiable in view of the fact that the interaction of 
the organism with the environment that generates 
its world of experience is importantly determined 
by the physical embodiment of the organism, the 
implication that all manifestations of consciousness 
could thereby also be limited to the embodiments of 
naturally intelligent systems as created out of 
“living-matter” is less evident. Due to this 
insistence on the physical embodiment of the agent 
and the underlying importance of the biological 
matter, theories of embodied and enactive cognition 
seem to possess an unavoidable “biological 
flavour”. Then does engineering artificial 
intelligence according to the basic principles of 
embodiment mean engineering living matter? This 
may seem to stand in the way of applying the 
principles of the embodied and enactive approach in 
the field of machine consciousness. In this article I 
would like to address the question: How far can the 
embodied and enactive approach to consciousness 
with its emphasis on the kind of body possessed by 
the naturally intelligent agents at all help in 
understanding consciousness through the creation 
of intelligent machines based on the principles of 
embodiment and enaction? I shall maintain that 
although the notions of embodiment and enaction 
as used for understanding naturally intelligent 
systems importantly involve the material out of 
which the agent’s body is created as a determinant 
of embodiment, these notions can be applied in the 
field of robotics and AI too to create artificial 
agents that we could at least hesitate to call 
“machines” even if the material out of which they 
are created is not “living” stuff. I shall argue that 
consciousness as manifested in embodied 
intelligent systems, natural or artificial, that enact 
their world of experience by interacting with the 
environment necessarily needs to be understood in 
terms of freedom/autonomy and imagination, and 
the application of the principles of embodiment and 
enaction in the light of these notions in the field of 
robotics and AI can be a big step towards creating 
conscious artificial agents.  

    
1.1   Natural Embodiment 
The embodied and enactive theories have at times 
sought to differentiate between naturally intelligent 

systems and mechanical systems by drawing upon 
the material out of which each is created and the set 
of structural properties of the resulting systems as 
the criteria. One such effort is made by Maturana 
and Varela (Maturana and Varela, 1980, 1987) who 
distinguish between autopoietic systems and 
allopoietic systems. Biological systems, made out 
of living matter and exhibiting natural intelligence, 
are essentially characterised by their adaptability to 
their environment at the cellular as well as at the 
behavioural levels. Such systems are termed 
autopoietic as they are self-creating and self-
maintaining systems, and hence are completely 
autonomous. On the other hand, mechanical 
systems made out of non-living matter are capable 
of adapting only at the behavioural level and are 
called allopoietic systems i.e. systems whose 
components are produced by other processes that 
are independent of the organization of the 
machines. Hence how can artificial agents created 
out of non-living matter help us understand 
consciousness? Here one may adopt a stance of 
mysterianism and claim following Prinz that 
“…progress in the science of consciousness may 
offer little help to those who want to engineer 
consciousness” (Prinz, 2003) because it is 
impossible to determine with certainty that 
biological matter does not contain properties 
essential for consciousness. Then are our efforts to 
employ the principles of embodied cognition to the 
study of robotics futile unless we make machines 
out of living matter? Prinz advises engineers that 
they should not “…fool themselves into thinking 
that they can definitely create conscious machines” 
(Prinz, 2003) and the emphasis laid by the 
embodied cognition approach upon the body and of 
what it is made may seem to lend support to Prinz’s 
advice to engineers. Thus of what use are the 
notions of embodiment and enaction in the study of 
robotics and AI? 

Given our present state of knowledge about 
biological matter we cannot but maintain for the 
time being that it is in fact impossible for us to 
determine with complete certainty that organic 
matter does not contain properties essential for 
consciousness. However, this does not make the 
notions of embodiment and enaction a redundancy 
for robotics. Instead of considering the problem of 
consciousness in its totality, in all its aspect, let us 
begin by picking out a feature that can be said to be 
invariably associated with manifestations of 
consciousness in agents with a biological 
embodiment. Naturally embodied agents constantly 
strive to attain to higher degrees of freedom by 
actively resisting and defying the various forces 
acting against them that try to break up the unity of 
the system and by such efforts they assert their 
existence. The more they are able to resist the 
counteracting forces threatening to destroy the unity 
of the system, the more they appear to be complex 
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from the point of view of consciousness. Thus the 
most rudimentary life-form embodied in the 
simplest biological embodiments is the least able to 
actively preserve its unity in the face of 
counteracting forces and possesses the least 
freedom from this point of view and is ascribed the 
least traces of consciousness. As we go higher up 
the evolutionary chain we find more and more 
complex life-forms with more and more complex 
embodiments with greater and greater degrees of 
freedom exhibited by actively resisting 
counteracting forces till we reach the human level 
to which we ascribe the highest intelligence and 
consciousness exhibited so far in the story of 
evolution. Moreover, over and above adverse 
natural forces biological systems also deal with 
highly complex socio-cultural forces even at a low 
level of the evolutionary ladder, e.g. complex social 
structure of termite or ant colonies, and they seek to 
maintain their individual existences in this social 
maze by variously manipulating the forces at work 
there and trying to preserve their identity as 
individuals i.e. the unity of their individual systems. 
When they try to preserve and assert the identity of 
a group they do so as they identify the unity of their 
systems with that of the group. The more complex 
the forces that act against the system and the more 
the system tries to exert its freedom in the form of 
preserving its unity by actively counteracting the 
forces, the more it seems to manifest intelligence. 
From an evolutionary perspective it can be said that 
the forces acting against the system become more 
and more complex as we go higher up the ladder 
and the ways of counteracting those forces also 
become more and more sophisticated and complex 
leading to the expressions of greater freedom and 
accordingly greater degrees of consciousness.  

As a primary strategy of counteracting the 
forces acting against the system naturally intelligent 
agents resort to interacting with their environment 
in creative ways i.e. they can represent to 
themselves or enact possible states of affairs by 
interacting with the present state of affairs. The 
ability to represent possible states of affairs varies 
in complexity in accordance with the embodiment 
of the system and the complexity of the forces 
which the system encounters. The human form of  
embodiment is the one most capable among all 
biological embodiments to actively maintain the 
unity of its system in the face of highly complex 
counteracting forces, both natural and socio-
cultural; and the capacity of humans to enact 
possible worlds, as a strategy adopted for 
counteracting adverse forces, is remarkable among 
biological embodiments from the point of view of 
its complexity. This capacity as present in human 
embodiment is what we generally call imagination 
i.e. the enaction of possible worlds although other 
naturally intelligent systems too can represent to 
themselves possible states of affairs in various 

degrees of complexity by interacting with the 
immediate environment (the present state of affairs) 
and hence can also be called “imaginative”. By this 
remarkable capacity/strategy of counteracting 
disintegrative forces naturally intelligent systems 
exert their greatest freedom.  

Moreover, in case of naturally intelligent 
systems it can be observed that with the increasing 
complexity of embodiment the interaction of the 
organism with the environment gradually shifts 
from one of adaptation to one of gradual control 
leading to greater expressions of freedom and 
intelligence. The simplest life-forms adapt 
themselves as best as they can to the conditions of 
the environment and accordingly the manifestation 
of intelligence in them is far less complex than that 
of the higher ones. The strategies of interacting 
with the environment tend to become more of 
control and less of adaptation in more and more 
complex embodiments till we reach the human 
level that is crucially characterised by its capacity 
to enact possible worlds by interacting with the 
environment primarily in the form of control 
strategies. In case of natural forces humans do not 
submit themselves to the mercy of Nature and try to 
adapt as best as they can to the situations Nature 
throws them into. Humans exert their freedom 
against natural forces by trying to master natural 
laws and make them work for their best advantage. 
Even for socio-cultural forces humans demonstrate 
the tendency to assert their control over the 
environment and this tendency has been manifest 
throughout the history of human civilization. By 
interacting with the environment (the current state 
of affairs) in accordance with their embodiments 
humans enact possible states of affairs 
(imagination) that can be far removed from and 
greatly more complex than the present state of 
affairs. Hence in humans, manifestations of 
intelligence are not simply matters of adaptation; 
intelligence is dominance and control over 
environment with the aim of manipulating it to the 
best of their advantage i.e. making conditions most 
favourable for the maintenance of the unity of the 
system and thereby exerting their freedom.  For 
other biologically embodied systems too 
intelligence is crucially determined by the ability of 
the system to actively preserve its unity in the face 
of counteracting forces and by interacting with the 
environment in creative ways to represent to itself 
possible states of affairs and thereby asserting its 
freedom. No matter how simple or how complex 
the embodiment, the basic principle of intelligence 
and manifestation of consciousness indeed seems to 
be this and the human embodiment by virtue of the 
greatest ability exhibited so far in evolution to 
preserve the unity of the system and enact possible 
worlds by interacting with the present environment, 
enjoys the greatest degree of freedom in the chain 
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of evolution and exhibits the most complicated 
manifestations of intelligence. 

Furthermore, despite varying in degrees of 
complexity and freedom, the naturally intelligent 
systems are all characterised by the ability to 
represent to themselves the goals of their actions. 
Natural systems have dynamic needs and so they 
interact with the environment in various ways and 
enact their world of experience. Exploration of the 
environment by natural agents is importantly 
guided by curiosity, i.e. the need to explore more. 
This is all the more true for human agents whose 
insatiable curiosity has been at the root of all 
discoveries and inventions. The interaction with the 
environment by human agents is characterised by 
this need to explore more and more, and the lack of 
complete satisfaction with the present state of 
affairs. The need to explore more is developed by 
the system by means of interacting with the 
environment and by representing to the system 
goals other than the immediate ones present in the 
environment i.e. enacting possible states of affairs 
(imagination). The biological systems express their 
freedom by not being limited to what is 
immediately present in the environment.  The 
needs, whether biological or psychological, can be 
traced back to the desire to assert the existence of 
the organism and preserve the unity of the system 
and enact possible worlds by interacting with the 
present environment. Thus the needs come from the 
system by interacting with the environment and as 
long as there is embodiment there are needs.       

 
2  Autonomy, Imagination and 
Artificial Agents 
Consciousness as associated with this idea of 
freedom expressed by the embodied system through 
actively resisting disintegrative forces to maintain 
the unity of the system and enacting possible states 
of affairs by interacting with the present state of 
affairs need not be logically restricted to biological 
systems alone. This idea can be applied to the study 
of robotics and AI although the material out of 
which we create artificial agents like robots is not 
organic matter. The question is one of freedom. 
Naturally intelligent systems are characterised by 
various degrees of freedom in that they have 
capacities to actively preserve the unity of their 
system against disintegrative forces in various 
degrees and enact possible states of affairs by 
interacting with the present state of affairs, and 
accordingly manifest various degrees of complexity 
of intelligence. However, while modelling 
consciousness it is to be noted that biological 
embodiments, including human embodiment, have 
been shaped primarily by the environment whereas 
for artificial agents it is humans who are exclusively 

trying to shape the embodiment. The application of 
the embodied approach to cognition has to date 
influenced the shaping of the embodiment of 
artificial agents in so far as engineers are now 
trying to derive inspiration from biological models. 
The creation of robots that simulate the 
embodiment of simple biological models like 
insects (Beer and Chiel, 1993) etc. reflect this urge 
to copy Nature’s work. This is certainly a big step 
towards realising the importance of the embodiment 
and enaction for consciousness but it is one thing to 
mimic biological models for embodiment of 
artificial agents and quite another thing to create 
artificial agents whose embodiment will be shaped 
by the environment, which includes humans but not 
only humans, by means of creative interaction of 
the system with the environment and in order to 
creatively interact with the environment the system 
must be able to develop its own dynamic needs. To 
quote Ziemke, “ …despite all biological inspiration, 
today’s adaptive robots are still radically different 
from living organisms. In particular despite their 
capacity for a certain degree of self-organization, 
today’s so-called ‘autonomous’ agents are actually 
far from possessing the autonomy, and 
consequently the embodiment of living organisms.” 
(Ziemke, 2001). Thus the idea of autonomous 
agents, that is already prevalent in the study of 
robotics under the influence of the ideas of 
embodiment and enaction, can be carried to a 
greater extent to create agents which are 
autonomous not only in so far as they are capable of 
acting upon the environment to carry out functions 
that have already been decided for them such as 
moving about and avoiding obstacles but to create 
systems that will develop their own course of 
actions by interacting with their environment in 
accordance with their dynamic needs.  

To further clarify the idea let us consider basic 
applications of the idea of embodiment in the field 
of machine consciousness such as Brooks’ 
“mobots”(Brooks, 1986, 1991, 1993, 1994). Brooks 
lays down four conditions that his artificial 
creatures should satisfy and one of these is that a 
creature must do something in the world; it should 
have a purpose in existing (Brooks, 1991). Thus 
Herbert, one of Brooks’ well-known mobots, was 
designed to collect empty soft-drink cans left in the 
MIT lab. Although Herbert was built on the 
principles of interaction with the environment, it 
was none-the-less the human factor that exclusively 
fixed Herbert’s reason for existence and limited its 
activities in important ways and thereby the 
exhibition of intelligent behaviour on its part. To 
understand this more clearly let us compare a 
human agent with Herbert performing the same task 
i.e. collecting empty soda cans in a lab. The ways 
of navigating through the real-world environment 
maybe quite similar for both the agents but the 
reasons for doing so are crucially different in case 
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of the human agent and Herbert. The human agent 
can be collecting cans by taking part in an 
experiment or by being employed by the lab or 
because she cannot tolerate a messy littered lab or 
simply because she likes to collect cans.  However, 
in all these cases she knows that collecting cans is 
not the reason for her existence; she can stop 
collecting them (at least in her mind) if she wants 
and this representation of a possible state of affairs 
is an important component in her performance of 
the task. Even if she has been employed by the lab 
to collect cans she can conceive of possible worlds 
where she is not conditioned to collect cans. If she 
is bored or tired with the task or if she simply 
thinks it has been enough for her she can just quit. 
That is to say that by means of interaction with this 
environment i.e. the lab (the present state of affairs) 
she can enact a possible state of affairs. The 
autonomy expressed by the human agent in the task 
is that she is free (at least in her cognitive world) to 
make a choice; to collect cans or not to collect 
cans? This autonomy importantly shapes the way 
the human agent interacts with the environment 
even for simple tasks such as can-collection. 
Enaction of possible worlds is significantly 
determined by the interaction with the present state 
of affairs or the immediate environment. How can 
this autonomy be brought into artificial agents? To 
answer this question I shall make use of the notion 
of potential enactive state in the modelling of 
consciousness.  

In creating an artificial agent in accordance with 
the principles of embodiment and enaction it is 
necessary to build in some routines in the form of 
reaction to the various environmental factors. For 
example, the subsumption architecture underlying 
the functioning of Herbert is composed of layers 
which can be viewed as built-in routines of 
reactions to environmental factors like halting when 
an object is sensed right in front and reorienting 
towards an unobstructed direction. It is crucial for 
successful elementary navigation through the 
environment that certain rules of interaction with 
the environment be present in the robot that guides 
its behaviour. These can be considered as routines 
that enable the artificially embodied agent to enact 
the present state of affairs by interacting with the 
environment. However, the cues that the robot 
obtains by interacting with the environment need 
not all be directed towards solving a specific task 
either in the form of positive feed-back or negative 
feed-back. Imagine a device that has multi-sensors 
simulating the senses of natural agents. The inputs 
that the robot receives via its interaction with the 
environment need not all be translated into action. 
Some inputs will be utilised for immediate action 
whereas some will not be so utilised. However, the 
ones that are not so utilised immediately will not be 
ignored as irrelevant for all times but be preserved 
in the system as potentially relevant cues for further 

interacting with the environment. Although the 
robot can be initially programmed for performing a 
specific task such as navigating through a real-
world environment and avoiding obstacles, the 
picking up of cues from the environment by 
interaction should enable the system to develop 
further goals i.e. further needs for interacting with 
the environment. Interaction with the environment 
is a crucial factor in the origination of goals for 
embodied systems and the setting forth of these 
goals and representing them to the system enables 
the system to evolve and exhibit more complex 
intelligent behaviour. A human agent navigating 
through an environment for initially performing a 
specific task, e.g. soda-can collecting, picks up a lot 
of cues from the environment that are not all 
immediately pertinent to the task at hand but which 
significantly determine the manifestation of 
intelligent behaviour on the part of the agent. 
Suppose while collecting the cans in a lab a human 
agent hears a strain of music coming from 
somewhere. The music is rather lilting and the 
agent feels the need to dance to its tune i.e. move 
her body to its rhythm. The music does not 
constitute any part of the pertinent cues for soda-
can collecting but it does constitute a dimension of 
interaction of the agent with the environment and 
enables the agent to enact a possible state of affairs. 
If the agent is not restricted by the terms and 
conditions of employment or experimentation, she 
may even abandon her task of can collection for 
some time and just dance a bit or listen more 
intently to the music, and if she wishes she can give 
up the activity of collecting soda-cans in favour of 
enjoying herself. Moreover, she is most likely to 
become curious about the source of the music too 
and may leave her immediate environment to trace 
it, i.e. she will explore more. If her movements are 
restricted by terms of employment or 
experimentation, she can none-the-less enact a 
possible state of affairs in her cognitive world 
where she is executing her desired behaviour. Thus 
the human agent exerts her autonomy by preserving 
the unity of her system in the face of counteracting 
forces (obligation to collect cans despite the 
reluctance to do so) and enacting a possible state of 
affairs (dancing, listening with greater attention to 
the music, exploring the environment for the source 
of the music) by interacting with the present state of 
affairs (collecting cans but there is a nice music 
coming from somewhere). In fact it is this feature 
of naturally intelligent systems, especially human 
ones, that has so far distinguished them from 
machines or mechanical behaviour as has been so 
far modelled. Herbert can go on collecting soda-
cans indefinitely for it does not develop any further 
needs by interacting with the environment but a 
naturally intelligent system will sooner or later call 
it a day. As Maturana points out, “…as living 
systems that live humanly we are different from 
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robots on two fundamental accounts: one, is that 
robots have been designed de novo, intentionally in 
congruence with a specified medium that may also 
have been designed with them, and are not the 
arising present of an evolutionary history; two, is 
that we human beings are the arising present of an 
evolutionary history in which our ancestors and the 
medium in which they lived have changed together 
congruently…” (Maturana, 2005)  

The idea of potential enactive state is the idea of 
the system’s ability to represent to itself goals other 
than the ones immediately present in the 
environment by interacting with the environment. 
According to its embodiment the artificial system 
should be able to develop its needs with the aim of 
exerting greater control over the environment or for 
moving from adapting to the environment to 
gradually controlling it to the best of its advantage. 
The human control in the creation of truly 
autonomous artificial agents is at least for the time-
being importantly present at the levels of design 
and programming. At the level of designing the 
initial embodiment the human designer needs to 
make a choice of environment for the artefact and 
equip the system with means of interacting with the 
environment. For this inspiration can be derived 
from biological systems and their sensory 
modalities because these systems by interacting 
with the environment for a long time have 
developed the most practical designs. The choice of 
the number of sensory modalities with which the 
artificial agent is to be equipped and the kind of 
movement that the system will execute are the 
concerns of the human designer, although the 
movement may be importantly determined by the 
physical features of the environment chosen. The 
complexities of the sensory modalities and the 
movement will significantly determine the 
complexity of the initial embodiment. However, a 
truly autonomous system, albeit constituted of non-
living matter, should also be able to evolve its 
embodiment in accordance with the interaction with 
the environment. This is not merely a question of 
adapting to the environment at the level of 
behaviour as Maturana and Varela state for 
allopoietic systems (Maturana and Varela, 1980, 
1987). It is developing or evolving the embodiment 
in accordance with environmental interaction with 
the aim of expressing greater freedom of the system 
and exerting greater control over the environment. 
As an example we can consider Herbert once again 
in an imaginative thought experiment that could 
roughly capture the implementation of the idea of 
an essential manifestation of consciousness as the 
ability of the system to actively preserve its unity in 
the face of counteracting forces and exert its 
freedom by interacting with the environment in 
creative ways to represent to itself or enact possible 
states of affairs. Herbert is designed to collect 
empty soda-cans in a lab and explores the 

environment randomly, not ignoring other objects 
but exploring them too by means of tactile and 
visual modalities. This can indeed be possible as 
Brooks claims that the artificial creature should be 
able to maintain multiple goals (Brooks, 1991). 
However, with the kind of physical embodiment 
(design) Herbert has been initially given it can pick 
up only empty soda-cans. Nevertheless Herbert can 
send a “distress” signal when it “senses” that the 
system is missing something, i.e. the system has 
developed a need by interacting with the 
environment and this need needs to be fulfilled for 
the system to exert greater freedom and control 
over the environment. Also suppose Herbert is 
equipped with temperature sensors that enable it to 
estimate how much energy is being spent. Now 
Herbert is moving through the lab, exploring it and 
picking up empty cans when it finds one. In the 
course of its random exploration suppose Herbert 
comes across a piece of crumpled paper lying on 
the floor. By exploring that crumpled ball of paper 
Herbert finds out that the weight of that object is 
less than the objects that it has been picking up. 
Hence interacting with that object, rather than with 
the empty soda-cans, means less spending of energy 
by the system which means more ability to explore 
the environment. But with the current design 
Herbert cannot pick up the ball of paper. It sends 
out a “distress” signal to indicate that the system 
needs something. This indicates that the agent is 
developing its own needs and enacting to itself a 
possible state of affairs by interacting with the 
present state of affairs for preserving the unity of 
the system. However, enacting a possible state of 
affairs or the representation of a potential enactive 
state should not come to an end with only a single 
instance. By encountering the ball of paper the 
system should be able to represent to itself the 
general possibility that there are objects in this 
environment that put less demand on its energy and 
consequently interacting with them means more 
ability to interact with the environment and 
preserve the unity of the system. The representation 
of this possibility should never be exhausted. For 
naturally intelligent systems as long as there is 
embodiment there are needs for which the system 
manifests intelligence and artificial embodied 
systems must also follow in their steps. The 
potential enactive state in an artificial agent 
represents a state which is actually never reached 
by the system. It is a state which the system is 
always trying to reach and with this aim is 
interacting with the environment. The system must 
never reach equilibrium i.e. the state where the 
system “feels” no more need to interact with the 
environment or develops no further need to interact 
with the environment. Real-world environments are 
essentially dynamic set-ups and hence complete 
control of the counteracting environmental forces is 
a dream for both naturally intelligent systems and 
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artificial ones. Yet it is the incessant pursuing of 
this practically unattainable state of autonomy that 
leads intelligent systems to manifest more and more 
complex intelligence.  

To sum up, the necessity of applying the 
principles of embodiment and enaction in the field 
of robotics and AI is becoming increasingly clear 
for creating artificial agents that can exhibit mental 
characteristics typically associated with 
consciousness, and the notions of autonomy 
(exerting greater and greater degrees of freedom by 
the ability to preserve the unity of the system in the 
face of counteracting forces) and imagination 
(enacting possible states of affairs by interacting 
with the present state of affairs or the immediate 
environment) are crucial for creating embodied 
artificial agents capable of enacting cognitive states. 
The goal to be attained is complete autonomy 
obtained by constant enactment of possible states of 
affairs through interaction with the present state of 
affairs, and the ever present vision of this 
impossible goal necessarily permeates all 
intelligence and evolution, from the simplest to the 
most complex till date. I have argued in this paper 
that such a manifestation of consciousness need not 
be restricted to naturally intelligent systems alone 
and can be simulated in artificial agents. Whether or 
not it is impossible to satisfactorily determine the 
issue of biological matter possessing properties 
essential for consciousness, or whether or not 
autopoietic systems are essentially different from 
allopoietic ones by virtue of their adaptability, are 
questions that tend to restrict the notions of 
embodiment and enaction to a level of explanation 
that may render these notions inapplicable in 
principle in the domain of robotics and AI because 
of their explicit or implicit harping on biological 
matter. This is not to imply that these issues can be 
brushed aside in studies of embodiment and 
enaction. It may indeed be possible that biological 
matter is really some thing quite special for 
manifestations of consciousness, and the latter is 
inseparably linked to the former and only to the 
former. But nevertheless it may also be possible, by 
understanding embodiment and enaction as 
pertaining to consciousness in the light of freedom 
and imagination, to create artificial agents that we 
would hesitate to call “machines” any more in the 
sense that they perform only dumb repetitive 
behaviour in order to serve our purposes and our 
whims. Thus the challenge that faces us for this 
new vision of artificial agents is not how far could 
we go in creating conscious machines but rather: 
How far would we dare to go?  
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Abstract 

 
Inner speech is an aspect of human cognition that has been largely neglected by traditional artificial 
intelligence research. It is argued here that inner speech is an important contributor to cognition and 
consciousness and therefore also conscious machines should incorporate it. The realization of inner 
speech in machines involves also notoriously difficult linguistic issues, like sentence understanding. 
Here an approach to language processing by associative neural networks is proposed as the solution. 
This method works without explicit parsing or grammatical rules. The cognitive effects of inner 
speech arise from its content; inner speech is about something and that content affects the operation 
and behavior of the cognitive system. Consciousness involves the awareness of the mental content; 
inner speech is seen here as one tool for introspection that facilitates this awareness. In inner speech 
we may comment ourselves in a way that we have learned from others. This self-appraisal is seen as 
a process that leads to enhanced social self-awareness and self-image.  
 

1   Introduction 
In humans the inner or silent speech is the “little 

voice inside the head” that commences when we 
awake and ceases when we fall asleep. Inner speech 
seems to be present also in dreams at least to some 
degree. Inner speech is persistent; it is difficult to 
suppress it for any extended moment while awake. 
In folk psychology inner speech is often equated to 
thinking and is understood as a main difference be-
tween man, animals and machines. Introspection 
may mislead us, but inner speech would seem to be 
one consciousness-related phenomenon that we can 
be rather sure of. Inner speech is a tool of introspec-
tion; via the flow of inner speech we are able to re-
port to ourselves what we think. When we fall 
asleep the flow of inner speech stops and our con-
sciousness is very much diminished. Nevertheless, it 
is obviously possible to be conscious to at least 
some degree without language, solely by the flow of 
sensory percepts, inner imagery, feelings, actions, 
needs and the like. 

Inner speech has been traditionally ignored by 
AI researchers while within cognitive psychology 
and neuroscience its potential as a key component of 
consciousness has been seen (for instance Morin & 
Everett 1990, Morin 1993, 1999, 2003, 2005, Sie-
grist 1995, Schneider 2002). Lately however, also 

some machine cognition researchers have recog-
nized the importance of inner speech. (Clowes & 
Morse 2005, Haikonen 1998, 1999, 2000, 2003, 
2005a, 2005b, Steels 2003a, 2003b). Also Duch 
(2005) has proposed a conscious architecture with a 
flow of “mind objects”; words and images. 

In the context of machine consciousness inner 
speech has a rather crucial position as its explana-
tion and artificial generation involves almost every 
other issue of cognition; perception, recognition, the 
grounding of meaning, situational inner models, the 
temporal handling of information; what the situation 
is now, what it was before, what has changed, etc. It 
seems obvious that a machine cannot have meaning-
ful inner speech if it does not understand the world, 
as this would be a prerequisite for the understanding 
of language. The solving of the issues of inner 
speech would involve the solving of most of the 
practical problems of conscious machines.  

The author sees the engineering challenges of 
inner speech as two-fold. The first issue relates to 
the enabling neural mechanisms and supporting cir-
cuitry for inner speech. The second issue relates to 
the contents of inner speech, how its meaning is 
grounded, how it arises and what are its effects on 
cognition and consciousness, especially self-
awareness and self-image. In the following the neu-
ral and linguistic prerequisites are treated first and 
the consciousness-related issues next. 
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2   Mechanisms for Inner Speech 

Natural language understanding is a hard prob-
lem that has not yet been solved satisfactorily and 
definitely not in any elegant way. Yet this is the 
exact problem that must be solved if meaningful 
inner speech is to be created in a machine. The au-
thor’s “multimodal model of language” (Haikonen 
2003) is one attempt towards natural use and under-
standing of language in a machine. Here an experi-
ment relating to the implementation of this approach 
with associative neural networks is described. 

Spoken words are temporal sound patterns con-
sisting of sequences of phonemes. The detection of 
words calls for the ability to capture and analyze 
sound patterns and transform the serial phoneme 
sequence into a parallel representation. Thereafter 
there are two possibilities for the word representa-
tion, namely the distributed representation and the 
single signal (grandmother) representation. In the 
distributed representation there can be one or more 
signals per phoneme or syllable, thus each word will 
be represented by a signal vector. In the single sig-
nal representation each word is represented by one 
signal only. The distributed representation method is 
more flexible and allows the use of inflection while 
the single signal method is easier to use in simple 
simulations.  

The author has used an associative neuron group 
(Haikonen 1999) as the basic processing unit for the 
distributed and single signal representations. The 
operation of the associative neuron group is ex-
plained here in simplified (but working) terms, 
which can be readily implemented with a computer 
program. The associative neuron group can be seen 
as a group of neurons that share common associative 
(synaptic) input signals. Thus their synapses form a 
kind of a matrix, figure 1. 

w(i,j)

w(0,1)

w(n,m)

w(0,m)
s(0)

s(i)

s(n)

a(0) a(j) a(m)

so(0)

so(i)

so(n)

W
T
A

Figure 1. The associative neuron group 

Each cross-point can be understood as one syn-
apse and each horizontal line can be understood as 
one neuron with m synapses and one output signal 
so(i). The purpose of each synapse is to associate 
the crossing signals s(i) and a(j) with each other. 
This is done via the synaptic weight w(i,j). The syn-
aptic weight value w(i,j) = 0 means that the signals 
s(i) and a(j) are not associated with each other, 

while the value w(i,j) = 1 means that the signals s(i) 
and a(j) are associated with each other. 

The associative link between the two signals s(i) 
and a(j) is created if they appear simultaneously. 
The synaptic weight value w(i,j) is computed as 
follows at the moment of association: 

 
(1) w(i,j) = s(i)*a(j) 

 
where  
 
s(i) = the input of the associative matrix; zero or one 
a(j)= the associative input of the associative neuron 
group; zero or one. 

  
Initially the synaptic weight value w(i,j) has the 

value of zero. The synaptic weight value w(i,j) = 1 
gained at any moment of association will remain 
permanent. In the figures the symbol ♦ at the line 
crossings is used to indicate a synapse with the 
weight value 1. (A correlative learning rule for more 
general learning is given in Haikonen 1999, also 
described in Haikonen 2003, p. 78)  

The associated signal so(i) is evoked by the sig-
nal a(j) according to (2) and (3). First, for each so(i) 
signal an evocation sum Σ(i) is computed as follows: 

 
(2) Σ(i) = Σ w(i,j)*a(j) 

 
where  
 
Σ(i) = evocation sum 
w(i,j) = synaptic weight value; zero or one. 

Next, the output so(i) is determined by using an 
output threshold that equals to the maximum evoca-
tion sum. This method is also known as the Winner-
Takes-All threshold (WTA). 
 
(3) so(i) = 0 IF Σ(i) < threshold 

so(i) = 1 IF Σ(i) ≥ threshold 
where 
 
threshold = max{ Σ(i)}  
 

The state of the complete associative neuron 
group can be computed by the above equations by 
running the indexes from zero to n and m. 

The associative neuron group can be applied to 
language processing neural networks as will be 
shown by the next example.  

According to the “multimodal model of lan-
guage” sensory modalities consist of feedback loops 
that are associatively connected and in this way try 
to broadcast their percepts to each other. The per-
cepts are signal vectors where each individual signal 
represents a detected elementary feature. These ele-
mentary features are extracted from sensory infor-
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mation via sensor-specific preprocesses. This per-
ception process is also affected by the feedback 
from the system. (The author proposes that this kind 
of a system is conscious of an entity, when each 
sensory modality percept is about the same entity 
and represent different aspects of that entity, hence 
broadcasts are globally accepted and the whole sys-
tem is in a kind of multiple closed-loop state.) 

Thus, according to this model the language proc-
essing takes place in the auditory sensory modality, 
but is assisted by all the other modalities as well. 
The general outline of the auditory sensory modality 
with connections to elsewhere is depicted in the 
figure 2. 

percept
feedback
neurons

feedback ("phonological loop")

auditory
sensor &
preprocess word

signals
to other
sensory
modalities

percept

word

word

word

percept signals
from sensory
modalities  

Figure 2. Linguistic modality model, part of the 
auditory sensory modality 

 
The basic meanings of the words are grounded to 

sensory percepts like objects, sensations and change. 
These percepts are associated with words so that 
each percept may evoke the corresponding word 
(the percept→ word box in the figure 2). However, 
our inner speech is not a list of the names of seen 
objects, instead it is more like a running commen-
tary about the perceived situation. Names are not 
important, possibilities, affordances (Gibson 1966) 
are. Here also, it should be seen that a perceived 
entity would evoke many kinds of responses in the 
other sensory and motor modalities; these would be 
perceived by those modalities and broadcast to the 
linguistic modality. Hence the evoked words would 
be related to the initially perceived object in a more 
general way. Also, the visual sensory modality is 
not the only relevant modality here; inner speech 
may be cued by other sensory modalities as well, 
like the auditory, touch, temperature, hunger. 
(Name→ percept association is important whenever 
a verbal description of a situation is to be trans-
formed into a mental image of the same.) Neverthe-
less, the percept→ word association is a rather 
straightforward process and is not elaborated here. 

The understanding of a sentence calls for the 
ability to extract the relationships between the enti-
ties that are described by the words in that sentence. 
There is also a syntactic component; part of the 
meaning is encoded in the word order and/or in the 
inflection of the words. This process would be exe-
cuted in the word→ word association box in the 
figure 2. 

A more complicated associative neural network 
is required for this word→ word association proc-
ess. A simple example is presented here in order to 
illuminate the relevant basic issues and require-
ments. 

In this example each word is represented by one 
dedicated signal (single signal representation). Dis-
tributed representation would also have been possi-
ble as was already done by the author (Haikonen 
1999). 
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Figure 3. An associative network for linguistic  

word→ word processing 
 
The associative neural network of the figure 3 is 

able to process simple sentences like those that de-
scribe action between two persons. Furthermore, 
these persons may or may not be characterized by 
adjectives. The network consists of neuron groups 
NG1, NG2, NG3, NG4 and NG5 which all share a 
common WTA-threshold circuit. The circuits AH1 
... AH5 are “Accept-and-Hold” circuits that recog-
nize individual signals and hold them for a short 
period. The operation of the “Accept-and-Hold” 
circuits is grounded; each circuit accepts only its 
own kind of words, nouns, verbs and adjectives. 
This is facilitated here by defining each word as a 
noun, verb or adjective when the vocabulary is 
taught. In real robotic applications this process 
would take place during learning of words in natural 
environment.  

Also the position of the word within the sentence 
matters; first and second nouns are captured sepa-
rately. The figure 3 is simplified; only those signal 
lines that are relevant to the specific example are 
shown.  

The subject-object action is captured from the 
incoming sentence by the neuron groups NG1, NG2 
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and NG3 and the related Accept-and-Hold circuits 
AH1, AH2 and AH3. The first noun and the second 
noun Accept-and-Hold circuits AH1 and AH2 are 
connected. They accept nouns sequentially; AH1 
circuit accepts and captures the first noun and AH2 
circuit captures the second noun. AH3 circuit ac-
cepts the verb. 

When the network learns the information content 
of a sentence it forms associative connections be-
tween the words of the said sentence. The sentence 
as such is not stored anywhere in the network. As an 
example the sentence “Angry Tom hits lazy Paul” is 
considered. During learning, that is, when the net-
work receives the sentence, certain associative links 
are formed. These links operate via synaptic weight 
values of 1 and are depicted in the figure 3. 

The understanding of a sentence involves the 
ability to answer to questions about the information 
content of the sentence. When, for instance, the 
question “Who hits Paul” is entered, the word 
“who” is captured by the AH1 forcing the word 
“Paul” to be captured by AH2. The verb “hits” is 
captured by AH3. The associative connections will 
give the correct response “Tom”. The question 
“Paul hits whom” will not evoke incorrect re-
sponses, as “Paul” will be captured by AH1 and in 
that position does not have any associative connec-
tions. 

The associative neuron groups NG4 and NG5 
associate nouns with their adjacent adjectives. Thus 
“Tom” is associated with the adjective “angry” and 
“Paul” with “lazy”. This is done in the run; as soon 
as “Tom” is associated with “angry”, the Accept-
and-Hold circuits AH4 and AH5 must clear and be 
ready to accept new adjective-noun pairs. After suc-
cessful association the question “Who is lazy” will 
evoke the response “Paul” and the question “Who is 
angry” will evoke the response “Tom”.  

Interesting things happen when the question “Is 
Tom lazy” is entered. The word “Tom” will evoke 
the adjective “angry” at the output of NG5 while the 
word “lazy” will evoke the word “Paul” at the out-
put of NG4. Both neuron groups NG4 and NG5 
have now mismatch condition; the associatively 
evoked output does not match the input. The gener-
ated match/mismatch signals may be associated with 
the words like “yes” and “no” and thus the system 
may be made to answer “No” to the question “Is 
Tom lazy” and “Yes” to the question “Is Tom an-
gry”. 

This exercise was executed in the form of a Vis-
ual Basic program. The visual interface of this pro-
gram is shown in the figure 4. This picture presents 
the situation when the example sentence and some 
questions about the information content of the sen-
tence have been entered. 

This exercise shows that it is possible to use as-
sociative neuron groups for language processing, at 

least for simple sentences. The importance of the 
grounding of meaning is also demonstrated; while 
the actual meanings of the words are not grounded 
here, the categorical meanings are and this ground-
ing is still essential. Further refinement of this ap-
proach would involve the basic grounding of mean-
ing for the words and additionally, the use of inner 
situational models that would involve representa-
tions in other sensory modalities. These models 
would allow the grounding and inspection of the 
relationships between the entities of a given sen-
tence and would also facilitate paraphrasing. 
 

 
 

Figure 4. Sentence understanding with the associa-
tive neural architecture, a Visual Basic program 
 
A complete cognitive system with the flow of 

inner speech as sketched by the author (Haikonen 
2003) would use these kinds of neural systems as 
subsystems within the auditory modality. It is worth 
noticing the simplicity of this approach; this kind of 
linguistic processing does not utilize explicit sen-
tence parsing or grammatical rules. There is no in-
nate grammar, the “grammar” of a sentence arises 
from the relationships of the real world. 
 
3  Inner Speech and Consciousness 
 

As good as the devised neural machinery might 
be it would only be a supporting platform. Any phe-
nomena that relate to consciousness would arise via 
the content that were carried by the platform in the 
form of inner speech. After all, our inner speech is 
about something and, on the other hand, we are not 
able to perceive the physical neurons or neural proc-
esses as such behind our inner speech. The contents 
of inner speech would allow us to shape our aware-
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ness while other, transparent neuron and architec-
ture-related mechanisms, especially feedback and 
cross-association, would allow the content to be 
introspected and controlled by itself. 

Would it be possible for one system to introspect 
and control itself? Even simple feedback control 
systems can do this. However, in this case there may 
be two major systems interacting with each other, 
namely the auditory-linguistic modality and the 
speech-motor modality. These modalities would 
usually carry the same information albeit in different 
terms; “heard” word representations and motor 
command representations for spoken or overt 
speech. This arrangement would allow the easy in-
spection of inner speech as a copy of it would be 
available in the speech-motor modality. Ryding et al 
(1996) propose: “Audible and silent speech may 
represent two principally different types of cerebral 
feedback systems, one for overt sensory–motor ac-
tivity and one for a pure internal cognitive feed-
back”. There is also some experimental proof that 
inner “heard” speech and overt speech have separate 
neural substrates. For instance aphasic patients may 
complain that the words they speak are not the 
words they think and intend to say (Huang et al 
2001).  

The author has proposed that consciousness 
arises in a multimodal system from associative in-
terconnections between the modalities (Haikonen 
2003). According to the “multimodal model of lan-
guage” inner speech would be one manifestation of 
these interconnections. If these interconnections 
break down, then inner speech and consciousness 
should also vanish. Indeed, Massimi et al. (2005) 
have noticed that during sleep, when there is no 
consciousness (or inner speech), neural communica-
tion between different parts of the cerebral cortex 
breaks down while local activities may still exist.  

In inner speech we may engage in thoughts 
about thoughts: “I am thinking now” and in doing so 
be aware of having thoughts. Obviously this obser-
vation of one’s own thoughts and the recognition of 
the ownership of the same would seem to be one 
manifestation of self-consciousness.  

Duval and Wicklund (1972) define self-
awareness as the state of being the object of one’s 
own attention. This would include the paying of 
attention to one’s own mental content such as per-
cepts, thoughts, emotions, sensations, etc. Inner 
speech has been seen as a tool for introspection and 
one of the most important cognitive processes in-
volved in the acquisition of information about the 
self and the creation of self-awareness (Morin 1990, 
2005, Haikonen 2003, pp. 256 – 260). 

With inner speech one can comment one’s own 
situation. Morin (2005) sees this self-talk as a device 
that can reproduce and extend social mechanisms 
leading to social self-awareness. (The author has 

argued elsewhere that basic self-awareness does not 
require social interaction, see the “hammer test” in 
Haikonen 2003 p. 161.) As a part of social interac-
tions we are subject to comments about ourselves, 
the way we are and behave. Self-talk allows us also 
to internally imitate the act of appraisal; we may 
echo the patterns of others’ comments directly as 
such or as first-person transformations. We may ask 
ourselves: “Why did you do this stupid thing?” or 
“Why did I do this stupid thing?”. Originally it was 
your mother that posed the question (Haikonen 2003 
p. 240). In this way inner speech turns into a tool for 
self-evaluation, which in turn will affect our self-
image; who we are, what we want. 

 
 
4 Conclusion 

 
Inner speech has been largely neglected by tradi-

tional artificial intelligence research perhaps be-
cause the algorithmic solving of problems in binary 
computers does not necessitate it. However, cogni-
tive machines would be different. The emulation of 
the processes of the human brain and mind would be 
incomplete without the realization of inner speech. 

Unfortunately the realization of inner speech in 
machines involves also notoriously difficult linguis-
tic issues, like the grounding of meaning and sen-
tence understanding. Here an associative neural ap-
proach that works without explicit parsing or gram-
matical rules is outlined and verified to a limited 
degree by a computer simulation program.  

Inner speech is about something and that content 
affects the operation and behavior of the cognitive 
system. Consciousness involves the awareness of 
the mental content; conscious beings may introspect 
their mind.  Inner speech is seen here as one tool for 
introspection that facilitates this awareness. Inner 
speech is not only a running commentary of external 
events, it involves also self-appraisal. This self-
appraisal is seen as a process that leads to enhanced 
social self-awareness and self-image. 

For practical reasons robots should have inner 
speech, as this would allow communication with 
natural language in natural way. This would allow 
easy peeking into the workings of the robot brain; 
technically it would be very easy to monitor and 
listen to the inner speech. Also, from a philosophical 
point of view it would be easier to accept that a ro-
bot thinks if it had the flow of inner speech and im-
agery in a similar way that we have. 

Inner speech helps us to make sense of our mo-
ment-to-moment existence. A conscious robot 
should experience its existence in the same way. 
Therefore we should build machines with inner 
speech, machines that have streams of conscious-
ness. 
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Abstract 
 

An argument for the possibility of conscious robots would have to show that the brain 
is neither necessary nor sufficient for the possession of consciousness.  I will set about 
giving just such an argument.  Proponents of the enactive theory of perception have 
argued that neural activity doesn’t always suffice for the having of conscious 
experience.  They have argued that the body and environment can also play a 
constitutive role in enabling conscious experience.   

In this paper I will argue for the stronger claim that neural activity isn’t necessary 
for conscious experience either.  A robot could, I will argue, enjoy phenomenal 
consciousness.  This has been denied by at least one prominent proponent of the 
enactive theory of perception (see Alva Noë (2005. 230)) who has argued that a robot 
wouldn’t count as a subject of experience.  In the absence of a subject of experience, 
Noë thinks it makes no sense to attribute phenomenal consciousness.   

I will argue that on the contrary a robot could be a subject of experience.  My 
argument will proceed in three stages.  The first stage argues that a creature is a 
subject of experience if it has a first-person perspective.  I set out some conditions a 
creature must satisfy if we are to attribute to that creature a first-person perspective.  
The most important of these conditions is that the representations the creature 
produces must have reflexive content – they must, in a sense I explain, be 
representations that refer to themselves.  

The second stage of my argument uses a variation on Andy Clark’s (2000) 
argument for the conclusion that access implies qualia.  I claim that any representation 
that has reflexive content will be one to which we have access.  Clark has argued that 
access implies qualia, so it follows that a representation with reflexive content will 
also have qualia. 

The final step in my argument will be to show that action-oriented representations 
(see Clark 1997 for an account of this type of representation) have reflexive content.  
Many robots that are capable of producing adaptive behaviour do so by means of 
action-oriented representations.  These robots, I will argue, already meet the 
conditions for having a first-person perspective.  Thus robots with a low-degree of 
phenomenal consciousness I will claim already exist.   

My paper will finish by attempting to motivate this conclusion through a reflection 
on the connection between consciousness and life.  Robots that produce adaptive 
behaviour are models of life.  I will argue that because of the connection between 
consciousness and life these robots are also models of consciousness.       
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Abstract 

 

One often assumes that we, rational human beings, first think and than act. This paper is an attempt 

to describe the mental characteristics governing the performance of regular everyday actions; and 

shows that no mental act has to precede our actions, instead of consciously thinking before we act, 

we mostly act while simultaneously overseeing our acting. The case of ball juggling is used to un-

derpin the analysis with practical facts.  

 

 

1   Introduction 

In the overview paper of the 2005 Machine Con-

sciousness conference the goals of Machine Con-

sciousness are described as: 1) to create artifacts that 

have mental characteristics typically associated with 

consciousness (such as awareness, self-awareness, 

emotion and affect, experience, phenomenal states, 

imagination etc.); and 2) to model these aspects of 

natural systems in embodied models (e.g., robots), 

(Chrisley et al., 2005). 

This definition stipulates that the mental phe-

nomena are to be studied in an embodied creature or 

model, thus the combination of mental states and 

physical action is brought into the focus. The theme 

of the current conference concerns “models which 

show the emergence of, or otherwise treat, proc-

esses or systems underlying these core themes.” The 

present paper addresses this theme with an attempt 

to unravel the mental characteristics, which manifest 

themselves in regular action oriented contexts. I try 

to describe the mental stance applied by a human 

being while performing the standard routines of 

everyday life. Without being able to systematically 

order all the mental characteristics mentioned above 

I will discuss a few assumptions so as to indicate 

some ordering and suggest a place for the stance I 

am describing. 

An often-encountered assumption – which I be-

lieve is generally untrue - is that a certain mental act 

precedes our bodily actions, or in plain language 

that we first think and then act. For instance Hag-

gard et al. (2002) write: “Normal human experience 

consists of a coherent stream of sensorimotor 

events, in which we formulate intentions to act and 

then move our bodies to produce a desired effect”.  

However, William James (1890) already clearly 

noted that the suggested ordering in time does not 

hold. He described his concept of ideomotor action 

summarised as: we think the act and it is done. An 

example of his: “We think to drink our coffee and 

we find ourselves already holding the cup in our 

hands”.  

I will argue a step beyond and show that we of-

ten act before any conscious thinking has occured. 

My point is not to substantiate a general moral ex-

cuse for cases where we have done things, which we 

afterwards regret. My point is pragmatic: we cannot 

act and behave as we do in ordinary life if we first 

have to think (let alone think over) every action. 

Being human, we like to think of ourselves as ra-

tional beings. In the history of Philosophy Immanuel 

Kant is probably the clearest exponent of this view. 

He saw a human being as a logical subject of 

thought (Stuart, 2005) that is bound to act in the 

physical world. Kant’s work could be seen as a ma-

jor attempt to reconcile the two while giving pri-

macy to rationality. And indeed on occasions we do 

first think and then try to act accordingly. However, 

considering the full extent of all the actions an indi-

vidual performs in his or her everyday routine, it is 

clear that our rationality can operate only in the 

background. The occasions where thinking precedes 

acting are the exception and not routine practice.  

In the morning of a regular day, while deliberat-

ing on how to make the best out of the day of today, 

we routinely drink our coffee and make our way to 

work, say by car. While driving the car, we sud-

denly stand on the brakes as we are forced to an 

emergency stop. Only after having come to a stand-
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still we come to think about what we have done the 

seconds before. 

Instead of first thinking and then acting, we only 

oversee our actions with our conscious and rational 

minds. I call the mental stance which we take when 

driving the car and which generally prevails when 

we act: being aware without focus. Interesting 

about this stance is that actions are selected and per-

formed without them being in the focus of attention, 

and what is more, as I will show below, when atten-

tion gets focussed it often interrupts the actions. I 

use juggling as an example to investigate the flow of 

the mental processes. 

It is interesting on its own to unravel the mental 

stance in which action selection takes place, since it 

might shed light on the complex of mental states and 

stances by which a human being monitors and con-

trols his of her body and actions. Definitely the hu-

man body on its own is a complex system with a 

complex control structure, the understanding of 

which could function as a paradigm for robot and 

machine design. 

 

 

2   Attention and Acting 

In order to explain the stance of being aware 

without focus, first a few words about the closely 

related notion of attention. Our mind can be in dif-

ferent modes of activity, with sleeping as the ex-

treme on one end. When awakening from sleep, our 

mind has to "warm-up" in an arousal phase. Then 

we become generally aware enough so that we can 

attend: the mind is aroused and proceeds via getting 

aware to attention. Further onwards, when there is 

attention, consciousness and conscious experiences 

may come in.  

Attention is since Broadbent’s work often con-

ceived of as a filter for or a gate to consciousness, 

which blocks, weakens or inhibits incoming mes-

sages from the senses. Baars (1997) introduced the 

metaphor of attention acting as a spotlight in a thea-

tre. When in the spotlight of attention, the mental 

processing becomes accessible to consciousness. 

The filter metaphor characterises the operations of 

attention as reductive while the spotlight metaphor 

suggests amplification; both nevertheless agree that 

attention is selective. 

Attention also has to do with action. “Awareness 

[or being aware] implies perception, a purely sen-

sate phase of receptivity. Attention reaches. It is 

awareness stretched toward something. It has execu-

tive, motoric implications. We attend to things.” 

(Austin, 1998).  

Appropriate applications of motor skills - that is 

to act appropriately - requires a proper combination 

of perception, action selection and action execution. 

The role of attention in relation to perception has 

been widely studied; however its role in applying 

motor-skills has not received as much scientific in-

terest. The reason for this might be that motor-

control, which is a prerequisite for motor-

skilfulness, is very much on and below the edge of 

what we can consciously experience and control. 

The performing arts and sports sciences deal 

with action and attention. Artists and sporting men 

and women engage in what is called deliberate 

practice (Rossano, 2003) (Ericsson et al., 1993): the 

concentrated effort to hone and improve specific 

(mental and) physical skills. Literature on deliberate 

practice distinguishes between external attentional 

focus and internal attentional focus; internal atten-

tional focus means that the performer directs atten-

tion to the movements itself, while in external atten-

tional focus, the attention goes to the effects the 

movements have on the environment (Wulf and 

Prinz, 2001). In both attitudes attention plays a 

prominent role, and generally external attentional 

focus is more proficient.  

The influence of internal attentional focus may 

be observed in for instance dancing or martial arts 

classes. In a class of beginners, the students might 

be quite able to straightforwardly copy the move-

ments of their instructors. However, when the in-

structor explains the consecutive moves to the very 

detail, several students appear not to be able to per-

form, even though they did so before. And reverse, 

when the instructor is asked about the details of a 

move which (s)he has never made explicit before, it 

is likely he or she has to perform first before being 

able to explain. Applying attentional and conscious 

control in motor-control hampers performance. Ex-

treme examples are observed with patients suffering 

from the syndrome called apraxia. Apraxia denotes 

the inability of a patient to perform a certain skilled 

movement. For instance when asked to demonstrate 

teeth brushing, the patient is unable to do so, 

whereas he or she is perfectly able to brush the teeth 

in the morning.  

Attention obviously has motoric implications, 

the examples show that internal attentional focus 

and conscious control of motor-skils may even lead 

to an inability to act.  

The notion of external attentional focus, is not 

clearly defined and allows several interpretations. In 

a narrow, but easiest to define sense it denotes atten-

tion focusing on bringing about a single effect: di-

recting a tennis ball, or throwing a single ball or  

bean bag into the air such that it can be caught. I 

will test this reading in the next section in the con-

text of juggling.  
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3   Acting and Awareness 

Five-ball juggling is hard and requires fast act-

ing, the complication being that between throwing 

and catching the same ball four other objects – three 

of which are already up in the air - have to be han-

dled. When first starting, it is a problem to throw 

each of the five balls one after the other before the 

first has returned (flashing as it is called), in doing 

so a novice will not be able to tell which ball was 

first thrown, let alone be able to catch it with the 

proper hand.  

The novice juggler is trying to apply full and 

conscious attention, and that leads him or her astray. 

In juggling, the time lapse between throwing and 

catching a single ball is not more then a single sec-

ond. Meanwhile, in five ball juggling four other 

objects are flying around appealing for attention. 

However, it is known that per second no more then 

two attentional shifts can occur, which is far too 

slow for five-ball juggling.  

Juggling combines perception with action; in the 

one second between throwing and catching a par-

ticular ball four other objects have to be handled as 

well. Psychological experimentation has shown that 

the time required for the single voluntary act of 

pressing a button only when a light flashes is about 

0.15 seconds (Austin, 1998). In contrast, observa-

tions of jugglers show that the time lapse between 

two catches of the same hand may be as little as 0.2 

seconds (Polster, 2003). In this short interval several 

actions of this hand flow into each other: catching, 

bringing to throwing position (dwelling), throwing 

and preparing/waiting for the next, while in the 

middle of this series the other hand has to start its 

own series as well; refer to Polster (2003) for more 

details. A simple comparison of the time required 

for a voluntary act and the constraints of juggling 

shows the impossibility of juggling being a series of 

voluntary actions.  

Because of the complexity and time constraints 

in five-ball juggling, correction of the movements 

and abandoning systematic flaws is quite difficult 

and requires persistence and endurance. An explana-

tion is that there exist two independent systems or 

circuitries for the perceptual control of movement 

(Rossano, 2003). Raichle (1997) makes a distinction 

between “the neural circuitry underlying the unprac-

tised, presumably conscious performance of a task 

on the one hand, and the practised presumably non-

conscious performance of a task on the other hand.” 

The response time of the latter circuitry is signifi-

cantly shorter than that of the first (Raichle, 1997). 

Voluntary actions are slow compared to involun-

tary acts, for instance a reflexive jerk takes only 

0.025-0.05 seconds, which is in the order of five 

times faster then a voluntary act!  

Internal attentional focus hampers execution of 

actions and actions are generally slower then when 

external attentional focus is applied. In five-ball 

juggling external attentional focus fails as there is 

not enough time to focus attention. Obviously the 

very fast, but complex and precision requiring 

moves in juggling cannot be under full conscious 

control. The juggler must be applying a different 

stance: a very sensate stance requiring awareness 

but avoiding any attentional focus; I call this stance: 

being aware without focus.  

Indeed, an experienced juggler does not focus on 

the individual balls. In his juggling book Dancey 

(1994) advises: “While learning [a five-ball pattern] 

you are trying to make yourself do it, when you can 

do it you watch yourself doing it.”  

In five-ball juggling, there simply is not enough 

time to focus attention; restricting attention results 

in faster actions. However the surprising thing is 

that when no full attention is required for acting, the 

mind performs other tasks concurrently. 

In daily life we perform many actions without at-

tentional focus, for instance when walking the body 

performs an intricate combination of muscle activi-

ties to maintain posture; car driving and juggling are 

other examples. Three-ball juggling is less demand-

ing than five-ball juggling. While juggling, the jug-

gler can do other things as well, for instance speak, 

walk etc.; however non-focussed awareness is per-

manently required, when the juggler’s attention 

drifts away and focuses elsewhere the balls drop. 

Car driving implies a similar requirement; the driver 

can perform many other things while driving but a 

certain level of awareness is required throughout.  

I have avoided any attempt to define the notion 

of attention; therefore I cannot conclude that atten-

tion is not involved in the stance of being aware 

without focus. But referring to the spotlight meta-

phor, if there is attention involved, it is only a dim 

light. Because attention is a preliminary for con-

sciousness this conclusion has implications for the 

role of consciousness as well.  

The juggling example shows that no conscious 

mental act is required in order to perform, and what 

is more it shows that for fast acting no conscious 

mental act can  precede the execution of the actions. 

 

4   Acting and Emotions 

Many cognitive scientists subscribe to the view 

that affect addresses the problems of decision mak-

ing and action selection (Shanahan, 2005; Sloman, 

2001). However, in the state of being aware without 

focus, the influence of affect seems much reduced.  

Returning to the example of routinely driving the 

car on the way to work; our conscious mind was 

occupied of our plans for the coming day, and we 
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were at a sudden interrupted by the emergency 

break. The action of pressing the breaks was a 

straight reaction to events occurring around us, and 

as far as I can see it was not guided by any obvious 

emotion. Of course, emotions come up afterwards 

and may interfere with our consciously reconstruct-

ing the events, but they did not initiate nor guide the 

breaking action.   

Literature on deliberate practice refers to emo-

tions mainly by advising to attain an optimal emo-

tion state and thinking positively (Wulf and Prinz, 

2001). 

Some descriptive evidence about the interference 

of emotions with acting can be found in the area of 

the eastern martial arts, in particular where Zen-

Buddhism is involved. The aim of Zen-Buddhism is 

to voluntarily move into and try to intensify a men-

tal state described as:  “When the ultimate perfection 

is attained, the body and limbs perform by them-

selves what is assigned to them to do with no inter-

ference from the mind. [The technical skill is so 

autonomised it is completely divorced from con-

scious efforts].” (Takuan, translated in Suzuki 1959, 

the addition in brackets by Suzuki). The stance of 

being aware without focus, which I try to describe, 

bears similarities. Thus, though the aims are quite 

different, the Zen related literature contains interest-

ing observations concerning the influence of affect 

and emotion on acting.  

In Japanese, the state of perfection is called 

Mushin, which literally means “no-mind” or "with-

out mind, without heart" (Austin 1998). Descrip-

tions of this state are found in Hinduism as well; an 

interesting metaphor is given in the text called The 

Bhagavat Gita, it says that someone who masters 

this state, “ … withdraws all his senses from the 

attractions of their objects, even as a tortoise with-

draws all its limbs,…” (BG 2,58). The citation does 

not imply that the senses are withdrawn; the point is 

the mental stance with respect to the ‘attractions’ of 

the senses. Austin (1998) gives a further addition: 

“The no mind of Zen implies a mental posture in 

which at least two things are going on: (1) bare 

attention still registers percepts, but (2) there are no 

emotional reverberations.”  

The impact of emotion on performing is also de-

scribed by the 2Oth century Zen master Taisen De-

shimaru in a discourse for martial art practitioners: 

“If our mind is upset, the natural functions of our 

bodies also tend to be disturbed. When the mind is 

calm, the body can act spontaneously ...” (Taisen 

Deshimaru, 1982). In the ideal attitude of the 

swordsman this is pushed to the limit: “The perfect 

swordsman takes no cognisance of the enemy’s per-

sonality, no more than of his own. For he is an indif-

ferent onlooker of the fatal drama of life and death 

in which he himself is the most active participant.” 

(Suzuki, 1959). 

 

Though my evidence on emotions is rather thin, 

I tend to conclude that intense emotions have a simi-

lar effect on performance and acting as focussed 

attention has.  
Interesting to note at this point is an approach to 

deliberate practice developed Singer (1985, 1988) 

with aims at non-focused performance. Wulf and 

Prinz (2001) call it mysteriously “a compromise 

between awareness and nonawareness strategies”. 

It includes several steps: readying or arousal; imag-

ing that is, going through the motion mentally; fo-

cusing, concentrating on a certain cue to block out 

all other thoughts; and executing the movement, 

while not thinking about the act itself or the possible 

outcome. This approach is much in line with the 

advices from Zen Buddhism, however it is seldom 

mentioned in the recent literature on deliberate prac-

tice. 

 

4   Consciously Inhibiting Actions 

A recent assumption in cognitive neuroscience is 

that the mind has a layered structure with at least 

three organising levels concerning body experience. 

“The lowest level is an assembly of neuronal infor-

mation coming from all parts of the body; at the 

middle level the body schema are situated which 

secure the emergence of the conscious body image 

at the third level” (Yamadori, 1997). The body 

schema are subsystems ‘implementing’ James’ 

ideomotor actions, for instance grabbing the coffee 

cup. Interesting for my analysis is the distinction 

between the second and the third level; are these 

levels really separate and may the second level op-

erate independent from the third? The independence 

of the second level is shown by the split-brain stud-

ies and in particular very compellingly by the so-

called Anarchic hand (Blakemore et al., 2002). The 

latter designates pathological behaviour in which a 

patient’s right hand manipulates a tool properly but 

‘spontaneously’, that is with the patient being aware 

of the hand acting, though neither consciously initi-

ating the movement nor being able to inhibit the 

action. The anarchic hand shows that the neither 

attention nor consciousness are a prerequisite or a 

necessary condition (sine qua non) for action; they 

are not necessarily the initiator of actions. More-

over, it even shows that there exist pathological 

cases where consciousness is unable to inhibit ac-

tions.  

Most people readily acknowledge that con-

sciousness is not in control of the internal function-

ing of our body. The anarchic hand demonstrates 

that even skilful behaviour might be beyond the 

span of control of consciousness 
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Conclusions 

I have made an attempt to describe the mental 

stance taken when performing regular everyday ac-

tions. I have called this stance being aware without 

focus; it is a stance in which there is typically little 

or no attentional focus. 

Acting requires perception, action selection and 

action execution. These processes are often initiated 

and performed without any conscious deliberation; 

they are mostly on and below the edge of conscious 

experience and control.  

Attention and emotions may interfere with acting 

but that often results in poorer or slower execution. 

Restricting attention results in faster actions. Sur-

prisingly, if no full attention is applied for acting, 

the mind performs other tasks concurrently. 

Attention is a gate to consciousness. Conscious 

thinking takes time and the often-supposed sequence 

that a mental act precedes bodily actions, or that we 

first think and then act cannot hold: it is too slow for 

many of our activities. In everyday practice we usu-

ally act before consciously thinking. 

Conscious control is not a necessary condition 

for acting and consciousness only has weak control 

over the acting body, even though subjects have the 

feeling they consciously control their body. 

Nevertheless, we do oversee our actions with our 

conscious and rational minds and except for patho-

logical cases we are able to suppress many ‘sponta-

neous’ actions. 
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Abstract 

 
This paper addresses the use of emotions on autonomous agents for behaviour-selection learning, 
focusing in the emotions fear, happiness and sadness. The control architecture is based in a motiva-
tional model, which performs homeostatic control of the internal state of the agent.  The behaviour-
selection is learned by the agent using a Q-learning algorithm while there is no interaction with 
other agents. In situations where interaction arises (e.g. interacting with other agents), agents rely on 
stochastic games approaches as a learning strategy. The agent is intrinsically motivated and his final 
goal is to maximize Happiness. The learning algorithms use happiness/sadness of the agent as posi-
tive/negative reinforcement signals. Fear is used to prevent the agent choosing dangerous actions or 
being in dangerous states where non-controlled exogenous events, produced by external objects or 
other agents, could danger him. Preliminary tests have been carried out in a virtual world, based in a 
role-playing game. 
 

1   Introduction 
The goal of our project is to develop social robots 
with a high degree of autonomy. The social aspect 
of the robot will be reflected in the fact that the hu-
man interaction will not be considered only as a 
complement of the rest of the robot’s functionalities, 
but as one of the basic features.  

For this kind of robots, the autonomy and emo-
tions makes them to behave as if they were “alive”. 
This feature would help people to think about these 
robots not as simple machines but as real compan-
ions. Evidently, a robot that has his own “personal-
ity” is much more attractive than one that simply 
executes the orders that he is programmed to do. 

Emotions can act as a control and learning 
mechanism, driving behaviour and reflecting how 
the robot is affected by, and adapts to, different fac-
tors over time (Fong et al, 2002). In previous works 
(Malfaz and Salichs, 2004), an emotion-based archi-
tecture has been proposed.  

Some researchers have also used emotions in ro-
bots. Most of them have made emphasis in the ex-
ternal expression of emotions (Breazeal, 2002) (Fu-
jita, 2001) (Shibata et al 1999). Their robots include 
the possibility of showing emotions, by facial and 
sometimes body expressions. In this case, the emo-
tions can be considered just as a particular type of 

information that is exchanged in the human-robot 
interaction process. In nature emotions have differ-
ent purposes and interaction is only one of them. We 
intend to make use of emotions in robots trying to 
imitate their purpose in nature, which includes, but 
is not limited to, interaction. The role that plays each 
emotion and how the mechanisms associated to each 
one work are very specific. That means that each 
emotion must be incorporated to the robot in a par-
ticular way. In this paper we will present some basic 
ideas on how emotions such as happiness, sadness 
and fear can be used in an autonomous robot. 

Emotions will be generated from the evaluation 
of the wellbeing of the robot. Happiness is produced 
because something good has happened, i.e. an in-
crement of the wellbeing is produced. On the con-
trary, Sadness is produced because something bad 
has happened, so its wellbeing decreases. Fear ap-
pears when the possibility of something bad is about 
to happen. In this case, we expect that the wellbeing 
drops off. Finally, Anger is produced when a dec-
rement of the wellbeing of the robot happened due 
to another-initiated act. 

This paper presents a control architecture for an 
autonomous agent based on motivations. The agent 
uses reinforcement learning algorithms to learn its 
policy while interacts with the world. The reward 
for these learning algorithms will be the variation of 
the wellbeing of the agent (happiness/sadness) due 
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to the previous selected behaviour, calculated at 
each step of the process. This wellbeing is a func-
tion of the internal needs of the agent (drives). This 
idea of using the wellbeing of the agent as the rein-
forcement in the learning process for behaviour se-
lection has been also used by Gadanho in the ALEC 
architecture, obtaining quite good results (Gadanho, 
2003). 
 The remainder of the paper is organized as fol-
lows. Section 2 introduces the use of emotions in 
robots. Section 3 and 4 describe the proposed con-
trol architecture and the reinforcement learning al-
gorithms respectively. Section 5 introduces the emo-
tion fear and section 6 describes the experimental 
setting. Finally, conclusions and future works are 
summarized in section 7.    
 

2   Emotions in robotic 
One of the main objectives in robotics and artificial 
intelligence research is to imitate the human mind 
and behaviour. For this purpose the studies of psy-
chologists on the working mind and the factors in-
volved in the decision making are used. In fact, it 
has been proved that two highly cognitive actions 
are dependant not only on rules and laws, but on 
emotions: Decision making and perception (Picard, 
1998).   In fact, some authors affirm that emotions 
are generated through cognitive processes. There-
fore emotions depend on ones interpretation, i.e. the 
same situation can produce different emotions on 
each agent, such as in a football match (Ortony, 
1988). Moreover, emotions can be considered as 
part of a provision for ensuring and satisfaction of 
the system’s major goals (Frijda, 1987).   

Emotions play a very important role in human 
behaviour, communication and social interaction. 
Emotions also influence cognitive processes, par-
ticularly problem solving and decision making 
(Damasio, 1994). In recent years, emotion has in-
creasingly been used in interface and robot design, 
primarily in recognition that people tend to treat 
computers as they treat other people. 

There are several theories about emotions (Frijda 
1987; Ortony, 1988; Sloman, 2003; Rolls, 2003), 
but the results of Damasio (1994) can be considered 
the basis, for many A.I. researchers, to justify the 
use of emotions in robotics and their computation.  
Rosalind Picard in her book Affective Computing 
(1998), writes a complete dissertation about this 
subject based on several psychologists, including 
Damasio. Picard (1998) proposed a design criterion 
in order to create a computer that could express 
emotions. Moreover, she established that a computer 
has emotions if it has certain components that are 
present on the emotional systems of healthy people. 
Picard (2003) expounded four motives for giving 

certain emotional abilities to machines: The first 
goal is to build robots and synthetic characters that 
can emulate living humans and animals, such as a 
humanoid robot. The second is to make machines 
that are intelligent. A third objective is to try to un-
derstand human emotions by modelling them. Al-
though these three goals are important, the main one 
is to make machines less frustrating to interact with, 
i.e. to facilitate the human-machine interface. 

Cañamero (2003) considers that emotions, or at 
least a sub-group of them, are one of the mecha-
nisms founded in biological agents to confront their 
environment. This creates ease of autonomy and 
adaptation. For this reason she considers that it 
could be useful to exploit this role of emotions to 
design mechanisms for an autonomous robot. Emo-
tions are used as mechanisms that allow the agent 
(robot) to:  
1. Have fast reactions. 
2. Contribute to resolve the selection among 

multiple objectives. 
3. Signal important events to others. 

Bellman (2003) agrees, to some degree, with 
Cañamero and her reasons for considering emotions 
in robotics. The author states that emotions allow 
animals with emotions to survive better than the 
others without emotions.  Therefore, we can pre-
sume that some type of analogy to emotional abili-
ties is required within robots, if we want an intelli-
gent and independent behaviour within a real envi-
ronment.  

Changing subject, Picard (2003) gives an advice 
about the implementation in machines of functions 
implemented by the human emotional system. Com-
puters do not have emotions as human beings in any 
natural experimentation sense. Science methodology 
is to try to reduce complex phenomena, such as 
emotions, to a functional requirements list. The 
challenge of many computing science researchers is 
to try to duplicate these in computers at different 
levels depending on the motives of the investigation. 
But we must be careful when presenting this chal-
lenge to the general public, who may perceive that 
emotions are the frontier that separates man and 
machine 

 

3   Control Architecture 
An independent system should not have to wait for 
someone to maintain, succour, and help it (Frijda 
and Swagerman,1987). Therefore, an autonomous 
agent should be capable of determining its goals, 
and it must be capable of selecting the most suitable 
behaviour in order to reach its goals. Similarly to 
other authors (Avila-Garcia and Cañamero, 2004), 
(Breazeal, 2002), (Gadanho, 2003), (Velasquez, 
1998), our agent’s autonomy relies on a motiva-
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tional model. Figure 1 shows this proposed control 
architecture for behaviour selection. 

 
 

 
Figure 1: Control architecture for autonomous 

agents 
 
3.1   Motivational Model 
Motivations can be seen as homeostatic processes, 
which maintain a controlled physiological variable 
within a certain range. Homeostasis means main-
taining a stable internal state (Berridge, 2004). This 
internal state can be parameterized by several vari-
ables, which must be around an ideal level. When 
the value of these variables differs from the ideal 
one, an error signal occurs: the drive. These drives 
constitute urges to action based on bodily needs 
related to self-sufficiency and survival. External 
stimuli, both innate and learned, are also able to 
motivate and drive behaviour (Cañamero, 1997).    

In order to model motivation, the hydraulic 
model of motivation described by Lorentz and Ley-
hausen in (Lorentz and Leyhausen, 1973) has been 
used as an inspiration. This model is essentially a 
metaphor that suggests that motivational drive 
grows internally and operates a bit like pressure 
from a fluid reservoir that grows until it bursts 
through an outlet. Motivational stimuli from the 
external world act to open an outflow valve, releas-
ing drive to be expressed in behaviour. In this 
model, internal drive strength interacts with external 
stimulus strength. If drive is low, then, a strong 
stimulus is needed to trigger motivated behaviour. If 
the drive is high, then, a mild stimulus is sufficient 
(Berridge, 2004). Following this idea, the intensity 
of motivations (Mi) is a combination of the intensity 
of the related drive (Di) and the related external 
stimuli (wi), as it is expressed in the following equa-
tion: 

iii wDM +=                                            (1)
  

 The ideal value for all the drives is 0. The ex-
ternal stimuli are the different objects that the player 
can find in the virtual world during the game. If the 
stimulus is present the value of wi is 1, otherwise is 
0. 
 According to (1), the intensity of a motivation 
is high due to two reasons: 1) the correspondent 
drive is high or 2) The correct stimulus is present. 
The dominant motivation is the one with the highest 
intensity. 
 This model can explain the fact that due to the 
availability of food in front of us, we sometimes eat 
although we are not hungry. We have also intro-
duced activation levels (Ld) for motivations such 
that: 
 

 
   0

   (1) is applied
i d i

i d

if D L then M

if D L then

� �

�
                        (2) 

 
Therefore the possibility of no dominant motivation 
exists. 
 
3.2   Wellbeing 
As shown in (3), the agent’s wellbeing is a function 
of the values of the drives (Di) and some “personal-
ity” factors (�i).   

 
Wb Wb Di iideal i

��� � �                                         (3) 

 
 Wbideal is the ideal value of the wellbeing of the 
agent, which is set to 100. The personality factors 
weight the importance of the values of the drives on 
the wellbeing of the agent. The value of the wellbe-
ing and its variation (�Wb) are calculated at each 
step. The variation of the wellbeing is calculated as 
the current value of the wellbeing minus the wellbe-
ing value in the previous step. 
 
3.3   Behaviour Selection 
The action selection process consists in making de-
cisions as to what behaviours to execute in order to 
satisfy internal goals and guarantee survival in a 
given environment and situation. For other authors 
(Avila and Cañamero, 2002), (Avila and Cañamero, 
2004), (Cañamero, 1997) this implies that the agent 
can choose among some behaviors related to the 
dominant motivation. Therefore for each motivation 
there is a set of behaviours oriented to fulfill the 
motivational goal.  
 It is important to note that finally, the agent 
will learn that when the dominant motivation is Eat, 
it must select among the behaviours related to the 
object food, instead of those associated to water or 
medicine. The novelty of our approach is that these 
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behaviours were not linked a priori with the corre-
spondent motivations. 
 
3.4   Happiness and Sadness 
Considering the definitions of the emotions given in 
the introduction section: 
 

 

 
h

s

If Wb L Happiness

If Wb L Sadness

� � 	

� 
 	
                             (4) 

 
Where Lh>0 and Ls<0 are the minimum varia-

tions of the wellbeing of the agent that produce 
Happiness or Sadness respectively. Therefore these 
two emotions are used by the agent as the reward for 
the reinforcement learning algorithms.  
 In this architecture the agent learns, using dif-
ferent reinforcement learning algorithms, the best 
behaviour at each step using happiness/sadness as 
the positive/negative reward. Therefore, in this ar-
chitecture behaviours are not selected to satisfy the 
goals determined by the dominant motivation but to 
optimize the wellbeing of the agent. This implies 
that the final goal of the agent is to maximize Hap-
piness. 
 

4   Reinforcement Learning 
Reinforcement learning (RL) is about learning from 
interaction how to behave in order to achieve a goal. 
The agent’s objective is to maximize the amount of 
reward it receives over time (Sutton and Barto, 
1998). Q-learning is a value learning version of RL 
that learns utility values (Q-values) of state and ac-
tion pairs Q(s,a). It provides a simple way for agents 
to learn how to act optimally in controlled Mark-
ovian domains (Yang and Gu, 2004). The theory of 
Markov Decision Processes (MDP’s), assumes that 
the agent’s environment is stationary and as such 
contains no other adaptive agents (Littman, 1994). 
Therefore, while the agent is not interacting with the 
other agent, we will consider our virtual world as a 
MDP environment.  

On the other hand, if the agent is interacting 
with other player, the rewards the agent receives 
depend not only on their own actions but also on the 
action of the other agent. Therefore, the individual 
Q-learning methods are unable to model the dynam-
ics of simultaneous learners in the shared environ-
ment. Currently multiagent learning has focused on 
the theoretic framework of Stochastic Games (SGs) 
or Markov Games (MGs). SGs appear to be a natu-
ral and powerful extension of MDPs to multiagent 
domains (Yang and Gu, 2004).  

Taking into account these considerations, in the 
proposed architecture the agent will use the standard 
Q-learning algorithm as the RL algorithm when the 

agent is not interacting with the other player. Obvi-
ously, in the case of “social” interaction, the agent 
must use a multiagent RL algorithm. The following 
subsections explain in more details these two sce-
narios. 

In our system, the state of the agent is the aggre-
gation of his inner state Sinner and the states Sobj re-
lated to each of the objects, including external 
agents, which can interact with him. 
 

1 2
...inner obj objS S S S� � �                                (5) 

 
 For the RL algorithms the states related to 
the objects are considered as independent. This 
means that the state of the agent in relation with 
each object is

iinner objs S S� �  

 
4.1   Q-learning Algorithm 

As mentioned previously, in MDP environ-
ments the agent will use the standard Q-Learning as 
a learning algorithm. As described in (Gadanho, 
2002),  through this algorithm the agent learns itera-
tively by trial and error the expected discounted 
cumulative reinforcement that it will receive after 
executing an action a in response to a world state s, 
the Q-values for each object is:   

 �( , ) (1 ) ( , )   max ( , )i i i

i

obj obj obj
obj

Q s a Q s a r Q s aa A� � � �� � � � � � �

� �
� �
� �

  

(6) 
 
where 

iobjA is the set of actions related to the object 

i, s’ is the new state, r is the reinforcement; � is the 
discount factor and � is the learning rate parameter. 

The optimal policy, chooses the action that 

maximizes ( , )iobjQ s a  this means 
* arg max ( , )iobj

aa Q s a�                                (7) 
 

The proposed architecture differs from others in 
that we do not consider only the behaviours that 
help to satisfy the drive related with the dominant 
motivation but the agent must consider all the be-
haviours that can be performed at each step, depend-
ing on his states. 

 
4.2   Multiagent reinforcement learning 
In multiagent systems, other adapting agents make 
the environment no longer stationary so the Markov 
property is not applicable. In the learning frame-
work of SGs, learning agents attempt to maximize 
their expected sum of discounted rewards. Unlike 
single-agent system, in multiagent systems the joint 
actions determine the next state and rewards of each 
agent.  In (Littman, 1994) it is proposed a Minimax-
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Q learning algorithm for zero-sum games in which 
the player always tries to maximize its expected 
value in the face of the worst-possible action choice 
of the opponent. The player’s interests in the game 
are opposite. Later, Littman (Littman, 2001) pro-
posed the Friend or Foe Q-learning algorithm, for 
the RL in general-sum SGs. The main idea is that 
each agent is identified in advance as being either 
“friend” or “foe”. The Friend class consists of SGs 
in which the Q-values of the players define a game 
which has a coordination equilibrium. The Foe class 
is the one in which the Q-values define a game with 
an adversarial equilibrium. The Friend-Q updates 
similarly to regular Q-learning, and Foe-Q updates 
as does minimax-Q (Shoham et al, 2003).  

All these algorithms extend the normal Q-

function of state-action pairs ( , )iobjQ s a  to a func-
tion of states and joint actions of all agents.  Taking 
into account this fact and that each agent can select 
among n actions while they are interacting, the Q-

values to be calculated are 1 2( , , )iobjQ s a a  where a1 
and a2 belong to the set of n actions of each agent. 

 

5   Fear 
Fear is produced when the agent knows that some-
thing bad may happen. This means that the wellbe-
ing of the agent might decrease. To cope with fear 
the action that produces the negative effect is going 
to be considered. We will distinguish between ac-
tions executed by the agent and exogenous actions 
carried out by other elements of the environment 
such as other agents. 
 
5.1 To be afraid of executing risky  ac-

tions 
Q-learning algorithm evaluates every action car-

ried out in a state, using the expected average value. 
However, since the system is non deterministic, the 
result of a certain action may have different values. 
The worst result experimented by the agent for each 
pair action-state is stored in a variable 

called ( , )iobj
worstQ s a , which is updated after the execu-

tion of the action.  
 

( , ) min( ( , ),  max ( ( , )))i i i

obji

obj obj obj
worst worst

a A
Q s a Q s a r Q s a�

�
�� �   

(8) 
where 

iobjA is the set of actions, s’ is the new state, r 

is the reinforcement and � is the discount factor.  
The effect of being afraid can be considered by 

choosing the action that maximizes iobj
fearQ  instead of 

choosing the one that maximizes iobjQ ,  

 

( , ) ( , ) (1- ) ( , )i ii
obj objobj

worstfearQ s a Q s a Q s a� �� �  (9) 
 

Using this approach the expected result of each 
action is considered as well as the less favourable 
one. The parameter �, being 0� � �1, measures the 
daring degree of the agent, and its value will depend 
on the personality of the agent. If the agent is fear-
less, � will be near 1; while in a fearful agent, who 
tries to minimize the risk, � will be near 0. If � =1 
the agent is using the optimal policy. 

This means that the “fearful” policy chooses the 
action: 

arg max ( , )iobjf
fear

a
a Q s a�                     (10) 

 
For example, when an agent has to pass over a 

deep hole, he can choose between jumping over it 
and going around it. Jumping is easier, faster and 
usually safe, but very occasionally he can fail and 
die. On the other hand, if the agent goes around the 
hole he will take a lot of time and get tired but it is 
safer. Translating this example to our point of view, 
the Q-value related with jumping will be greater 
than the one related to going around. Using the 
standard Q-learning algorithm, the agent would al-
ways jump over the hole. Using the fearful policy, 
considering the worst thing that could happen to the 
agent jumping or going around, he would choose 
going around since it is safer than jumping. 

 
5.2 To be afraid of malicious exogenous 

actions  
 
When the agent may suffer some negative effects in 
a state as a consequence of exogenous events, feels 
fear. “Fear” is expressed as a drive fearD . 

Traditionally, Q-learning has been applied on 
Markov decision processes (MDP), which are dis-
crete time systems. Some authors have extended the 
use of this algorithm to continuous time systems by 
considering them as semi Markov decision proc-
esses. In both cases it is commonly assumed that 
there are no exogenous events. In order to introduce 
the effects of exogenous events in continuous sys-
tems we consider the system as a discrete time sys-
tem with constant period. In the limit, if the period 
is very small the system will tend to be a continuous 
time system. Moreover, we will also consider that 
the exogenous events can be associated to other 
agents or elements of the environment. These ex-
ogenous events are synchronized with the actions 
executed by the agent. Among these action we will 
include the action of “doing nothing”. In this case 
the treatment for multiagent systems mentioned be-
fore will be applied.  
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The exogenous events executed by an external 
object or other agent can occur simultaneously to 
any of the actions of the agent. Therefore the nega-
tive effects of these exogenous events will be re-
flected in all the actions of the agent. In order to 
separate the effects of the actions of the agent and 
the effects of the exogenous events, we will focus 
on the study of the agent when he is “doing noth-
ing”. In that case, we suppose that all the changes 
suffered by the agent are a consequence of external 
elements.  

It will be considered that a state is a “scary” state 
when: 

( , )iobj
worst fearQ s Nothing L
                     (11) 

 
being Lfear the minimum acceptable value of the 
worst result that can be expected by the agent when 
it is doing nothing. In this case the value of the fear 
drive Dfear will be incremented. 
When  

( , )iobj
worst safeQ s Nothing L�                     (12) 

 
it is considered that the agent is in a “safe” state and 
the value of the fear drive  Dfear  will be decreased. 

The fear drive is equally treated as the rest of 
drives, and its related motivation could be the domi-
nant one. In this case, the agent will learn by itself 
what to do when it is afraid.  

 

6   Experimental Test Bed 
The proposed architecture is intended to be used 

in a social personal robot developed by our lab and 
named “Maggie” (see Fig2) (Salichs et al, 2006). As 
a first stage of this project and due to the obvious 
physical difficulties of making experiments on a real 
robot and on a real environment, we decided to im-
plement our architecture on virtual players, who 
“live” in a virtual world, a text-based multi user role 
game. This game gave us the possibly of creating 
different 2-D environments to play in, as well as a 
graphic interface.  

 Table 1 shows our agent’s motivations, drives 
and external stimuli that the agent can find in the 
virtual world.  

These drives have been selected tacking into ac-
count the role of the agent in the virtual world used 
to implement our architecture. Since our final goal is 
to construct an autonomous social robot, it must 
show social behaviours. Therefore, as it is shown, 
social motivations are included as robot’s needs. 
 
 
 
 
 

Table 1: Motivations, drives and related stimuli 
 

Drive/Motivation External Stimuli 

Energy Food 

Thirst Water 

Health Medicine 

Sociability Other player 

Fear  

 
At each simulation step some of these drives, 

such as Energy, Thirst, Health and Sociability are 
incremented by a certain amount. The value of the 
drive Fear, as it was previously explained, increase 
or decrease depending on if the agent is in a “scary” 
state or not. 

 Following (3) the wellbeing of the agent is de-
fined by: 
 

1 2 3 4 5( )
ideal

energy thirst health social fear

Wb Wb

D D D D D� � � � �

�

� � � � �

(13) 
In our test bed the inner state is then: 

 

  � �, , , , ,innerS Hungry Thirsty Ill Bored Scary OK�  
(14) 

 
This internal state is obviously related with the 

dominant motivation. Therefore when the dominant 
motivation is for example “Eat” then the agent is 
“Hungry” and so on. 

In relation with static objects the agent can be in 
the following states: 
 

_ _ _objS Have it Near of Know where� � �      (15) 

where, 
� �_ ,Have it yes no�                                            (16) 

� �_ ,Near of yes no�                                          (17) 

� �_ ,Know where yes no�                                    (18) 
 
In relation with other player: 
 

_objS Near of�                                                  (19) 

where, 
� �_ ,Near of yes no�                                          (20)                                     

 
And the set of actions that can be executed in every 
state is the following: 
 

� �, , _ ,foodA Eat Get Go to Explore�                  (21) 

 � �, , _ ,waterA Drink Get Go to Explore�             (22) 
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� �, , _ ,medicineA Take Get Go to Explore�            (23) 

/ /
/ /playmate

Explore

Steal food water medicine
A

Give food water medicine
Chat

�
�
�
��
�
��

                (25) 

 
Among the previously mentioned behaviours 

there are some of them that reduce or increase some 
drives, and therefore will produce a variation in the 
emotional state of the agent: 
� Eat food: reduces to zero the Energy drive. 

(happiness when hungry) 
� Drink water: reduces to zero the Thirst drive. 

(happiness when thirsty) 
� Take medicine: reduces to zero the Health 

drive. (happiness when sick) 
� Chat: reduces to zero the Social drive. (happi-

ness when the social drive is high) 
� To be taken something by other player: in-

creases by a certain amount the Social drive. 
(sadness) 

� To be given something from other player: re-
duces by a certain amount the Social drive. 
(happiness when the social drive is high) 

 
 
 
 

 

 

 
  
 
 
 
 

 
Fig. 2. ”Maggie” The Social Robot of the Robotic 

Lab. 
 

The conducted experiments show the usefulness 
of the proposed architecture in facilitating the de-
velopment of social autonomous agents able to learn 
from the experience the right behaviours to execute 
depending on the world state.  
   

7   Conclusion and Future work 
In this paper different reinforcement learning algo-
rithms have been discussed and implemented for the 
behaviour-selection learning of non-interacting and 
social autonomous agents. These agents are con-
trolled by an emotion-based architecture, which 
performs homeostatic control of the internal state of 

the agent through an embedded motivational model. 
This architecture has been designed for autonomous 
and social robots. 

 The agent is intrinsically motivated and his goal 
is his own wellbeing. The learning algorithms use 
happiness/sadness of the agent as positive/negative 
reinforcement signals. Fear is used to prevent the 
agent choosing dangerous actions or being in dan-
gerous states where non-controlled exogenous 
events, produced by external objects or other agents, 
could danger him. 

In the future work, it is expected that the agent 
learns not only the right policy but also to identify 
its opponent. So far, the agent treats all its oppo-
nents as if they were all the same, and this is not 
true. In future scenarios, the agent will be able to 
behave different with the “good” opponent than with 
the one that tries to steal its objects every time that 
interacts with it.  

Another emotion is going to be implemented: 
Anger. Anger will be produced when sadness arises 
due to the interaction with another agent 
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Abstract

This paper offers a preliminary sketch for an account of reflexive consciousness based on an im-
plemented architecture that combines a global workspace architecture with an internally closed
sensorimotor loop. The proposed account extends the theoretical framework of the already imple-
mented architecture with to two concepts that structure the flow of consciously processed informa-
tion. First, contextual switches divide the unfolding contents of consciousness into a set of nested
episodes, wherein one conscious episode can “refer to” another. Second, the imposition of a focus
/ fringe structure enables consciousness to encompass material that is merely available to it but
not actually present. This combination of reflexivity and fringe may underpin our awareness of our
own existence as conscious beings.

1 Introduction
Cognitive theories of consciousness, as the name

suggests, posit an intimate link between cognition
and consciousness. For example, according to global
workspace theory (Baars, 1988; 1997; 2002), non-
conscious information processing in the human
brain is carried out locally within specialist brain
processes, while the hallmark of consciously proc-
essed information is that it is broadcast (via a
“global workspace”) and made available to the entire
set of these specialists. The upshot is that con-
sciously processed information is cognitively effica-
cious in ways that non-consciously processed infor-
mation is not. Specifically, the procession of broad-
cast global workspace states resembles a serial thread
of computation, yet it integrates the results of mas-
sively parallel computation, sifting out relevant
contributions from the irrelevant (Shanahan & Baars,
2005).

However, one feature of conscious human
thought not accounted for by global workspace the-
ory in its basic guise is reflexivity, that is to say
the capacity for a conscious thought to refer to itself
or to other conscious states. (By contrast, so-called
higher-order thought (HOT) theories of conscious-
ness take reflexivity as their primary datum (Rosen-
thal, 1986).) If consciously processed information is,
as global workspace theory maintains, cognitively
efficacious, then reflexively conscious information
processing is even more so – since it enables the
thinking subject to reflect on his or her own mental
operations, to critique them and improve on them,
and to respond to the ongoing situation in ways that

depend on a degree of self-knowledge. So the ques-
tion arises: Can global workspace theory be extended
to account for reflexive consciousness?

This question has phenomenological as well as
cognitive implications. For if we accept the argu-
ment of Shanahan (2005), the very idea of a con-
scious subject – something it is like something to
be, in Nagel’s well-known terminology – can be
objectively accounted for in terms of a suitably
embodied instantiation of the global workspace
architecture, wherein all the specialist processes are
indexically directed towards maintaining the wellbe-
ing and fulfilling the purpose (or “mission”) of a
single, spatially unified body. By extending global
workspace theory to reflexive consciousness, we can
bolster this line of argument by showing that a
similar treatment is available for a vital aspect of
human phenomenology, namely our ability to be-
come conscious of our own existence as conscious
subjects.

2 Internal Simulation with a
Global Workspace

Figure 1. illustrates the operation of the global
workspace architecture, which comprises a set of
specialist brain processes plus a global workspace.
Information processing within the architecture con-
sists of periods of competition interleaved with
periods of broadcast. On the left of the figure, we
see the set of specialist processes competing to gain
access to the global workspace. Gaining access en-
tails that the winning process (or coalition of proc-
esses) gets to broadcast its message, via the global
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workspace, back to the entire set of specialists, as
seen on the right of the figure. The global workspace
itself is, in essence, nothing more than the infra-
structure of a communications network that permits
signals generated within localised neuronal popula-
tions to influence remote, widespread brain regions.
According to global workspace theory, the mammal-
ian brain instantiates such an architecture, and this
allows us draw a empirically falsifiable distinction
between consciously and non-consciously processed
information.  Information processing that is confined
to local specialists is necessarily non-conscious, and
only broadcast information can be consciously proc-
essed.

Although global workspace architecture permits
this fundamental distinction to be drawn in a theo-
retically respectable manner, it still leaves open the
question of the content of consciously processed
information. But by augmenting the basic global
workspace architecture with an internally closed
sensorimotor loop (Fig. 2), it is possible to recon-
cile it with another idea current within the scientific
study of consciousness, namely the simulation hy-
pothesis, according to which thought is internally
simulated interaction with the environment (Cotter-
ill, 1998; Hesslow, 2002; Shanahan, 2006). If the
sophisticated mental life of a human being results
from the interplay of external stimulation with in-

ternally generated activity such as inner speech and
mental imagery, then something like the internally
closed sensorimotor loop posited by the simulation
hypothesis is required to account for it. Moreover,
by facilitating the rehearsal of trajectories through
sensorimotor space, the internal sensorimotor loop
helps the individual to anticipate the consequences of
their actions and to plan ahead, and thereby fulfils a
fundamental cognitive role.

In (Shanahan, 2006), a implemented system is
described that  reconciles global workspace theory
with the simulation hypothesis. The system controls
a simple two-wheeled robot with a camera, and en-
ables it to select an action based not only on a set of
reactive responses, but also taking into consideration
the result of simulating the expected outcomes of its
actions using an internal sensorimotor loop, as
depicted in Figure 3. Moreover, a global workspace
is incorporated into the loop. The procession of
states exhibitted by the global workspace, which
simulates a possible trajectory through the robot’s
sensorimotor space, is the outcome of both competi-
tion and broadcast : the ith state being broadcast to
multiple neuronal populations which then compete
to determine the i+1th state. Further details of the
system are beyond the scope of this article, and can
be found in (Shanahan, 2006).

Fig.!2: External and Internal Sensorimotor Loops
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Fig.!1: The Global Workspace Architecture.
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3 Context and Temporal
Structure

According to the account of reflexive conscious-
ness proposed by this paper, the flow of information
through the global workspace is divided into distinct,
but possibly nested or overlapping, episodes at vari-
ous timescales. Beginnings and ends of conscious
episodes are triggered by events (contextual switches)
– such as entering and leaving a room, or meeting
and parting from a friend – which wake up or send to
sleep relevant specialist processes, whose job it is to
manage the individual’s response to situations of
that particular type. Figure 3 illustrates the idea. On
the left of the figure are snapshots of the global
workspace (GW) at four time points. At t=1, all five
of the processes depicted are dormant, although they
are still receiving information broadcast from GW.
This information indicates the occurrence of a dis-
tinctive event – a contextual switch – and by t=2
this has caused three of the processes (A, B, and C)
to become active and begin competing for access to
GW. There follows a further period of broadcast
(t=3), indicating a new contextual switch. By t=4,
this has caused processes A and C to go back to
sleep, but has woken up process D.

As Figure 3 shows, competition for access to
GW is restricted to the currently active or “awake”
set of specialist processes, and the set of active proc-
esses can be thought of as reflecting the current
context (Fig. 3, top), a conception which is broadly

in line with the notion of context prominently de-
ployed by Baars (1988) in his original presentation
of global workspace theory. Each distinct conscious
episode, bracketed by a pair of contextual switches,
falls under the jurisdiction of a particular process, a
process that should be relevant in the current con-
text. Intuitively, temporal context is a richly struc-
tured, hierarchical concept. The context of a lunch-
time falls within the larger context of a day, while
the context of a conversation can overlap the context
of a lunchtime. Similarly, conscious episodes,
which are associated with temporal contexts, can be
nested or overlapping. However, it should be noted
that diagrams such as Figure 3 (bottom) only show
the set of processes that have the potential to con-
tribute to the unfolding content of the global work-
space at any given time point. For example, al-
though process B is active at time t=3 in Figure 3,
this does not entail that it has won (full) access to
GW at time t=3. This means that (focal) conscious-
ness typically does not contribute to a conscious
episode for its entire duration, but only at those
times when the corresponding process gains access
to GW. On the other hand, as we’ll see in the next
section, any active process competing for access can
contribute to fringe consciousness.

Allowing specialist processes to wake up and go
to sleep in response to contextual cues gives them a
simple form of internal state (on or off), and there-
fore allows them to respond to information in a way
that is sensitive to past events. But from the stand-
point of the present paper, the most important con-
sequence of this demarcation of conscious episodes is

Fig.!3: The Temporal Structure of Consciously Processed Information
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that it allows one such episode to “refer to” another.
This could occur either when the referring  episode of
conscious thought falls entirely within the episode it
is referring to (Fig. 4, left), or when the referred-to
episode of conscious thought and the referring epi-
sode of conscious thought both occur within a third,
enclosing conscious episode and the former occurs
before the latter (Fig. 4, right). In either case, the
referred-to episode might be the an ongoing experi-
ence, the recollection of an experience from the
distant past (long-term memory) or the recent past
(working memory), or part of an ongoing rational or
creative process involving inner rehearsal. A typical
referring (reflexively conscious) episode might offer
some judgement on the (non-reflexively conscious)
episode it is referring to, such as “that was unpleas-
ant” or (for a reasoning process) “that hasn’t got me
any further”.

4 Focus and Fringe
The above characterisation of a reflexively con-

scious thought as a conscious episode that “refers to”
another conscious episode is all very well. But it
leaves open many questions, including that of the
mechanism by which this reference is achieved. So
to flesh out our account of reflexivity, something
further is required. According to the present treat-
ment, in addition to the temporal structure described
above, the flow of consciously processed informa-
tion has a focus / fringe structure (Mangan, 1993;
2001). The fringe contains hints of material that has
the potential to be brought into focal consciousness
if required. As Mangan (2001) puts it, “The fringe
creates a non-sensory feeling of imminence which
implies the existence of far more than consciousness
actually presents at any given moment. ... This is
the fundamental trick that lets consciousness finesse
its severely limited capacity ...”.

The contention of this paper is that this is indeed
a “fundamental trick”,  a means to enhance the cog-
nitive efficacy of conscious information processing
in many ways. Of especial interest here is the fact
that, at any given time, while focal consciousness is
contributing to one conscious episode, broadcasting
information supplied by the corresponding active

process, the fringe can simultaneously retain the
trace of another co-occurring conscious episode,
governed by a different active process. To see this,
consider Figure 4 (right). Suppose that at time t=3
active process Z has won access to GW, and is there-
fore supplying the current content of focal con-
sciousness. At the same time, although process Y is
not enjoying (full) access to GW, it is still active,
and can therefore influence fringe consciousness.

We have the outline, here, of mechanism by
which one conscious episode can refer to another,
wherein the referring episode is in focal conscious-
ness while fringe consciousness retains a trace of the
referred-to episode. But to see how this might be
realised more concretely we need to zoom in and
examine the evolving contents of GW at a finer
timescale. In the computer model described in (Sha-
nahan, 2006), GW was implemented as an attractor
network. During execution, GW exhibited periods of
stability (broadcast) during which it settled into an
attractor, punctuated by periods of rapid change
(competition) during which it got nudged out of a
previously stable attractor and taken into a new one.
During the periods of competition, it was sometimes
observed that faint hints of competing attractors
would become temporarily overlaid on GW’s current
attractor, each trying to take over.

This suggests the possibility that fringe con-
sciousness might be realised as a rapid series of
faintly pulsing attractors, each of which becomes
transiently overlaid on the current attractor, but none
of which yet has enough influence to dominate GW
completely. (The dynamics here is reminiscent of
Bressler & Kelso’s (2001) notion of metastability.)
Because these brief attractor pulses occur in GW,
they are broadcast, and can therefore contribute to the
flow of conscious information, as global workspace
theory requires. Now we can appeal to temporal
synchrony, as postulated by various authors as a
solution to the binding problem (von der Malsburg,
1999), to realise reference between conscious epi-
sodes. The process currently supplying the content
of focal consciousness – that is to say, the process
associated with the referring episode – simply has to
wait for the attractor corresponding to the process
associated with the referred-to episode to pulse in
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Fig.!4: Reflexively Conscious Episodes
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GW, when it can, so to speak, signal “THAT ONE”
to GW (Fig. 5). Since this signal will be broadcast
at the same time as the attractor pulse of the referred-
to episode,  the required reference will be secured.

5 Fringe-Borne Self-Awareness
According to the simulation hypothesis, con-

scious thought is simulated interaction with the
environment. This entails that insofar as a conscious
experience relates to anything other than an immedi-
ately present stimulus, the information processing
that underpins it, as well as implicating the broad-
cast mechanism of the global workspace, must re-
cruit a higher-order, internally closed sensorimotor
loop (Fig. 2). This is the case for both the recall of a
past conscious episode and the conscious rehearsal
(or imagination) of a trajectory through sensorimotor
space, where the latter conception encompasses inner
speech, mental imagery, and so on.

Now, the fundamental role posited for the fringe
is to augment the flow of consciously processed
information with an awareness of the many possible
ways that the content of the GW could unfold from
its present state, without having to supply detailed
information about any one of those possibilities.
For example, our awareness of the three-
dimensionality of a solid object can be cashed out in
terms of a fringe awareness of a host of sensorimotor
possibilities, such as moving around to view the
back of the object, or picking it up and rotating it to
see a different facet.

In the context of an internal sensorimotor loop,
the fringe carries an awareness of the tree of possib-
lilities for conscious recall or rehearsal that branches

out from the GW’s current state (Fig. 6). Now sup-
pose that, using the mechanism outlined in the
previous section, one (reflexively) conscious episode
Z refers to another conscious episode Y with the
thought “that didn’t work because P” (in the case of
recall) or “that wouldn’t work because P” (in the case
of rehearsal). Then, thanks to the broadcast of this
message, the entire set of specialist, unconscious
processes will be offered the challenge of finding a
potential variation of Y in which P is not the case.
The vast majority of these specialists will be irrele-
vant to Y. But any that are successful in finding a
potentially useful variation will be able to promote,
via the fringe, the possibility of rehearsing it prop-
erly. This shows how reflexive consciousness can
marshall massively parallel resources to further
increase the cognitive power of (non-reflexive) con-
scious information processing, which is itself more
cognitively efficacious than non-conscious informa-
tion processing.

To round off the account, let’s develop further the
parallel between fringe-borne spatial awareness (of
solid objects, for example), and the fringe-borne
awareness of the unfolding content of the global
workspace itself. According to the present account,
the conscious awareness of the three-dimensionality
of nearby objects or of the space through which the
body can move consists of hints in the fringe of a
systematically organised set of possible trajectories
through sensorimotor space. These hints are system-
atically organised in the sense that they conform to
various constraints, which include the reversibility
of certain actions (eg: moving forwards then back-
wards gets you back where you started) and the cyclic
character of certain trajectories (eg: turning an object

Fig.!5: Focus-Fringe Reference by Temporal Synchrony
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through 360º takes it back to its initial configura-
tion).

In a similar vein, the fringe may sustain our
awareness of the personhood of both ourselves and of
others, hinting at material available for conscious
rehearsal that pertains to our or their bodies, biogra-
phies, likes and dislikes, beliefs, desires, and inten-
tions, skills and abilities, and so on. In the present
context, the portion of this fringe-borne material of
most interest relates to the way the content of the
individual’s consciousness unfolds. As the fringe-
borne awareness of an object’s solidity implies
awareness of a systematic set of spatial constraints,
so the fringe-borne awareness of personhood implies
awareness of a systematic set of constraints on con-
sciousness, such as its unity, its identity over time,
and its indexical relationship to the body. Further-
more, in the same way that spatial constraints gov-
ern conscious thinking about solid objects, so these
phenomenological constraints govern reflexively
conscious thought. Insofar as we become con-
sciously aware of ourselves as conscious beings,
perhaps we do so thanks to our capacity to entertain
reflexive thoughts combined with a fringe-borne
awareness of the laws governing the way conscious
thought unfolds.

References
Baars, B.J. (1988). A Cognitive Theory of Conscious-

ness. Cambridge University Press.
Baars, B.J. (1997). In the Theater of Consciousness:

The Workspace of the Mind. Oxford University Press.

Baars, B.J. (2002). The Conscious Access Hypothesis:
Origins and Recent Evidence. Trends in Cognitive
Science 6 (1), 47–52.

Bressler, S.L. & Kelso, J.A.S. (2001). Cortical Co-
ordination Dynamics and Cognition. Trends in Cog-
nitive Science 5 (1), 26–36.

Cotterill, R. (1998). Enchanted Looms: Conscious
Networks in Brains and Computers. Cambridge Uni-
versity Press.

Hesslow, G. (2002). Conscious Thought as Simulation
of Behaviour and Perception. Trends in Cognitive
Science 6 (6), 242–247.

Mangan, B. (1993). Taking Phenomenology Seriously:
The “Fringe” and its Implications for Cognitive Re-
search. Consciousness and Cognition 2 (2),
89–108.

Mangan, B. (2001). Sensation’s Ghost: The Non-
Sensory “Fringe” of Consciousness. PSYCHE 7 (18),
http://psyche.cs.monash.edu.au/v7/psyche-7-18-
mangan.html.

Rosenthal, D. (1986). Two Concepts of Consciousness.
Philosophical Studies 49 (3), 329–359.

Shanahan, M.P. & Baars, B.J. (2005). Applying Global
Workspace Theory to the Frame Problem. Cognition
98 (2), 157–176.

Shanahan, M.P. (2005). Global Access, Embodiment,
and the Conscious Subject. Journal of Conscious-
ness Studies 12 (12), 46–66.

Shanahan, M.P. (2006). A Cognitive Architecture that
Combines Internal Simulation with a Global Work-
space. Consciousness and Cognition, in press.

Von der Malsburg, C. (1999). The What and Why of
Binding: A Modeler’s Perspective. Neuron 25,
95–104.

Trajectories
through

sensorimotor space

Fig.!6: Fringe-Borne Awareness of Possible Sensorimotor Trajectories

170



 
How to experience the world:  

some not so simple ways 
 

Aaron Sloman 

School of Computer Science, University of Birmingham,  
Edgbaston, Birmingham, B15 2TT, UK 

A.Sloman@cs.bham.ac.uk 
http://www.cs.bham.ac.uk/~axs/ 

 
 
 
 

Extended Abstract: 
 

I believe the best way to extend our scientific 
understanding of consciousness is to stop using the 
noun and investigate all the many mental processes 
that can and do occur in humans and other animals 
and future robots in very great detail and explain 
how they are possible. Then everything of 
substance about consciousness will have been 
covered, and the vacuous, incoherent unanswered 
questions generated in philosophical discussions 
will remain unanswered as they should be, because 
they are unanswerable. 
 
My talk is an illustration of a small part of this 
project, starting from a comment made by 
Wittgenstein when discussing the experience of 
ambiguous figures. He wrote: 
 

The substratum of this experience is the 
mastery of a technique. 

 
I don't really know what he meant by that, but those 
words slightly modified thus: 
 

    The substratum of an experience is mastery 
of a large collection of techniques available 
and ready to be deployed if required, possibly 
in new combinations. 

 
could be used to express a theory I am trying to 
develop in the context of trying to understand how 
to give a robot human-like (to be more precise, 
child-like) capabilities in the context of perceiving 
and manipulating 3-D objects. 
 
The idea is that an infant-toddler-child-youth (and 
future domestic robot) develops by constantly 
actively and creatively exploring many aspects of 
the environment and thereby learning a very large 
number (possibly many thousands, certainly many 
hundreds) of different facts about the environment 
including facts about different kinds of stuff things 
are made of, different kinds of surface fragments 

that can occur, different kinds of ways things can be 
combined or decomposed, different kinds of 
relationships that can occur between simple and 
complex objects, different ways collections of 
relations can change, different kinds of actions that 
can be produced, and of course different 
consequences of all the above. 
 
These facts are not expressed as propositions using 
what we would call a human language, but they 
must be somehow represented internally in a usable 
form, and in particular, for creative experiments to 
be performed and novel problems to be solved by 
combining prior knowledge the information must 
be recombinable in novel ways for some uses. 
 
So, a child or future intelligent domestic robot is 
constantly learning orthogonal, recombinable, 
competences. (Actually, not totally orthogonal 
since independent variation of phenomena is 
limited in many ways, that have to be learnt.) It 
seems that precocial species either cannot do this or 
do it to a much more limited extent: they start off 
with the vast majority of what they need to know 
about the world and how to act in it pre-
programmed by evolution (contradicting familiar 
arguments about the requirements for 'symbol 
grounding'). Altricial species that develop very 
complex and diverse cognitive competences 
probably evolved these powerful information 
acquiring, restructuring, mechanisms because (a) 
genetic mechanisms lacked the space to encode 
them and (b) evolutionary history did not provide 
all the opportunities that would have been needed to 
derive them. 
 
Because they evolved for dealing with a world that 
is not only complex, but is also constantly 
changing, these abilities to cope with novel 
processes (i.e. perceive, represent, and use 
information about them) at very short notice had to 
be implemented in architectures that made them 
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readily available to be invoked on demand in 
different combinations. I suggest that that fact 
determines requirements for the design and 
implementation of visual systems that have not yet 
been fully articulated. Moreover, the 
implementation will use mechanisms that have not 
yet been thought of by neuroscientists, 
psychologists or AI researchers. 
 
One of the requirements for an organism that may 
need to monitor, evaluate, modulate and perhaps 
extend its own mental states and processes (e.g. 
improving its reasoning, problem-solving, learning, 
capabilities) is that it should be able to learn not 
only about the environment but also about its 
internal states. As with exploration of the 
environment, this could use a self-organising 
mechanism that adapts to what it encounters by 
chunking things and inventing labels for reusable 
chunks. 
 
This could include labels for aspects of the contents 
of various sensory manifolds. Because of the 
manner of their development, such concepts will 
have a feature referred to as 'causal indexicality', 
i.e. their intension is intimately connected with their 
conditions of use. But because they are used for 
categorising states and processes in virtual 
machines that are not accessible by anyone else, 
these concepts will be inherently incommunicable: 
accounting for one aspect of what people who  
discuss qualia are trying to say. 
 
When we have designed or discovered appropriate 
mechanisms for acquiring and using all these 
different competences, and the kind of architecture 
required to accommodate them I conjecture that this 
will explain a wide range of familiar phenomena 
including the variety of ways in which an individual 
can experience the world and some of the ways in 
which things can be experienced as ambiguous, 
flipping between different interpretations that make 
use of different competences (or 'techniques'). 
 
Some half-baked explorations of these ideas can be 
found in the html file referenced here 
 
http://www.cs.bham.ac.uk/research/projects/cosy/pa
pers/#dp0601 
 
COSY-DP-0601 Orthogonal Competences 
Acquired by Altricial Species (Blankets, string, and 
plywood) 
 
One problem with the theory is that nothing I have 
learnt about brain mechanisms (on which I am no 
expert) seems to be capable of explaining how these 
competences are acquired, stored and recombined 
on demand. 
 

For example, the kinds of models of neural nets that 
I am aware of just do not seem to be capable of 
meeting those requirements, though perhaps 
networks of networks could? Chemical information 
processing systems have more of the right features, 
but would probably be too slow, and could not 
easily be coupled with the processes that acquire 
and use the information. 
 
It is possible that there are such mechanisms, but 
they have not been found because nobody was 
looking for them. They may be implemented in 
subtle ways as high level virtual machines on lower 
level physiological machines that seem to be doing 
something more mundane or something mysterious. 
 
Note that the recombinability of orthogonal 
competences seems to require some sort of internal 
syntax. This could have been a crucial precursor to 
the development of external social language. It 
could not be based on human language because the 
learning and creativity I am talking about occur in 
prelinguistic children and some other animals. 
 
These ideas have some echoes of global-workspace 
theory, though I think there are several workspaces 
of different sorts, supporting different kinds of 
concurrent processes in the architecture I envisage. 
 
This work is partly inspired by collaboration with 
Jackie Chappell who studies animal cognition, 
especially New Caledonian Crows and 
Parrots/Parakeets. 
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Abstract 

 
Questions about the possibility of genuine consciousness existing in future artificial humanoids 
are closely tied up with ethical considerations.  I discuss how the assumed presence or absence of 
consciousness in artificial persons might make a difference to our ethical attitudes towards them.  

 
Questions about the possibility of genuine con-
sciousness existing in future artificial humanoids 
are closely tied up with ethical considerations.  
How might the assumed presence or absence of 
consciousness in artificial persons make a differ-
ence to our ethical attitudes towards them? 

For simplicity we will limit ourselves to con-
sidering electronic person simulations (EPersons) 
rather than organic replicates.  EPersons could de-
velop to have very rich behavioural and functional 
properties.  Might we expect EPersons to have any 
ethical responsibilities, or to be subjects of ethical 
appraisal in any way?  And could EPersons have 
genuine moral interests, or genuine demands on our 
moral concern?  I will consider how the answers to 
these questions may vary as we consider (a) a con-
dition where EPersons are assumed to possess a 
form of phenomenal consciousness (and thus can 
genuinely experience pleasure and suffering) and 
(b) a condition where they are not assumed to pos-
sess such states? 

What might be our ethical obligations to such 
creatures in either the with-consciousness or the 
without-consciousness conditions?  It may be nei-
ther rational nor intelligible to bestow moral con-
cern on beings we consider to lack consciousness  
Conversely, if the behavioural repertoire of EPer-
sons is sufficiently rich and varied, and they enter 
into a sufficiently wide range of social relations 
with us, it may be difficult in everyday practice to 
avoid perceiving or taking EPersons as making 
legitimate moral claims on us in at least some types 
of circumstance – even if they are not acknowl-
edged as having phenomenal states.   

Could we regard EPersons as having genuine 
moral responsibility, desert, accountability for their 
actions or judgments in either of the two condi-
tions?  Could they be useful moral advisors?  Could 

they even have a coherent conception of what mo-
rality consists of?  These questions in part turn on 
one’s view on the role of emotions, and the links 
between emotions and rationality, in the constitu-
tion of a moral agent.  It is plausible that our moral 
conceptions and outlook are derived from our evo-
lutionary inheritance, and are deeply intercon-
nected with a wide range of emotions - anger, envy, 
compassion, empathy, friendliness, etc.; and that 
these in turn emanate from biologically-based sen-
tience in natural creatures.  EPersons designed 
around current paradigms of information-
processing cognitive architectures, may be incapa-
ble of instantiating a deep enough model of emo-
tion and empathetic rationality to support more 
than a rather impoverished array of moral senti-
ments at best.  This may be true even in the with-
consciousness condition; indeed the ability to pos-
sess such emotions may be pivotal to the realizabil-
ity of phenomenal consciousness in EPersons. 

I will argue that phenomenal consciousness 
makes a difference in the cases both of being a 
genuine bearer of moral responsibilities and of be-
ing a worthy recipient of moral treatment.  Having 
fully-fledged or intact phenomenally conscious 
states is not the sole criterion of moral worth (think 
of neonates, PVS, dementia); nevertheless the ge-
neric property of being the kind of creature that can 
have phenomenal states is arguably crucial to being 
a member of the universe of moral concern.   

In general we take artefacts to be instruments; 
so there seems to be an inherently paradoxical 
quality wrapped up in the idea of extending moral-
ity to artificial humanoid beings.  However new 
ways of thinking about moral relationships may 
forced on us in an era where artificial humanoids 
live alongside us in significant proportions.  A new 
conception of ‘us’ may be required.   
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Robot bouncing:
The assembly, tuning, and transfer of action systems∗

Luc Berthouze?
?Neuroscience Research Institute (AIST)
Tsukuba AIST Central 2, Umezono 1-1-1

Tsukuba 305-8568, Japan
Luc.Berthouze@aist.go.jp

Abstract

The early exploratory behaviours of infants include many rhythmical stereotypies (Thelen, 1979).
Their study should therefore yield insights on the mechanisms underlying motor development. Gold-
field et al. (1993) observed young infants learning to bouncein a Jolly Jumper. The longitudinal profile
of the learning process revealed two developmental stages –the assembly phase and the tuning phase
– that may be typical of infants’ acquisition of new motor skills. To gain a mechanistic view of those
stages, we replicated the study by using a small humanoid robot suspended to a fixed frame by rubber
springs (Lungarella and Berthouze, 2004). Since compliance is a key feature of infants’ musculoskele-
tal system, the robot was equipped with passively compliantleg joints (viscoelastic material mounted
in series with the actuators) and feet (Meyer et al., in press). Sensory feedback was provided by force
sensing resistors (FSR) placed underneath each foot. We interpreted the assembly phase in terms of the
self-organization of elementary functional units, i.e., the formation of muscle synergies, and the tuning
phase in terms of the adjusting of their respective time constants. The functional units were modeled
as Bonhoeffer-Van der Pol (BVP) oscillators (Fitzhugh, 1961), a reduction of the 4-variable Hodgkin-
Huxley model to a simpler algebraic form with two variables (excitable and recovery variables). These
oscillators display both goal directedness (the ability toreach the desired endpoint), and sensitivity to
environmental and mechanical input. They exhibit robust phase locking even in the presence of large
delays in the feedback loop, a characteristic that is important given the compliance of the system. Both
assembly and tuning phases were embedded in an exploration of the parameter space modelled as a
biased random search with a value system based on two qualities of the behaviour: bouncing height
and stability. Experiments revealed a longitudinal profilequalitatively similar to that reported by Gold-
field et al. The transfer of the newly assembled action system, i.e., its ability to adapt to physical or
environmental changes, was verified by changing the lift-off weight of the robot during bouncing. The
fact that each perturbation was followed by rapid recovery without reconfiguration suggests that the
learned parameters were task-specific.
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Active learning of probabilistic forward models in visuo-motor
development

Anthony Dearden and Yiannis Demiris
Department of Electrical and Electronic Engineering

Imperial College London
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Abstract

Forward models enable both robots and humans to predict the sensory consequences of their motor
actions. To learn its own forward models a robot needs to experiment with its own motor system, in
the same way that human infants need to babble as a part of their motor development. In this paper
we investigate how this babbling with the motor system can beinfluenced by the forward models’ own
knowledge of their predictive ability. By spending more time babbling in regions of motor space that
require more accuracy in the forward model, the learning time can be reduced. The key to guiding this
exploration is the use of probabilistic forward models, which are capable of learning and predicting not
just the sensory consequence of a motor command, but also an estimate of how accurate this prediction
is. An experiment was carried out to test this theory on a robotic pan tilt camera.

1 Introduction

Forward models enable both robots and humans to
predict the sensory consequences of their motor ac-
tions [Jordan and Rumelhart, 1992, Wolpert and
Flanagan, 2001]. This is extremely useful for robotics
as it allows the robot to simulate the effects of its
actions internally before physically executing them.
Being able to simulate multiple possible actions al-
lows the robot to choose the most appropriate com-
mand for a particular task, for example imitation
[Demiris and Johnson, 2003]. Practically any envi-
ronment a robot operates in will change, or have prop-
erties which cannot be modelled beforehand. Even
if the environment is assumed to be completely pre-
dictable, endowing the robot with this knowledge
may be beyond the ability or desire of its program-
mer. A truly autonomous robot, therefore, needs to
be able to learn and adapt its own forward models.

The idea of learning a model of an unknown sys-
tem is explored extensively in the field of system
identification [Ljung, 1987]. In system identifica-
tion, the task of choosing experiments and interven-
tions to perform on the unknown system is the role of
the human designing the control system. Here, how-
ever, we want this process to be automated - the robot
should essentially design its own experiments. The
idea of a robot as a scientist provides some interesting
analogies with the theories of learning in human in-

fants presented by Gopnik [Gopnik et al., 2004], who
uses Bayesian networks to model how infants actively
form and test causal models of the world. Meltzoff
discussed ‘body babbling’ as a method used by hu-
man infants to learn and adapt control of their motor
system [Meltzoff and Moore, 1997].

By using as little prior information as possible, we
want the robot to learn about its own motor system.
This knowledge it gains about its motor system is
stored in the form of a forward model. Previous work
on learning forward models has looked at how a robot
can develop an internal representation of the state of
the world with information from it’s vision system
[Dearden and Demiris, 2005]. The forward model for
predicting the state was learnt and represented prob-
abilistically using a Bayesian network. The training
data was provided by random babbling of motor com-
mands to produce the corresponding set of sensor
data to train the model. The work here expands on
this by allowing the exploration, or babbling, of the
motor system to be driven by the estimated prediction
accuracy of multiple competing forward models. By
spending more time babbling with motor commands
which the forward models are worse at predicting, the
forward models can be more rapidly learnt and used.

Active exploration of the environment by a robot to
learn or adapt models has been attempted previously,
in [Lipson and Bongard, 2004]. Using multiple inter-
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Figure 1:A forward model and a probabilistic forward model for motor commandm[t], sensor prediction,̂S, and
motor delay d.

nal models generated and adapted using a genetic al-
gorithm, their exploration-estimation algorithm uses
a two phase process of choosing motor commands to
best discriminate between potential models. The ex-
ploration is not driven by the prediction error as in
this paper, but by choosing interventions which will
maximally differentiate between the different inter-
nal models. The idea of ‘adaptive curiosity’ is used
in [Oudeyer et al., 2005] to guide a robot to learn how
to interact with its environment. The robot is made to
focus on situations that are progressively harder for it
to predict.

2 An architecture for learning
and representing forward mod-
els

The system proposed here for learning the model of a
robot’s motor system is based on using multiple prob-
abilistic forward model ‘primitives’. Active learning
is used to decide how motor commands should be
chosen by each individual forward model primitive,
and selected from the multiple possible commands
requested by the forward models.

2.1 Why probabilistic forward models?

All forward models are wrong, but some are useful1.
A forward model will not be able to completely ac-
curately model a robot’s motor system - errors will
occur in predictions because of insufficient or noisy
training data or the necessarily simplified internal
representations of the model. The system which is be-
ing modelled may itself be stochastic. To overcome
this inaccuracy, it makes sense for a forward model

1A modification of a quote attributed to George EP Box

to include information regarding not just its predic-
tion, but how accurate it expects that prediction to
be. This inaccuracy can be modelled by having the
forward model learn not just a prediction for a given
motor command and state, but a joint probability dis-
tribution across the inputs to the forward model and
its predicted outputs. The output of a probabilistic
forward model is thus a conditional probability distri-
bution for a particular motor command,m, and state,
s, at timet : P (S [t] | M [t − d] = m), as shown in
Figure 1. The other parameter,d, is used to model the
delay in the motor system - in any real system, there
will be a delay between a motor command being ex-
ecuted and its effects being measured at its sensors.
For a forward model to be useful in this situation it
must model (and learn) this delay.

The advantage of a probabilistic representation of
prediction is that, instead of predicting a specific out-
come, the prediction will be of a range of possible
outcomes, each weighted with a particular likelihood.
The forward model essentially has knowledge about
its own ability to predict. Any control system using
the forward model will receive not just one predic-
tion, but a probability distribution. This provides the
control system with more information about the pre-
dicted consequences of its actions. This extra infor-
mation is also useful for guiding the motor control
during the learning process. The disadvantage of us-
ing a probabilistic representation is that more training
data may be required. This is not as much of a dis-
advantage as it would be in a typical machine learn-
ing situation because the data set is not limited - the
robot has active control over the system it is trying to
model, so can easily acquire training data.

To overcome the trade-off between the complex-
ity of the modelled conditional probability distribu-
tion and the amount of training data - and therefore
time - required to train it, the normal distribution was
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used. The forward model therefore needs to learn
and represent two functions:̂S(m) - the estimated
mean of the sensor value as a function of the motor in-
put(s)σ̂S(m), the estimated standard deviation. The
output distribution as a function of the motor com-
mand,m, is thereforeP (S [t] | M [t − d] = m) ∼

N
(

Ŝ (m) , σ̂ (m)
)

. Both these functions can be es-

timated with any appropriate function approximator
that can be learnt online. In the experiments here,
both radial basis functions and conditional probabil-
ity tables were used.

2.2 Why multiple forward models?

The idea of using multiple forward models has been
used in both robotics for imitation [Demiris, 2002],
and in neuroscience to model motor skill learning in
humans [Wolpert et al., 2003]. In these architectures,
the multiple forward models are used together with
inverse models to achieve higher level control. In this
work, however, we are just interested in learning the
forward model that can be used by these systems.

Using multiple primitive forward models to model
a system is similar to the mixture of experts idea in-
troduced by [Jacobs et al., 1991]. As the forward
models are probabilistic and represent causal connec-
tion between the random variables for motor com-
mand,M, and predicted output,S, the forward mod-
els make up a Bayesian network [Pearl, 1988]. The
forward models are the conditional probability dis-
tributions connecting random variables. Splitting the
forward model into a distributed system using mul-
tiple, simpler forward models has numerous advan-
tages over using a single forward model

• The learnt structure represents causal structure
of the robot’s motor system. This means the
learning process requires less data (and is there-
fore faster) because unnecessary connections be-
tween motors and sensors are not learnt. The
robot also has an internal representation of the
higher level causal structure of its motors sys-
tem.

• Robots have different kinds of motor commands
and sensors (e.g. discrete or continuous). The
appropriate internal representation for the for-
ward model may be different depending on the
nature of these. Using multiple forward mod-
els allows several different types of function ap-
proximators to be used simultaneously.

Figure 2 shows a comparison between a single and
multiple primitive forward models.

2.3 Active learning and babbling

In a typical machine learning situation, it is assumed
that a set of data representing samples from an under-
lying function or probability distribution is available.
The task is to learn a function or distribution which
approximates this distribution. The situation with a
robot is different in two ways. Firstly, the process is
performed online as opposed to in a batch - data is
continuously received and the learnt forward models
should be continuously adapted. Secondly, and most
importantly, the robot has active control over the in-
puts it can send to its as yet unknown motor system.
The situation where the learner has the ability to se-
lect some of the data is referred to as active learn-
ing [Hasenjager and Ritter, 2002, Tong and Koller,
2000]. The principal benefit of this is that the data
can be selected either to speed up the learning pro-
cess, or to optimise the learnt model to be most useful
for a particular task. For example a robot could con-
centrate on learning particular forward models that
would be needed to imitate a specific task.

The use of multiple competing forward models fits
well into the concept of active learning, as each prim-
itive forward model can now compete not just to of-
fer the best prediction, but also to get control over the
motor system to provide itself with training data. This
does, however, complicate the situation somewhat.
As well as the problem of how each forward model
chooses a motor command or set of motor commands
to be sent to the motor system, there is the important
issue of how to choose which of the forward models
should be given control of the motor system at any
particular time.

This problem has many similarities to attention
mechanisms studied in robotics [Khadhouri and
Demiris, 2005, Demiris and Khadhouri, to appear],
which investigate the allocation of processing re-
sources. In contrast, the task here is to control the
allocation ofmotor resources. In this paper the ap-
proach taken to guide the babbling is to allow each
forward model to suggest a particular motor degree
of freedom and value to babble with. The probabil-
ity of a particular motor command being chosen by a
forward model is proportional to the estimated stan-
dard deviation of the forward model in that region of
motor space,̂σS(m). Therefore, the forward model is
more likely to pick a motor command that it estimates
has high prediciton error. Several motor commands
will be requested simultaneously, one for each for-
ward model. The learning system currently chooses a
forward model at random to ensure that each forward
model is given the opportunity to control the motor
system.
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Figure 2:Using a single forward model (a) or multiple primitive forward models (b)

3 Stages in learning the forward
model

The learning of the forward model needs to be di-
vided into distinct phases. This simplifies learning
a complex forward model by learning different as-
pects of the model’s structure or parameters sequen-
tially. The developmental stages represent increasing
complexity in the learning and adaptation of forward
models, from establishing a causal connection, calcu-
lating the time delay, and finally adapting more and
more precisely to the causal relationship. The devel-
opmental stages used to learn forward models are as
follows:

1. Observe and learn a steady state model of the
sensors

In this first stage of learning, the robot does not
actually interact with the environment - it simply
learns the statistics of the sensor dataP (S) as a
normal distribution. This an important prelim-
inary stage to learning any forward model be-
cause the robot cannot model how its different
motor commands are influencing particular sen-
sors until it has modelled how its sensors behave
without any intervention.

2. Try impulse commands to learn time delay, and
basic causal structure of the network

In previous work, the time delay in the motor
system was learnt by simultaneously learning
multiple forward models with different time de-
lays. The correct time delay was found from the
forward model which could best predict the data
[Dearden and Demiris, 2005]. Here the time de-
lay is estimated directly by using the learnt mod-
els of the sensors. Impulse motor commands are
issued to the motor system at timeT, one de-
gree of freedom at a time. The likelihood of the

incoming sensor data,s [T + t] given the sen-
sor model learnt in step one is calculated - i.e.
P (S = s [T + t]). If this likelihood falls to a
low value then it is likely that this motor degree
of freedom is influencing this sensor, and that
the delay for the influence to occur ist discrete
time-steps; the threshold likelihood used in the
experiments here was 0.001. Thus not only can
the motor delay be learnt, but some initial infor-
mation about the causal structure of the forward
model is learnt - if a motor command does not
reduce the likelihood of a sensor model, it is un-
likely it can influence it, and therefore this rela-
tionship does not have to be modelled.

3. Completely random babbling to learn the range
of values for the sensor data

Function approximators generally need the data
to be scaled within a set range, e.g. [0,1]. When
sensor data is being received online, and no prior
information about it is available, this cannot be
done. Therefore, a stage of experimenting with
extremes of motor commands to find the ex-
tremes in the range of sensor data is necessary.
Once this stage of adaptation is complete, the
sensor data can be scaled between the calculated
minimum and maximum values.

4. Learn steady state model between motor com-
mands and sensors, using guided babbling

The guided babbling in this stage happens as de-
scribed in section 2.3. Because we are currently
only interested in learning steady state models,
learning is paused from the issuing of a mo-
tor until the sensor system has reached a steady
state.
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4 Experiment & results

The experiments here were carried out using the pan-
tilt unit on an Activmedia Peoplebot2. The sensor
data used were the properties of the most salient
coloured object in the scene - its position, width,
height and angle of rotation. The object is located
from the thresholded camera image in hue space,
and tracked using the Camshift algorithm [Bradski,
1998]. The first and second stage of the learning
process identified the delay for both the pan and tilt
motor commands to be 5 time-steps, or 333ms. As
shown in Figure 3 , it also learnt that, whilst the co-

Figure 3: The primitive forward model structures
learnt from sending impulse commands to the motor
system.

ordinates of the object in the scene were affected by
the pan and tilt commands, the size and angle of the
object were not affected. By learning this causal rela-
tionship early on, the robot has thus reduced the num-
ber of models it has to initially learn from ten to four.

The evolution of the prediction errors, from a typ-
ical experiment, for the four forward models using
guided babbling are shown in Figure 4a . The pre-
diction error is as the sum of the variance estimation
over all motor commands,

∫

σ̂s(m) dm. This can be
compared with the evolution of the prediction errors
when random motor commands are chosen, as shown
in Figure 4b. Converging to accurate models takes
significantly longer in this case.

If the camera had been mounted perfectly straight
then thepanmotor command would have no effect on
the y-coordinate of the object, and similarly for the
tilt command and the x-coordinate. However, since
the camera is at a slight angle, there is a slight de-
pendence between these. It is interesting to note that
whilst the forward models linking thepancommand

2http://www.activmedia.com

to the y-coordinate and thetilt command to thex-
coordinate do converge to a particular model, they
are much less accurate at predicting than thepan-to-
x-coordinate andtilt- to-y-coordinate forward models,
as one would expect.

Part of the evolution of thepan-to-x-coordinate for-
ward model’s mean prediction,̂S(m), is shown in
Figure 5. As expected, the model learnt is a linear
one - the position of the object,X, is proportional the
thepancommand. Of particular interest is the predic-
tion of a low valued motor command, as shown by the
bold line. Because the estimated error in prediction is
initially high for this motor command, more time is
spent babbling in this region, and hence it converges
to a more accurate model.

5 Conclusions and future work

In this paper, we investigated how the learning of for-
ward models for a robot could be made faster by al-
lowing the forward models to guide the exploration
of the motor space with guided babbling. The results
show that accurate models can be learnt more quickly
if the errors in the predictions of the forward models
are used to guide which region of motor space is ex-
plored. Future work will involve investigating this
idea further, by looking at how the motor requests
from each individual model should be allocated. Im-
portant factors in this decision include:

• How to cope with many more degrees of free-
dom

• How well a forward model is predicting

• How much data the forward model has previ-
ously been allowed

• What is the goal of the babbling - to learn a
model as fast as possible or as accurate as possi-
ble for a particular task?

• How many primitive forward models want ac-
cess to the same region of motor space

We are also investigating how the primitive forward
models can be improved to represent and adapt to dy-
namic environments by adding another stage to the
learning process.
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Abstract 

 
In this paper we attempt to develop mechanisms for procedural memory and procedural learning for cognitive 
robots on the basis of what is known about the same facilities in humans and animals. The learning mechanism 
will provide agents with the ability to learn new actions and action sequences with which to accomplish novel 
tasks.  

 
1   The LIDA Model 
The Learning Intelligent Distribution Agent (LIDA) 
architecture provides a conceptual and computa-
tional model of cognition. She is the partially con-
ceptual, learning extension, of the original IDA sys-
tem implemented computationally as a software 
agent. IDA ‘lives’ on a computer system with con-
nections to the Internet and various databases, and 
does personnel work for the US Navy, performing 
all the specific personnel tasks of a human (Frank-
lin, 2001). 

The major components of the LIDA architecture 
are perceptual associative memory, working mem-
ory, episodic memory, functional consciousness, 
procedural memory, action selection, and sensory-
motor memory, with the last three being of interest 
to this paper. LIDA’s mechanisms for procedural 
memory, action selection, and action realization 
(execution) are inspired by variants of models origi-
nally conceived by Drescher’s schema mechanism 
(1991), Maes’ behavior network (1989), and 
Brooks’ subsumption architecture (1986) respec-
tively. 

Procedural memory in LIDA is a modified and 
simplified form of Drescher’s schema mechanism 
(1991), the scheme net. The scheme net is a directed 
graph whose nodes are (action) schemes and whose 
links represent the ‘derived from’ relation. Built-in 
primitive (empty) schemes directly controlling ef-
fectors are analogous to motor cell assemblies con-
trolling muscle groups in humans. A scheme con-
sists of an action, together with its context and its 
result. The context and results of the schemes are 
represented by perceptual symbols (Barsalou, 1999) 
for objects, categories, and relations in perceptual 
associative memory (not described here). The per-

ceptual symbols are grounded in the real world by 
their ultimate connections to various primitive fea-
ture detectors having their receptive fields among 
the sensory receptors. The action of a scheme is 
connected to an appropriate network in sensory-
motor memory (described later) that directly con-
trols actuators. 

Each scheme also maintains two statistics, a 
base-level activation and a current activation. The 
base-level activation (used for learning) is a measure 
of the scheme’s overall reliability in the past. It es-
timates the likelihood of the result of the scheme 
occurring by taking the action given its context. The 
current activation is a measure of the relevance of 
the scheme to the current situation (environmental 
conditions, goals, etc,). At the periphery of the 
scheme net lie empty schemes (schemes with a sim-
ple action, but no context or results), while more 
complex schemes consisting of actions and action 
sequences are discovered as one moves inwards. 

The LIDA architecture employs an enhancement 
of Maes’ behavior net (1989) for high-level action 
selection in the service of feelings and emotions. 
The behavior net is a digraph (directed graph) com-
posed of behaviors codelets (a single action), behav-
iors (multiple behavior codelets operating in paral-
lel), and behavior streams (multiple behaviors oper-
ating in an ordered sequence) and their various 
links. These three entities all share the same repre-
sentation in procedural memory (i.e., a scheme).  

Once an action has been selected, it triggers a 
suitable sub-network of the sensory-motor memory, 
modeled after Brook’s subsumption architecture 
(Brooks, 1986). With sensors directly driving effec-
tors, this sub-network effects the selected action.  
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2   Procedural Learning 
Our model of procedural learning is based on func-
tional consciousness, implemented in adherence to 
Global Workspace Theory (Baars, 1988), and rein-
forcement learning. Reinforcement is provided via a 
sigmoid function such that initial reinforcement be-
comes very rapid but tends to saturate. The inverse 
of this same sigmoid function serves as the decay 
curve. Therefore, schemes with low base level acti-
vation decay rapidly, while schemes with high (satu-
rated) base level activation values tend to decay at a 
much lower rate. 

For learning to proceed initially, the behavior 
network must first select the instantiation of an 
empty scheme for execution. Before executing its 
action, the instantiated scheme (activated behavior 
codelet) spawns a new expectation codelet (a 
codelet that tries to bring the results of an action to 
consciousness). After the action is executed, this 
newly created expectation codelet focuses on 
changes in the environment as a result of the action 
being executed, and attempts to bring this informa-
tion to consciousness. If successful, a new scheme is 
created, if needed. If one already exists, it is appro-
priately reinforced. Conscious information just be-
fore the action was executed becomes the context of 
this new scheme. Information brought to conscious-
ness right after the action is used as the result of the 
scheme. The scheme is provided with some base-
level activation, and it is connected to its parent 
empty scheme with a link.  

Collections of behavior codelets that operate in 
parallel form behaviors. The behavior codelets mak-
ing up a behavior share preconditions and post con-
ditions. Certain attention codelets (codelets that 
form coalitions with other codelets to compete for 
consciousness) notice behavior codelets that take 
actions at approximately the same time, though in 
different cognitive cycles (a cyclical process begin-
ning with perception and ending in an action). These 
attention codelets attempt to bring this information 
to consciousness. If successful, a new scheme is 
created, if it does not already exist. If it does exist, 
the existing scheme is simply reinforced, that is, its 
base-level activation is modified. If a new scheme 
has to be created, its context is taken to be the union 
of the contexts of the schemes firing together. The 
result of the new scheme is the union of the results 
of the individual schemes. Additionally, this new 
scheme is provided with some base-level activation 
and is connected by links to the original schemes it 
includes. If this composite scheme executes in the 
future it will pass activation along these links. 

Collections of behaviors, called behavior 
streams can be thought of as partial plans of actions. 
The execution of a behavior in a stream is condi-

tional on the execution of its predecessor and it di-
rectly influences the execution of its successor. 
When an attention codelet notices two behavior 
codelets executing in order within some small time 
span, it attempts to bring this information to con-
sciousness. If successful, it builds a new scheme 
with links from the first scheme to the second, if 
such a scheme does not already exist, in which case 
the existing scheme is simply reinforced. If a new 
scheme has to be created, its context is the union of 
the contexts of the first scheme and the second, ex-
cluding the items that get negated by the result of 
the first. Similarly the result of the new scheme 
formed will be the union of both results, excluding 
the results of the first that are negated by the results 
of the second.  Using such a learning mechanism 
iteratively, more complex streams can be built.  

 
3   Discussion 
With the continually active, incremental, procedural 
learning mechanism an autonomous agent will be 
capable of learning new ways to accomplish new 
tasks by creating new actions and action sequences. 
Although our model of procedural learning is moti-
vated by Drescher's schema model (1991), the learn-
ing mechanism is different in two significant as-
pects. First, our approach maintains that functional 
conscious involvement is a necessary condition for 
supraliminal learning. The second distinction arises 
from the fact that while learning in Drescher’s sys-
tem relies on each schema maintaining several reli-
ability statistics, we only use a single, computation-
ally more tractable statistic, the base-level activation 
modeled by a saturating sigmoid function.  
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Abstract

In robot imitation it is considered natural that a kinematics model is a prerequisite to imitation. This is
supported by the simple observation that imitation is not possible if the robot has no accurate control
over its embodiment. In this document we argue that this reasoning can easily be inverted: by imitating
each other, the robots learn an increasingly more accurate model of the kinematics of their effectors.
Meanwhile, the quality of their imitative attempts improves. After a while, no qualitative difference is
experienced between both approaches.

1 Introduction

In robot imitation it is investigated how an ob-
server (a robot) can learn to perform a task simply
by observing a demonstrator (either a human or a
robot). The skill which is to be transferred can vary
over a wide range of complexity: meaningless hand
motions (Jansen et al., 2003), object manipulations
(Kuniyoshi et al., 1994; Billard and Matarić, 2001;
Demiris and Hayes, 1996; Alissandrakis et al., 2002)
and even intentional behaviour (Calinon et al., 2005;
Lockerd and Breazeal, 2004; Billard et al., 2004;
Crabbe and Dyer, 2000; Jansen and Belpaeme, 2005)
can be imitated. Learning from observation is im-
portant as it yields the promise of extremely easily
programmable robots.

Consider the scenario in which a demonstrator per-
forms a sequence of block manipulations (picking up
a block, stacking a block on another and the like). The
imitating robot must be aware of its forward (what
will be the position of the hand after performing a
given set of motor commands) and inverse kinemat-
ics (which motor commands are required to position
my hand in a given configuration) in order to be able
to imitate such behaviour. Models of forward and in-
verse kinematics are often highly complex. In several
cases kinematics models can simply not be calculated
analytically.

A wide range of work exists on the learning of
kinematic models for robots. See among others (Jor-
dan and Rumelhart, 1992; Kawato, 1990; Versino and
Gambardella, 1995). The robot typically engages in
a kind of motor babbling phase in which several ran-
dom movements are performed and their outcome is

measured somehow.

Besides its importance for the building of robots
which can be controlled accurately and intuitively, the
study of motor babbling with robots is also important
in cognitive sciences and developmental psychology.
A vast amount of work exists on the building of com-
puter simulations of human kinematics learning (Oz-
top et al., 2004; Lee and Meng, 2005). Such models
might provide predictions which can be investigated
in the human counterpart of the simulation.

Sporns and Edelman (1993) proposed three stages
in the process of animal sensory-motor learning:
Generation of random movements (1), the detection
of effects of the movements and the recognition of
their adaptive value (2), and the ability to select
movements based on their adaptive value (3). In their
computational model of grasp learning Oztop et al.
(2004) propose that the “joy of grasping” might be
such an adaptive value: We propose “that the sen-
sory feedback arising from the stable grasp of an ob-
ject, “joy of grasping”, is a uniquely positive, moti-
vating reward for the infant to explore and learn ac-
tions that lead to grasp-like experiences.” (Sporns and
Edelman, 1993)[p4].

All systems that are built, either computer simula-
tions or robot implementations, have in common that
the motor babbling phase precedes the task which the
robots are actually designed for, simply because ac-
curate models are required for performing the task
accurately. In this paper we investigate whether a
simple imitation task can be used as a mechanism for
the learning of kinematics models. This is not trivial
since both processes rely on each other: without accu-
rate kinematics models, accurate imitation seems not
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to be possible. But also the imitation task influences
the kinematics learning process: the agents will learn
the kinematics models based on the actions they try
to imitate. The variation in those actions influences
the quality of the kinematics models.

2 Learning kinematics models

We consider a small population of robotic agents.
Each robot is equipped with an arm with N degrees
of freedom in which all joints have equal lengths.
Locally weighted learning (LWL) (Atkeson et al.,
1997a,b) is used as a method for learning models
of both forward and inverse kinematics. Locally
weighted learning is very simple and assumes that
the mapping of actions on observations is linear, in
any very small region. Suppose a training set con-
sists ofN actionsA and corresponding observations
O. Further suppose that we want to estimate the ob-
servationoq corresponding to a query actionaq. We
can then calculate a weight matrixWii = wi with
wi =

√

K(d(ai, aq)), whereK(x) = 1/x. By us-
ing the weight vector, points which are located further
from the query point are considered less important for
calculating the result. Since linearity is assumed on
small patches, the distance measures on actions can
be the euclidean distance on the action components.
Assuming a linear mapping we haveAx = O. Take
A′ = WA and O′ = WO, thusA′x = O′. We
then haveoq = aqA

′+O′. For stability reasons, the
pseudo-inverseA′+ is calculated using Singular value
decomposition.

Using LWL the robot can learn a model of its kine-
matics by performing random actions and observing
their outcome. The action and its observation can
simple be added to the set of known associations.
For every new query, itsK nearest neighbours are
retrieved form the action space, together with the cor-
responding observations. Only thoseK associations
are used in the LWL algorithm.

Finding nearest neighbours computationally effi-
cient is done using the projection method (Friedman
et al., 1975). All data is kept sorted in all dimensions.
For every query, a heuristic function indicates the best
dimension to find neighbours in.

3 Imitation task

As an imitation task, we use a computer simulation
of the learning of simple actions by a robot. The
paradigm of “imitation games” is used. The paradigm
differs from most others in that it considers a popu-

lation of agents rather than a single demonstrator and
a single imitator. Rather than transferring all knowl-
edge of the demonstrator to the imitator, all agents in
the population can act both as a teacher and as a stu-
dent. As a result, all skills of all agents spread into
the population. Moreover, the agents are not created
with some set of preprogrammed skills, all skills are
invented and transferred during the course of the im-
itation games. This results in a set of self-organising
repertoires of behaviours which are shared among all
agents in the population. The repertoires of all agents
will converge towards a set of skills which can be im-
itated easily by all agents in the population.

The paradigm of imitation games was introduced
in computer simulations of the learning of human
vowel systems (de Boer, 1999, 2000). Later on, the
paradigm was used both in the study of imitation of
actions (Jansen, 2003; Jansen et al., 2004) and goals
(Jansen and Belpaeme, 2005; Jansen, 2005b).

The concept of imitation games requires multiple
interactions between all agents of the population, as
only local and minor changes to the repertoires of the
agents are possible during a single interaction. As a
single game is an interaction with only two partici-
pants, games are repeated many times with different
participants, randomly selected from the population.
In every game, the roles of demonstrator and imitator
are also assigned at random.

A single imitation game is played as follows
(Jansen, 2005a):

1. The initiator randomly selects an actiona from
its repertoire and executes this action. If its
repertoire is empty, a new random action is first
added.

2. The imitator observes the action, finds the best
matching actiona’ from its own repertoire (cat-
egorical perception) and executes the action. If
its repertoire is empty, a new random action is
first added.

3. The initiator observes this action, finds the best
matching actiona” from its own repertoire and
compares its initial actiona with the recognized
imitated actiona” .

4. The initiator compares its initial actiona with
the observed imitationa” . If both actions are
the same, the game succeeds, otherwise it fails.

5. The initiator announces the outcome of the game
to the imitator.
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6. Both agents adapt their repertoire using this
feedback, such that future games become more
successful.

On an abstract level, the game thus consists of three
consecutive steps:interaction(1–4), sending feed-
back(5) andlearning(6). Since we do not study learn-
ing to imitate, we assume this interaction pattern is
simple, fixed, innate and the same for all agents. The
interaction pattern was designed such that no external
observer is required to judge the success of the game.
The initiator decides on the success of the game by
comparing its initial action with its best matching ac-
tion for the observed imitation. Opposed to other ap-
proaches, no threshold is required to decide on the
success of the game. Due to the categorical percep-
tion, the observed action can be compared directly
to previously stored actions. So, even if the actions
performed by both agents are quite different, imita-
tion can succeed: as long as the demonstrator catego-
rizes the observed imitation and the initial action as
the same, the game succeeds. Two observations are
categorized as belonging to the same action if they
both best resemble the same action in the repertoire
of the agent (cf. a prototype).

After the interaction, the initiator sends binary
feedback to the imitator. Therefore, we assume a
single bit perfect communication channel to exist be-
tween the agents. Learning consists of two phases:
first the imitator adapts its repertoire: If the game
succeeds, the action it used is shifted towards the ob-
served action. If the game fails, the same shift is per-
formed on condition that the action considered was
not permanently very successful in past interactions.
Since it is of no use to adapt a successful action, a
new action, matching the observed action, is created
in that case.

This adaptation to the imitators’ repertoire is based
on the current state of its repertoire, the action ob-
served from the initiator and the feedback it received.
This is only local information, i.e. the imitator has
no other access to the initiators internal state than by
observing its actions and receiving its feedback.

Additionally, both agents perform some general
updates on their repertoires:

1. With a small probability the agents can add new
random actions to their repertoires.

2. With every action, use and success counters are
associated. Whenever an action is performed,
its use counter is increased. Whenever imita-
tion succeeds, the success counter of the used
action is increased. Actions which have proven

to be permanently unsuccessful in the past are
removed from the repertoire.

3. Actions which are too similar are merged, such
that no confusion can exist between those two
actions.

4 Measures

The quality of the imitative attempt is measured by
two main monitors: the imitative success and reper-
toire size. Whether a single imitative attempt fails
or succeeds is decided by the agents themselves and
is a binary decision as explained above. This allows
for a simple measure evaluating the success over a
longer time over the population. A running average
over a window of 100 games is calculated of the frac-
tion of successful games. Clearly, high imitative suc-
cess should denote successful imitation. However, if
both participants to a game only have learned a single
action, the game always succeeds.

In order to investigate how fast the agents suc-
ceed in developing a repertoire of actions, the average
size of their repertoires is monitored as well. Agents
should succeed in building a stable repertoire of be-
haviours while imitative success should be high.

Besides monitoring the quality of imitation, the
motor babbling process can be monitored directly.
Therefore we monitor the average associations num-
ber (how many action/observation pairs are stored)
together with the average forward and inverse pre-
dicting error. Those errors are estimated by calculat-
ing forward and inverse kinematics for 500 random
queries and averaging the prediction results. The er-
rors are scaled to percentages by dividing them by
the length of the agents arms. It is also interesting to
monitor how the action/observation associations are
spread: many associations might be grouped together
while other regions are not very crowded.

5 Experiments and results

In the imitation task as specified above, the con-
cept of action was not strictly defined. Indeed, the
framework of imitation games is a general method
for learning categories by means of imitation, no mat-
ter what behaviour is precisely imitated. In previous
work, we have argued and shown that the precise em-
bodiment of the agent shapes the behaviour which is
learned. Rather than simulating an existing robot arm
with gripper and the like (as Jansen (2005b) did, a
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trivial experimental platform is used here. The plat-
form is similar to the one used by Alissandrakis et al.
(2005).

A robot consists of an arm and a camera system,
such that it can perform some actions with the arm
and observe those actions with the camera system, ei-
ther performed by himself, either by another agent.
The robot arm is two-dimensional and consists ofN
joints of equal length and there are no constraints on
the joint angles. Every configuration of the arm de-
fines a state. Every change from one state to another
state defines an action or a sequence of actions. In
the work presented here, the robot imitation system
itself is not studied. Hence, it is kept as trivial as pos-
sible. The actions which are learned are simply arm
configurations. In previous work we have shown con-
vincingly that qualitative properties of the simulation
results do not depend on the embodiment.

Below, we present results on three experiments in
which imitation task which is described above is per-
formed. In the first variant, the agents are endowed
with a preprogrammed model of the kinematics of
their effector. The agents need those models to map
actions on observations and the other way around, for
instance when modifying categories in the learning
phase. In the second variant of the experiments, all
agents learn the models of the kinematics of their ef-
fector on an individual basis, prior to imitation. In
the third experiment, the agents learn models of the
kinematics of their effectors while imitating.
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Figure 1: Results for the imitation experiment in
which the participants have predefined kinematics
models. Imitative success and repertoire size are plot-
ted.

5.1 Imitation with preprogrammed
models of kinematics

In this experiment it is assumed that the agents are
endowed with a model of the kinematics of their ef-

fector. Such a model enables them for instance to
predict the outcome of their actions, but also allows
them to estimate the actions that should be performed
in order to obtain a certain outcome. For the extreme
simple case of the 2D arm we proposed, analytical
calculations of forward and inverse models are possi-
ble, independent of the number of joints in the arms.
In many non-trivial cases (exact) analytical calcula-
tion of kinematics models is not possible.

In figure 1, results are plotted for an experiment in
which two agents engage in 10000 imitation games.
Experiments are repeated ten times, such that95%
coinfidence intervals can be drawn easily. Both imi-
tative success and repertoire size are plotted. Results
show how the agents succeed in building up a reper-
toire of actions very fast. The actions in the reper-
toires of the agents are sufficiently similar to allow
for highly successful imitation games. The results
here act as a reference to compare results from fur-
ther experiments with.

5.2 Imitation after learning kinematics
models

In the second variant of the experiment, all agents in
the population learn models of forward and inverse
kinematics on an individual basis, prior to engaging
in imitative interactions. In a motor babbling phase,
the agent performs random actions and observes their
outcome. Associations between actions and observa-
tions are stored, such that future queries to the for-
ward or inverse models can use those associations,
for instance by using the locally weighted learning
method which is explained above.

Rather than adding a fixed amount of associations
to the kinematics memory, agents self-evaluate the
accuracy of the predicted arm positions and only add
associations when the difference between the actual
outcome and the outcome which is predicted based
on the models learned so far is bigger than a given
threshold. After this motor babbling phase, the agents
play imitation games as in the previous experiment.
Results are plotted in figure 2 at the left and clearly
show that the agents are capable of learning the kine-
matics model as their performance in the imitation
game is hardly not affected: the agents succeed in
learning a stable repertoire of actions which can be
imitated with high success. Results also show that a
fixed amount of action/observation pairs is added to
the agents’ repertoires: less than 250 associations al-
low them to predict the kinematics models accurately
enough to allow for successful imitation.

A plot is provided which shows the spread of the
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Figure 2: Results of the second (left plots) and third (rightplots) variant of the experiment. Top row: imitative
success and repertoire size. Second row: average amount of action-observation associations. Third row: Visual
representation of the action space of the agents. Bottom row: forward and inverse models error.
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actions over the action space. From the figure it
seems that it is well covered, which is the natural
consequence of generating random actions. This plot
serves as a reference for comparison to the third ex-
periment.

5.3 Imitation while learning kinematics
models

In this third experiment, the agents start without any
explicit or implicit kinematics model. The models
will be learned while playing imitation games. We
want to investigate whether kinematics models can be
learned successfully by imitating and whether imita-
tion can be successful with an improving kinematics
model.

Results of the experiment are shown in figure 2
at the right hand side and clearly show that also in
this case successful imitation is possible: a stable
repertoire of actions emerges while imitative success
is high. At the beginning of the experiment, the
agents are equipped with a very inaccurate kinemat-
ics model. Nevertheless, successful imitation is pos-
sible, due to the categorical perception mechanism.
During the first stage of the experiment, the agents
have learned very few actions. Even with the inac-
curate kinematics models, it is for instance possible
to distinguish between as few as two actions. While
imitating those two actions, new action - observation
pairs are stored and the kinematics models become
more accurate. So, all associations which are stored
are caused by actions to be performed and imitated.
Nevertheless, the entire motor space is well covered
with associations (see third figure), meaning that the
entire space of actions was well explored in learning
actions which are easy to distinguish and to imitate.

6 Conclusions

From the three simple experiments which are re-
ported in this document, several conclusions can
be drawn: The agents succeed in imitating each
other, whether they have a preprogrammed kinemat-
ics model or a model which is learned either prior to
imitation, either while imitating. The agents succeed
in building a repertoire of actions which is stable. The
repertoires of the agents are shared in the sense that
they are similar enough to allow for successful imita-
tion.

A more general conclusion is that there are at least
specific cases in which a kinematics model is not a
prerequisite to imitation as it can be learned while

imitating. The categorical perception mechanism al-
lows for successful imitation without accurate kine-
matics models in the specific imitation paradigm re-
ported here.
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Abstract

Recently there has been a growing interest in modeling motor control systems with modular structures.
Such control structures have many interesting properties, which have been described in recent stud-
ies. We here focus on some properties which are related to the fact that specific set of contexts can
themselves be modeled modularly.

1 Introduction

Humans exhibit a broad repertoire of motor capabil-
ities which can be performed in a wide range of dif-
ferent environments and situations. From the point
of view of control theory, the problem of dealing
with different environmental situations is nontrivial
and requires significant adaptive capabilities. Even
the simple movement of lifting up an object, depends
on many variables, bothinternal and externalto the
body. All these variables define what is generally
called the context of the movement. As the context
of the movement alters the input-output relationship
of the controlled system, the motor command must be
tailored so as to take into account the current context.
In everyday life, humans interact with multiple dif-
ferent environments and their possible combinations.
Therefore, a fundamental question in motor control
concerns how the control system adapts to a continu-
ously changing operating context.

Recently, there has been a major interest in mod-
eling motor control by means of combinations of a
finite number of elementary modules. Within this
modular approach, multiple controllers co-exist, with
each controller suitable for a specific context. If no
controller is available for a given context, the individ-
ual controllers can be combined to generate an appro-
priate motor command. Among the features of this
model, two are extremely relevant:

• Modularity of contexts. The contexts within
which the model operates can be themselves
modular. Experiences of past contexts and ob-
jects can be meaningfully combined; new situa-
tions can be often understood in terms of combi-
nations of previously experienced contexts.

• Modularity of motor learning. In a modular

structure only a subset of the individual mod-
ules cooperate in a specific context. Conse-
quently, only these modules have a part in motor
learning, without affecting the motor behaviors
already learned by other modules. This situa-
tion seems more realistic than a global structure
where a unique module is capable of handling all
possible contexts. Within such a global frame-
work, motor learning in a new context possibly
affects motor behaviors in other (previously ex-
perienced) contexts.

Remarkably, Mussa-Ivaldi and Bizzi (2000) have
proposed an interesting experimental evidence sup-
porting the idea that biological sensory-motor sys-
tems are organized in modular structures. At the
same time, Shadmehr and Mussa-Ivaldi (1994) and
Brashers-Krug et al. (1996) have shown the extreme
adaptability of the human motor control system. So
far, adaptation has been proven to depend on per-
formance errors (see Shadmehr and Mussa-Ivaldi
(1994)) and context related sensory information (see
Shelhamer et al. (1991)).

Based on these findings, there has been recently
a growing interest in investigating the potentialities
of adaptive and modularcontrol schemes (refer to
Wolpert and Kawato (1998); Mussa-Ivaldi (1997)).
Within these investigations, the modular structure is
often formalized in terms of multiple inverse mod-
els1. Motor commands are usually obtained by com-
bining these elementary inverse models. Given this
formalization, two fundamental questions must be
faced:

1. Is there a way to choose the elementary inverse

1Here an inverse model is considered to be a map from desired
movements to motor commands.
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models so as to cover all the contexts within a
specified set?

2. Given a set of inverse models which appropri-
ately cover the set of contexts which might be
experienced, how is the correct subset of inverse
models selected for the particular current con-
text?

Both questions have been already investigated in
Wolpert and Kawato (1998) and in Mussa-Ivaldi and
Giszter (1992) within the function approximation
framework. Recently, the same two questions have
been considered by Nori and Frezza (2005) within a
control theoretical framework. So far this innovative
approach has been proven to provide new interesting
results in answering the first question (see Nori and
Frezza (2004a) and Nori (2005)). In the present pa-
per, we proceed along the same line to answer the
second question. Specifically, we propose a strategy
to adaptively select a given set of inverse models. The
selection process is based on the minimization of per-
formance errors. Context related sensory information
(which is related to a different cognitive process) is
instead not considered here. The key features of the
proposed control scheme are the following:

• Minimum number of modules. Previous
works Nori (2005) have established the mini-
mum number of modules which are necessary
to cover all the contexts in a specified set. The
present paper will describe how this minimality
result can be fitted in the adaptive selection of
the modules.

• Linear combination of modules.The theory of
adaptive control has been widely studied since
the early seventies. Interesting results have been
obtained, especially in those situations where
some linearity properties can be proven and ex-
ploited. In our case, linearity will be a property
of the considered set of admissible contexts.

2 Reaching in different contexts

To exemplify the ideas presented in the introduction,
we consider a specific action, nominally the action of
reaching a target with the hand. In order to immerse
the same action into different contexts, we consider
the movement of reaching while holding objects with
different masses and inertias. Within this framework,
a successful execution of the reaching movements re-
quires a control action which should adapt to the cur-

rent context. Since the controlled system2 changes its
properties with the context, suitable changes should
be imposed on the control action.

2.1 Model of the arm

We model the dynamics of the arm as a fully actu-
ated kinematic chain withn degrees of freedom cor-
responding ton revolute joints. It is well known in lit-
erature that such model can be expressed as follows:

M(q)q̈ + C(q, q̇)q̇ + g(q) = u, (1)

whereq are the generalized coordinates which de-
scribe the pose of the kinematic chain,u are the
control variables (nominally the forces applied at the
joints) and the quantitiesM , C andg are the inertia,
Coriolis and gravitational components.

2.2 Model of the contexts

In this paper, we consider the problem of controlling
(1) within different contexts. The different contexts
affect the arm in terms of modifying its dynamical
parameters. The considered parameters are the mass,
the inertia and the center of mass position of each of
the n links which compose the controlled arm. The
vector with components represented by these parame-
ters is:

p =
[
mi Ii

1 . . . Ii
6 ci>

]>
i=1...n

, (2)

wheremi is the mass of theith link, Ii
1, . . . , Ii

6 rep-
resent the entries of the symmetric inertia tensor, and

ci =
[
ci
x, ci

y, ci
z

]>
is the center of mass position. The

system to be controlled is therefore:

Mp(q)q̈ + Cp(q, q̇)q̇ + gp(q) = u, (3)

wherep identifies by the specific context. Note that
the considered class of contexts is suitable for model-
ing an arm which holds objects with different masses
and inertias. Therefore, the model is appropriate for
the proposed reaching scenario.

Note: the proposed set of contexts is itself modular.
It can indeed be proven that (see Kozlowski (1998)):

Mp(q)q̈ + Cp(q, q̇)q̇ + gp(q) = u, (4)

can be rewritten as:

J∑
j=1

Ψj(p)Y j(q, q̇, q̈) = u. (5)

2composed of the armandthe held object.
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This is a crucial property which is fundamental to
prove the results which will be claimed in the rest of
this paper.

3 Modular control action

In this section we formalize our concept of modular
control action. The proposed formalization is biolog-
ically inspired and has been originally proposed by
Mussa-Ivaldi and Bizzi (2000). Specifically, exper-
iments on frogs and rats have shown that their mo-
tor systems is organized into afinite number of mod-
ules. Each module has been described in terms of the
muscular synergy evoked by the microstimulation of
specific interneurons in the spinal cord. These mod-
ules can belinearly combinedto achieve a wide reper-
toire of different movements. A mathematical model
of these findings has been proposed again by Mussa-
Ivaldi and Bizzi (2000):

u =
K∑

k=1

λkΦk(q, q̇). (6)

Practically, the system (1) is controlled by means of
a linear combination of a finite number of modules
Φk(q, q̇), which can be seen as elementary control
actions. The control signals are no longer the forces
u but the vector[λ1, . . . , λK ]> = λ used to combine
the modules.

3.1 Modules synthesis problem

Remarkably, a modular structure requires a major at-
tention in selecting the modules themselves. In this
section it is pointed out that only a suitable choice
of the modules allow to generate a wide repertoire of
movements (Section 3.1.1) while handling different
contexts (Section 3.1.2).

3.1.1 Modules for reaching admissible configu-
rations

Obviously, the individual modulesΦk need to be
carefully chosen in order to preserve the capability
of reaching any admissible configuration3. Simple
examples can demonstrate that, in general, this
capability may be easily lost. As to this concern, the
following problem has been formulated:

Problem 1: find a set of modules{Φ1, . . . ,

3in control theory the capability of the system of reaching any
admissible configuration is calledcontrollability (see Nori and
Frezza (2005)).

ΦK} and a continuously differentiable functionλ(·),
such that for every desired final stateqf the input:

u =
K∑

k=1

λk(qf )Φk(q, q̇) (7)

steers the system (1) to the configurationqf .

Nori and Frezza (2004b) have proposed a solu-
tion to the problem above with the use ofn + 1
modules. This solution was proven to be composed
by a minimum number of modules (see Nori (2005)).

3.1.2 Modules for handling admissible contexts

In this paper, we consider the problem of solving
problem 1 in different contexts. Practically, we face
the following problem where instead of controlling
(1) we want to control (3) which is context dependent.

Problem 2: find a set of modules{Φ1, . . . ,
ΦK} and a continuously differentiable function
λ(·, ·), such that for every desired final stateqf and
for every possible contextp the input:

u =
K∑

k=1

λk(qf ,p)Φk(q, q̇) (8)

steers the system (3) to the configurationqf .

Obviously the proposed problem is related to
the question posed in the introduction: is there a way
to choose the elementary (inverse) models so as to
cover all the contexts within a specified set? The
answer turns out to be ‘yes’. Specifically, a complete
procedure for constructing a solution of problem 2
has been proposed in Nori (2005). The solution turns
out to have the following structure:

u =
I∑
i

J∑
j

λi(qf )µj(p)Φi,j(q, q̇), (9)

where{Φ1,j , . . . , ΦI,j} is a solution to problem 1 for
a specific contextpj .

3.2 Adaptive modules combination

In many situations, the context of the movement is
not knowna priori. Within our formulation, if the
contextp is unknown, we cannot compute the way
the modules have to be combined. This is a conse-
quence of the fact that the way modules are combined
depends not only on the desired final positionqf but
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also on the current contextp. A possible solution
consists in adaptively choosingµj (which are context
dependent) on the basis of available data. When the
only information available is the performance error4,
we can reformulate the estimation problem in terms
of an adaptive control problem. It can be proven that
a way to successfully reach the desired final position
qf consists in adaptively adjustingµj according to
the following differential law:

d

dt
µj = −s>

[
I∑
i

λi(qf )Φi,j(q, q̇)

]
, (10)

where s is the performance error (see Kozlowski
(1998) for details). A mathematical proof of the sys-
tem stability properties is out of the scope of the
present paper and is therefore omitted. It suffices to
say that, in fact, it can be proven that (10) leads to a
stable system.

4 Future works

In the framework of motor control, this paper pro-
poses a method for performing on-line learning of
reaching movements. The proposed control structure
is not only biologically compatible, but turns out to be
very useful when dealing with modular contexts. A
crucial step in our future work will be the implemen-
tation of the system in a robot capable of adapting it-
self to different contexts determined, for instance, by
manipulating/holding different objects. The underly-
ing idea is that a modular control structure should re-
veal useful for handling objects which are themselves
modular.

5 Conclusions

Modular control structures are appealing since there
exist contexts which can be modular as well. In the
present paper we have considered a simple move-
ment (moving the arm towards a target) within differ-
ent contexts (handling different objects). Intuitively,
a modular control structure is best suited to operate
within modular contexts. In the specific problem of
moving the arm while holding different objects, we
have shown that the system dynamics are modular
themselves. Taking advantage of this property we
have shown that a modular control structure is capa-
ble of handling multiple contexts. Finally, a way to
adaptively combine the modules has been proposed.

4The performance errors measures the difference between the
desired reaching trajectoryqd and the actual trajectoryq. Further
details can be found in Kozlowski (1998)
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Abstract 
 

In this paper, the effects of different lower-level building blocks of a robotic swinging system are 
explored, from the perspective of motor skill acquisition. The van der Pol and Rayleigh oscillators are 
used to entrain to the system’s natural dynamics, with two different network topologies being used: a 
symmetric and a hierarchical one. Rayleigh outperformed van der Pol regarding maximum oscillation 
amplitudes for every morphological configuration examined. However, van der Pol started large 
amplitude relaxation oscillations faster, attaining better performance during the first half of the 
transient period. Hence, even though there are great similarities between the oscillators, differences in 
their resultant behaviours are more pronounced than originally expected. 

 
1 Introduction 

Various neural oscillators have been used in the past 
to implement several rhythmic motor control tasks. 
Mutually-inhibiting neurons (Matsuoka 1985) have 
been used to entrain humanoid arms with a slinky 
toy and turn a crank (Williamson 1998), bipedal 
walking (Taga 1991; Taga 1995), swinging 
(Lungarella and Berthouze 2002; Matsuoka, 
Ohyama et al. 2005), and bouncing (Lungarella and 
Berthouze 2004), while the van der Pol and 
Rayleigh oscillators have been utilised for the 
purposes of planar bipedal walkers (Zielinska 1996; 
Dutra, de Pina Filho et al. 2003; de Pina Filho, 
Dutra et al. 2005). In motor control studies, systems 
are often treated at a more abstract level of 
behaviour and less attention is paid to the impact the 
low level components have on the overall 
functioning of the system. In a previous study 
(Veskos and Demiris 2005a) we investigated the use 
of the van der Pol oscillator for a robotic swinging 
task. In this paper, we implement an additional 
oscillator, known as the Rayleigh oscillator. The 
two oscillators have a similar mathematical 
structure, thus allowing us to make direct 
comparisons between them and the resultant 
behaviours. We are specifically interested in 
determining whether this similar basic building 
block alters the higher-level behaviours of the 
system. Furthermore, we also wish to investigate the 
influence of different oscillatory network 

topologies. We therefore experimented with a 
hierarchical network structure, in addition to the 
previously used symmetric one. 

2 Experimental Setup 

We utilise two similar nonlinear oscillators to build 
the neural control system for our experiments: van 
der Pol and Rayleigh. Additionally, we connect 
these in two different manners, using a symmetric 
and a hierarchical topology. 

2.1 Nonlinear Oscillators  

The equations of the van der Pol (vdP) oscillator, as 
used in our experiments, are of the form: 

( )2 21i i i i in i j jx x x x G fb Gμ ω − x+ − ⋅ + = ⋅ + ⋅  

(1) 

where , {hip,knee}, 0i j μ= ≥  is a parameter 
controlling the damping term, ω  is the natural 
frequency of the oscillator, fb  is the feedback from 
the vision system,  is the feedback gain, while 

 and  are the cross-coupling term 

gains. The final output given to the position-
controlled motors activating the joints, is: 

inG

hip kneeG − knee hipG −

( ) ,  { , }i out iG sign x i hip kneeθ = ⋅ =   (2) 

where  is the output gain. outG
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For the Rayleigh oscillator, x  is inserted in the 

 term to yield: ( 2 1ix − )
j( )2 21i i i i in i jx x x x G fb Gμ ω −+ − ⋅ + = ⋅ + ⋅ x

(3)  

This difference alters the response of the two 
oscillators to changes in their natural frequency. For 
the vdP, increasing ω  increases the oscillator’s 
output frequency, while for Rayleigh has the effect 
of increasing output amplitude. Given that we only 
make use of the timing information and discard the 
amplitude in equation (2), it should be easier for 
Rayleigh to achieve entrainment to mechanical 
systems as its own natural dynamics are less 
pronounced. Furthermore, simulations of a planar 
bipedal walker task have shown Rayleigh to recover 
from random perturbations faster than van der Pol 
(Roy and Demiris 2005). 

2.2 Neural Topologies 

Two different neural topologies were investigated 
by altering the values of the cross-coupling gains. 
By equating them, the topology is symmetric, where 
both degrees of freedom affect each other and 
strong neural entrainment takes place. This is shown 
in Figure 1. 
To arrive at a hierarchical topology where only the 
hip oscillators directly receive the feedback signal, 
the vision feedback is not forwarded to the knee 
oscillator. Additionally, the intra-neural connection 
sending information back to the hip oscillator is 
severed. The knee oscillator can then entrain to the 
mechanical system solely by means of the hip-knee 
connection. This is better illustrated in Figure 2. 

 
Figure 1: A functional overview of our experimental 
system for the symmetric neural topology. Both 
oscillators receive vision feedback and strong neural 
entrainment is facilitated by the intra-neural 
connections (shown with the dashed line).  

 
Figure 2: In the hierarchical topology, only the 
proximal (hip) oscillator directly receives vision 
feedback, which is then propagated to the distal 
(knee) oscillator, as shown by the dashed line. 

2.3 Mechanical Setup 

Experiments were performed on the robotic 
platform previously described in (Veskos and 
Demiris 2005b), shown in Figure 3. 

 
Figure 3: The robotic setup 

The robot can be thought of as an underactuated 
triple pendulum with the top joint being free while 
the bottom two joints are totally forced to the output 
of the nonlinear oscillator. A coloured marker on 
the robot is tracked by a webcam viewing the setup 
from the side. The x coordinate of this marker is 
then used as feedback for the neural oscillator (fb 
term). In this study, only the hip and knee joints 
were actuated, while all others on the robot were 
held stiff. 
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3 Experiments 

Actuating the hip joint with the van der Pol and 
Rayleigh oscillators result in the phase plots of 
Figure 4. The maximum amplitude of oscillation of 
the robot is 39% larger using Rayleigh (179 instead 
of 129 units), for the same value of the natural 
frequency, . Although the van der Pol 
oscillator has a more consistent neural limit cycle 
with less variation in amplitude, the mechanical 
system operates more smoothly with the Rayleigh 
oscillator. This is evidenced by the more even 
mechanical system plot; the phase portrait (a 
projection of the 3D plot on 2D, by removing the 
time axis) resembles a circle rather than an 
hourglass-like shape. The irregularities distorting 
the uniformity of the limit cycle occur at the point 
corresponding to the robot’s flight phase past the 
midway position. Its speed there should be 
maximum, but the van der Pol shows a relative 
reduction in the value of the derivative, thus causing 

this “dent”. While this improves as the system 
reaches the steady state, it does not disappear and is 
an indication of task suboptimality. 

2 3.0ω =

In the symmetric neural topology, strong neural 
entrainment takes place and due to the symmetry of 
the feedback system, the hip and knee oscillators 
essentially identical outputs, completely in phase. 
Again, Rayleigh was capable of producing larger 
amplitude oscillations than van der Pol, given the 
same system parameters: 214 versus 182 units, an 
18% difference. These results are illustrated in 
Figure 5.  
Results for the hierarchical topology in terms of 
maximum oscillation amplitudes were very similar, 
with the corresponding values being 214 and 181 
units (Figure 6). In terms of the timing however, the 
symmetry in the neural topology makes the coupling 
between the two joint oscillators weaker and allows 
for delays to be introduced between the hip and 
knee. Rayleigh, however is much more resilient to 
this effect, as illustrated in Figure 7. 
 

 
Figure 4: Phase plots for 1-DOF proximal (hip) actuation. The van der Pol oscillator is shown on the top row: 
the neural system on the left and a phase portrait of the mechanical system on the right. The plots for the 
Rayleigh oscillator are shown in the bottom row.  
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Figure 5: Phase plots for 2-DoF actuation with the symmetric neural topology. Results for van der Pol oscillator 
are shown on the top row and for Rayleigh on the bottom. From left to right, the columns are: hip oscillator 
phase plot, knee oscillator phase plot and mechanical system phase portrait. 

 
Figure 6: Phase plots for the hierarchical network topology. The asymmetry in the neural topology makes the 
coupling between the two joint oscillators weaker and introduces a small phase difference. This way the limit 
cycles are not identical for both joints as in the symmetric case.   
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4 Discussion 

Larger oscillation amplitudes were always achieved 
when both degrees of freedom were actuated. 
Injecting more energy in the system also made limit 
cycles smoother, eliminating the suboptimal speed 
drops observed for the hip-only actuation scheme.  
To analyse the transient behaviour of the two 
different oscillators, a comparison of the envelopes 
of oscillation for the entire experiments was made. 
This is shown in Figure 9. Something that should be 
noted is that van der Pol started producing 
relaxation oscillations earlier, thus giving it an 
advantage over the first ten seconds of the trial. This 
phenomenon is more pronounced in the case of both 
degrees of freedom being activated. Another two 
trials were performed where the second degree of 
freedom (knee) was released at t=5s. This moment 
was chosen as an ‘early’ release point where the 
system was still in its transient state. The Rayleigh 
oscillator’s behaviour is almost identical to the 1-
dof case until t=9s and only manages to reach the 
performance of the vdP at t=12s. 

 
Figure 7: Hip-knee joint correlation plots for the van 
der Pol (top) and Rayleigh (bottom) oscillators in 
the hierarchical topology experiments. Rayleigh 
manages to maintain a 1:1 timing relationship 
between the two joints, while vdP introduces a 
phase difference. 

Additionally, to compare the oscillators’ frequency 
adaptation speed, the instantaneous period during 

the above experiments was plotted in Figure 8. 
Rayleigh consistently forces the mechanical system 
to oscillate at a lower frequency than van der Pol. 
This phenomenon is especially pronounced for the 
2-DoF configurations. The difference in topology 
seems to have little effect on this matter; period of 
oscillation remains unaffected for a given oscillator. 

 
Figure 8: The instantaneous period of the 
mechanical system as driven by the different neural 
configurations. The Rayleigh oscillator consistently 
drives the system at a lower frequency than van der 
Pol, especially for the 2-DoF regimes. The 
mechanical system’s natural period is denoted by 
the horizontal line at 1.181HzT = . 

 
Figure 9: The envelopes of oscillation for four trials. 
The Rayleigh oscillator has a longer rise time than 
the vdP, but consistently reaches a larger oscillation 
amplitude given the same parameters, for both the 
1-dof and staged-release 2-dof cases. 
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5 Conclusions 

Our experiments have shown that even though the 
differences between the two oscillators studied are 
small, the nature of their dynamics altered the high-
level behaviour of the system. Given the same 
experimental parameters, Rayleigh attained larger 
oscillation amplitudes for the mechanical system, at 
each morphological configuration. It also 
consistently forced the system to oscillate at 
frequencies lower than van der Pol. However, van 
der Pol starts large amplitude relaxation oscillations 
faster, attaining better performance during the first 
half of the transient period. This trade-off however 
is of limited scope, as it is of a fixed-offset nature; 
once Rayleigh has matched vdP’s amplitude, it 
maintains its superior performance. 
These experiments have shown that the effect of 
different oscillators, despite their great similarities 
are more pronounced than originally expected. 
Conversely, differing topologies that were expected 
to lead to stronger suboptimality had less effect.  
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