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The AISB 2004 Convention 
 
On behalf of the local organising committee and all the AISB 2004 programme committees, I am 
delighted to welcome you to the AISB 2004 Convention of the Society for the Study of Artificial 
Intelligence and the Simulation of Behaviour (SSAISB), at the University of Leeds, Leeds, UK. 
 
The SSAISB is the oldest AI society in Europe and it has a long track record of supporting the 
UK AI research community.  This year, the underlying convention theme for AISB 2004 is 
“Motion, Emotion and Cognition”, reflecting the current interest in such topics as: motion 
tracking, gesture interface, behaviours modelling, cognition, expression and emotion simulation 
and many others exciting AI related research topics.  The Convention consists of a set of 
symposia and workshop running concurrently to present a wide range of novel ideas and cutting 
edge developments, together with the contribution of invited speakers:  

• Prof Anthony Cohn 
Cognitive Vision: integrating symbolic qualitative representations with computer vision; 

• Prof Antonio Camurri 
Expressive Gesture and Multimodal Interactive Systems; 

• Dr David Randell 
Reasoning about Perception, Space and Motion: a Cognitive Robotics Perspective; and  

• Dr Ian Cross 
The Social Mind and the Emergence of Musicality,  

not to mention the many speakers invited to the individual symposia and workshop, who will 
made the Convention an exciting and fruitful event. 
 
The AISB 2004 Convention consists of symposia on: 

• Adaptive Agents and Multi-Agent Systems; 
• Emotion, Cognition, and Affective Computing; 
• Gesture Interfaces for Multimedia Systems; 
• Immune System and Cognition; 
• Language, Speech and Gesture for Expressive Characters; and the  
• Workshop on Automated Reasoning. 

 
The coverage is intended to be wide and inclusive all areas of Artificial Intelligence and 
Cognitive Science, including interdisciplinary domains such as VR simulation, expressive 
gesture, cognition, robotics, agents, autonomous, perception and sensory systems.  
 
The organising committee is grateful to many people without whom this Convention would not 
be possible.  Thanks to old and new friends, collaborators, institutions and organisations, who 
have supported the events.  Thanks the Interdisciplinary Centre of Scientific Research in Music 
(ICSRiM), School of Computing and School of Music, University of Leeds, for their support in 
the event.  Thanks to the symposium chairs and committees, and all members of the AISB 
Committee, particularly Geraint Wiggins and Simon Colton, for their hard work, support and 
cooperation.  Thanks to all the authors of the contributed papers, including those which were 
regretfully not eventually accepted.  Last but not least, thanks to all participants of AISB 2004.  
We look forward to seeing you soon. 

 
Kia Ng 
AISB 2004 Convention Chair  
ICSRiM, University of Leeds, 
School of Computing & School of Music, 
Leeds LS2 9JT, UK 
kia@kcng.org   www.kcng.org 
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Proceedings of the AISB 2004  
Fourth Symposium on  
Adaptive Agents and Multi-Agent Systems (AAMAS-4) 
Symposium Preface 
 
The AAMAS Symposium series has now reached its fourth year, and by now has become a well-
established event. In fact, this fourth symposium is the biggest yet, with 17 papers to be 
presented. This clearly shows that the research area of adaptive and learning agents is active and 
is generating growing interest. Nevertheless, three years after the first AAMAS Symposium, there 
are many major challenges left to tackle. While our understanding of learning agents and multi-
agent systems has advanced significantly, most evaluations are still on simple scaled-down 
domains, and, in fact, most methods do not scale up to the real world. This is a major obstacle to 
overcome in order to promote learning agent technology for commercial applications. Stay tuned 
for new developments.  
 
We would like to thank Juergen Schmidhuber for agreeing to give this year's distinguished 
keynote talk. We also thank the members of the AAMAS-4 program committee for fast and 
thorough reviews. Last, but not least, our thanks to AgentLink-III for co-sponsoring the 
Symposium, to AISB for once again providing outstanding help in organization of this event, and 
of course special thanks to the authors without whose high-quality contributions there wouldn't be 
a Symposium to begin with. 

 
Daniel Kudenko, Eduardo Alonso, Dimitar Kazakov 
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Keynote Lecture 
   

  Gödel Machines and other Wonders of the New, Rigorous, 
Universal AI 

 
Jürgen Schmidhuber 

IDSIA 
Lugano, Sitzerland 

juergen@idsia.ch 
 
In arbitrary environments governed by unknown computable probabilistic laws (this includes 
partially observable environments and essentially everything we can write papers about), the 
ultimate predictor is Solomonoff's Bayesian induction scheme based on the universal prior M, 
the enumerable weighted sum of all enumerable measures.  In theory we may use M online to 
predict consequences of future action sequences, always choosing actions with highest 
predicted success. This approach yields Hutter's (IDSIA) optimal general reinforcement 
learner AIXI, which we will briefly review. 
 
The main problem is that M and AIXI are incomputable. This leads to the next question: what 
is the best general reinforcement learner, given realistic, limited computational resources? 
The answer lies in the concept of proof search. 
 
Usually work in machine learning proceeds like this: (1) invent a new learning algorithm, (2) 
prove its usefulness in a particular situation or set of situations, (3) apply, (4) publish.  
Normally step (2) is of interest only when the proof embodies some shortcut, that is, when we 
do not have to execute the entire algorithm in every possible scenario to figure out whether it 
is really good or not. Quickly producible proofs of some algorithm's quality may be viewed as 
efficient predictive models, given certain axioms describing what is known about 
environment and embedded agent. Proof systems are more general than most traditional 
predictors though. For example, proofs may make both low-level predictions and predictions 
limited to useful temporal / spatial  abstractions that ignore irrelevant detail, etc. 
 
Let us automatize steps (1-3) above in the most general possible way, such that any aspect of 
some reinforcement learner's behavior in some given environment is potentially subject to 
self-improvements, provided that the self-improvement's quality is provable at all through 
some proof of the shortcut type above. (If it is not, then there is no reason to believe that 
human - as opposed to automatic - insight might help.) 
 
This leads us to the Gödel machine. It can be implemented on a traditional computer and 
solves arbitrary computational problems in an optimal fashion inspired by Kurt Gödel's 
celebrated self-referential formulas (1931). It starts with an axiomatic description of itself, 
and we may plug in any utility function, such as the expected future reward of a robot. Using 
an asymptotically optimal proof searcher which systematically tests proof-computing 
programs called proof techniques, the Gödel machine will rewrite any part of its software 
(including the proof searcher) as soon as it has found a proof that this will improve its future 
performance, given the utility function and the typically limited computational resources. 
Self-rewrites are globally optimal (no local minima!) since provably none of all the 
alternative rewrites and proofs (those that could be found by continuing the proof search) are 
worth waiting for. 
 
To initialize the proof searcher we may use the recent Optimal Ordered Problem Solver 
OOPS. We will show results of various OOPS applications. 



The Role of Environment Structure in Multi-Agent Simulations of
Language Evolution

Mark Bartlett, Dimitar Kazakov?

? Department of Computer Science
University of York

Heslington, York YO10 5DD
bartlett@cs.york.ac.uk, kazakov@cs.york.ac.uk

Abstract

This paper presents a multi-agent system which has been developed in order to test our theories of language
evolution. We propose that language evolution is an emergent behaviour, which is influenced by both genetic
and social factors and show that a multi-agent approach is thus most suited to practical study of the salient
issues. We present a hypothesis that the original function of language in humans was to share navigational
information, and show experimental support for this hypothesis through results comparing the performance of
agents in a series of environments. In particular, we study how the degree to which language use is beneficial
varies with a particular property of the environment structure, that of the distance between resources needed
for survival.

1 Introduction

The use of computer simulations to study the origin and
evolution of language has become widespread in recent
years (Briscoe, 2002; Kirby, 2002; Steels, 1999). The
goal of these studies is to provide experimental support
for theories developed by linguists, psychologists and
philosophers regarding the questions of how and why lan-
guage exists in the form we know it. As verbal language
by its very nature leaves no historical physical remains,
such as fossils, computer simulation is one of the best
tools available to study this evolution, allowing us to con-
struct a model which simulates the relevant aspects of the
problem, and to abstract away any unnecessary detail. Ex-
periments conducted using such an approach can be per-
formed much more quickly than those involving teach-
ing language to apes or children and allow researchers to
study language in situations which would be impossible
with live subjects.

Our multi-agent system has been designed to test the
theory that language could potentially have evolved from
the neural mechanisms our ancestors used to navigate
(Kazakov and Bartlett, 2002; Hauser et al., 2002; O’Keefe
and Nadel, 1978). Specifically we wish to explore the fea-
sibility of the hypothesis that the original task of speech
in humans was to inform others about the geography of
the environment. To this end, we have constructed an
artificial-life environment in which a society of learning
agents uses speech to direct others to resources vital to
survival, using the same underlying computational mech-
anism as they use to navigate. We discuss the altruis-
tic nature of this activity and evaluate the benefits this
brings to the community by measuring the difference in

performance between populations of agents able to com-
municate and those unable to do so. We also evaluate
the performance of a population of agents engaging in a
non-communicative act of altruism, namely sharing stores
of resources. Our simulations are carried out in a series
of environments in which the distance between the two
resources needed for survival is varied to assess what im-
pact this feature of the terrain may have on any benefit that
language may bring. We also study how the distance be-
tween resources of the same type may affect performance.
Our aim in this paper is to assess the conditions in which
language use may be beneficial and hence could be se-
lected for by evolution.

We have chosen to carry out our simulations within a
multi-agent setting as the nature of these systems allows
us easily to capture much of the behaviour we wish to
program into our models. We assume that language has
both innate components (such as the willingness to speak)
and social components (such as the words used in a lan-
guage). Multi-agent systems allow both these aspects to
be modelled relatively simply. Though the genetic nature
of language could be modelled equally well using only
genetic algorithms, indeed some researchers have done
this (Zuidema and Hogeweg, 2000; Oliphant, 1997), in
order to model the social aspects of language which rely
on phenotypical behaviour, situatedness, grounding and
learning, it is necessary to employ an agent model.

Simulations of the evolution of language using the
multi-agent paradigm can also be of interest to the de-
signer of any general-purpose agent-based application. In
a dynamic environment that is expected to change consid-
erably during an agent’s lifetime, the faculty of learning
could be essential to its success. In an evolutionary MAS



setting, sexual reproduction and mutation can be used to
explore a range of possible learning biases, from which
natural selection would choose the best. One would ex-
pect Darwinian evolution to advance in small steps and
select only very general concepts. One could also imple-
ment Lamarckian evolution, that is, use a MAS in which
the parent’ individual experience can be reflected in the
learning bias inherited by their offspring. Lamarckian
evolution is faster but brings the risks of inheriting con-
cepts that were relevant to the parents but are not reflected
in the new agent’s lifetime. This work explores what
could be a third way of evolving a learning bias, through
communication. Language uses concepts that are specific
enough to be useful in the description of an agent’s en-
vironment, yet general enough to correspond to shared
experience. In this way, language serves as a bias inher-
ited through social interaction rather than genes. In the
current work, language serves as a way to share a bias for
navigating in an environment.

2 Altruism and Sharing

Language use of the kind presented in this work is an in-
herently altruistic act; by informing another agent of the
location of resources, an agent increases both the survival
prospects of his rival and the probability that the resource
mentioned will be exhausted before he is able to return
to it. In our previous work (Turner and Kazakov, 2002)
which focussed on resource sharing as a form of altruism,
we found that through the mechanism of kin selection
(Hamilton, 1964; Dawkins, 1982) it is possible to pro-
mote altruistic acts in an agent population if the degree of
relatedness between the agents is known and the amount
of resource given is able to be measured and controlled.
It was also found that a poor choice of sharing function
(which is used to decide the amount of resource shared)
could lead to a population in which all agents had enough
energy to survive, but insufficient to reproduce. This can
lead to extinction of a large population even in the cir-
cumstances where a smaller population would be able to
survive.

Quantifying the cost of the act is much harder to
achieve when the altruistic act is to share knowledge of
a resource location. In place of the one-off payments of
resources that occur when resources are shared, informing
an agent of the location of a resource can involve a long-
term, sizeable drain on the resource, especially if the re-
ceiver goes on to inform others. Conversely, the act may
result in no cost at all in the case where the receiver is
in such need of the resource that it is unable to reach it
before dying. This point also illustrates another problem
with using language to share, it is also hard to estimate
the benefits that the altruistic act will bring to the listener.
When resources are given directly to another agent, the
amount of help is easy to quantify, whereas when lan-
guage is used the reward is delayed for several turns and

may never be achieved, as explained previously.
While altruism based on the underlying assumption of

kin selection is used here due to the desire to provide
a feasible explanation for a phenomenon in an artificial
life setting, the idea of kin selection provides a useful
metaphor for any community of agents. In a collection of
agents solving a variety of tasks with limited resources,
the degree to which two agents should cooperate (and
share resources, if needed) should intuitively be related
to the proportion of tasks they have in common: if we
view the relatedness of two agents as the proportion of
tasks they share, the ideas behind kin selection and neo-
Darwinism provide inspiration for how agents might best
cooperate to achieve their collective goals.

3 The Multi-Agent System

In order to simulate language evolution, we have cre-
ated a multi-agent system. The York Multi-Agent System
(Kazakov and Kudenko, 2001) is a Java based application
which allows for artificial life simulations to be conducted
in two dimensional environments. It is particularly well
suited to studying learning and evolution. Agents in this
system have a behaviour based on drives, the most impor-
tant of which are hunger and thirst. At each time-step,
after the values of the drives are increased to reflect the
cost of living, an agent will attempt to reduce whichever
of its drives is greater. If either drive reaches its maximum
then the agent dies and is removed from the simulation.
Agents can also die of old age. This can occur starting
when the agent is 300 cycles old.

If two agents with sufficiently low hunger and thirst
values share a location, they may mate to produce a third
agent. Mating costs an agent a one-off payment of one
third of its food and water reserves, with the amount sub-
tracted from both parents going to the child as its initial
levels.

Agents attempt to reduce their hunger or thirst by find-
ing and using food and water resources respectively. A re-
source can be utilised by an agent if they share a square in
the environment, and this decreases the appropriate drive
to a minimum and reduces the amount of resource remain-
ing at this location. When a resource is entirely depleted
by use, it is removed for several turns after which it reap-
pears at its previous location with its resources renewed.
When resources are required, agents will first utilise any
in the square they occupy or will look for resources in
adjacent squares. If this fails, they attempt to generate
a path to a known resource as will be explained below
and, finally if all else fails, they will make a random ex-
ploratory move. Additionally, in some experiments per-
formed, agents are able to request resources or directions
from other agents. Sharing resources uses a progressive
taxation policy with 50% of any resources in excess of
the minimum needed for reproduction being given to the
requesting agent, while directions are shared in the man-



ner which will be described below. Agents always share
when they are asked for help (assuming that they are able
to) and they will do so as if they were clones of a sin-
gle genotype: there is no account taken of the degree of
kinship when deciding how much help to give.

4 Representation of Knowledge
The information used to navigate and communicate about
the location of resources is stored in the form of rules
which contain ordered sequences of landmarks, or paths,
which are to be passed while travelling from the cur-
rent location to the target resource. The landmarks used
for this purpose are items within the environment whose
function as landmarks and whose names are assumed to
be known by all agents throughout the whole simulation.
Informing another agent of a resource through the ex-
change of a path is an altruistic act for the reasons dis-
cussed in previous sections.

Agents can acquire knowledge of new paths in 2 ways.
Agents may obtain paths through linguistic methods as
noted above or they may find resources through explo-
ration, in which case they will be able to construct a path
linking this new resource to the previous location they vis-
ited by recalling the landmarks they have seen on their
journey. In either case, the agent will store the new path
internally in the same data structure in a form equivalent
to

goto(resource) → goto(locX), l1, l2, l3, . . . , li

in the case of a rule acquired through communication
and in a form similar to the following for rules acquired
through exploration.

goto(resource) → goto(locY )

goto(locY )→ goto(locX), l1, l2, l3, . . . , li

where l1, . . . , li are the landmark names received, in the
case of linguistic acquisition, or the landmarks seen dur-
ing the journey, in the case of exploration, and locX is the
location the agent gained the knowledge, in the case of
linguistic acquisition, or the previous location visited, in
the case of exploration. locY is the location of the resource
itself in the latter example. locX and locY are stored as
a list of landmarks visible from the location in question
(range of sight is limited to 2 squares in all directions).
The first rule given above can be understood as stating
that to go to the resource is equivalent to first going to
locX and then passing the given landmarks in order. The
second rule set can similarly be understood as stating that
to go to the resource it is sufficient to go to locY which can
be achieved by going to locX and then passing the land-
marks in the stated order. Note that the path that can be
generated to take an agent from locX to the resource is the
same using the either first rule or the rule set given above,
the only difference being that in the latter case the agent

has already visited the actual resource and thus can store
a description of the environment at that point. A further
rule of similar form is added to an agent’s knowledge base
when new paths are acquired through exploration that en-
able paths to be traversed in reverse direction. It should be
noted that this description is very impoverished, contain-
ing no information on factors such as direction, absolute
position or distance (aside from that which can be inferred
from the number of landmarks mentioned in the rule).

These rules can be viewed in two ways, and are used
as such by the agents. Firstly, they can be seen as proce-
dural rules which capture the spatial relationship between
locations and can be used for navigation by agents to re-
sources and secondly, as grammar rules forming a regular
language which can be used by the agent to share knowl-
edge with others. When viewed as a grammar, the rules
form a proto-language whose structure mirrors that of the
landscape.

To access the data stored in the grammar to reach a
resource, the agent will need to generate a sequence of
landmarks from the grammar which will form a path that
the agent can follow. This is done by using the grammar
to generate a list consisting of only landmark names. The
starting rule for this expansion is a grammar rule in which
the left-hand side is goto(resource), where resource is the
type of resource the agent wishes to locate. The rule used
is the one that leads to the resource which the agent most
recently visited, which implies that rules the agent has ac-
quired through exploration are used in preference to those
gained linguistically. Symbols of the form locX are used
as non-terminals in the parsing and landmark names as
terminals. Expansion takes place using an A* search with
a metric based on the length of the path (as measured by
the number of landmarks).

Agents utilise the grammar when they are called upon
to share their knowledge linguistically with others, but in-
stead of following the path it is passed to the other agent,
who will store it in the form of the first rule given above.
There are a few minor but important changes to how the
agents use the grammar when generating a path for an-
other agent which ensure that hearsay and misinformation
are not passed onto other agents. These changes involve
only allowing rules which have been formed through ex-
ploration to be used when communicating information to
another agent and then only the subset of these rules that
refer to resources that have been recently visited. These
changes, which maximise the chances that a resource to
which an agent is directed is actually there, were found
to significantly improve the performance of communicat-
ing agents in our earlier research (Kazakov and Bartlett,
2004).

The deliberately impoverished representation of geo-
graphical knowledge that is used here might be found to
be of use in other agent applications where navigation is
needed. A particular strength of the representation is that
it allows for a certain amount of generalisation to occur.
As locations are not precisely specified as coordinates, but



rather they are defined in terms of the landmarks visible
from that position, positions close to each other may be
viewed as the same location by the algorithm, which al-
lows a degree of abstraction about an agent’s position. For
example, in a domain involving robots navigating a build-
ing, it may not be important exactly where in a room a
robot is for a navigational planner, rather which room the
agent is in may be much more significant at this level.
Landmarks too can provide for a form of generalisation.
In the current work, landmarks have unique names, but
there is no reason why this must be the case. If differ-
ent landmarks had the same name, generalisation of any
structural regularity of the environment would be possi-
ble, indeed inevitable, without an exhaustive search. Re-
turning to the robot example, an identical series of visual
or radio beacons leading to each door of a given room
could be used, allowing a generalised concept of a path
heading into that room to be formed. Other features, such
as the minimal amount of information required to build
up a series of routes, and the ability to associate scores
rating the usefulness of particular rules, may also make
this representation potential useful in other domains.

The representation of knowledge and its utilisation are
discussed in more detail in our previous work (Bartlett
and Kazakov, 2003).

5 Study of the Role of Environment

Intuitively, the benefits to a community of the ability to
use language in this scenario might seem obvious. How-
ever it is not inevitable that the capacity to share resource
locations should lead to an increase in a population’s abil-
ity to survive. It is conceivable that spreading knowl-
edge of resources could lead to much faster depletion of
those resources and hence starvation, or that a population
could be created in which all individuals had sufficient
resources to survive but insufficient to reproduce.

The benefits of a particular altruistic policy to a com-
munity of agents can be measured through conducting ex-
perimentation in which a population of agents is placed
within an environment and the simulation is allowed to
run for a period equivalent to several generations. The
simulation is performed three times with different popu-
lations of agents, one of which is able to communicate,
one of which is able to share resources and a final pop-
ulation which is entirely selfish. Agents in populations
in which language use is not allowed still use the infor-
mation gathered about the environment for personal nav-
igation to make for fairer comparisons between the pop-
ulations. Any survival or reproductive benefit associated
with the use of a strategy should be manifested in the pop-
ulation size, in this way we study language evolution as
a form of multi-agent learning which improves a popu-
lation’s performance as measured by its ability to utilise
resources.

In the present work, the environments in which agents

were placed had two of their structural properties changed
in order to evaluate the effect that these had on popula-
tions implementing the various altruistic policies. A basic
environment shape was defined, with four food resources
equally spaced across the top of the environment and four
water resources across the bottom as shown in figure 1.
This map was then transformed along two dimensions to
produce a series of maps. The distance between resources
of the same kind was one factor that altered between ex-
periments with the other factor being the distance between
the different types of resource. Three values of each dis-
tance were chosen based on indications from our earlier
work (Bartlett and Kazakov, 2004), 1, 3 and 5 squares for
the distance between resources of the same kind and 3, 5
and 7 squares for the distance between resources of dif-
fering types. Each pair of distances were used in a map
leading to a total of 9 environments. Figures 1 and 2 are
two examples of the maps formed. Note that the num-
ber of resources in each environment is kept as a con-
stant, as is their relative positioning, and that the differ-
ent distances are thus achieved by altering the size of the
environment. To ensure valid comparisons between ex-
periments, the same number of agents were used in each
environment.

Figure 1: An environment with a space of one square be-
tween resources of the same type and seven squares be-
tween resources of different kinds. The coloured envi-
ronment squares show where resources are located (food
at the top, water at the bottom), and the smaller squares
show the agents (in groups of four) and landmarks (uni-
formly spaced).

6 Results and Discussion
The results, as shown in figure 3, demonstrate that the
population in which language is used performs signif-
icantly better then the other populations in most cases
studied. As would intuitively be expected, the greater the



Figure 2: An environment with spacing of 5 squares between like resources and three between differing ones. The same
rendering as figure 1 is used.

distance between food and water the fewer agents man-
age to survive regardless of strategy. However, though
the resulting size of the language-using population de-
creases as this distance increases, the relative benefits of
language increase, as can be seen by the ratio of the size
of the language-using population to the selfish population
(which can be viewed as a baseline for comparison).

The size of the final population also appears to be de-
pendant on the spacing between resources of the same
kind. Again the general rule appears to be that the greater
the distance, the lower the population which manages to
survive though the effect is not as pronounced as chang-
ing the distance between food and water. Language use
also appears to increase in effectiveness with increasing
distance for this variable.

The reason for the decrease in the size of population
as the food-water distance increases is quite obvious, and
is simply due to the greater difficulty in an agent manag-
ing to find both resources before dying of hunger or thirst.
This reveals why language use is more beneficial in situ-
ations where the distance is greater. By using language,
the complexity of the search for resources is simplified,
as agents are able to gain information on resource loca-
tion without having to go through the process of explo-
ration. In effect, the use of language manages to paral-
lelise the searching for resources. The effect of language
is likely to be particularly pronounced in later generations
when agents born into non-communicating populations
have to locate resources through exploration as their par-
ents did, but communicating agents will most likely be
able to gain this knowledge linguistically almost immedi-
ately from their parents.

It is less immediately obvious that the distance between
resources of the same type should influence the popu-
lation dynamics though there are actually two ways in
which the spacing between resources is likely to do so.
Firstly, as stated earlier in this paper, resources are ex-
haustible with use. This means that occasionally agents
will need to migrate from one source of food to another
(similarly with water). At this point the distance between
food sources becomes relevant. When the resources are
separated by one square, it is almost inevitable that a
move from an exhausted food source will lead to a po-

sition in which a new resource can be seen, whereas the
task of locating a new resource becomes a matter of quite
extensive exploration when the next closest resource is 5
squares away. Secondly, the difficulty of locating a re-
source initially in the environment increases in complex-
ity as the distance between resources of the same kind in-
creases. To see why this is so, consider two environments
with the same distance between food and water but differ-
ent distances between food and food (and therefore water
and water). The number of squares from which food is
visible in both environments is constant, being one square
in each direction away from the food. However the num-
ber of squares in the environments are different and hence
the environment in which food is more spaced out will
need a greater proportion of the squares to be searched in
order for resources to be found. Again, the reason that
language performs better is due to the fact that it manages
to reduce the amount of searching that must be done to
locate resources.

There are two other effects that may also explain some
of the benefits that language use brings. Firstly, popu-
lations using language have a tendency to cluster into a
smaller part of the environment: the majority of agents
tend to become reliant on a subset of the resources avail-
able. This occurs as the process of agents informing oth-
ers of the resources of which they know results in most
agents becoming aware of the same resources and routes
between them. By clustering themselves into a reduced
part of the environment, the probability of agents who are
able to mate meeting is increased and hence the expected
birthrate will also be increased. Secondly, the process
of being able to learn routes through language produces
an effect that results in shorter, more efficient routes be-
coming used. As communicating agents are able to gain
information through both exploration and language, they
are able to learn of several different routes to the same
location. The details of the navigational planning algo-
rithm ensure that agents will tend to take the shortest route
which they are able to, and hence agents in communi-
cating populations will tend to travel shorter routes than
those agents in other populations, which reduces their
chances of dying while travelling between resources and
increases the time for which they are able to mate.
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Figure 3: Comparison of sharing information, sharing resources and selfish behaviour. The distance between resources of
different kinds increases from bottom to top, from 3 to 5 to 7 squares. The distance between resources of the same kind
increases from left to right, from 1 to 3 to 5 squares. All results are averaged over 10 runs.



In all the experiments conducted, populations which
shared resources performed no better than the baseline be-
haviour of not sharing at all, and in some cases did signif-
icantly worse. This serves to illustrate that the improved
performance of the language-using community is not just
down to the altruism of the communicating agents. The
poor performance of the population who share resources
can probably be best explained through the fact that shar-
ing resources can lead to a population in which resources
tend to become more evenly spread throughout the pop-
ulation. This creates a population in which fewer agents
are able to reproduce, and those agents that are created
through mating begin life with lower resource levels and
thus a worse chance of surviving. One conclusion that
might be drawn from the evidence produced is that agent
populations would perform better if they concentrated on
gathering more resources and were less concerned about
how those resources were distributed between them.

A further point that should be mentioned with respect
to the performance of agents who share resources is that
they take noticeably longer to recover from the deple-
tion of a resource than do agents who are not sharing re-
sources. This can be seen in the graphs towards the bot-
tom left-hand corner of figure 3. The periodic increase
and decrease in population size seen in these graphs is
characteristic of resources becoming depleted (Kazakov
and Bartlett, 2004). It can be seen that in these exper-
iments, the population size of the agents who share re-
sources falls for longer than the other populations. This is
caused by exploration to locate new resources being de-
layed by agents, who are content to draw energy from oth-
ers rather than find a new permanent source of resources.
When agents do eventually begin to explore, their collec-
tive resource levels are much reduced by this period of
inactivity and it takes agents longer to regain a state con-
ducive to procreation.

In passing, it can perhaps be noted that the fact that
the periodic increases and decreases in population size are
not seen in some graphs is due to the fact that in the ex-
periments in which this is the case the population size is
much smaller in relation to the environment size. This
means resources are not being used to their full potential
and thus the time at which they become depleted varies
from resource to resource and from trial to trial, blurring
the cyclic behaviour to the point where it cannot be seen
in the graphs.

7 Conclusion and Future Work

This paper has outlined a multi-agent system built specif-
ically to study the phenomenon of language evolution and
has presented a range of experiments that have been car-
ried out in order to study the influence of certain features
of the environment upon the usefulness of language to a
community of speakers. Specifically, we have carried out
investigations in which two different types of the distance

between resources was varied. Our results show that in
all the cases considered, language use was never detri-
mental to a population and became increasingly advanta-
geous compared with other policies as distances between
resources increased. Sharing resources, on the contrary
never offered any benefit over selfish behaviour and ac-
tually proved to be a disadvantage when resources were
most easily discovered.

It is our future intent to assess the effect that other fea-
tures of the environment may have upon the usefulness of
language to a population, for example varying the spacing
of landmarks or introducing impassible terrain. Through
experimentation we hope to assess the way in which fea-
tures of the landscape such as these affect the size of the
population and the segmentation of the linguistic commu-
nity, and draw parallels between this and speciation and
cultural division in the natural world.

When completed, this research should shed light on
when exactly language evolution of this type should be
expected to provide some benefit and hence its use be se-
lected for by natural selection. Our intuition is that we
will find the conditions in which language use is encour-
aged to be similar to those found at the time when prim-
itive language use is believed to have begun in humans.
Indeed the fact that in the present research, language use
was found to be more beneficial as distance between re-
sources increased, may be considered alongside the fact
that language may well have first arose in early humans
at the same time as they moved from a jungle habitat to
the savannahs of east Africa. Such a change would have
taken them from an environment in which food and wa-
ter were quite abundant into one in which resources could
frequently require many miles of travel to reach. Our re-
search suggests that this is exactly the kind of environ-
ment in which language users would be likely to have a
reproductive advantage.
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Abstract

So far, the main focus of research on adaptability in multi-agent systems (MASs) has been on the agents’
behavior, for example on developing new learning techniques and more flexible action selection mechanisms.
However, we introduce a different type of adaptability in MASs, calledtime management adaptability. Time
management adaptability focuses on adaptability in MASs with respect to execution control. First, time man-
agement adaptability allows a MAS to be adaptive with respect to its execution platform, anticipating arbitrary
and varying timing delays which can violate correctness. Second, time management adaptability allows the
execution policy of a MAS to be customized at will to suit the needs of a particular application. In this paper,
we discuss the essential aspects of time management adaptability: (1) we introducetime modelsas a means to
explicitly capture the execution policy derived from the application’s execution requirements, (2) we classify
and evaluatetime management mechanismswhich can be used to enforce time models, and (3) we describe a
MAS execution control platformwhich combines both previous aspects to offer high level execution control.

1 Introduction and Motivation

Traditionally, the scope of research on adaptability in
multi-agent systems (MASs) has been focused on trying
to improve adaptability of individual agents and agent ag-
gregations. As a consequence, the progress made by im-
proving learning techniques and developing more flexi-
ble action selection mechanisms and interaction strategies
over time is remarkable. This, however, may not pre-
vent us from opening up our perspective and investigating
other issues requiring adaptability in MASs. This paper is
a first report on ongoing work and introducestime man-
agement adaptabilityas an important source of adaptabil-
ity with respect to the execution control of MAS applica-
tions.

1.1 The Packet-World

We introduce the Packet-World application we have de-
veloped (Weyns and Holvoet, 2002), since this is used as
an example MAS throughout the text.

The Packet-World consists of a number of different col-
ored packets that are scattered over a rectangular grid.
Agents that live in this virtual world have to collect those
packets and bring them to their corresponding colored
destination. The grid contains one destination for each
color. Figure 1 shows an example of a Packet-World with
size 10 wherein 5 agents are situated. Squares symbolize
packets and circles are delivery points. The colored rings
symbolize pheromone trails discussed below.

In the Packet-World, agents can interact with the envi-

ronment in a number of ways. We allow agents to perform
a number of basic actions. First, an agent can make a step
to one of the free neighbor fields around him. Second,
if an agent is not carrying any packet, it can pick one up
from one of its neighboring fields. Third, an agent can put
down the packet it carries on one of the free neighboring
fields around it, which could of course be the destination
field of that particular packet.

It is important to notice that each agent of the Packet-
World has only a limited view on the world. This view
only covers a small part of the environment around the
agent (see figure 1).

Furthermore, agents can interact with other agents
too. We allow agents to communicate indirectly using
stygmergy (Sauter et al.; Parunak and Brueckner, 2000;
Brueckner, 2000): agents can deposit pheromone-like ob-
jects at the field they are located on. These pheromones
evaporate over time and can be perceived by other agents.
In the Packet-World, this allows agents to construct
pheromone trails between clusters of packets and their
destination (Steels, 1990). In figure 1 pheromones are
symbolized by colored rings. The color of the ring cor-
responds to the packet color. The radius of the ring is a
measure for the strength of the pheromone and decreases
as the pheromone evaporates. Other agents noticing a
pheromone trail can decide to follow it in the direction
of increasing pheromone strength to get to a specific des-
tination (e.g. when they are already carrying a packet
of corresponding color). On the other hand, agents can
also decide to follow the trail in the direction decreas-
ing pheromone strength leading to the packet cluster (e.g.



Figure 1: The Packet-World: global screenshot (left) and view range of agent nr.4

when they are not carrying anything). Hence they can
help transporting the clustered packets, while reinforcing
the evaporating pheromone trail on their way back to the
destination. In this way stygmergy provides a means for
coordination between the agents which goes beyond the
limitations of the agents’ locality in the environment.

1.2 Problem Statement

So far, time in MASs is generally dealt with in an im-
plicit and ad hoc way: once the agents have been devel-
oped, they are typically hooked together using a partic-
ular activation regime or scheduling algorithm (see fig-
ure 2), without decent time management. MASs with an
implicit notion of time are generally not adapted at all to
run-time variations of timing delays introduced by the un-
derlying execution platform, e.g. network delays, delays
due to scheduling policies, etc. Moreover, these varia-
tions with respect to the execution of the agents can have
a severe impact on the behavior of the MAS as a whole
(Axtell, 2000; Page, 1997). The reason for this is that
mostly the temporal relations existing in the problem do-
main differ significantly from the arbitrary and variable

Figure 2: MAS directly built upon an execution platform

time relations in an execution platform (Fujimoto, 1998),
emphasizing the need for an explicit time management. In
other words, delays in an execution platform are based on
quantities which have nothing to do with the problem do-
main. To illustrate this, consider the following examples
from our Packet-World application:

1. From the MAS’s point of view, agents with simpler
internal logic are expected to react faster than agents
with more complex internal logic. However, con-
sider a packet lying in between a cognitive agent and
a significantly faster reactive agent, for instance the
white packet between agents 2 and 3 in figure 1. In
case both agents start reasoning at the same time,
it seems obvious that the reactive agent can pick
up the packet before the cognitive one can. How-
ever in practice, the response order of both agents
is arbitrary, because the underlying execution plat-
form could cause the cognitive agent’s process to
be scheduled first, allowing it to perform its reason-
ing and pick up the packet before the faster reactive
agent even got a chance.

2. The agents can deposit pheromones drops in the
environment to coordinate their activity. These
pheromones evaporate over time. Because the ef-
fectiveness of pheromone-based communication is
strongly dependent upon this evaporation rate, the
latter is tuned to suit the needs of a particular ap-
plication. However, fluctuations in the load of the
underlying execution platform can cause agents to
speed up or slow down accordingly, leading to a sig-
nificant loss of pheromone effectiveness which af-
fects the overall behavior of the MAS.

3. Problems can also arise with respect to the actions
agents can perform. In our Packet-World applica-



tion the time period it takes to perform a particular
action must be the same for all agents. However,
fluctuations in processor load can introduce variabil-
ities with respect to the execution time of actions.
As a consequence a particular action of an agent
can take longer than the same action performed by
other agents. This leads to agents arbitrarily obtain-
ing privileges compared to other agents due to the
execution platform, a property which is undesired in
our problem domain.

The examples above show that a MAS without explicit
time management is not adapted to varying delays intro-
duced by the execution platform, which can be the cause
of unforeseen or undesired effects. Hence the execution
of all entities within a MAS has to be controlled according
to the requirements at the level of the MAS, irrespective
of execution platform delays. In this paper, we introduce
time management adaptabilityas a generic solution to this
problem and a more structured way to control the execu-
tion of a MAS.

1.3 Time Management Adaptability

Time management adaptability allows the execution of a
MAS to be controlled by ensuring that all temporal rela-
tions which are essential from a conceptual point of view
are correctly reproduced in the software system. Hence
a particular execution policy for each MAS can be en-
forced. Second, time management adaptability allows
easy adaptation of a MAS’s execution, because it deals
with time in an explicit manner and introduces execu-
tion control into a MAS as a separate concern. In order
to achieve this, time management adaptability consists of
three main aspects (see figure 3):

1. Time modelsare necessary to explicitly model the
way time considered in the problem domain, without
taking into account the underlying execution plat-
form. Hence time models capture time at level of the
MAS application. Time models are explicit which
allows them to be easily adapted to reflect the cus-
tom needs of a MAS application.

2. Time management mechanismsare a means to en-
sure the consistency of time as being defined at the
MAS level, even in the presence of arbitrary delays
introduced by the execution platform.

3. A MAS execution control platform combines both
time models and time management mechanisms to
control the execution of a MAS. In a MAS execution
control platform time models are used to capture the
execution requirements and time management mech-
anisms are employed to prevent time models from
being violated during execution. In this way the con-
ceptual perception of time can be decoupled from the
timing delays of the platform on which the MAS ex-
ecutes.

Figure 3: Time management adaptability in MASs

Outline of the paper. We first clarify the concept of
time in MASs in section 2. We then discuss the var-
ious parts of time management adaptability: in section
3 we elaborate ontime models. In section 4, the main
time management mechanismsexisting today are evalu-
ated, and section 5 discussesMAS execution control plat-
formsmore in detail. Finally, we look forward to future
work in section 6 and conclude in section 7.

2 Time in MAS

2.1 Causality And Time

Time in MASs is important because it determines causal-
ity (Schwarz and Mattern, 1994). To illustrate this, we
start from the fundamental characteristics of MASs, as
stated in the definition of Wooldridge and Jennings: “an
agent is a computer system that is situated in some en-
vironment, and that is capable of autonomous action in
this environment in order to meet its design objectives”
(Wooldridge and Jennings, 1995). Agents are not iso-
lated entities, but instead they are situated in an envi-
ronment which they can perceive and on which they can
act. By means of this shared environment, the actions of
one agent have an influence on other agents. The order
in which the actions take place in the environment deter-
mines the actual causality between agents.

We now elaborate on what causes a particular order-
ing of actions to arise and hence what actually deter-
mines causality in MASs. By means of coordination,
agents can agree upon the order. However, to see what
is determining the order in the absence of coordination,
we return to the autonomy property of individual agents:



agents autonomously decidewhento perform an action.
Therefore in MASs, no global flow of control can be
identified which unambiguously determines causality. In-
stead, each agent has its own, local flow of control. As
a consequence, in the absence of explicit coordination
between agents, the relative timing between their corre-
sponding local control flows determines in which order
their actions on the environment happen. We conclude
that in MASs, time determines causal dependencies be-
tween non-coordinating agents.

2.2 Different Concepts of Time

One of the most common points of confusion is what is
actually meant by time in software systems. We start from
(Fujimoto, 1998) to distinguish 2 sorts of time which are
of relevance for the rest of the paper:

• Wallclock time is the (execution) time as measured
on a physical clock while running the software sys-
tem. For example, in the Packet-World the execu-
tion of a particular agent to determine its next action
might take 780 milliseconds on a specific processor.

• Logical time (also called virtual time) is the soft-
ware representation of time as experienced in the
problem context. For example, the current logical
time of our application could be represented by an
integer number; after executing the program for 37
minutes of wallclock time, 892 units of logical time
may have passed.

According to the way logical time advances in a sys-
tem, a number of execution modes can be distinguished
(Fujimoto, 1998). In areal-time execution, logical time
advances in synchrony with wallclock time. Here we
are mainly concerned withas fast-as-possible executions,
which attempt to advance logical time as quickly as pos-
sible, without direct relationship to wallclock time. As
an example: for a software system it could be that after 5
minutes of wallclock time, 100 units of logical time may
have been processed, while after 10 minutes of execution
time, 287 logical time units have passed in an as fast as
possible execution, instead of 200 for real-time execution.

3 Time Models

Time models are inspired by research in the distributed
simulation community, where they are used implicitly to
assign logical time stamps to all events occurring in the
simulation (Lamport, 1978; Misra, 1986). In software
simulations, the logical time stamp of an event corre-
sponds to the physical time the event was observed in the
real world which is being simulated.

However, we extend the use of time models from pure
simulation contexts to execution control for MASs in gen-
eral. Here, logical time is not used to obtain correspon-
dence to physical time, which has no meaning outside the

Figure 4: A typical agent control flow cycle

scope of simulation, but as a means to express causality
in a MAS (see section 2.1). Also in contrast to software
simulations, time models are now explicitly represented,
which allows them to be easily adapted.

A time model captures the requirements with respect
to time, as exposed in the problem context of most ap-
plications. More precisely, a time model defines how the
duration of various activities in a MAS is related to logi-
cal time, and the order of activities in logical time is used
as a means to express causality between the entities in a
MAS. In this way a time model allows the developer to
describe the causal relationships which are essential for
the correct working of the MAS and hence must be en-
sured during the execution of the MAS on any particular
platform.

Time models capture time relations at the level of the
MAS’s problem domain. A first important thing which
needs to be done when considering time models, is inves-
tigating the structure of a MAS to identify all entities that
need to be time modeled.

3.1 Time Modeling Agents

In the previous section we stated that time determines
causal relations between agents, since each of the latter
has its own control flow. Hence the first important MAS
entities which require time modeling are the agents. Be-
cause generally agents can perform several activities, time
modeling an agent requires assigning durations in logical
time to all of its activities. For our discussion, we assume
that an agent has a control flow cycle as the one depicted
in figure 4.

3.1.1 Agent deliberation

A first important activity an agent can perform, is internal
deliberation. The purpose of this activity is determining
the next action the agent is going to perform. Depend-
ing on the context, agent’s deliberation can be very sim-
ple (e.g. stimulus-response behavior in reactive agents) or



immensely complex (e.g. sophisticated learning and plan-
ning algorithms used in cognitive agents).

In the context of agent-based simulation, time mod-
eling agent’s deliberation has received a lot of interest.
We evaluate various time models which have been pro-
posed to describe how much logical time the deliberation
of the agents takes, and discuss their relevance for execu-
tion control.

• A constant time model (Uhrmacher and Kullick,
2000) for the agents’ deliberation implies that the
deliberation of all agents is performed in a constant
logical time, irrespective of the actual wallclock time
that is needed to execute the deliberation. By assign-
ing constant logical time durations to the delibera-
tion activity of each agent, one can determine the rel-
ative speed of all agents within a MAS at conceptual
level, irrespective of their implementation or execu-
tion efficiency.

• If the functionality of an agent has to be time sensi-
tive, a model assuming that the agent’s deliberation
always happens in a constant logical duration is no
longer suitable. In this case, the logical duration of
the deliberation activity can be modeled as a func-
tion of reasoning primitives(Anderson, 1997), e.g.
evaluating the results of a perception action, updat-
ing its internal world model, etc. In this case, de-
liberation time cannot be predicted a priori, because
only those primitives which are actually used during
a particular deliberation phase are taken into account
to determine the duration in logical time. However,
although this approach is conceptually feasible, it
requires zooming in into the agent’s internal work-
ing to monitor what the agent is actually deliberating
about.

• A popular approach uses the actual computer in-
structions as a basis for determining the logical de-
liberation time. At first sight, modeling the logical
deliberation time of an agent as a function of the
number of code instructions executed during deliber-
ation could be considered an extreme example of the
previous approach which treats each computer in-
struction as a reasoning primitive (Anderson, 1997).
However counting computer instructions is related to
the underlying execution platform rather than to the
conceptual level of the MAS. Hence precaution has
to be taken when using it in a time model for execu-
tion control, since this approach can cause a number
of unexpected effects to occur. Using this model, the
programming language used for an agent, the effi-
ciency of implementation and the presence of GUI or
debug code have a significant influence on the logi-
cal deliberation time, although these aspects have no
conceptual meaning. Another drawback of this ap-
proach is that a “timed” version of the language in
which the agents are programmed is required, e.g.
Timed Common Lisp.

• The logical deliberation time can be modeled as a
function of the wallclock time used for executing the
deliberation (Anderson, 1995). This approach is also
not feasible from conceptual point of view, since the
logical duration is now susceptible to the load and
performance of the underlying computer system.

3.1.2 Agent Action

A second important activity of an agent is performing
actions (see figure 4). Compared to agent deliberation,
time modeling agents’ actions on the environment has re-
ceived little interest. However, in the context of execution
control, imposing time models on the actions agents per-
form is indispensable. Depending on the problem context,
actions can be assigned a particular cost expressed as a
time penalty the agent receives for performing the action.
From the agents’ point of view, this period of logical time
can be considered as the time the agent needs to complete
that particular action. Since meanwhile the agent is not al-
lowed to perform anything else, this approach can be used
to model the frequency an agent is allowed to perform ac-
tions, irrespective of the underlying execution platform.

3.1.3 Agent Perception

Agent perception is also an agent activity which must be
time modeled, however this is often neglected. Assign-
ing a logical time duration to perceptual actions is anal-
ogous to time modeling other actions. An advantage of
time modeling perception is for example that it can be a
means to better control agents which continuously poll
the environment by means of perception.

3.2 Time Modeling Ongoing activities

Besides the agents, there can be other entities within a
MAS which require time modeling. In MASs, there is
an increased environmental awareness. The environment
itself is often dynamic and evolves over time. As a con-
sequence causal relations do not only occur between in-
teracting agents: the environment itself can contain a
number ofongoing activitieswhich are essential for the
correct working of the MAS as a whole (Parunak et al.,
2001). Ongoing activities are characterized by a state
which evolves over time, even without agents affecting it.
Agents can often initiate ongoing activities and influence
their evolution. For example a ball in a robocup soccer
game that was kicked by an agent, or the pheromones in
our Packet-World application which evolve continuously.
We conclude that the environment is not passive, but ac-
tive, and responsible for the evolution of all ongoing ac-
tivities.

In many MAS applications however, the dynamics of
ongoing activities are dealt with in an ad hoc way. For
example, the evaporation rate of pheromones is mod-
eled in wallclock time, such that the correlation between
agent activity on the one hand and pheromone activity



on the other hand is not guaranteed. As a consequence
optimal coordination effectiveness can hardly be main-
tained: varying loads on the execution platform cause
agent activity to slow down or speed up accordingly,
while pheromone evaporation is determined upon wall-
clock time and hence not adaptive to platform loads.
Therefore it is very useful to provide ongoing activities
of the environment with a time model, which allows their
activity to be controlled to suit the needs of the MAS ap-
plication.

3.3 Time Models: A Case

We now return to the Packet-World application, and il-
lustrate the use of time models to capture the causal rela-
tions which are necessary for the correct working of the
MAS and hence must be ensured on any particular plat-
form. The problem statement (see section 1.2) mentions a
number of typical problems with respect to execution con-
trol which arise in our Packet-World application. We now
elaborate on describing the requirements in our problem
examples to derive time models.

In the Packet-World, the following actions can be
distinguished: a move action, a pick up packet action,
a put packet down action and a drop pheromone action.
Stated formally:

E = {move, pick, put, drop}
with move = move action

pick = pick up packet
put = put down packet
drop = drop pheromone

With E the set of all possible actions on the envi-
ronment.

In our application, there is only one perceptual action:
agents can see their neighborhood. Formally:

P = {look}
with look = visual perception

With P the set of perceptual actions.

We distinguish two types of agents in our Packet-
World: reactive agents and cognitive agents. Each agent
is either reactive or cognitive. Stated formally:

AR = {ar
1, a

r
2, ..., a

r
n}

AC = {ac
1, a

c
2, ..., a

c
m}

A = AR
⋃

AC = {a1, a2, ..., am+n}

With AR the set of all reactive agents in our Packet-World
application,AC the set of all cognitive agents, andA the
set of all agents, reactive and cognitive.

3.3.1 Action Requirements

We take a closer look at the third problem mentioned
in section 1.2. In our Packet-World application it was
observed that the the underlying execution platform can
have an arbitrary influence on the time it takes to perform
an action. However, in the problem domain it is required
the same amount of time is needed for all agents to
perform a particular action. Stated formally:

∀ai ∈ A;move, pick, put, drop ∈ E :
∆Tact(move, ai) = cstmove

∆Tact(pick, ai) = cstpick

∆Tact(put, ai) = cstput

∆Tact(drop, ai) = cstdrop

cstmove, cstpick, cstput, cstdrop ∈ ℵ

With A the set of all agents,E the set of all actions
on the environment,∆Tact(e, ai) the logical duration of
actione performed by agentai, andℵ the set of natural
numbers.

The previous equations can also be expressed as:

∀ai ∈ A;∀e ∈ E :
∆Tact(e, ai) = cste
cste ∈ ℵ

Since perception is considered as a kind of action
in our application, we obtain the following expression:

∀ai ∈ A; look ∈ P :
∆Tper(look, ai) = cstlook

cstlook ∈ ℵ

With A the set of all agents,P the set of all per-
ceptual actions,∆Tper(look, ai) the logical duration of
perceptual actionlook performed by agentai, andℵ the
set of natural numbers.

Stated more generally:

∀ai ∈ A;∀p ∈ P :
∆Tper(p, ai) = cstp
cstp ∈ ℵ

3.3.2 Deliberation Requirements

We now return to the first example of our Packet-World
application. The problem was the fact that the underlying
execution platform can influence the reaction speed of
the agents, leading to a response order which is arbitrary.
However, this is not desired from a conceptual point of
view, where we would like the reactive agent to always
react faster than the cognitive agent, in case both start
deliberating at the same time. Based on an agent’s control
flow cycle as depicted in figure 4, the moment in logical
time an agent completes an action can be stated formally



as:

∀ai ∈ A;∀e ∈ E; look ∈ P :
Tend(e, ai) = T0 + ∆Tper(look, ai) + ∆Tdelib(ai) +

∆Tact(e, ai)

With Tend(e, ai) the logical time the actione of
agentai completes,T0 the logical time that a new cycle
in the control flow of agentai starts,∆Tper(look, ai)
the logical duration of the perceptionlook performed
by agent ai, ∆Tdelib(ai) the logical duration of the
deliberation of agentai, and ∆Tact(e, ai) the logical
duration of actione performed by agentai.

The requirement that reactive agent can always pick
up the packet before cognitive agent in case both start
deliberating at the same time, is hence formalized as
follows:

∀ar
i ∈ AR;∀ac

j ∈ AC ; pick ∈ E :
Tend(pick, ar

i ) < Tend(pick, ac
j)

With AR the set of reactive agents,AC the set of
cognitive agents, andE the set of all actions on the
environment.

By substitution we obtain:

T0 + cstlook + ∆Tdelib(ar
i ) + cstpick <

T0 + cstlook + +∆Tdelib(ac
j) + cstpick

Simplifying both sides of the equation gives us:

∆Tdelib(ar
i ) < ∆Tdelib(ac

j)

With ar
i ∈ AR a reactive agent, andac

j ∈ AC a
cognitive agent.

Hence to assure that the reactive agent always acts
faster than the cognitive one, the logical duration of the
agents’ deliberation needs to be modeled such that reac-
tive agent’s deliberation duration is smaller than the cog-
nitive agent’s deliberation time.

3.3.3 Pheromone Requirements

Finally, we take a closer look at the second example.
The load on the underlying execution platform causes the
agents’ execution speed to chance accordingly. However,
if we want to maintain pheromone effectiveness, we need
a continuous adaptation of the pheromone evaporation
rate to the agents’ execution speed. Hence from concep-
tual point of view, we want to relate pheromone activity
to agent activity. As a first step, we use a simplistic model
for pheromone activity. For the pheromone evaporation
rate in our Packet-World application we can state more
formally:

∆Tevap = cstevap

cstevap ∈ ℵ

with ∆Tevap the logical duration it takes for a pheromone
to evaporate until only half of its initial strength is
remaining. Agent activity is related to logical time.
Relating pheromone activity to the same logical clock,
instead of the wallclock, allows the dynamics of both
agents and pheromones to be coupled.

3.4 Deriving a Time Model

In section 3.3 we formulated a number of requirements
which have to be met to allow the execution of our MAS
to evolve appropriately. To obtain a time model, one has
to assign specific values to the various activities, which
express the logical durations. These values are expressed
in logical time units(LTU). The requirements mentioned
above give rise to an array of constraints which all have
to be satisfied to come to a suitable time model for the
application.

A possible time model for our Packet-World applica-
tion is given:

∀ai ∈ A :
∆Tact(move, ai) = 3 LTU
∆Tact(pick, ai) = 2 LTU
∆Tact(put, ai) = 2 LTU
∆Tact(drop, ai) = 1 LTU
∆Tper(look, ai) = 1 LTU

∀ar
i ∈ AR :

∆Tdelib(ar
i ) = 4 LTU

∀ac
j ∈ AC :

∆Tdelib(ac
j) = 12 LTU

∆Tevap = 100 LTU

Note that this time model is only an example which
satisfies all requirements of the application. The values
assigned to the various activities indicate units of logical
time. Note also that these values can be altered, as long
as the constraints expressing the requirements of the
Packet-World application are not violated. Hence various
execution policies can be experimented with.

4 Time Management Mechanisms

By describing time models the developer imposes an or-
der on MAS activities, dictated by logical time. However,
as illustrated in the introduction, the temporal characteris-
tics of the execution platform are not necessarily the same
as those described by the logical time model. As a con-
sequence, we additionally needtime management mecha-
nismswhich enforce the time models and hencepreserve
causality. This means avoiding that any event with a log-
ical time in the future can have influence on things with a



logical time in the past, even in the presence of arbitrary
network delays or computer loads.

Distributed and agent-based simulation communities
have been investigating the consistency of logical time in
simulations for a long time. All events happening are or-
dered and hence causally related by means of the global
notion of logical time. Therefore various time manage-
ment mechanisms have been developed to prevent causal-
ity errors:

• Execution directed by clock. In this approach the
logical time of the system is discretized in a num-
ber of intervals of equal size. The interval size is
called time-step. Global synchronization schemes
force all entities to advance together in a lock-step
mode, and hence the execution of the system pro-
ceeds synchronously. In the case of MASs, a draw-
back is that synchronous execution forces all agents
to act at the pace of the slowest one, which severely
limits execution speed (Weyns and Holvoet, 2003).
Moreover, since a central authority must control and
keep track of the execution of all agents in the sys-
tem, the cost of synchronous approaches increases
rapidly as the number of agents grows.

• Execution directed by events. In this case, events
are generated by all entities (Lamport, 1978), and
each event has a precise logical time stamp which al-
lows sorting them. During execution, the next event
to be processed is the one with the smallest logi-
cal timestamp, ensuring causality and thereby skip-
ping periods of inactivity. However in a distributed
context (distributed discrete event simulation (Misra,
1986)), a system is modeled as a group of com-
municating entities, referred to as logical processes
(or LPs). Each LP contains its own logical clock
(indicating its local logical time) and all LPs pro-
cess events asynchronously and advance at different
rates, which allow a significant speedup, but may
cause causality errors. Hence, for asynchronous ex-
ecution additional synchronization is needed to en-
sure that each LP processes messages in increasing
logical time order:

– Conservative synchronization. In conserva-
tive synchronization (Chandy and Misra, 1981)
each LP only processes events when it can
guarantee that no causality errors (out of (log-
ical) time order messages) will occur. This
causes some LPs to block, possibly leading
to deadlock. The performance of conservative
synchronization techniques relies heavily on
the concept of lookahead, but the autonomous,
proactive behavior of agents could severely re-
strict the ability to predict events (Uhrmacher
and Gugler, 2000). Moreover, to determine
whether it is safe for an agent to process an
event, information about all other agents must

be taken into account, limiting the scalability
of this approach.

– Optimistic synchronization. In optimistic
approaches, causality errors are allowed, but
some roll-back mechanism to recover from
causality violations is defined (e.g. time warp
(Jefferson and Sowizral, 1985)). In the case
of MASs, however, the cost imposed by the
roll-back mechanisms can easily outweigh the
benefits (Uhrmacher and Gugler, 2000), and in-
creases rapidly as the number of agents grows.

5 MAS execution control platform

To control the execution of a MAS in an appropriate way,
a MAS execution control platformmust provide support
for both explicit time models on the one hand and time
management mechanisms on the other hand.

First, logical time models are needed as a means for the
developer to explicitly express an execution policy for all
MAS activities. However, the execution policy expressed
in the time model has to be enforced at implementation
level, irrespective of delays in the underlying execution
platform. For this reason, time management mechanisms
are needed. They prevent time models from being vio-
lated, and ensure the execution of the MAS behaves ac-
cording to the policy which is described.

As a consequence, a MAS execution control platform
must provide an integrated support for both time models
and time management mechanisms to achieve the advan-
tages below:

• Higher level of abstraction. The delays of the un-
derlying execution platform are decoupled from the
MAS. From a developer’s point of view, only the
logical durations described in the time model apply
and determine causality. As a consequence abstrac-
tion can be made of the execution platform delays.

• Separation of concerns. MAS entities can be devel-
oped without taking into account the policy which
will be used for their execution. Controlling the ex-
ecution of a MAS can now be considered as a sep-
arate concern. This relieves the developer from ex-
plicitly building execution control mechanisms and
hard-coding them into the agents. The MAS execu-
tion control platform allows a time model represent-
ing the execution policy of the MAS to be described
independently and enforced transparently.

• Adaptability with respect to the execution plat-
form . By combining a logical time model and a time
management mechanism to enforce it, the execution
of a MAS is no longer affected by timing issues in-
troduced by the execution platform. This results in
MASs being adaptive with respect to the timing char-
acteristics of the execution platform, an important



type of adaptability which is not often considered in
the context of adaptive MASs.

• Adaptability of the execution policy. The explicit
representation of the time model of a MAS allows
the execution policy to be easily adapted. This en-
ables fine-tuning of the existing execution policy and
integration of new execution requirements.

6 Future Work

This paper is a first report on ongoing work investigating a
generic and structured way to deal with execution control
in the context of MASs. The approach was described in
general, and a lot of work still needs to be done on various
aspects described in this paper:

• We are currently working to improve the formalism
for describing logical time models, to come to an ap-
proach which is generally applicable and more theo-
retically founded. Also in the context of time mod-
els, the dynamics of pheromones still need to be in-
vestigated more in depth.

• As shown in section 4, mechanisms enforcing time
models and ensuring global causality are limited in
scalability, making these approaches inefficient for
use in a large-scale distributed MASs. A possible
alternative presumes we abandon the notion of a
global (logical) clock to determine causal relation-
ships. Hence not all parts of the MAS are related
in time, and there is only a locally shared notion of
time. This follows from the observation that in a
lot of MASs, agents only perceive and act locally.
Based on this, it makes sense only to ensure tem-
poral relationships between agents residing in each
other’s neighborhood, without modeling causality
between agents far away from each other, at the ben-
efit of increased scalability. Regional synchroniza-
tion (Weyns and Holvoet, 2003) provides a flexible
mechanism to dynamically detect clusters of agents,
based on the overlap of so calledspheres of influ-
ence. Within such clusters of agents, the mecha-
nisms discussed in section 4 could be applied locally,
hence avoiding scalability limitations at the cost of a
loss of a global notion of logical time.

• Although the first results of our Packet-World case
study are promising, other examples need to be in-
vestigated, and the design of a generic MAS exe-
cution control platform allowing a full separation of
concerns is a major challenge which has to be tack-
led.

7 Conclusion

In this paper, we emphasized time management adaptabil-
ity as a type of adaptability which has significant impor-

tance, although this type of adaptability is not often con-
sidered in the context of adaptive MASs. Time manage-
ment adaptability is based on the important aspect of a
logical time modelto explicitly capture the execution pol-
icy which is essential for the correct functioning of the
MAS. Time management mechanismsform a second im-
portant aspect of time management adaptability: they are
needed to enforce time models. Time models and time
management mechanisms are combined inMAS execu-
tion control platforms. As a consequence, the advantage
of time management adaptability it twofold:

First, adaptability of the MAS with respect to the exe-
cution platform is considered: the combination of time
models and time management mechanisms allows all
essential causal relationships to be no longer affected
by timing issues introduced by the execution platform.
Hence causality in the MAS can remain invariant under
various execution conditions.

Second, time management adaptability allows the exe-
cution policy to be adapted to suit the needs of the MAS
application, providing a higher level of abstraction to deal
with time in a MAS, and a means to introduce execution
control as a separate concern.
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Abstract

Most approaches to the learning of coordination in multi-agent systems (MAS) to date require all agents to
use the same learning algorithm with similar (or even the same) parameter settings. In today’s open networks
and high inter-connectivity such an assumption becomes increasingly unrealistic. Developers are starting to
have less control over the agents that join the system and the learning algorithms they employ. This makes
effective coordination and good learning performance extremely difficult to achieve, especially in the absence
of learning agent standards. In this paper we investigate the problem of learning to coordinate with heteroge-
neous agents. We show that an agent employing the FMQ algorithm, a recently developed multi-agent learning
method, has the ability to converge towards the optimal joint action when teamed-up with one or more simple
Q-learners. Specifically, we show such convergence in scenarios where simple Q-learners alone are unable to
converge towards an optimum. Our results show that system designers may improve learning and coordination
performance by adding a ”smart” agent to the MAS.

1 Introduction
Learning to coordinate in cooperative multi-agent sys-
tems is a central and widely studied problem, see, for ex-
ample, any of the following published work by Verbeeck
et al. (2003), Lauer and Riedmiller (2000), Boutilier
(1999), Claus and Boutilier (1998), Sen and Sekaran
(1998). In this context, coordination is defined as the abil-
ity of two or more agents to jointly reach a consensus over
which actions to perform in an environment.

To date, learning techniques require the multi-agent
system to be homogeneous, i.e. all agents need to employ
the same learning algorithm and often use the same (or at
least similar) parameter settings to achieve optimal coor-
dination.

In today’s open networking environment the assump-
tion of agent homogeneity is becoming increasingly unre-
alistic. Agents are designed by different individuals with
different preferences and learning agent standards are vir-
tually non-existent. This poses a problem to designers of
open multi-agent systems who don’t have control over the
algorithms that the agents acting in these systems actually
use. How can the designers ensure optimal coordination
in the multi-agent system under such conditions?

In this paper we suggest that it may be possible to
control learning performance in a heterogeneous multi-
agent system by adding a specific agent to the popula-
tion. More precisely, we investigate the applicability of
the FMQ technique (Kapetanakis and Kudenko, 2002) for
the reinforcement learning of coordination. We show that
a team consisting of an FMQ agent and one or more sim-

ple Q-learners can achieve high probabilities of conver-
gence to an optimal joint action in single-stage cooper-
ative games, even in cases where Q-learners alone are
unable to achieve any reasonable rates of convergence to
the optimum. In other words, the FMQ-learner is able to
“push” the simple Q-learner(s) to the optimum.

Note that the FMQ technique has been developed for
independent agents that do not communicate or observe
one another’s actions, which is a more general and of-
ten more realistic assumption. This generality distin-
guishes our approach from alternatives such as the work
by Wang and Sandholm (2002) and Chalkiadakis and
Boutilier (2003).

This paper is structured as follows: we first present a
common testbed for the study of learning coordination
in cooperative multi-agent systems, namely single-stage
cooperative games. We then introduce three particularly
difficult examples of such games that we will use in the
experiments. Following this, we present the experimental
setup and discuss the results. We finish the paper with an
outlook on future work.

2 Single-stage cooperative games
Markov games are a widely used testbed for studying re-
inforcement learning in multi-agent systems (Fudenberg
and Levine, 1998; Littman, 1994). One particular varia-
tion of them which is often used in the study of coordi-
nation in multi-agent systems is that of single-stage co-
operative games. In these games, the agents have com-



mon interests i.e. they are rewarded based on their joint
action and all agents receive the same reward. In each
round of the game, every agent chooses an action. These
actions are executed simultaneously and the reward that
corresponds to the joint action is broadcast to all agents at
the same time.

A more rigorous account of single-stage cooperative
games was given by Claus and Boutilier (1998). In brief,
we assume a group of n agents α1, α2, . . . , αn each of
which has a finite set of individual actions Ai which is
known as the agent’s action space. In each iteration of the
game, each agent αi chooses an individual action from its
action space to perform. The action choices of all agents
put together make up a joint action, upon execution of
which, all agents receive the reward that corresponds to
the chosen joint action.

An example of such a game is the climbing game which
was introduced by Claus and Boutilier (1998). This game,
which is shown in Table 1, is played between 2 agents,
each of which has 3 actions. If agent 1 executes action c

and agent 2 executes action b, the reward they receive is 6.
Obviously, the optimal joint action in this game is (a, a)
as it is associated with the highest reward of 11.

a b c

a 11 -30 0
b -30 7 6
c 0 0 5

Table 1: The climbing game.

Our goal is to enable the agents to learn optimal coor-
dination from repeated trials. To achieve this goal, one
can use either independent or joint-action learners. The
difference between the two types lies in the amount of in-
formation they can perceive in the game. Although both
types of learners can perceive the reward that they receive
for the execution of a joint action, the former are unaware
of the existence of other agents whereas the latter can also
perceive the actions of others. In this way, joint-action
learners can maintain a model of the strategy of other
agents and choose their actions based on the other par-
ticipants’ perceived strategies. In contrast, independent
learners must estimate the value of their individual actions
based solely on the rewards that they receive for their ac-
tions. In this paper, we focus on individual learners, these
being more universally applicable.

In our present study, we focus on three particularly
difficult coordination problems, the climbing game (Ta-
ble 1), the penalty game (Table 2) and the number-
matching game (Table 3). All three games are played be-
tween two agents. We also introduce general versions of
the penalty and number-matching game which any num-
ber of agents can take part in. We use these to evaluate the
applicability of this work on teams of more than 2 agents.

In the climbing game, it is difficult for the agents to
converge to the optimal joint action (a, a) because of the

negative reward in the case of miscoordination. Incor-
porating this reward into the learning process can be so
detrimental that both agents tend to avoid playing their
respective components of the optimal joint action again.
In contrast, when choosing action c, miscoordination is
not punished so severely. Therefore, in most cases, both
agents are easily tempted by action c.

Another way to make coordination more elusive is by
including multiple optimal joint actions. This is precisely
what happens in the penalty game. In this game, it is not
only important to avoid the miscoordination penalties as-
sociated with actions (c, a) and (a, c) but it is equally im-
portant to agree on which optimal joint action to choose
out of (a, a) and (c, c). If agent 1 plays a expecting agent
2 to also play a so they can receive the maximum reward
of 10 but agent 2 plays c (perhaps expecting agent 1 to
play c so that, again, they receive the maximum reward of
10) then the resulting penalty can be very detrimental to
both agents’ learning process. In this game, b is the “safe”
action for both agents since playing b is guaranteed to re-
sult in a non-negative reward, regardless of what the other
agent plays.

a b c

a 10 0 k

b 0 2 0
c k 0 10

Table 2: The penalty game

In the last testbed, the number-matching game, the two
agents can only receive a positive reward for playing the
same action. Any of (a, a), (b, b) or (c, c) will result in
a positive reward with (c, c) being the optimal joint ac-
tion. The difficulty, however, in solving this game stems
from the fact that actions with a higher reward carry the
risk of a higher penalty in the case of miscoordination.
Every time the two agents play different actions, they are
both punished with a penalty that matches the action of
the more ambitious of the two. For example, if the agents
play joint action (c, b) they will both receive a payoff of
−3 because agent 1 tried its individual component of the
optimal joint action.

a b c

a 1 -2 -3
b -2 2 -3
c -3 -3 3

Table 3: The number-matching game



3 Reinforcement learning of Coor-
dination

A popular technique for learning coordination in coop-
erative single-stage games is one-step Q-learning, a re-
inforcement learning technique. Since the agents in a
single-stage game are stateless, we need a simple refor-
mulation of the general Q-learning algorithm such as the
one used by Claus and Boutilier (1998). Each agent
maintains a Q value for each of its actions. The value
Q(action) provides an estimate of the usefulness of per-
forming this action in the next iteration of the game and
these values are updated after each step of the game ac-
cording to the reward received for the action. We apply
Q-learning with the following update function:

Q(action)← Q(action) + γ(r −Q(action))

where γ is the learning rate (0 < γ < 1) and r is the
reward that corresponds to choosing this action.

In a single-agent learning scenario, Q-learning is guar-
anteed to converge to the optimal action independent of
the action selection strategy. In other words, given the
assumption of a stationary reward function, single-agent
Q-learning will (eventually) converge to the optimal pol-
icy for the problem. However, in a multi-agent setting,
the action selection strategy becomes crucial for conver-
gence to any joint action. In fact, two regular Q-learners
fail to converge to the optimal joint action in all games
presented in the previous section.

In previous work (Kapetanakis and Kudenko, 2002),
we developed a novel action selection heuristic, called
FMQ. Using this technique, agents are able to converge
to the optimal action in the three games from Section 2.
FMQ is based on the Boltzmann strategy (Kaelbling et al.,
1996) which states that agent αi chooses an action to per-
form in the next iteration of the game with a probability
that is based on its current estimate of the usefulness of
that action, denoted by EV(action)1 :

P (action) =
e

EV(action)
T

∑
action′

∈Ai
e

EV(action′)
T

In the case of Q-learning, the agent’s estimate of the use-
fulness of an action may be given by the Q values them-
selves, an approach that has been usually taken to date.
Instead, the FMQ approach uses the following formula to
compute EV(α):

EV(α) = Q(α) + c ∗ freq(maxR(α)) ∗maxR(α)

where:

1Kaelbling et al. (1996) introduce the estimated value as expected
reward (ER).

À maxR(α) denotes the maximum reward encoun-
tered so far for choosing action α.

Á freq(maxR(α)) is the fraction of times that
maxR(α) has been received as a reward for ac-
tion α over the times that action α has been exe-
cuted.

Â c is a weight that controls the importance of the
FMQ heuristic in the action selection.

Informally, the FMQ heuristic carries the information
of how frequently an action produces its maximum cor-
responding reward. Note that, for an agent to receive the
maximum reward corresponding to one of its actions, the
other agent must be playing the game accordingly.

4 Experimental results
with 2 learners

This section contains our experimental results with a pair
of heterogeneous reinforcement learners. We show that
one FMQ-learner is indeed sufficient to achieve a high
probability of convergence towards an optimal joint ac-
tion when paired with a simple Q-learner. The simple
Q-learner uses one-step Q-learning with the same tem-
perature function as the FMQ-learner. We vary the learn-
ing rate γ for the Q-learner to show the performance of
the FMQ/Q pair with different degrees of heterogeneity.
The evaluation of the two approaches is performed on
the climbing game, the penalty game and the number-
matching game.

In all sections, we compare the performance of the
FMQ/Q pair of learners with the baseline experiment
of two homogeneous Q-learners using Boltzmann explo-
ration with the following temperature function:

T (x) = e−sx ∗max temp + 1

where x is the number of iterations of the game so far,
s is the parameter that controls the rate of exponential
decay and max temp is the value of the temperature
at the beginning of the experiment. For a given length
of the experiment (max moves) and initial temperature
(max temp), the appropriate rate of decay (s) is auto-
matically derived. Varying the parameters of the temper-
ature function allows a detailed specification of the tem-
perature. The settings for the baseline experiments are:
max temp = 499, γ = 0.9. All sets of experiments have
been run 1000 times to minimise the variance in the re-
sults.

4.1 Evaluation on the Climbing Game
The climbing game has one optimal joint action, (a, a),
and two heavily penalised actions, (a, b) and (b, a). In the
evaluation that follows, we use the setting max temp =



499 and set the learning rate for the FMQ-learner to 0.9
and the confidence parameter of the FMQ-learner to c =
10. We show results for two experiment lengths, namely
1000 and 2000 moves. For each experiment length, we
vary the learning rate for the standard Q-learner from 0.3
to 0.9. Figure 1 depicts the likelihood of convergence to
the optimal joint action in the climbing game.
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Figure 1: Probability of convergence to the optimal joint
action in the climbing game.

The results shown in Figure 1 are significantly better
than the baseline results. The two Q-learners with the
baseline settings as explained above, only manage to con-
verge to the optimal joint action with probability 0.168
in 1000 moves and with probability 0.19 in 2000 moves.
This represents a major change in behaviour when one
of the original Q-learners is substituted with an FMQ-
learner.

4.2 Evaluation on the Penalty Game
The penalty game is harder to analyse than the climbing
game because it has two optimal joint actions (a, a) and
(c, c) for all values of k. The extent to which the optimal
joint actions are reached by the agents is affected severely
by the size of the penalty. However, the performance of
the agents depends not only on the size of the penalty k

but also on whether the agents manage to agree on which
optimal joint action to choose. Figure 2 depicts the perfor-
mance of the FMQ/Q pair of learners in the penalty game.
Again, we set max temp = 499 and set the learning rate
for the FMQ-learner to 0.9. The confidence parameter of
the FMQ-learner was set to c = 10 and we varied the Q-
learner’s learning rate from 0.3 to 0.9. In the interest of
clarity, we show results for only one experiment length,
namely 1000 moves.

The performance of the two Q-learners in the baseline
experiment is slightly better in the penalty game than in
the climbing game. For 1000 moves and the default set-
tings, the two Q-learners’ probability of convergence to
either optimal action is shown in Table 4.

From Figure 2, it is clear that in the pair of agents solv-
ing the penalty game, the substitution of a Q-learner by
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Figure 2: Probability of convergence to the optimal joint
action in the penalty game.

an FMQ-learner is always beneficial, for all values of γ

for the remaining Q-learner. The benefit is most striking
when k is low and the Q-learner’s learning rate is also low.

4.3 Evaluation on the Number Matching
Game

The number-matching game turned out to be much less
difficult than originally expected. The reason for this is
that the FMQ-learner is not easily convinced that its c ac-
tion is not a component of the optimal joint action when
confronted with the reward of −3 for miscoordination.
When the FMQ-learner witnesses a successful coordina-
tion on (c, c) and the resulting reward of 3 for playing c,
this reward becomes the maximum reward corresponding
to action c. This event, a successful coordination on the
optimal joint action, inevitably happens in the early part
of the experiment when the temperature is still relatively
high and the agents play actions almost randomly. Even-
tually, the FMQ-learner manages to convince the standard
Q-learner that (c, c) is the optimal joint action as it per-
sists in playing c.

The results for the number-matching game are in-
cluded in Figure 3. The settings for these results are:
max temp = 499, the learning rate for the FMQ-learner
is 0.9 and the confidence parameter of the FMQ-learner
is set to two values, namely 2 and 5. Normally, a value of
c = 2 for the confidence parameter is too low to help the
learners to converge to the optimal joint action. However,

k (a, a) (c, c) total
−10 0.373 0.359 0.732
−20 0.256 0.276 0.532
−30 0.242 0.230 0.472
−50 0.194 0.222 0.416
−100 0.176 0.211 0.387

Table 4: Probability of convergence to optimal in the
penalty game for the baseline experiment.



for the number-matching game where the optimal joint
action has very low corresponding reward and the maxi-
mum penalty is not significantly greater in absolute value
than the reward for the optimal joint action, even a value
of 2 is enough to solve the game adequately. For illustra-
tion, Figure 3 depicts the performance of the learners for
an experiment that is 1000 moves long, for both c = 2
and c = 5 for the FMQ-learner.
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Figure 3: Probability of convergence to the optimal joint
action in the number-matching game.

Again, the baseline experiment using two regular Q-
learners is heavily outperformed by the FMQ/Q pair’s
performance. In 1000 moves, the probability of conver-
gence to the optimal action (c, c) in the baseline experi-
ment is 0.32, which is significantly lower than the prob-
ability of success for the FMQ/Q pair, which is always
above 0.833, for all tested values of γ and even for a low
confidence value c = 2.

5 Evaluation with greater
size teams

In this section, we present our experimental results with
one FMQ-learner that is teamed up with more than one Q-
learner. The results show that the FMQ-learner is still able
to increase the probability of convergence to the optimum
but not as drastically as in the two-agent case.

Two of the games from the above experiments can be
generalised to more than 2 agents while keeping the over-
all philosophy of the game, namely the number-matching
game and the penalty game. Their definitions are as fol-
lows:

The general number-matching game: if all agents
play the same action, return the corresponding reward
e.g. for action (a, a, . . . , a) return 1. If they play
different actions, return the penalty corresponding to
the agent that played the most ambitiously, e.g. for
action (a, a, . . . , a, c) return -3.

The general penalty game: if all agents play a return
10, if all agents play c return 10, if all agents play b

return 2. If any number of agents play a (or c) and
at least one agent plays c (or a) return the penalty k

as the group have just miscoordinated. For any other
joint action, return a reward of 0.

In the sections that follow, we will use the short-hand
notation < α > to denote the joint action that results from
all agents playing their individual action components α.
For example, in the 4 agent case, (< b >) corresponds to
the joint action (b, b, b, b).

From the definitions of the two general games, we can
see that they correspond appropriately to their original
counterparts. The climbing game cannot be generalised
to more than 2 agents as there is no symmetry to exploit
in doing so. For that reason, we will perform the eval-
uation on agent teams of greater size than 2 only on the
general penalty game and number-matching game.

In the text that follows, we will illustrate the perfor-
mance of agent teams that comprise a single FMQ-learner
and 2, 3 or 4 Q-learners. In all experiments, the agents
use the same temperature function as previously with
max temp = 499 and γ = 0.9, for all agents. The FMQ-
learner’s confidence parameter has been set to c = 10
throughout.

5.1 Evaluation with the Penalty Game
The general penalty game for teams of more than 2
agents is quite a challenging game. This is because
even the FMQ heuristic that was so successful in two-
agent experiments can be mislead by greater size teams.
For the heuristic to be more useful, the participating
agents should all base their action selection decisions on
the same reasons, namely that the action they are most
tempted by is the one that produces better reward more
often. In fact, had this been the case, i.e. if we were
interested in the performance of a homogeneous FMQ-
learning team, the probability of convergence to the op-
timal joint action would be significantly higher. For ex-
ample, a team of 4 FMQ-learners would solve the general
penalty game with probability comfortably greater than
0.95 in 5000 moves.

However, when one teams up more than 1 Q-learner
with an FMQ-learner, the performance of the learning
team suffers as the Q-learners play too randomly. This
means that the frequency of getting high reward for coor-
dinated actions is too low and the FMQ-learner is misled
into believing that its b action is better than either a or c.
In effect, although the FMQ-learner is still “pushing” the
group towards some joint action, that joint action is (b, b)
and not one of the optimal joint actions.

From Figure 4, we can see that although the experi-
ments with 2 Q-learners and 1 FMQ-learner are still quite
successful, those with greater size teams are not. This is
attributed to the problem described above where the op-
timal joint action is simply not experienced often enough
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Figure 4: Probability of convergence to the optimal joint
action in the general penalty game (FMQ/Q-learners).

to be considered by the FMQ-learner. Note that the move
from 2-agent to 3-agent experiments increases the size of
the joint action space by a factor of 3, from a total of 9
joint actions to 27.

One observation that is important is that, despite the
limited success of the experiments with the FMQ-learner,
the learning team still performed better than the same size
team of only Q-learners. More importantly, the team with
the added FMQ-learner performed better overall than the
team without the FMQ-learner even though the two prob-
lems differ greatly in the size of the joint action space.

To illustrate this point, we have included a plot of the
probability of convergence to the optimal joint action in
teams with only Q-learners in the general penalty game.
This is shown in Figure 5.
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Figure 5: Probability of convergence to the optimal joint
action in the general penalty game (Q-learners).

5.2 Evaluation with the Number-Matching
Game

The general number-matching game was again less chal-
lenging than its penalty game counterpart. The addition
of the FMQ-learner proved positive in all experiments, as
is shown in Figure 6.
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Figure 6: Probability of convergence to the optimal joint
action in the general number-matching game (FMQ/Q-
learners).

The same efect as before was observed in these exper-
iments too. The addition of one FMQ-learner, although it
causes the joint action space to grow significantly, it still
provides better learning performance. We hope this is a
general enough result to be exploited further in our future
work.

5.3 Discussion

In the previous sections, we have investigated the effect
that the addition of one or more FMQ-learning agents has
to a group of Q-learners.

The rather surprising result is that adding an FMQ-
learner is always beneficial. This is quite significant since
the addition of another agent to the system makes the joint
action space grow exponentially. When a 2-agent problem
with 3 actions per agent had only 9 joint actions, a 3-agent
problem with, again, 3 actions has 27 joint actions. The
addition of an FMQ-learner to a group of agents means
both that the agents converge more often to the optimal
joint action and that they converge to better actions in gen-
eral. This is a phenomenon that obtains in all games that
we have tried.

However, another interesting phenomenon is that the
agents need only polynomially more time to solve a prob-
lem that is exponentially bigger. Again, this is supported
by our experimentation and will be evaluated further in
our future work to show whether this observation obtains
in general.

6 Limitations
Heterogeneity in agents is not merely a question of learn-
ing algorithm. Changing just one setting can turn a suc-
cessful experiment into an unsuccessful one. For exam-
ple, if we pair up a Q-learner and an FMQ-learner to solve
the climbing game (see Table 1) and set the maximum
temperature to 499, set the FMQ-learners confidence pa-



rameter to 5, set both learning rates to 0.9 and allow them
to run for 1000 moves, they will converge to the optimal
joint action (a, a) approximately 55% of the time. This
may not be great but it is still better than if we allowed
the Q-learner the use of a different temperature function.
If the Q-learner was using a linear temperature function
instead of the exponential one, the learners would not
converge at all to the optimal joint action. The learners
would, instead, consistently converge to a suboptimal ac-
tion. This instability with respect to the degree of hetero-
geneity in the agents is an issue that has to be addressed
in future research.

Finally, it is important to note that the addition of more
than one FMQ-learner to the agent population does not
improve results. In fact, it even tends to reduce perfor-
mance a little for the same or slightly greater experiment
length. The advantages of the addition of more ”smart”
agents seem to be outweighed by the exponential increase
in the joint action space.

7 Conclusions and Outlook
We have presented an experimental study of the learn-
ing of coordination for heterogeneous multi-agent sys-
tems. Specifically, we have shown that a learning agent
which employs the FMQ heuristic can achieve high lev-
els of convergence towards an optimal joint action when
teamed-up with one or more simple Q-learners. This
has been shown on games where two or more simple Q-
learners would not be able to achieve optimal coordina-
tion by themselves. In other words, the FMQ-learner
“pushes” the simple Q-learners to the optimum. This
result indicates that it is possible for a multi-agent sys-
tem developer to achieve optimal coordination even when
he/she does not have complete control over the nature of
the agents that are going to be part of it.

While the results presented are very encouraging, there
is still more work to be done in generalising our results.
Specifically, we plan to study the performance of other
heuristic learners when teamed-up with a wider range of
other kinds of learning agents. Furthermore, we plan to
investigate limitations, such as those mentioned in the
previous section. We also intend to extend our studies to
stochastic single-stage games (Kapetanakis et al., 2003),
as well as multi-stage games.
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Abstract

It is difficult to define a set of rules for a cellular automaton (CA) such that creatures with life-like properties
(stability and dynamic behaviour, reproducton and self-repair) can be grown from a large number of initial
configurations. This work describes an evolutionary framework for the search of a CA with these properties.
Instead of encoding them directly into the fitness function, we propose one, which maximises the variance of
entropy across the CA grid. This fitness function promotes the existence of areas on the verge of chaos, where
life is expected to thrive. The results are reported for the case of CA in which cells are in one of four possible
states. We also describe a mechanism for fitness sharing that successfully speeds up the genetic search, both
in terms of number of generations and CPU time.

1 Introduction

The aim of this work is to evolve a set (table) of rules
for a cellular automaton (CA) with a good potential for
producing “interesting” life forms, e.g., such that grow,
move, have a long life span, consist of differentiated types
of tissue, are compact and/or preserve their shape or pro-
duce a copy of themselves as a by-product of their growth.
Rather than focussing on each such property in isolation,
and trying to find the combination of rules that promotes
it, an attempt is made to study an entropy-based criterion
that is used as an indicator of the likelihood of such de-
sirable life-forms appearing in a given CA. The criterion
is used as a fitness function of a genetic algorithm (GA)
searching through the range of possible CA. Also, to im-
prove the GA performance on a task in which, intuitively,
good solutions are few and far apart, we employ two tech-
niques to maintain the balance between population quality
and diversity — crowding (De Jong, 1975) and extended
fitness — and show the substantial advantages that the lat-
ter brings in.

Cellular automata are dynamic systems consisting of
a lattice of cells (in any number of dimensions) each of
which has a number of associated discrete states k. The
state of these cells is updated at discrete time steps, the
resultant state dependent upon local state rules. Here we
study two-dimensional automata with cells being in one
of four possible states (k = 4, in other words, the cell
belongs to one of three different types or is empty). The
range of cells that influence the subsequent state of a cell
is limited to immediate neighbours (sometimes denoted
as r = 1 (Mitchell et al., 1993)). Each CA is defined by
the table of rules that describe the subsequent state of the
central cell for each 3 × 3 neighbourhood.

2 Genetic Algorithms and Extended
Fitness

Genetic algorithms are search algorithms based on the
mechanics of Darwinian evolution and genetics. GAs,
despite their large variety, are all based on the same ba-
sic principles. They maintain a population of individuals
representing candidate solutions to an optimisation prob-
lem. For each generation, a fitness reflecting estimated
or actual quality is assigned to each solution (individ-
ual). A next generation of individuals is obtained by sam-
pling the current so that individuals with higher fitness are
favoured. Finally, the new generation is subjected to ge-
netic operations such as crossover and mutation that aim
at introducing a variety of new individuals. Then the cycle
is repeated until some termination condition is fulfilled
(Goldberg, 1989).

The fitness of an individual may measure the quality of
the solution it proposes in absolute terms, say, as a scalar
representing the value of a function that the GA is trying
to maximise. In other cases, e.g., when it is normalised,
fitness only represents the relative quality of an individual
with respect to the rest. Fitness could be an even more
abstract concept only reflecting the rank of the individual
in the population.

Whether the goal of the GA is to provide a single best
solution or a number of these, its principle remains the
same : to store copies of the best one(s) aside from the
main population, and wait until better ones are produced.
For that ever to happen, it is essential that the GA should
be capable of producing individuals that have not been
seen in the previous generations. While the genetic oper-
ators, such as crossover and mutation, are the GA com-
ponents that introduce new individuals in the population,
their success depends on preserving sufficient genetic va-



riety in it. Evolution, whether in nature or as implemented
in GAs, can be seen as a dynamic process driven by two
factors : (natural) selection, which favours the survival of
the fittest, and genetic variation, which introduces new in-
dividuals, some of which could potentially outperform the
best so far. Neither factor is sufficient on its own : without
selection, the search for the best individual will become
completely random ; without genetic variation, there will
be nothing that selection can act upon as a uniform popu-
lation of identical individuals reaches a dead end.

GAs employ several techniques that study the individ-
ual’s fitness in the context of the whole population and
modify it to preserve the balance between the forces of
selection and those increasing genetic variation. Fitness
scaling is used to reduce the risk of clones of one ‘su-
perindividual’ taking over the whole population in the
early stages of the search when the individuals’ fitness
is very varied and generally low. Also, in a population
with a minimum of variety in the fitness, scaling helps
emphasise the existing differences and promote the best
individuals more strongly. In either case, scaling aims
at normalising the differences between the fitness of indi-
viduals with respect to the extremes present in the popula-
tion. This could be done in a number of ways, from using
a linear scaling function to ranking individuals according
to their fitness and substituting rank for the original fit-
ness.

Holland (1975) has observed that for fitness functions
with a rugged landscape two high fitness parents often
generate ‘lethals’ (very low fitness offspring). De Jong
(1975) suggests that this effect can be combated using an
algorithm with crowding factoring such that a new indi-
vidual will replace an individual from the previous gen-
eration with a similar genetic make up. For each child,
a subset of the population is selected at random that con-
tains k individuals and the member of that set closest (by
bitwise comparison) to the new offspring is replaced. In
this model, k is known as the crowding factor, and was
shown by De Jong to have an optimal value of 2 over the
complex multimodal foxhole function. In this work, trials
have shown that 10 is an optimal value for the crowding
factor given an initial population size of 150.

Inbreeding with intermittent crossbreeding is a tech-
nique proposed by Hollstien (1971) for search using ge-
netic algorithms with multimodal fitness functions. The
idea is that the individuals in each niche mate until the
average niche fitness ceases to rise and then the individ-
uals in that niche can mate with individuals in different
niche. This allows the neighbourhood of each local maxi-
mum to be thoroughly searched before guiding the search
for a global maximum to another unexplored part of the
search space.

Although not used here, another technique worth men-
tioning is niching, which is used to modify fitness in or-
der to avoid overpopulating parts of the search space in
favour of others. In general, this technique is based on
partitioning the range of all individuals into niches and

procedure evaluateExtendedFitness

for each chromosome C do
|extFitness(C) = 0
| for each locus L do
| | extFitness(C,L) = 0
| | numberOfMatches=0
| | for each chromosome C’ do
| | | if locus L in C = locus L in C’
| | | increment numberOfMatches
| | |_ extFitness(C,L) += fitness(C’)
| | extFitness(C,L)/=(numberOfMatches *
| | chromosomeLength )
|_ |_ extFitness(C) += extFitness(C,L)

Figure 1: Procedure computing extended fitness.

then reducing the fitness of individuals in overpopulated
niches (Mahfoud, 1995).

Yet another alternative proposed here is the approach
we call extended fitness (see Figure 1), in analogy to
Dawkins’s notion of extended genotype (Dawkins, 1982).
As in population genetics, the components of this fitness
are defined to measure the relative advantage that a gene
gives to its carrier with respect to all other genes that
can appear in the same locus. The fitness of the whole
genome then can be computed as the averaged contri-
bution of all its loci (Falconer, 1981). Extended fitness
favours individuals with good genetic material (building
blocks) and relies on the assumption that these could po-
tentially be useful in the evolutionary search. Figure 2
shows the actual implementation of the way extended
fitness is computed, which is faster, but more difficult
to follow than the one shown in Figure 1. The over-
head O(numberOfChromosomes*chromosomeLength) in-
troduced by this latter implementation is very modest,
and, as the experimental section of this article shows, it
can be easily outweighed by the benefits it brings.

3 Evolving Cellular Automata
Using genetic algorithms for the search of CA with de-
sired properties is a trend with a relatively short history.
Previous research has often focussed on one-dimensional
automata (Packard, 1988; Mitchell et al., 1993) or ones
with two cell states (k = 2) (Packard, 1988; Mitchell
et al., 1993; Sapin et al., 2003). In all cases, the result-
ing cellular automata (sets of rules) fall into one of four
classes as defined by Wolfram (1983). Class 1 automata
evolve after a finite number of time steps from almost
all initial configurations to a single unique homogenous
configuration in which all cells in the automaton have the
same value. Class 2 automata generate simple disjoint
structures dependent upon their initial configuration. The
evolution of class 3 automata produces chaotic patterns



procedure evaluateExtendedFitness2

for each locus L do
for each allele A in L do
| fitness(L,A) = 0
|_ presence(L,A) = 0

for each chromosome C do
for each locus L in C do
for each allele A in L do
| fitness(L,A) += standardfitness(C)
|_ presence(L,A)++

for each locus L do
for each allele A do
|_ fitness(L,A) = fitness(L,A) / \

( presence(A) * chromosomeLength )

for each chromosome C do
| extFitness(C) = 0
| for each locus L in C do
| for the allele A in L do
|_ |_ extFitness(C) += fitness(L,A)

Figure 2: More efficient computation of extended fitness.

from almost all initial configurations; the statistical prop-
erties, after sufficient time steps, of the patterns produced
by almost all initial configurations is the same. All other
automata fall into a fourth class where for most initial
configurations the automaton cells will become almost
entirely unpopulated, however some stable live structures
will develop which will persist indefinitely.

It would be unlikely that interesting creatures could ex-
ist in class 1 automata since after a finite time period all
cells in the automaton would have the same value; there-
fore no interesting creatures could persist past this point.
Class 2 automata merely generate simple disjoint struc-
tures (either periodic or static), which means that no re-
producing or dynamic creatures could be created. Class
3 automata cannot support interesting creatures since the
patterns produced are chaotic. Therefore the focus of this
paper must be the fourth class of automata since they are
most likely to be able to satisfy the criteria of support-
ing interesting creatures. The above speculations should
be compared with Wolfram’s suggestion that the fourth
class of CA is of sufficient complexity to support univer-
sal computation Wolfram (1984).

When the fitness of a set of rules is to be determined
then the cellular automaton that is represented by that set
of rules needs to be run on some initial configuration of
cells in the lattice. There are two techniques to consider
that have been used in previous research to generate initial
states — random generation and specific pattern genera-
tion. In random generation, some portion of the board is
populated at random with live cells, and the density of live

cells is dependent upon the probability of each cell being
live. In specific pattern generation, a user defined pattern
is created usually at the centre of an otherwise unpopu-
lated lattice.

In their work, Basanta et al. (Basanta, 2003) used a
static initial state — only the central cell is live and all
others are initially unoccupied. This reduces the amount
of computation necessary for each fitness calculation. For
an algorithm using randomised initial states, several runs
are needed to attain an accurate fitness for the rule set,
however with a single static initial state the fitness must
only be calculated once.

The approach adopted here is based on two GAs. Each
individual of the first GA encodes the rules of one CA. For
each of these CA, another, nested, GA is used to search
for an initial configuration of the given CA that has the
highest possible fitness. The fitness of an initial configu-
ration is computed by running the CA through a number
of time steps, summing the fitness for each ot them. This
fitness is then used as the fitness of the CA. The inner
genetic algorithm uses the fitness function described in
the next section to discover initial configurations which
favour the evolution of interesting life. All this can be
summarised as follows:

1. Use a GA to select the best CA (set of rules).

2. To evaluate each CA, use another GA to select the
best initial configuration (IC) and use its fitness as
the CA fitness.

3. To evaluate each pair (CA,IC), run CA with IC for
a predefined number of steps, measuring fitness at
each step, summing it up, and returning the total. In
other words, a CA, as defined by its set of rules, is
only as fit as the fittest initial configuration that has
been found for it.

The fitness landscape for this problem is highly rugged
and therefore one must consider techniques for improv-
ing the effectiveness of the genetic algorithm under these
conditions, with a particular attention to fitness scaling. In
this work, crowding and extended fitness have been em-
ployed and compared.

4 Entropy Based Fitness of Cellular
Automata

In this section, we introduce the fitness criterion used by
the inner of the two above mentioned GAs.

The entropy of a system is defined to be the level of
orderliness or chaos in that system – the higher the level
of chaos, the higher the entropy. Wolfram (1983) defines
the entropy of a CA to be:

S = −

∑

i

pi log
2
pi (1)



where S is the entropy and pi is the probability of state i.
For two-dimensional automata an equation was developed
by Wolfram and Packard (1985) to express the set entropy
of an automaton.

S = lim
X,Y →∞

1

XY
logk N(X, Y ) (2)

where S is the entropy, X and Y are dimensions of the
area for which the entropy is being calculated and k is the
number of different states. When used to calculate the en-
tropy of a particular state, N(X,Y) is the number of possi-
ble different states by which the current configuration can
be represented. E.g., a 3 × 3 area containing one live cell
could be represented by 9 different states, so N(X, Y) =
9. The division by XY normalises the entropy values, so
that entropies over different tile sizes can be compared.

To calculate an approximation of this set entropy is far
cheaper than to calculate the entropy using the first equa-
tion, since this first option would require us to enumerate
all possible states. Also we are not interested in the over-
all automaton entropy but rather in the entropy of tiles
(Sapin et al., 2003), a lattice of cells which is a component
of the overall lattice of cells making up the automaton.

Another possible method of calculating the entropy
would be to use the site entropy approach used by Lang-
ton. This is based on the entropy of a single cell of the
lattice, and is defined to be 1 if the cell is in a different
state to its state in the previous time step. The entropy
of a tile therefore would be the sum of the entropies of
all its constituent cells. To normalise the tile entropies,
as with the set entropy calculation, it would be necessary
to divide the tile entropy by the tile size, which gives the
proportion of the cells that are in the same state as in the
previous time state.

If we based the fitness function on the overall entropy
then selecting for high entropy would result in a chaotic
class 3 automaton which could not support interesting
life. Conversely, selecting for a high degree of order (low
entropy) would favour class 1 and class 2 automata which
reach a stable state and never leave it. Interesting life is
most likely to develop on the boundary between order and
chaos; we need dynamic behaviour inherent in chaotic
systems but we also need a degree of order to keep any
developing life coherent. Therefore we wish to promote
rule sets that contain both order and chaos — this can
be achieved by assigning a fitness based on the spread
(standard deviation) of the entropies of (a sample of) the
tiles making up the automaton. We have also hoped that
setting k = 4 would allow for specialisation among the
types of cell, in a way specialised types of cells (tissue)
have evolved in nature.

5 Results and Evaluation
A rule set was generated using a 100 × 100 board, and
an initial population of 150 rule sets for the outer entropy

based GA, which was run for 300 generations. The in-
ner genetic algorithm, evolving for a given rule set inital
configurations that create interesting creatures, had a pop-
ulation of 10 and was run for 20 generations — the popu-
lation size and number of generations have to be kept low
since they have a large effect on the run time of the algo-
rithm. To evaluate each initial configuration, the CA was
run with the given set of rules and initial configuration for
200 steps. To compute the fitness of a configuration (CA
board), only tiles of size 3 × 3 and 15 × 15 were consid-
ered.

The properties of the best rule set found have been em-
pirically analysed and are as follows. No single cell of
any colour can survive, and neither groups of cells which
are of type 1 (red) or 2 (blue). Cells of type 3 (green)
survive, unchanged and unproductive, in some compact
formations of sufficient size. All other life seen so far un-
der the rule set consists of more than one different type
of cell (and this is observed, as a rule, whenever the ex-
periment is repeated). We have produced a rule set which
favours life consisting of different types of tissue, one of
the aims of the work, without specifying this as part of the
genetic algorithm.

Here are some examples of the ways different types of
cell interact. Any cell of type 1 (red) requires another cell
of the same type, as well as a cell of type 3 (blue) in its
neighbourhood in order to survive. Red cells catalyse the
growth of blue cells: any non-live cell adjacent to a red
cell and a blue cell will grow into a live blue cell. As a
result, a cluster of red and blue cells will gradually evolve
into a connected core of red cells completely enclosed by
the blue. Cells of type 3 (green) grow in the presence of
other 4 of the same kind, as well as when a combination
of 1 green and 1 red is present. Certain combinations of
green and blue neighbours breed another blue cell, and
often clusters of these two types of cell are stable or show
periodic behaviour.

To summarise, one can see type 1 cells (red) as serv-
ing as an inert ‘skeleton’ which has to be protected by a
layer of blue (type 2) cells; type 3 (green) cells promote
periodic behaviour in combination with type 2, and can
be grown themselves in the presence of red (type 1) cells.
Figures 3–4 are examples of some of the small structures
that survive in this CA. For configurations with sufficient
density (e.g., 0.7) complex, connected structures such as
the one in Figure 5 with stable and periodic components,
spanning more than half the environment in each direc-
tion, emerge as a rule. Here size is an important factor.
A large structure will show a periodic behaviour equal to
the least common multiple of the periods of all dynamic
substuctures. For substructures of period 3,4 and 5 (all
observed), the overall period will be 60, etc.

Figure 6 shows the type of life produced by another
rule set selected by our algorithm after 200 generations.
This rule set started from almost any initial configuration
will generate a pattern resembling that of animal spots or
organs made of layers of tissue. The automaton is resilient



Figure 3: Cyclic structures with period 2.

Figure 4: A cyclic structure with period 6.

Figure 5: A large structure evolved from a dense, random
configuration.

a) ............. b)

c) ..............d)

Figure 6: (a) Randomly generated initial configuration of
the cellular automaton (density 0.2); (b) state after 1 tran-
sition; (c) state after 2 transitions; (d) state after a large
number of transitions.

to damage and will regrow any killed cells so long as the
core (green) cell is not removed.

Figures 7–8 show an interesting result related to the
way GA is implemented: extended fitness produces faster
improvements of the average population fitness despite
the computational overhead it introduces. Moreover, ex-
tended fitness has a positive effect not only when the num-
ber of generations is compared, but also in terms of com-
putational time, which is a very rewarding result. In a fi-
nal observation on extended fitness (Figure 9), we have
shown that the average population fitness can improve
faster (again, in the stronger terms of time needed) with
a larger population, which may seem counter-intuitive.
This could be explained by the rugged fitness landscape
which can be mapped more accurately by a larger popu-
lation.

Figure 7: Comparison of the average fitness of rule sets
for extended fitness and standard fitness approaches by
generation (averaged over 10 runs using a population size
of 100).



Figure 8: Comparison of the average fitness of rule sets
for extended fitness and standard fitness approaches by
time (averaged over 10 runs using a population size of
100).

Figure 9: Comparison of the average fitness of rule sets
for extended fitness and standard fitness approaches by
population size (averaged over 10 runs).

Initial population
of rule sets

Population of
rule sets

Most interesting 
rule set

GA using  entropy−
     based   fitness

GA using  creature 
identification   fitness

Figure 10: Generation of an interesting ruleset combining
two different fitness measures.

6 Identifying Moving, Reproducing
Creatures in Cellular Automata

In order to identify rule sets that support interesting life
forms, the population of the genetic algorithm with the
entropy based fitness function at the final generation will
be used as the initial population to a second genetic algo-
rithm. This second algorithm evaluates CA with a fitness
function that identifies individual creatures (connected
groups of cells) and maintains a table of those which it
has seen. Creatures are identified by the proportion of
each type of cell of which they are made up. The creatures
which have been seen are stored in a list, the members of
which are compared with the board at regular intervals. If
a creature is seen again, then its past and present positions
are compared. If the creature has moved, then the CA fit-
ness is increased by the number of cells making up that
creature. As a result, the fitness promotes CA generating
long-living creatures that move. Creatures can be com-
posed a minimum of 5 and a maximum of 200 live cells
to reduce computation costs.

The problem with this fitness function is that it is very
expensive to compute taking nearly 600ms (on the 700
MHz test machine). If we were to substitute this fitness
function for the entropy-based one, and run the experi-
ment described at the beginning of Section 5, it would
mean calling it around 8.106 times, which would take ap-
proximately 8 weeks. Instead, the genetic algorithm using
this fitness function was used to further evolve a popula-
tion of rule sets generated by the an initial genetic algo-
rithm using the entropy based fitness function (see Fig-
ure 10).

The process for identifying creatures is as follows:

1. Initially create a new array the same size as the game
board, called the creature search array, and initialise
all cells to ‘unchecked’.

2. Run through the game board sequentially checking
each cell in the creature search array marked as
‘unchecked’.

3. When a cell in the game board is discovered which
contains life then check the surrounding unchecked
cells to identify if any of those are live. As each cell
is checked remember that, so that it is not looked at
again.

4. Keep a count of each type of cell encountered in the
creature stopping once no more live cells are found
to be connected to the original live cell. Now check
that the creature size is between the minimum and
maximum size for an organism; if so, keep a record
of it, in terms of the three different cell types.

5. Continue traversing the game board until each cell is
recorded as ‘checked’.



a) b)

c) d)

e) f)

g) h)

Figure 11: A trace of a creature over 8 consecutive steps. The creature moves to the right, expanding, and eventually
splitting into two. Two very similar copies of the initial structure reappear in frame (g). In frame (h) they separate and the
protruding ‘nucleus’ of each splits into two.



6. Now check to see if any of these creatures have been
seen before since the start of this game: a creature
with relative counts of each type of cell that fall
within 5% of the counts of a previously seen crea-
ture, is seen as matching.

do this by dividing the number of cells containing
each life type by the number of cells containing that
type for the recorded creature. Then compare the
three values produced which should also be within a
set percentage (5% during testing) of each other.

7. If a creature has not been seen before then it must be
added to the list of creatures.

8. Check the creature has moved from its previous posi-
tion before incrementing the fitness by the number of
live cells in that creature. If more than one copy of a
single type of creature is seen in a turn then multiply
the number of live cells in all organisms of that type
by the number of the organism present. For instance,
if there are three copies of an eight-celled creature
then each creature has a fitness of 24 and so a total
of 72 is added to the turn fitness for all three crea-
tures.

Using this genetic algorithm to further evolve the rule
sets from the final generation of the entropy based genetic
algorithm several interesting creatures were discovered.
One of the most interesting is a moving reproducing crea-
ture. The creature is resistant to damage and splits every
11 time steps. Another example of moving, reproducing
creatures is shown in Figure 11.

7 Discussion and Further Work
The experiments described above show that the fitness
function based on entropy did, indeed, generate non-
trivial cellular automata. The addition of another fitness
function promoting moving and reproducing creatures has
also achieved its goal. Future work should continue to
concentate on automatically isolating and following the
development of life-forms in a given CA. The behaviour
of these creatures should be compared with the CA rules
they are based on, in an attempt to find analogies with
the processes of autocatalysis, mutual catalysis and inhi-
bition, characteristic of biological systems.

Another achievement of this work is that it demon-
strates the substantial benefits of using extended fitness
on a task with an apparently very complex fitness land-
scape.

For the chosen type of CA (two-dimensional, k = 4
and r = 1), there are hundreds of rules in each rule set.
Such large number of rules means it is difficult to analyse
all the pathways in which cells can interact. One way to
deal with this issue is to use a machine learning technique
to summarise all rules and represent them in a more ex-
pressive formalism, stating, for instance, “cell of type X

will be created if 2 to 4 cells of type Y are present”, rather
than enumerating these cases separately. Inductive Logic
Programming (ILP) is an excellent candidate for the task
Muggleton and Raedt (1994).
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Abstract

This paper describes a protocol language which can provide agents with a flexible mechanism for coherent
dialogues. The protocol language does not rely on centralised control or bias toward a particular model of
agent communication. Agents can adapt the protocol and distribute it to dialogical partners during interactions.

1 Introduction

As the programming paradigm of agency evolves, more
robust, diverse, and complex agents are developed. The
growing heterogeneity of agent societies will increase
even further as the research and development of deliber-
ative and communicative models produce new and inter-
esting approaches (Pasquier et al., 2003). The need for an
equally adaptive means of communication between this
heterogeneous multitude also grows.

Electronic Institutions (Estava et al., 2001) and other
state-based approaches are not feasible for use in open
multi-agent systems with dynamic or large conversation
spaces. The term conversation space is used to express ev-
ery possible sequence and combination of messages that
can be passed between two or more agents participating in
a given agent system. Protocols provide a useful frame-
work for agent conversations and the concern that they
sacrifice agent autonomy is exaggerated. In social inter-
actions, humans and agents must willingly sacrifice au-
tonomy to gain utility. If I want my train tickets or cup
of coffee, I must follow the implicit protocol and join the
queue. It is the same for software agents. If the agent
must gain a resource only available by participating in an
English auction, it behoves the agent to adopt the proto-
col necessary for participation in the auction. Whether
this is done by an explicitly defined protocol or the agent
learning the protocol implicitly makes no difference to the
agent’s behaviour within the system.

Electronic Institutions take a societal approach to agent
communication. Control is top-down. Administrative
agents perch above the system and keep an eye on the
agents as they interact inside the system. Agent-centric
approaches build systems bottom-up. These approaches
attempt to pack individual agents with a model of com-
munication which can react to a multi-agent system. They
have a communicative model that sits besides or is inter-
twined with its rational model. This is done in a number
of ways. The most common is a BDI-model of commu-

nication as typified by the standardisation organisation,
FIPA. There is a lot of dissatisfaction with FIPA ACL,
and a variety of alternative models for agent communi-
cation have been proposed. All trying to address faults
perceived with the FIPA approach.

The protocol language described in this paper seeks
a balanced approach. It utilises the useful aspects of
Electronic Institutions without relying on administra-
tive agents or statically defined protocol specifications.
Agents communicate not only individual messages but the
protocol and dialogue state as well. The use of protocols
provides structure and reliability to agent dialogues. Yet,
by describing protocols as a process rather than a fixed
state-based model, the conversation space can be defined
as the agent interaction progress rather than being stati-
cally defined during the engineering process. Distributing
the protocol along with the message also allows agent to
communicate the convention for communication as well
as coordinate the dialogue.

Section 2 will discuss some of the dominant agent com-
munication paradigms. Section 3 describes the syntax and
features of the protocol language. A discussion of adapt-
able protocols in section 4 is followed by an example il-
lustrating an adaptable protocol using dialogue games in
section 5. Section 6 concludes the paper enumerating the
accomplishments and potential issues associated with the
approach.

2 Approaches to Agent Communi-
cation

2.1 Electronic Institutions

Electronic Institutions(EI) provide structure to large and
open multi-agent systems(MAS). By emulating human
organizations, Electronic Institutions provide a frame-
work which can increase interoperability. The EI frame-
work formally defines several aspects of an agent soci-



ety. The core of an EI is the formal definition of roles
for agents, a shared dialogical framework, the division of
the Institution into a number of scenes and a performative
structure which dictates, via a set of normative rules, the
relationships between the scenes. Agents interact with an
Institution through the exchange of illocutions, i.e. mes-
sages with intentional force.

Participating agents are required to adopt a role within
the Institution. This is similiar to our entering a shop and
assuming the role of a customer, and the employee adopt-
ing the role of salesperson. A role is defined as a finite
set of dialogical actions. By the adoption of a role within
an Institution, an agent’s activities within the Institution
can be anticipated. This abstraction of agents as a role
allows the Institution to regulate and identify agent activ-
ities without analysing individual agents. Relationships
between agents can be dealt with as generalizations. A
role can be defined as subsuming or being mutually ex-
clusive to another role.

The dialogical framework provides a standard for com-
munication. Agents are guaranteed to have a shared vo-
cabulary for communication as well as a common world-
view with which to represent the world they are dis-
cussing. The dialogical framework is defined as a tuple
consisting of an ontology, a representation language, a set
of illocutions, and a communication language. The rep-
resentation is an encoding of the knowledge represented
by the ontology and makes up the inner language. This is
contained with an individual illocution that is passed be-
tween agents. The illocution, as part of the outer language
or communication language, expresses the intention of
the agent by its communicating the message of the inner
language. The dialogical framework, which contains the
ontological elements, is necessary for the specification of
scenes.

All interactions between agents occur within the con-
text of scenes. Scenes are interaction protocols between
agent roles. They are expressed as a well-defined proto-
col which maps out the conversation space between two
agent roles. These scenes are represented as graphs. The
nodes are conversation states and arcs representing the
utterances of illocutions between the participants. Each
scene will have a set of entrance and exit states with con-
ditions that must be satisfied before the agent can begin or
exit a scene. A set of roles and scene states are formally
defined. An element of the set of states will be the initial
state and a non-empty subset will be final states. Between
the states there is a set of directed and labelled edges.

Scenes are individual agent conversations. In order for
agents to participate in more interesting activities, it is
necessary to formalize relationships between these indi-
vidual conversations. The performative structure formal-
izes this network of scenes and their association with each
other. The roles an agent adopts and the actions of the
agents create obligations and restrictions upon the agent.
These obligations restrict the further movement of agents.
The performative structure is made of a finite non-empty

set of scenes. There is a finite and non-empty set of tran-
sitions between these scenes. There is a root scene and an
output scene. Arcs connect the scenes of the Institution.
These arcs have different constraints placed upon them.
For example, the constraints can synchronize the partici-
pating agents before the arc can be fully traversed, or there
are constraints that provide an agent a choice point upon
which scene to enter.

Within the scenes of an Electronic Institution, the ac-
tions an agent performs affect the future actions available
to the agent. These consequences can extend beyond the
current scene. These consequences could be the require-
ment for a agent to perform an action in some future scene
or even which scenes or sequence of scenes an agent is
now required to be a participant. These normative rules
are categorized between two types. Intra-scene dictate
actions for each agent role within a scene, and inter-scene
are concerned with the commitments which extend be-
yond a particular scene and into the performative struc-
ture (Esteva et al., 2000).

Tools (Esteva et al., 2002) exist to aid in the creation
of the various components and development of Electronic
Institutions. This includes a tool to verify any specifi-
cations developed as well as tools to aid the synthesis
of agents that can participate in the Electronic Institu-
tion (Vasconcelos, 2002).

2.2 Agent-centric Design

FIPA ACL for better or for worse has made a large im-
pact of agent communication research. A victim of its
own success, most new approaches to agent communi-
cation are attempts to redress FIPA’s ACL deficiencies.
Conversation Policies (Greaves et al., 2000) were an at-
tempt to produce a more ‘fine-grained’ means of generat-
ing dialogues. More recently, researchers have developed
communicative models to address the semantic verifica-
tion problem of FIPA ACL (Wooldridge, 2000). There
are other approaches which see the importance of sepa-
rating the agent’s internal states from the conversational
model (Maudet and Chaib-draa, 2002). Two approaches
of interest are theories based on social commitment or
obligation and formal definitions of agent systems based
on dialogue theory.

2.2.1 FIPA ACL

The Foundation for Intelligent Physical Agents develops
software standards for agent communication. This is ex-
pressed in their official mission statement: The promotion
of technologies and interoperability specifications that fa-
cilitate the end-to-end interworking of intelligent agent
systems in modern commercial and industrial settings. In
practice, this includes the publishing of standards con-
cerning speech acts, predicate logic, and public ontolo-
gies. The individual communicative acts of FIPA’s Agent
Communication Language (ACL) is based on the speech



act theory of Searle (1969). The semantics of FIPA ACL
are based on the Belief-Desire-Intention (BDI) model of
agency and is formalised in a language SL(for Intelligent
Physical Agents, 2000).

Each communicative action by a FIPA compliant agent
implies that agent is following the requirements specified
for that action. This includes general properties for all
communicative acts, the interaction protocol of which the
act is a part, and the feasible preconditions and rational
effects for that particular act (FIPA, 2001). For example,
an agent i must believe a proposition p and believe that an
agent j neither has any amount of belief about p or not p
before it can send an inform FIPA ACL communicative
act to agent j. Afterwards, agent i is entitled to believe
that agent j believes p.

2.2.2 Social Commitment

Researchers have adopted the idea of social commit-
ments to redress the semantic difficulties that arise when
agents rely on mentalistic (e.g BDI) Agent Communica-
tion Languages (ACL). Social-based semantics consider
the agent’s relationship to its communicative partners. It
is a recognition that an agent’s communicative acts do not
exist in a vacuum. It is the use of the intuitive idea that
an agent’s communication is an event which necessarily
involves other agents.

Singh (2000) identifies several criteria for the seman-
tics of an Agent Communication Language. According to
Singh, an ACL should be formal, declarative, verifiable,
and meaningful. To this end, he has developed a social se-
mantics. He defines three facets to every communicative
act. The objective claim which commits an agent to an-
other that some proposition p holds. The subjective claim
is that an agent believes p, and the practical claim that
the agent has some justification or reason for believing p.
This is a novel approach, because most reactions to the
semantic verification problem of the mentalistic approach
is to completely throw it away. Singh has, instead, em-
braced the mentalistic approach but coupled it with the
idea of social commitment. The purely mentalistic ap-
proach rests on the assumption that the agent is sincere
about p, but Singh has added that the agent is also so-
cially committed to being sincere about p. It is recognized
that the use of social semantics does not replace the need
for protocols, but the combination of social semantics and
protocols would create a much more flexible ACL Maudet
and Chaib-draa (2002).

The approach described in Flores and Kremer (2002)
uses the commitment themselves to develop the conver-
sation between two agents. Flores argues that our verbal
utterances carry with them obligations dependent on the
role of the agent within a society. The question ‘What
time is it?’ carries with it the obligation (in polite society)
to not only reply but make an attempt to actually find out
the time. The use of social commitments in multi-agent
communication is to provide a number of rules that dic-

tate appropriate illocutions and actions performed based
on the agent voluntarily obligating itself to commitments
with other agents and eventually discharging those com-
mitments. A protocol is defined for the negotiation of the
adoption of social commitments. Agents propose to add
and remove commitments for action from personal com-
mitment stores. An agent will propose to add a commit-
ment to perform some actions. Once this is accepted and
the commitment is satisfied the protocol includes steps
to propose the release of any further commitment to that
action. It is through this simple protocol and the social
commitment-based conversation policies an agent conver-
sation can be developed.

2.2.3 Dialogue Theory and Games

The philosophers Doug Walton and Erik Krabbe have de-
veloped a typology of dialogues to detect fallacious rea-
soning (Walton and Krabbe, 1995). This typology was
adopted by Chris Reed (Reed, 1998) in a formalism for
multi-agent systems and inter-agent communication. Of
the six kinds of dialogue identified, five of these dialogue
types are applicable to the domain of agent communica-
tion. The sixth, eristic, is a dialogue where reasoning has
ceased and the participants use the dialogue for the airing
of grievances and one-upmanship. This dialogue type is
important for the study of human conversations, but it is
ignored by the agent research community. Dialogues are
classified into the different types by three criteria. The
first criterion considers the initial situation. What infor-
mation does each of the participants have? Are the agents
cooperative or competitive with each other? The second
criterion concerns the individual goals an agent has for
the interaction, and the third criterion are the goals shared
by the participating agents. In Information-Seeking dia-
logues, one agent seeks the answer to a question which it
believes the other agent possesses. Inquiry dialogues oc-
cur when two agents work together to find the answer to a
question whose solution eludes both agents. A Persuasion
dialogue has one agent attempting to convince another to
adopt some proposition which it currently does not be-
lieve. Negotiation dialogues occur when the participants
haggle over the division of a scarce resource. In Deliber-
ation dialogues, the agents attempt to agree on a course of
action for a particular situation. It is rare that any actual
dialogue will be purely of one instance of one kind of di-
alogue. It is more likely that a dialogue will consist of an
amalgamation of the different types. For example, during
a negotiation, propositions may need clarification and an
information-seeking dialogue would occur. This dialogue
typology is fundamental to recent agent communicative
models using dialogue games.

Dialogue games have existed for thousands of years,
since Aristotle, as a tool for philosophers to formalise ar-
gumentation. It is an attempt to identify when an argu-
ment or its justification is weakened or undercut by an
argument or refutation made be the other participant. By



each player making ‘moves’ and following a set of rules,
it was hoped that properties of good and bad arguments
could be identified. This formalism for argumentation has
been employed to increase the complexity and robustness
of software agents conversations. The objective is to pro-
duce a meaningful interaction between dialogical partners
by following the rules of an individual dialogue game.

There are several components to a dialogue game.
Firstly, the participants must share a set of locutions. This
is a common requirement for models of agent communi-
cation. The commencement and termination rules specify
the conditions under which a dialogue can start or end.
This is a set of performatives from an agent communi-
cation language that is shared between the agents. This
language must include the ability to utter assertions as
well as justifications and challenges to those assertions.
Another component is the combination rules. These rules
define when particular illocutions are permitted, required,
or illegal. The last part necessary for a dialogue game is
the rules for commitment. These rules create obligations
on the agent with respect to the dialogical moves of the
agent. These commitments can be divided into dialogical
and semantic. Dialogical commitments are the obligation
of an agent to make a particular move within the context
of the dialogue game. Semantic commitments indenture
the agent to an action beyond the dialogue game itself. A
record of these commitments is publicly stored. For ex-
ample, if you say you are willing to pay the highest price
in an auction, it will be known that you are committed to
actually pay that price.

Dialogue game frameworks (McBurney and Parsons,
2002; Maudet and Evrard, 1998) attempt to construct
more complex and robust agent conversations. This is
achieved by combining different atomic dialogue types
which have been identified by philosophers analysing hu-
man dialogues (Walton and Krabbe, 1995). This ap-
proach avoids the semantic ambiguities inherent in men-
talistic models and the rigidity of static protocol-based ap-
proaches (FIPA, 2001). The dialogue game approach de-
pends on several assumptions about participating agents.
Agents participating in the dialogue game framework
must agree on all the rules of the framework. The num-
ber of requirements made on individual agents in order
for them to play dialogue games makes the approach un-
suited for open multi-agent systems.

3 The Protocol Language

The development of the protocol language is a reaction
Electronic Institutions (Walton and Robertson, 2002). Al-
though the EI framework provides structure and stability
to an agent system, it comes at a cost. Integral to EI is the
notion of the administrative agents. Their task is to en-
force the conventions of the Institution and shepherd the
participating agents. Messages sent by agents are sent
through the EI. This synchronises the conversation be-

tween the conversing agents, and keeps the administrative
agent informed of the state of the interaction

An unreliable keystone makes the whole of the arch
defective, just as the system is now dependent on the reli-
ability and robustness of its administrative agent. Also,
this centralisation of control runs counter to the agent
paradigm of distributed processing. Within the scenes of
Electronic Institutions, interaction protocols are defined
to guarantee that agents utter the proper illocutions and ut-
ter them at the appropriate time. This is defined formally
by the specifications of the EI and left to the designers
of individual agents to implement. It assumes that the
agent’s interaction protocol covers the entire conversation
space before the conversation occurs. If the interaction
needs of the institution change, this would require redefi-
nition of the Institution and re-synthesis of the individual
agents. Agents are also expected to know the global state
of the system and their exact position within it. In EIs this
is handled by an administrative agent whose job it is to
synchronise the multitude of agents involved.

The protocol language addresses some of these short-
comings of EIs but retains the benefits of implementing
the EI framework. Its goal is to lessen the reliance on
centralised agents for synchronisation of individual par-
ticipants in the system, provide a means for dissemination
of the interaction protocol and the separate the interaction
protocol from the agent’s rationalisations to allow the dy-
namic construction of protocols during the interaction. By
defining interaction protocols during run-time, agents are
able to interact in systems where it is impossible or im-
practical to define the protocol beforehand. The protocol
language defined in Figure 1 is similar to the protocol lan-
guage described in Walton (2004b) for which the formal
semantics have been defined.

P � Protocol :: � S, �����
	 ,K �
A � Agent Clause :: � :: op.� � Agent Definition :: agent(r,id)
op � Operation :: null �

(Precedence)


(op)
(Send)

 ��� �
(Receive)

 ��� �
(Sequence)


op1 then op2

(Choice)


op1 or op2
(Parallelism)


op1 par op2

(Consequence)
 ������� �

(Prerequisite)
 ��� � ���� � message :: � m,P �� � state :: a predicate

Figure 1: The abstract syntax of the protocol

Figure 1 defines the syntax of the protocol language.
An agent protocol is composed of an agent definition
and an operation. The agent definition individuates the
agents participating in the conversation (id), and the role
the agent is playing (r). Operations can be classified in



three ways: actions, control flow, and conditionals. Ac-
tions are the sending or receiving of messages, a no op,
or the adoption of a role. Control Flow operations tem-
porally order the individual actions. Actions can be put
in sequence (one action must occur before the other), in
parallel (both action must occur before any further ac-
tion), or given a choice point (one and only one action
should occur before any further action). Conditionals are
the preconditions and postconditions for operations. The
message passed between two agents using the protocol
consists of three parts. The first is the actual illocution
(m) the agent is wishing to express. The second is the full
protocol (P) itself. This is the protocol for all agents and
roles involved in the conversation. This will be necessary
for the dissemination of the protocol as new agents enter
the system. Other aspects of the protocol are the inclu-
sion of constraints on the dialogue and the use of roles.
An agent’s activities within a multi-agent system are not
determined solely by the agent, rather it is the relation-
ship to other agents and the system itself that helps de-
termine what message an agent will send. These can be
codified as roles. This helps govern the activity of groups
of agents rather than each agent individually. Constraints
are marked by a ‘ � ’. These are requirements or conse-
quences for an agent on the occurrence of messages or the
adoption of roles. The constraints provide the agent with
a shared semantics for the dialogue. These constraints
communicate meaning and implication of the action to the
agent’s communicating partner. For example, an agent re-
ceiving a protocol with the constraint to believe a propo-
sition s upon being informed of s can infer that the agent
sending the protocol has a particular semantic interpreta-
tion of the act of informing other agents of propositions.
The ‘ � ’ and ‘ � ’ mark messages being sent and received.
On the left-hand side of the double arrow is the message
and on the right-hand side is the other agent involved in
the interaction.

An agent must be able to understand the protocol, the
dialogue state, and its role within the protocol. Agents
need to be able to identify the agent clause which pertains
to its function within the protocol and establish what ac-
tions it must take to continue the dialogue or what roles
to adopt.

3.1 Implementing the Protocol Framework

A message is defined as the tuple, � m,P � . Where m is
the message an agent is currently communicating, and
P is the remainder is the protocol written using the lan-
guage described in figure 1. The protocol, in turn, is
a triple, � S, ���! #" ,K � . S is the dialogue state. This is a
record of the path of the dialogue through the conversa-
tion space and the current state of the dialogue for the
agents. The second part is a set of agent clauses, �$�! #" ,
necessary for the dialogue. The protocol also includes a
set of axioms, K, consisting of common knowledge to be
publicly known between the participants. The sending of

the protocol with the messages allows agents to represent
the various aspects of Electronic Institutions described in
section 2.1. In addition, agents themselves communicate
the conventions of the dialogue. This is accomplished by
the participating agents satisfying two simple engineering
requirements. Agents are required to share a dialogical
framework. The same is required of Electronic Institu-
tions, and is an unavoidable necessity in any meaningful
agent communication. This includes the requirements on
the individual messages are expressed in a ontology un-
derstood by the agents. The issue of ontology mapping
is still open, and its discussion extends beyond the scope
of this paper. The second requirement obligates the agent
to provide a means to interpret the received message and
its protocol. The agent must be able to unpack a received
protocol, find the appropriate actions it may take, and up-
date the dialogue state to reflect any actions it chooses to
preform.

Figure 2 describes rule for expanding the received pro-
tocols. Details can be found in Robertson (a). A similiar
language for web services is described in Robertson (b).
An agent receives a message of the form specified in fig-
ure 1. The message is added to the set of messages, %'& ,
currently being considered by the agent. The agent takes
the clause, ()& , from the set of agent clauses received as
part of P. This clause provides the agent with its role in the
dialogue. The agent then expands ( & by the application of
the rules in figure 2. The expansion is done with respect
to the different operators encountered in the protocol and
the response to % & . The result is a new dialogue state, (  ;
a set of output messages, *  and a subset of % & , which is
the remaining messages to be considered, %  . The result
is arrived at by applying the rewrite rules. The sequence
would be similar to figure 3. (  is then sent as part of
P which will accompany the sending of each message in*  .

3.2 Features of the Protocol

Several features of the protocol language are useful for
agents capable of learning and adapting to the multi-agent
system in which they participate. Sending the dialogue
state during the interaction provides agents with several
advantages. It is no longer necessary for an administrative
agent to shepherd the interaction. The sending of the pro-
tocol with the message uses the ‘hot potato’ approach to
communication. The interaction is coordinated by which
agent currently ‘holds’ the protocol. The reception of a
message would cue an agent to action. The sending of
the protocol provides a means for dissemination of the
social conventions for the dialogue. The most common
approach is to use specifications to be interpreted by indi-
vidual engineers. The protocol directly communicate the
social conventions and expectations an agent has for the
dialogue. Agents with the ability to learn could use the
received protocol to plan ahead or modify its own social
conventions to be able to communicate with other agents.
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Figure 2: Rules for expanding an agent clause
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Figure 3: Sequence of rewrites

The protocol language is strictly concerned with the in-
teraction level of communication. The semantics of the
language does not depend on any assumptions about the
agent’s internal deliberative model. All requirements for
the interaction are publicly specified with the protocol.
Agents with different models of deliberation are able to

communicate (McGinnis et al., 2003).

4 Means of Adaptation

Protocols are traditionally seen as a rigid ordering of mes-
sages and processing to enable a reliable means of com-
munication. Agent-centric approaches have tended to
avoid their use, lest agents be reduced to nothing more
than remote function calls for the multi-agent system. The
control over agent interactions within an electronic insti-
tutions is indeed intrusive. As described in section 2.1,
the administrative agents of electronic institutions have
complete control. The sequence of messages are dictated
but also the roles an agent may adopt and the actions an
agent must take within and outside of the context of the
dialogue.

The protocol language of this paper does not follow this
tradition. It is designed to bridge the gap separating the
two approaches to agent interaction. The language is ca-
pable of representing the scenes and performative struc-
ture of electronic institutions, but it is not limited to elec-
tronic institution’s inflexible model of agent interaction.
The protocol language and the process of sending the pro-
tocol during execution provides agents with a means of
adaptation.

In the electronic institution model, the protocol does
not exist within the participating agents. It is retained by
the institution itself, and designers must engineer agents
that will strictly conform to the protocol which will be
dictated by the administrative agents. Our approach de-
livers the protocol to the participating agents. Individ-
ual agents are given providence over the protocol they
receive. This returns the power of the interaction to the
participating agents. For example, the protocol received
is not required to be the protocol that is returned.

The protocol, as described so far, already allows for
a spectrum of adaptability. At one extreme, the proto-
col can be fully constrained. Protocols at this end of the
spectrum would be close to the traditional protocols and
electronic institutions. By rigidly defining each step of
the protocol, agents could be confined to little more than
remote processing. This sacrifice allows the construc-
tion of reliable and verifiable agent systems. At the other
extreme, the protocols would be nothing more than the
ordering of messages or even just the statement of legal
messages(without any ordering) to be sent and received.
Protocols designed this way would be more akin to the
way agent-centric designers envisage agent communica-
tion. Agents using these protocols would be required to
reason about the interaction to determine the next appro-
priate step in the dialogue. Though the protocol language
is expressive enough for both extremes of the spectrum,
the bulk of interactions are going to be somewhere in the
middle. A certain amount of the dialogue will need to be
constrained to ensure a useful dialogue can occur. This al-
lows agents to express dynamic and interesting dialogues.



The protocol language is flexible enough to be adapted
during run-time. Yet, protocols modified indiscriminately
would return us to the problem facing the agent-centric
approach. We would have a model for flexible communi-
cation, but no structure or conventions to ensure a mean-
ingful dialogue can take place. It is necessary to constrain
any adaptation in a meaningful way. By the examination
of patterns and standards of an agent-centric approach,
protocols can be construct to have points of flexibility.
Portions in the dialogue can be adapted without losing
the benefits of a protocol-based approach. The example
below employs the rules for playing a dialogue game, the
protocol language, and an amendment to the rewrite rules
to allow a more dynamically constructed protocol.

5 Example
Figure 4 shows an example of an Information-seeking di-
alogue game similar to the one defined in Parsons et al.
(2003). The dialogue game rules are simplified to clarify
its implementation within the protocol. There are count-
less variations on the rules for any one type of dialogue
game. This illustrates a continuing problem with agent-
centric communication design. It is not a trivial require-
ment to ensure agents within a system are employing the
same communicative model. This is the same with dia-
logue games. Subtle differences could break the dialogue.
By the use of the protocol, agent can communicate their
‘house’ rules for the game. The rules for this particular
game are as follows:

1. The game begins with one agent sending the mes-
sage question(p) to another agent.

2. Upon receiving a question(p) message, an agent
should evaluate p and if it is found to be true, the
agent should reply with assert(p) else send an as-
sert(null) which is a failure message.

3. Upon receiving an assert(p), an agent should eval-
uate the assertion, then the agent can send an ac-
cept(p) or challenge(p) depending on whether the
agent’s acceptance attitude will allow.

4. Upon receiving a challenge(p), an agent should send
an assert( � ). � is a set of propositions in support of
p.

5. For each proposition in � , repeat steps 3 and 4.

6. The game is over when all propositions have been
accepted or no further support for a proposition can
be offered.

Rule one is satisfied by an agent taking up the role of
the ‘seeker’. This provides the agent with the legal moves
necessary to play that side of the information-seeking di-
alogue game. The other agent will receive the question(p)
message along with the protocol of figure 4. The agent

identifies the clause which it should use. In this exam-
ple, the clause playing the ‘provider’ role. It is necessary
to use constraints to fully satisfy the second rule. Part of
the rule states an agent sending an assert(p) depends on
its knowledge base and its assertion attitude, otherwise an
assert(null) is sent. The constraint verify(p) is assumed to
be satisfiable by the agent. The agent is free to satisfy the
constraint how it prefers. This could range from a sim-
ple function call to a complex esoteric belief logic with
identity evaluation. The protocol only states what condi-
tions must be satisfied, not how. The recursive steps are
handled by the roles of eval (evaluate) and def (defend)
which are similarly constrained. Finally, the termination
rule for the game is written as the last line in the ’evalu-
ate’ role. No more messages are sent when the remainder
of the set of propositions is empty.
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Figure 4: The information-seeking protocol

Similar protocols can be written to express the other
atomic dialogue types. Real world dialogues rarely con-
sist of a single dialogue game type. McBurney and Par-



sons (2002) formally describe several combinations of di-
alogue types. Iteration is the initiation of a dialogue game
immediately following the finishing of another dialogue
game of the same type. Sequencing is the similar to itera-
tion except that the following dialogue game can be of any
type. In Parallelisation of dialogue games, agents make
moves in more than one dialogue game concurrently. Em-
bedding of dialogue games occurs when during play of
one dialogue game another game is initiated and played to
its conclusion before the agents continue playing the first.
The example involves two agents; a doctor and a patient.
The patient is trying to find out whether the proposition
‘patient is ill’ is true (i.e. looking for a diagnosis). This
is the perfect scenario to play an information-seeking di-
alogue game and to use the dialogue game protocol. Fig-
ure 5 and 6 shows the agent clauses as they are rewritten
during the course of the dialogue.

j#�;VWbq_6Y C b D JUTWVMV
�qY6¬Zh=jl_ C Vubq_ C T C�SZS�  �!XlJ Q _EJML [ �Zh=jl_ C VWbq_ [ +-+j#�GVWbq_6YZTWVMVM�<VuLGY�¬�h=jl_ C VWbq_ C T C�S�SZ  �!XlJ Q _EJML [ �Zh=jl_ C Vubq_ [
(1)

j#�;VWbq_6Y C b D JUTWVMV
�qY6¬Zh=jl_ C Vubq_ C T C�SZS�  �!XlJ Q _EJML [ �Zh=jl_ C VWbq_ [ +-+� ��V
Tu_ C JMb8Y�¬�hkj#_ C VWbq_ C T C�S�SZ  [ �j#�;VWbq_6Y�hHL
JM� C XlVWL;Y�¬�hkj#_ C VWbq_ C T C3SZS�  �Zh=jl_ C VWbq_ [ �!XlJ Q _EJML [
(2)

j#�;VWbq_6Y C b D JUTWVMV
�qY6¬Zh=jl_ C Vubq_ C T C�SZS�  �!XlJ Q _EJML [ �Zh=jl_ C VWbq_ [ +-+� ��V
Tu_ C JMb8Y�¬�hkj#_ C VWbq_ C T C�S�S   [ �j#�;VWbq_6Y�hHL
JM� C XlVWL;Y�¬�hkj#_ C VWbq_ C T C3SZS�  �Zh=jl_ C VWbq_ [ �XlJ Q _EJML [ _a`=Vubj;TMTWVWLM_6Y�bq� S�S [ �j#�GVubq_6Y�hHL
JM� C XlVWLGY6¬�hkjl_ C VWbq_ C T C�S�S�  ��h=jl_ C VWbq_ [ ��X#J Q _EJML [ �
(3)

Figure 5: The agent clauses for the patient

j#�;VWbq_6Y C b D JUTWVMV
�qY6¬Zh=jl_ C Vubq_ C T C�SZS�  ��hkjl_ C VWbq_ [ �!XlJ Q _EJML [ +-+j#�GVWbq_6Y�hHL
JM� C X#VWLGY6¬Zh=jl_ C Vubq_ C T C�S�SZ  ��h=jl_ C VWbq_ [ ��X#J Q _EJML [
(4)j#�;VWbq_6Y C b D JUTWVMV
�qY6¬Zh=jl_ C Vubq_ C T C�SZS�  ��hkjl_ C VWbq_ [ �!XlJ Q _EJML [ +-+� ��V
Tu_ C JMb8Y�¬�hkj#_ C VWbq_ C T C�S�SZ  [ �j#�;VWbq_6Y�TuVMV
�GVWLGY6¬Zh=jl_ C Vubq_ C T C3SZS   ��X#J Q _EJML [ �hkjl_ C VWbq_ [ _a`HVWbjGTMTuVWLM_6Y�bq� S�S [ �j?�GVWbq_6YZTWVMV
�GVWL;Y�¬�hkj#_ C VWbq_ C T C�S�SZ  �!XlJ Q _EJML [ �Zh=jl_ C VWbq_ [ �
(5)

Figure 6: The agent clauses for the doctor

The patient begins the dialogue by taking the initial
agent clause of infoseek which stands for information-
seeking. This step is labelled 1. The agent applies the
rewrite rules to expand the seeker role and sends the ques-
tion to the doctor agent, step 2. The doctor receives the
message and the protocol. The applies the rewrite rules
and finds the only instantiation that is possible is the un-
folding of the provider role. It applies the rewrite rules
and comes to the verify constraint which it is unable to
satisfy. It cannot determine the truth value of the propo-
sition and is unwilling to defend the proposition. It takes
the other half of the or operator and sends the assert(null).
Let us assume the doctor agent is a bit more clever. It
cannot currently assert that the patient is ill. It has a
knowledge-base and an inference engine that allows it to
figure whether the proposition is true or not, and it needs
some more information from the patient. The particular
kind of information would depend on each patient con-
sultation. If this diagnosis scenario was part of an elec-
tronic institution, the institution would have to represent
in a state diagram every possible permutation of a diag-
nosis scenario. This is not practical, if not impossible.

Instead, the doctor agent can use the patterns of dia-
logue games to structure the interaction but allow adap-
tations to handle any run-time dialogical needs that may
arise. In the example, the doctor agent needs to ask about
a different proposition before it can answer the patient’s
original query. This is achieved by an additional rewrite
rule shown in figure 7.

� / 0 2 / 4 2 7O2 9:G:<:<:H:<:<:#> �z_a`HVWbe.CED Q6S jl��TWV;Y��K��. [q\ C Tuj�YZ.��!X C j S JW�;�kV : _ } h=V [C TWj�Y C b D JUTWVMVM�q�!X C j S JW�l��V : _ } h=V [ �
Figure 7: Additional rewrite rule

This allows the agent to graft the infoseek agent clause
between any term in the protocol. These rewrites can
be expanded further to represent other dialogue combina-
tions as well as domain specific rewrite rules. The doc-
tor’s dialogue clause with the use of the embedding is
shown in figure 8. The expansions and dialogue begin the
same, but rather than just sending the assert(null). The
agent inserts the agent definition agent(infoseek(”patient
has a fever”),patient),doctor). The next instance of a
information-seeking dialogue is begun. The moves of the
embedded dialogue game are in bold text. In this instance
the patient plays the provider role and the doctor plays
the seeker. The game is finished by the patient assert-
ing ”patient has a fever”. The doctor, now knowing this
proposition to be true, has enough knowledge to assert
the original proposition posed by the patient’s first ques-
tion. The first information-seeking game also concludes
successfully by the doctor making the diagnosis and as-
serting the proposition ”patient is ill” is true.



j#�;VWbq_6Y C b D JUTWVMV
�qY6¬Zh=jl_ C Vubq_ C T C�SZS�  ��hkjl_ C VWbq_ [ �!XlJ Q _EJML [ +-+� ��V
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...
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Figure 8: Embedded information-seeking agent clause for
doctor

6 Conclusions

The protocol language described in the paper is expres-
sive enough to represent the most popular approaches to
the agent communication. It is able to capture the vari-
ous aspects of Electronic Institutions such as the scenes,
performative structure, and normative rules. This enables
agents to have structured and meaningful dialogues with-
out relying on centralised control of the conversation. The
language is also capable of facilitating agent-centric ap-
proaches to agent communication. Agents pass the proto-
col to their dialogical partners to communicate the social
conventions for the interaction. Agents can adapt the re-
ceived protocols to explore dynamic conversation spaces.
The protocol language in this paper is not seen as a re-
placement for either model of agent communication. In-
stead, it synthesises the two approaches to gain the ad-
vantages of both. Protocols are used to coordinate and
guide the agent’s dialogue, but agents are able adapt the
protocol by using an agent-centric model for communi-
cation. The use of this communicative model constrains
transformation to the agent clauses in meaningful ways.

The run-time delivery provides the mechanism for com-
municating the protocol as well as any adaptations that
are made. We have begun developing a FIPA compliant
agemts which uses the ACL library and the protocol lan-
guage. It is hoped that the verifibility and semantic prob-
lems associated with FIPA’s ACL can be mitigated by the
use of the protocol language to communicate the perfor-
mative’s semantics during their use.

This approach does raise new issues which have not
been addressed in this paper. One issue concerns restrict-
ing changes to the protocols. There are certainly dia-
logues where certain agents will be restricted from modi-
fying the protocols or dialogue which require portions of
the protocol to remain unchanged. This remains for future
work along with development of a vocabulary of generic
transformations which can be proven a priori or verified
to retain semantic and syntactical continuity of the proto-
cols.

The protocol language has already been shown to be
useful for a number of agent purposes. A scheduling
program has been developed using the protocol written
in Prolog and using LINDA. A Java-based agent frame-
work also exists which uses an XML representation of
the protocols. Separating the protocol from the deliber-
ative and communicative models of agency makes defi-
nition and verification simpler tasks. Tools have already
been developed which use model-checking for automatic
verification Walton (2004a). The protocol language has
been used to implement the generic dialogue framework
of McBurney and Parsons (2002) and the negotiation
game described in McBurney et al. (2002).
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Abstract

Recently, online reputation mechanisms have attracted much attention in many areas. They have been widely
adopted and worked well, although their reliability is still a major concern. Because of online properties
such as openness and anonymity, it is necessary to consider rating errors, noise and unfair lies. Furthermore,
these disturbances (attacks) have a significant effect on multi-agent systems containing malicious agents who
tell lies or engage in strategic manipulations. Current online reputation mechanisms are not sufficiently ro-
bust against such disturbances. In an attempt to solve this problem, in this paper we propose a stochastic
approximation-based online reputation mechanism. Our mechanism assigns one global trustworthiness value
to each agent and updates estimates of these values dynamically from mutual ratings of agents. Experimental
results show that our mechanism is able to identify good and bad agents effectively under condition of the
above disturbances and also trace the changes in agents’ true trustworthiness values adaptively.

1 Introduction

Recently online reputation mechanisms have attracted
much attention in many areas, such as multi-agent sys-
tems, peer-to-peer systems, and electronic commerce. In
such areas, there is an enormous number of unfamiliar po-
tential trading partners, so reputation information of part-
ners can take a central role in selecting partners to con-
tact. Here, reputation information is a collection of many
users’ ratings about trustworthiness of the specified part-
ner. The role of reputation information is larger for an
agent than for human, because an agent has difficulty in
feeling the partner’s trustworthiness from the partner’s ad-
vertising statements, responses and so on. Furthermore,
an online reputation mechanism is more cost-effective
than establishing an authentic oversight mechanism like
a law-enforcement agency (Kollock, 1999).
The basic mechanism of an online reputation mecha-
nism is that users rate each other, and their ratings (i.e.
reputation information) become publicly available (Del-
larocas, 2003). For example, the mechanism of the major
Internet auction site eBay (www.ebay.com) is as follows.
When a transaction between a seller and a buyer finishes,
the seller and the buyer rate each other: they choose one
level from positive, neutral or negative, and they can add
a comment, too. These ratings are subsequently collected

and made publicly available. Each user’s reputation in-
formation consists of a table and a sheet. The table shows
the total counts of each rating level that the user has ac-
quired during past 1, 6 and 12 months, and the sheet lists
ratings the user acquired in the newest-first order, where
each rating consists of a rating level, a comment and a
rater. In this way each user can estimate the trustworthi-
ness of an unfamiliar partner by referring to the partner’s
reputation information. Furthermore, the effect of sup-
pressing a user’s bad behaviors can be expected because
they receive bad ratings in feedback when they behave
badly.
Online reputation mechanisms have been widely
adopted and worked well, although their reliability is still
a major concern. Because of online properties such as
openness and anonymity, the online reputation mecha-
nism has to be robust against rating errors, noise and un-
fair lies. Furthermore, these disturbances (attacks) by ma-
licious agents or groups of them, who tell lies or engage in
strategic manipulations, have a significant effect on multi-
agent systems where human do not intervene. Current
online reputation mechanisms are not sufficiently robust
against such disturbances, so developing a secure online
reputation mechanism remains a significant challenge in
multi-agent systems.
In this paper, we propose a stochastic approximation-



based online reputation mechanism in multi-agent sys-
tems. Our mechanism assigns one global trustworthiness
value to each agent as its reputation information and up-
dates estimates of this value dynamically frommutual rat-
ings of agents. Experimental results show that our mech-
anism is able to identify good and bad agents effectively
under conditions of the above disturbances. Moreover,
our mechanism is able to trace the changes in agents’ true
trustworthiness values adaptively, which is the situation
where agents with good behaviors suddenly start perform-
ing manipulations.
This paper’s structure is as follows. First, we dis-
cuss works related to online reputation mechanisms and
present the position of this paper in 2. Then, we show
our framework of the online reputation mechanism and
define the problem in 3. We then propose our solution to
the problem, stochastic approximation-based algorithms,
in 4, and provide experimental results of these algorithms
in 5. Finally, we conclude in 6.

2 Related Work

There are many related works about online reputation
mechanisms. In this chapter we focus on the related
works concerning mechanism design that propose novel
mechanisms or algorithms in terms of robustness or other
aspects. Furthermore, we clarify the position of this paper
by classifying related works from the perspective of the
representation of trust (2.1) and the subjectivity of trust
(2.2). By the way, for clarity, let Agent � ’s trust in Agent�
(

�
’s trustworthiness for � ) be � � � � � 


, from now on.

2.1 Representation of Trust

When designing online reputation mechanisms, we have
to decide the representation of trust � � � � � 


from the be-
ginning. If its user is human, the representation of trust
� � � � � 


is possible by using natural language. However,
if its user is an agent, a computer-friendly representation
format of trust is suitable. In this paper and Ishida (1996);
Zacharia et al. (1999); Dellarocas (2000), trust � � � � � 


is
represented by one (real or natural) number. The bigger
this value is, the more � trusts �

. Basically this repre-
sentation can include eBay’s ratings of three levels, ex-
cept for comments. This representation is easy to han-
dle, although it does feature a limitation. For example,
this representation cannot handle trust in the manner that
“I can trust her about computers, but I cannot trust her
about cooking,” or that “the seller provides high quality
goods but the seller’s delivery is late.” In general, trust
should be rated by many viewpoints, and in order to repre-
sent such detailed trust, more complex representation for-
mats like vectors are suitable. Indeed, as a representative
format of trust, Yu and Singh (2003) uses the Dempster-
Shafer theory-based basic probability assignment, Wang
and Vassileva (2003) uses Bayesian network.

2.2 Subjectivity of Trust
Onemajor role of the online reputationmechanism is esti-
mating the trustworthiness of an unfamiliar agent. There
are main two approaches to this estimation. We explain
the two approaches using Figure 1. Figure 1 shows the

Figure 1: Trustworthiness estimation of an unfamiliar
agent.

situation where Agent  wants to know the Agent � � ’s
trustworthiness � �  � � � 


in the existence of Agents � � ,
� � , � � , � � , � �

and  . For example, this is a situation
where � � and � � are sellers providing a similar service,
and buyer  wants to know the trustworthiness of � � and

� � to decide which seller  receives the service from.
If  traded with � � directly in the past,  can estimate

� �  � � � 

from  ’s experiences by itself. Here, however,

it is assumed that � � is unfamiliar with  . In this case, 
receives trustworthiness of � � from other agents. Here,
we assume

� � , � � , � �
traded with � � directly in the past

and has the rating � � � � � � � � � � 

, � � � � � � � � � � 


,
� � � � � � � � � � 


, respectively. Then  can estimate trust-
worthiness � �  � � � 


by integrating � � , � � and � �
. How-

ever, the method of integration differs by two approaches.
The first approach (this paper and Ishida (1996);
Zacharia et al. (1999)) assumes the existence of a global
trustworthiness � # � � � 
 � � � agency � � � 


for each agent.
Here, � # � � � 


represents the trustworthiness of � � for
agency (all agents). � # � � � 


is an objective and abso-
lute rating; that is, the trustworthiness of � � for � � is
the same as for

� � , and for every different agent. � # � � � 

is computed by integrating (e.g. averaging) all agents’
trust in � � , and  uses this � # � � � 


as the estimation of
� �  � � � 


. Although the assumption of this value is ar-
guable, this approach has a merit in that a newly arriving
agent can use this value � # � � � 


immediately to estimate
the trustworthiness of an unfamiliar agent (here, � � ).
The second approach (Dellarocas, 2000; Yu and Singh,
2003; Wang and Vassileva, 2003) does not assume the ex-
istence of a global trustworthiness � # � � � 


. Instead, this
approach considers that trust is personal, subjective, and
relative, not global. That is, the trustworthiness of � �
for

� � is different from that for � � , and for every differ-
ent agent. Therefore, in order to estimate � �  � � � 


, we



should search agents whose ratings or preference is sim-
ilar to � . Here, we assume � � and � �

are searched as
the similar agents to � . Then the estimation of � � � 
 �  �
is computed by integrating only these trusts � � and � �

.
Although this approach requires a reasonable measure of
similarity between agents, the trust value can be relatively
meaningful.

2.3 Position of This Paper
This paper use one real number as a trust representation
and assumes the existence of a global trustworthiness.
Some related (Ishida, 1996; Zacharia et al., 1999)
works have already adopted the same framework as this
paper. However, they (Ishida, 1996; Zacharia et al., 1999)
derive estimation algorithms of trustworthiness values
in an ad-hoc style, and their theoretical support is not
strong enough (see 4.1.3). This paper presents stochas-
tic approximation-based algorithms and in particular, an-
alytical and experimental results about robustness against
disturbances.

3 Online Reputation Mechanism
In this chapter, we show the online reputation mechanism
that we assume, and define the problem.
We assume an Internet-basedmulti-agent systemwhere
there is an enormous number of autonomous agents in-
teracting with each other, and some agents may enter or
leave in real time. When Agent � obtains a service from
Agent � , Agent � rates Agent � , for instance, on the basis
of the quality of Agent � ’s service, and reports the rating
value � � � � � � 
 � � to the online reputationmechanism (see
Figure 2), where � � � � � � � �

means that Agent � is quite
good (bad). � � � should be treated as a stochastic variable,
since there exist rating errors and noise. In addition, the
value of � � � is not always true, since malicious agents
may tell lies as a tactic of manipulation. Furthermore, the
online reputation mechanism assigns a global trustwor-
thiness value of each Agent # � # � � 
 ) ) ) 
 , � 1, and has its
estimates - / � � � 
 � � . Here, - / � � � � �

means that Agent
# is quite good, honest (bad, malicious). Then, the online
reputation mechanism provides this estimate - / when it
receives inquiry of Agent # ’s trustworthiness.
The problem of the online reputation mechanism,
therefore, is how to estimate the trustworthiness values
- � � -  
 ) ) ) 
 - 9 �

, which converge to the true trustwor-
thiness values :- � � :-  
 ) ) ) 
 :- 9 �

, dynamically from the
sequence of the reports = � � � @ , especially where = � � � @
contains rating errors, noise and unfair lies by malicious
agents.
Note that in our framework an agent’s trustworthiness
is represented by only one real number, even though it
has two meanings. That is, :- / represents both the trust-
worthiness of Agent # ’s “service” and the trustworthiness
1 B is the number of agents and also dimensions of C .

Figure 2: Framework of the online reputation mechanism.

of Agent # ’s “rating” for other agents (i.e. whether Agent
# is a liar or not). Strictly speaking, these two trustwor-
thiness factors are independent. For example, there can
exist agents whose “service” is good, but whose “rating”
is bad (that is, they are liars). However, these two trust-
worthiness factors are identical in many cases, and in ad-
dition, the needs of users are knowing agents that offer
both a good “service” and “rating.” Hence we define the
global trustworthiness value :- / as a conjunction (AND,E
) of these two trustworthiness factors. That is to say,
in our framework, a good agent ( :- / � � ) means that
both Agent # ’s “service” and “rating” are good, and a bad
agent ( :- / � � ) means either Agent # ’s “service” or “rat-
ing” is bad, or both are bad. Conversely, we are unable
to distinguish, for instance, whether :- / � � indicates that
Agent # ’s “service” is bad, Agent # ’s “rating” is bad, or
both. To handle this type of trustworthiness precisely, we
have to employ an even more complex representation of
trust, such as vectors (see 2.1). However, we consider our
simple representation by one real number to usually be
sufficient for many applications.

4 Stochastic Approximation-Based
Algorithm

In this chapter, we provide three algorithms that update
the trustworthiness estimates - recursively from the mu-
tual ratings = � � � @ . Each algorithm is obtained in a similar
fashion from the corresponding rating model. We explain
about asynchronous algorithms suitable for practical use,
and introduce the adaptive algorithm to adjust step-size
parameters automatically.

4.1 Stochastic Gradient Descent Algorithm
4.1.1 Rating Model

To obtain the algorithms, we set a rating model first. The
rating model is a function H � :- �

describing our expecta-
tions of how � � � is generated, i.e. we define the expecta-
tion J � � � � � � H � � � :- �

. In this paper, we use the following



three typical rating models. However, these three models
are just examples, and the following developments hold
true even when using other rating models.

LLS � � � �� 	 
 ��  � �� 	 � (1)

Joint � � � � � �� 	 
 ��  � �� � �� 	 � (2)

Lie � � � �� 	 
 ��  � � �� � �� 	 ! �� � ! �� 	 $ & 2 ' (3)

The Linear Least-Squares (LLS) model is the simplest
model, which predicts that ( � 	 reflects the true trust-
worthiness value �� 	 on average and will lead to a lin-
ear least-squares estimate of �� 	 . The Joint model as-
sumes that the transaction between Agent * and Agent+ will succeed ( ( � 	 � & ) if both Agents * and + are good
( �� � � & / �� 	 � & ). The Lie model deals with lying agents
that always express the complementary (NOT, 1 ) rating.
Indeed, when rater Agent * ’s trustworthiness is �� � � 3 ,
this model expects the rating ( � 	 to be & ! �� 	 , which is
complementary of Agent + ’s true trustworthiness value �� 	 .
4.1.2 Derivation of Algorithms

Next, to estimate � , we select the mean square error
(MSE) criterion as a cost function to minimize. Here we
define 6 8 : � ; <= ?

	 A � B 	 EF � G I ( � 	 ! � � 	 
 �  P Q RS ' (4)

That is, we treat ( � 	 as desired outputs and adjust � to
output these desired outputs. In addition, here we assume
many ( � 	 are obtained synchronously, and we imply that
the summation T 	 A � B 	 EF � G is done only by the set of ( � 	
obtained in each synchronization round (we mention an
asynchronous case at 4.2). We also define the sample
MSE U 
 � � (  � &� ?

	 A � B 	 EF � G I ( � 	 ! � � 	 
 �  P Q
(5)

and the sample errorU � 	 � ( � 	 ! � � 	 
 �  ' (6)

The gradient values of the MSE are not known,
although these “noise-corrupted” observations can be
taken. Then we can use the stochastic approximation
(Robbins and Monro) method (Kushner and Yin, 2003)
to obtain this stochastic gradient descent algorithm:� YZ � � Z ! [ Z \

U 
 � � ( \ � Z� � Z $ [ Z ?
	 A � B 	 EF � G

U � 	 \ � � 	 
 � \ � Z � ` � & � ' ' ' � c � (7)
2A more general form is d f g i kl m n d f g kl o n q r kl m , which leads to

(3) when s t f .

where � YZ denotes the next time step’s value of � Z , and [ Z
is the ` th component of the step-size parameter (learning
rate). If [ Z ’s sequence u [ Z A w 
 x � & � ' ' '  z satisfies[ Z A w | 3 � [ Z A w � 3 � ?

w [ Z A w � � � (8)� is converged to the minimum point with the probability
of one (w.p.1).
Substituting � � 	 
 � 

in (7) by the models � � � �� 	 
 � 
,� � � � � �� 	 
 � 

and � � � �� 	 
 � 
, we obtain concrete algorithms for

each respective model:

LLS � YZ � � Z $ [ Z ?
� B � EF Z G 
 ( � Z ! � Z  � (9)

Joint � YZ � � Z $ [ Z ?
� B � EF Z G � � I 
 ( � Z ! � � � Z  $
 ( Z � ! � Z � �  P � (10)

Lie � YZ � � Z $ [ Z ?
� B � EF Z G 
 � � � ! &  I 
 ( � Z ! � � � � Z $� � $ � Z ! &  $ 
 ( Z � ! � � Z � � $ � Z $ � � ! &  P ' (11)

.
Here we supplement one item. The domain of � Z is
constrained by � 3 � & � ; therefore, equation (7) is used by
the following projected form in practice,� YZ � �� � A � � � � Z $ [ Z ?

	 A � B 	 EF � G
U � 	 \ � � 	 
 � \ � Z � � (12)

where � � 
 � 
denotes the closest point in � to � . If � is

one-dimensional and � is � � � � � , � � 
 � 
is the same as�� � A � � 
 � Z  � � �   
 � £ ¤ 
 � Z � �  � �  ' (13)

We do not indicate this clearly just for simplicity: we al-
ways assume that the right side of � Z ’s updating equations
including (9), (10), and (11) has the projected form by� � � A � � implicitly.
4.1.3 Discussion of Other Algorithms

(9) shows that the finite difference in the estimate � Z can
be interpreted as the sum of the product of the “estima-
tion error” ( � Z ! � Z and the coefficient of “reliability”[ Z (Kushner and Yin, 2003). Therefore, we can derive
another algorithm by incorporating the rater * ’s trustwor-
thiness value � � into the coefficient of “reliability”:
Weighted � YZ � � Z $ [ Z ?

� B � EF Z G � � 
 ( � Z ! � Z  ' (14)

ThisWeighted algorithm forms the basis of the algorithms
used in the related works (Ishida, 1996; Zacharia et al.,
1999). However, the cost function of the Weighted algo-
rithm is not clear, and we can derive more effective algo-
rithms as described below.



First, we consider a more general MSE than (4):� � � � � 
 �� �
� � � � � �� � � � � � � � � � ! # � � & ' ( ) * ,- . (15)

where � � � denotes the coefficient of each square error’s
weight. We treat all square errors’ weights as an equal
( � � � � 1 ) in (4). Now, however, we place a special
weight (influence) on square errors’ weights associated
with raters of high trustworthiness, i.e. we set � � � � ' �
here3. We also define the sample

� � � �4 � & ' . � ( � 16 �
� � � � � �� � � � � � � � � � ! # � � & ' ( ) * . (16)

and employ the stochastic approximation method to ob-
tain this stochastic gradient descent algorithm:' >? � ' ? ! A ? C

4 � & ' . � (C ' ?� ' ? D A ? �
� � � � � �� � � G � � � 4 � � C # � � & ' (C ' ? ! 16

4 *� � C � � �C ' ? I� ' ? D A ? �
� � � � � �� � � G ' � 4 � � C # � � & ' (C ' ? ! 16

4 *� � J � � ? I . (17)
K � 1 . N N N . Q . Here, J � � ? is the Kronecker delta, which
becomes 1 when R � K and T when R V� K . In addition,
we used � � � � ' � to change the equation of the second
line to that of the third line in (17).
Substituting # � � & ' (

in (17) by the model # W W Y� � & ' (
, we

obtain the concrete algorithm 4:

LLS Z ' >? � ' ? D A ? �
� � � �� ? � � ' � & � � ? ! ' ? ( !16 & � ? � ! ' � ( * ) N (18)

Comparing it with the Weighted algorithm (14), we see
that the only difference between (14) and this LLS Z algo-
rithm (18) is the second term in ` . This term indicates
the error between the Agent K ’s rating of another AgentR , and Agent R ’s trustworthiness value ' � is reflected to
Agent K ’s own trustworthiness value ' ? . For this reason,
we can interpret this term as the reflection effect as Ishida
(1996) mentioned. This term enables the LLS Z algorithm
to perform better than the Weighted algorithm (see 5.2).

4.2 Asynchronous Algorithm
In the preceding section 4.1, we dealt with the syn-
chronous case in which many � � � are synchronously
obtained. There exist many applications working syn-
chronously, like a sensor network (Ishida, 1996). How-
ever, the online reputation mechanism framework of this
3We can use a step function or a logistic function also.
4We omit concrete algorithms of Joint a and Lie a

paper assumes that each � � � is obtained asynchronously.
In this section, we derive asynchronous algorithms and
discuss problems like the order and frequency of updat-
ing, which arise in the asynchronous case.

4.2.1 Derivation of Asynchronous Algorithms

We estimate ' by minimizing this � � � b
in the asyn-

chronous case.� � � b � 
 d � � � � � � � ! # � � & ' ( ) * e N (19)

We also define the sample
� � � b4 b & ' . � � � ( � 16 � � � � � � � ! # � � & ' ( ) * . (20)

and use the stochastic approximation method to obtain
this stochastic gradient descent algorithm:' >? � ' ? ! A ? C

4 b & ' . � � � (C ' ?� ' ? D A ? G � � � 4 � � C # � � & ' (C ' ? ! 16
4 *� � C � � �C ' ? I . (21)K � 1 . N N N . Q . However, both # � � & ' (

and � � � are usually
the function of ' � and ' � only. In this case,C # � � & ' (C ' ? � C � � �C ' ? � T & K V� j k K V� R ( .
and the equation (21) is expanded as follows:' >� � ' � D A � G � � � 4 � � C # � � & ' (C ' � ! 16

4 *� � C � � �C ' � I . (22)' >� � ' � D A � G � � � 4 � � C # � � & ' (C ' � ! 16
4 *� � C � � �C ' � I . (23)' >? � ' ? & K V� j k K V� R ( N (24)

That is, we have to update at most two components j and R
at each � � � , and need not update (sweep) all components
of ' .
Substituting # � � & ' (

in (22)–(24) by the models # W W Y� � & ' (
,# o p q r s� � & ' (

and # W q t� � & ' (
, we obtain concrete algorithms for

each respective model (in the case of � � � � 1 ):
LLS ' >� � ' � D A � & � � � ! ' � ( . (25)
Joint ' >� � ' � D A � ' � & � � � ! ' � ' � ( . (26)' >� � ' � D A � ' � & � � � ! ' � ' � ( . (27)
Lie ' >� � ' � D A � & 6 ' � ! 1 ( & � � � ! 6 ' � ' � D' � D ' � ! 1 ( . (28)' >� � ' � D A � & 6 ' � ! 1 ( & � � � ! 6 ' � ' � D' � D ' � ! 1 ( N (29)

Furthermore, in the case of � � � � ' � :
LLS Z ' >� � ' � D A � ' � & � � � ! ' � ( . (30)' >� � ' � ! 16 A � & � � � ! ' � ( * . (31)



Joint � � �� � � � 
 � � � �� � � � � � � � � � � � (32)� �� � � � 
 � �  � � � � � � � � � � � � � � �%& � � � � � � � � � � � ( � (33)

Lie � � �� � � � 
 � � � � � & � � � % � � � � � � & � � � � 
� � 
 � � � % � � (34)� �� � � � 
 � �  � � � & � � � % � � � � � � & � � � � 
� � 
 � � � % � � %& � � � � � & � � � � 
� � 
 � � � % � � ( 6 (35)

4.2.2 Discussion about Asynchronous Algorithms

In the asynchronous case, the strategy of updating is im-
portant for the effective performance of the algorithms,
just as asynchronous Dynamic Programming (DP) or Q-
learning (Sutton and Barto, 1998) is. If exactly the same
set of ratings � � � are given, the difference between syn-
chronous algorithms and asynchronous algorithms is that
synchronous algorithms update � from this set of ratings� � � all at once, whereas asynchronous algorithms update� many times as each rating � � � is given, where updated �
are used at each update. Therefore, we can ignore this dif-
ference if the step-size parameters are adequately small.
However, there is the possibility that the ratio of unfair
ratings by malicious agents increases in the asynchronous
case because malicious agents may wage an intensive at-
tack in a short period of time. Thus, we have to constrain
the frequency of each agent’s rating report per specified
time interval.

4.3 Adaptive Algorithm

When we use the stochastic approximation-based algo-
rithms, the choice of the sequence 7 � 9 : ; = is an important
issue (Kushner and Yin, 2003). For the convergence of� , (8) is required; however, to track the time-varying pa-
rameter >� , we usually use the fixed � 9 : ; � � . In general,
if the >� changes faster, � should be larger, and if the ob-
servation noise is greater, � should be smaller, though the
optimal value of � is unknown in many cases. Here we
adopt a useful approach suggested by Benveniste et al.
(1990). The idea is to use the stochastic approximation
method again to estimate the correct step-size parameter� . By differentiating A � � � � � 5 with respect to � 9 , we ob-
tain the stochastic gradient descent algorithm of � 9 :

� � 9 � DE F H : F I J L � 9 � M N
A � � � � �N � 9 O

� DE F H : F I J
P � 9 
 M R

� : � S � VW � X
A � � N Y � � � � �N � 9 \ 9 ] � (36)

5Although we use ^ _ a b d e here, we can derive adaptive algorithms
of ^ f _ a b d e and ^ h _ a b d j k e in a similar fashion.

l � % � 6 6 6 � m , where � � 9 denotes the next time step’s value
of � 9 , � n and � o are coefficients to constrain the domain
of � 9 , and M is the step-size parameter. Additionally,\ 9 � N � 9 q N � 9 and we can obtain its updating equation
by differentiating (7) with respect to � 9 :

\ �9 � \ 9 
 R
� : � S � VW � X

P A � � N Y � � � � �N � 9 

� 9 \ 9 s A � � N � Y � � � � �N � �9 � t N Y � � � � �N � 9 v � w ] � (37)

l � % � 6 6 6 � m , where \ �9 denotes the next time step’s value
of \ 9 6. The set of (7), (36) and (37) forms the adaptive
algorithm.

5 Experimental Results

In this chapter, we provide the experimental results to
evaluate the algorithms proposed in the preceding chap-
ter 4.

5.1 Setting of Simulation

First, we explain the formation of agents. We simulated
100 agents, including 70 good agents ( >� 9 � z 6 { ) and 30
bad ones ( >� 9 � z 6 % ). The ratings � � � by good agents are
generated by� � � � DE � : � J � >� � 
 z 6 % � � z � % � � � (38)

where � � z � % �
denotes a normally distributed stochas-

tic variable with zero mean and unit variance. As for
bad agents, there are two types. The rating � � � by the
first type (15 agents) is generated randomly (an uniform
stochastic variable), whereas the rating � � � by the second
type (15 agents) is generated by� � � � DE � : � J � % � >� � 
 z 6 % � � z � % � � 6 (39)

That is, agents of the second type are lying agents whose
ratings are always complementary.
Furthermore, we assumed the asynchronous situation
where � � � were obtained asynchronously. At each time
step, we randomly selected two agents, and they rated
each other and reported their ratings to the online repu-
tation mechanism. We always used asynchronous algo-
rithms in our simulation.
We set the parameters � 9 : � � z 6 � � � l �

, � 9 : � �z 6 z � � � l �
, M � z 6 z % , � n � z , and � o � z 6 � . We can’t

set � 9 : � � z � � l �
and � 9 : � � z 6 � � � l �

, because these are
fixed points of Joint and Lie algorithms, respectively.

6The initial value of � � ( � � � � ) is � .



5.2 Performance Comparison of Algo-
rithms

Here we provide the experimental results. Figure 3 shows
the changes in the squared error of � algorithms, that
is Weighted, LLS, Joint, Lie, LLS � (LLS w), Joint �
(Joint w) and Lie � (Lie w) (all algorithms are of the
asynchronous type). The squared error is defined as�

� � � � 
 �� �  � � (40)

and each path of the squared errors represents the average
of � � simulations.

0

2

4

6

8

10

12

14

0 5000 10000 15000 20000

S
qu

ar
ed

 e
rr

or

Time step

Weighted
LLS

Joint
Lie

LLS_w
Joint_w

Lie_w

Weighted

LLS

Joint

Lie

LLS_w

Joint_w

Lie_w

LLS

Weighted

Joint

Lie

LLS_w

Joint_w

Lie_w

Figure 3: Changes in squared error.

Until time step 10,000, we can see that all algo-
rithms, except for the LLS andWeighted algorithms, learn
the true trustworthiness values �� gradually and converge
within the bounds of � � � � � . The Weighted algorithm is
more effective than the simplest LLS algorithm. How-
ever, LLS � is much more effective than the Weighted al-
gorithm, as we noted in 4.1.3.
Continuously, at the time step 10,000, we changed the
true trustworthiness values �� � of � � good agents from � � �
to � � � , and these � � agents started to express complemen-
tary ratings, i.e. (39). It is clear that again the LLS and
Weighted algorithms do not work well and indeed make
things worse. Moreover, this time we can see that the
Joint algorithm cannot trace this change appropriately, al-
though other algorithms, Lie, LLS � , Joint � and Lie � , can
adapt to this change immediately.

5.3 Effectiveness of Adaptive Algorithm
Here we present more results to show the effectiveness
of the adaptive algorithm (see 4.3). Figure 4 shows the
changes in squared error of � algorithms under the same
condition in 5.2. Joint, Lie and LLS � are exactly the same
as in Figure 3, and Joint(a), Lie(a) and LLS � (a) represent
the corresponding algorithmswith the adaptive algorithm.
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We can see that the adaptive algorithm improves the
convergence rate of all three algorithms, not only in time
steps before 10,000, but also after 10,000. We omitted
the case of other algorithms, LLS, Joint � and Lie � , for
the sake of a clear graph. However, improvements in the
convergence rate by the adaptive algorithm are equally
observed.

5.4 Discussion

In our simulation, all agents including malicious agents,
have the static strategy of ratings. If the majority of agents
are good, we consider that our proposed algorithms still
work well under the situation containing malicious agents
who dynamically change their rating strategies. However,
empirical analysis is needed to examine the robustness
against attacks by malicious agents with more intelligent
manipulation strategies. Furthermore, game theory-based
analysis will also help this robustness analysis. We may
characterize our problem of online reputation mechanism
as the nonzero-sum (general-sum) game between the on-
line reputation mechanism and the intelligent malicious
agents. This is future work.

6 Conclusion

We proposed stochastic approximation-based algorithms
on our framework of the online reputation mechanism.
These algorithms are obtained in a similar fashion to the
corresponding rating models and cost functions. We ex-
tended these algorithms by introducing the adaptive algo-
rithm of the step-size parameter, in addition to deriving
asynchronous algorithms.
Experimental results show that the proposed algorithms
can identify good and bad agents effectively under the
conditions of the disturbances and also trace the changes
in agents’ true trustworthiness values adaptively.
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Abstract

A major problem in Multi-agent reinforcement learning research (MARL) is to let multiple agents learn how
to coordinate to some equilibrium. Coordination in single stage problems, which are easily modeled as normal
form games from game theory, is already studied profoundly. However, real-world problems are more naturally
translated in multiple-stage problems. Multiple-stage problems can be modeled as Markov games, but learning
in these models is not trivial. In this paper we introduce the notion of tree-model multi-stage games. An
existing learning technique, called exploring selfish reinforcement learning (ESRL), which is based on learning
automata theory and suited for coordination of pure independent agents, is extended to multi-stage games by
using a hierarchy of automata. Experiments show that hierarchical exploring selfish reinforcement learning
(HESRL) enables independent agents to coordinate in multi-stage tree structured games, of which the dual
single stage game would be very large. Examples of multi-stage games include situations in which agents in a
first stage have to decide with whom to cooperate; the sequel of the game is influenced by this decision.

1 Introduction

Coordination is an important issue in multi-agent rein-
forcement learning research, because it is often a requisite
when agents want to maximize their revenue. In many
real-world applications the problem of coordination be-
comes even harder because of system limitations such as,
partial or non observability, communication costs, asyn-
chronism etc. For instance in systems where resources
are limited as in job scheduling and routing these assump-
tions certainly apply. Predefined rules are not feasible in
complex and changing environments, even more commu-
nication has its price. Therefore we are interested in how
independent reinforcement learning agents can learn how
to coordinate. More specifically in this paper we are inter-
ested in whether independent agents are able to coordinate
in sequential coordination problems.

As opposed to joint action learners, independent agents
only get information about their own action choice and
pay-off. As such, they neglect the presence of the other
agents. Joint action learners, (Boutilier, 1996; Hu and
Wellman, 1998; Chalkiadakis and Boutilier, 2003) do per-
ceive the actions of the other agents in the environment
and are therefore able to maintain models on the strategy
of others. However in the light of the applications we
have in mind the assumptions joint action learners make
are too strong. We assume here that observations are not
reliable, the environment is unknown to the agents and
only limited communication is allowed.

In single stage games independent reinforcement learn-
ing agents are sometimes able to find optimal solutions,
(M.Peeters, 2003), however very often some form of lim-
ited communication is required. We call such agents,

pseudo independent. Different techniques for (pseudo)
independent agents exist, and guarantee them to find a
global optimal behavior in single stage common inter-
est games, see e.g. S.Kapetanakis et al. (2003); Ver-
beeck et al. (2003); J.Parent et al. (2004); M.Lauer and
M.Riedmiller (2000).

Single stage games are useful testbeds for some real
world problems such as job scheduling (Nowé et al.,
2001; J.Parent et al., 2004) , however in most real world
problems a sequence of decisions has to be learned. In
this paper we take the first step in scaling up our technique
of exploring selfish reinforcement learning (ESRL), (Ver-
beeck et al., 2003; J.Parent et al., 2004) to multiple stage
problems. For now we restrict ourselves to multi-stage
common interest games for which the corresponding state
graph is a tree, i.e. it shows no loops and has disjunct
paths. But we also assume that rewards can be stochastic.

In ESRL, independent RL agents explore as many joint
actions as possible. They do so by excluding actions from
their private action space, so that the joint action space
shrinks more and more. In combination with random
restarts the algorithm is proved to converge in the long
run to the optimal joint action of a single stage common
interest game, (Verbeeck et al., 2003).

ESRL agents are based on the theory of learning
automata, more in particular learning automata games,
(Narendra and Thathachar, 1989). Modeling independent
agents as learning automata is easily motivated. Learning
automata are updated strictly on the basis of the response
of the environment and not on the basis of any knowl-
edge regarding other automata or their strategies. More-
over their behavior is already studied thoroughly both in
a single automata setup as in interconnected systems, see



Narendra and Thathachar (1989); Thatthachar and Sastry
(2002).

We adapt the ESRL agents to hierarchical ESRL agents
(called HESRL). Every agent in the system will now con-
sists of several learners (learning automata in our case).
More in particular an HESRL agent has a new learner for
every state or node in the multi-stage tree. The HESRL
agents are based on the hierarchical learning automata ap-
proach of (K.S.Narendra and Parthasarathy, 1988) which
was used for hierarchical multi-objective analysis. We en-
hance them with the exploration and exclusion abilities of
the ESRL agents, so that they will be able to converge to
an optimal path in the multi-stage common interest tree.

In the next section we start with examples of tree struc-
tured multi-stage games. We compare the coordination
problems of multi-stage common interest trees with those
of single stage common interest games. Section 3 reviews
learning automata basics and introduces the hierarchical
framework of K.S.Narendra and Parthasarathy (1988). It
is shown how the reward function of the multi-stage tree
can be translated to the environment responses of the hi-
erarchical learning automata. In section 4 the exclusion
technique of ESRL agents is reviewed and extended so
that HESRL agents can exclude paths from the tree in the
same way ESRL agents exclude joint actions from the ac-
tion space. Two possible ways of exclusion are consid-
ered, i.e. a breadth first and a depth first exclusion tech-
nique. Section 5 reports on the first results obtained for
the multi-stage trees considered in section 2. We briefly
conclude in the last section.

2 Tree Structured Multi-Stage
Games

The foundation of single agent reinforcement learning in
multiple state environments are formed by Markov deci-
sion processes, MDP’s. In (Boutilier, 1996, 1999) this
framework was extended for use in a multi-agent set-
ting to MMDP’s, i.e. multi-agent Markov decision pro-
cesses. MMDP’s are a form of Stochastic games (also
called Markov games), (Hu and Wellman, 1998; Littman,
1994), but in an MMDP agents are fully cooperative1

and therefore there is only a single reward function for
all agents. Formally an MMDP is a tuple �����	�
������������ �	������� �

where � is a set of states, � a set
of agents,

��
a finite set of actions available to agent � ,������� � ��! �#"�"$"%� �'& �(��)+* ,-�$.%/ a transition function

and �0���1)32 a reward function.
Figure 1 gives an example of a simple MMDP with two

stages. It can be viewed as a standard MDP in which the
actions are implemented in a distributed fashion. Similar
to an MDP a credit assignment problem arises, however
their is an added coordination problem, which makes it
far more complicated. In the above problem the first agent

1Each agent gets the same payoff.
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Figure 1: The Opt-In Opt-out game: A simple MMDP
with a coordination problem and two stages from
(Boutilier, 1996). Both agents have two actions, 4 or 5 .
A 6 can be either action 4 or 5 .788889

4:4 4;5 5%4 5�54:4 .$, <=.>, .$, <=.$,4;5 <=.>, .$, <=.$, ?@.$,5A4 B B B B5%5 B B B B
C�DDDDE

Figure 2: Translation of the multi-stage tree of figure 1 in
the dual single stage common payoff game. A path in the
multi-stage tree becomes a joint action in the single stage
game.

should decide to play 4 in the first stage, no matter what
the other agent decides and both agents have to coordinate
their actions in the second stage to reach the high payoff
state F$G .

The tree of Figure 1 can also viewed as a single stage
game. Every sequence of two actions, an agent can take
can be considered as a single action of that agent’s action
space. A path in the tree will be a joint action in the single
stage game. In Figure 2 the corresponding game matrix
is given. The optimal joint actions or Nash equilibria areH 4:4I�	4:4;JA� H 4:4I��5A4;J%� H 4;5K��4;5%J and

H 4;5K�L5%5%J . The Nash equi-
libria of the dual single stage game are be called equilib-
rium paths in the tree.

In (S.Kapetanakis et al., 2003) a number of coordina-
tion problems for single stage identical payoff games are
analyzed. The climbing game, the penalty game and their
descendants are generally accepted as hard coordination
problems. The climbing game and the penalty game are
given in respectively Figure 3 and Figure 4.7889 4 5 M4 .N. <�ON,P,5 <�ON, Q RM , , B

C�DDE
Figure 3: The climbing game: A hard coordination prob-
lem.(from Claus and Boutilier (1998))



7889 4 5 M4 .$,S, T5 , U ,M T , .$,
C�DDE

Figure 4: The penalty game: A hard coordination prob-
lem.(from Claus and Boutilier (1998))

Both problems are difficult to solve from the view-
point of agent coordination. In the first game the pun-
ishment for mis-coordination in the neighborhood of the
optimal joint action

H 4I��4:J is extremely high, and there-
fore convergence to it is very difficult for agents using
only limited communication. In the penalty game 2 dif-
ferent optimal joint actions co-exist, however when the
agents each choose to play the other optimal action, this
mis-coordination is punished by a penalty term T . In both
games the agents may be tempted to play the safe, non-
optimal actions, which is

H M���M�J for the climbing game andH 5K��5�J for the penalty game.
As can be expected the same coordination problems oc-

cur in sequential coordination problems. Figure 2 shows
that punishments surround the optimal joint actions (i.e.H 4:4V��4:4:J , H 4W4I�L5A4;J , H 4:5��	4;5%J and

H 4;5K�L5%5%J ) as in the climb-
ing game and different optimal joint action exists as in
the penalty game. Again safe non-optimal joint actions
exists, i.e. the first player can play either 5%4 or 5%5 , no
matter what the second agent plays.

In sequential coordination problems these typical coor-
dination problems can occur on every stage of the game.
Consider for instance the multi-stage tree of Figure 5
which is a variant of the tree in Figure 1. In this case a co-
ordination issue also applies in the first stage of the game,
i.e. as well as in the first stage as in the second stage both
agents should agree on the same action. So again X equi-
librium paths exists which lead to state F$X . Non coordina-
tion in the first stage is less worse than non-coordination
in the second stage. The corresponding single stage game
is given in Figure 6.
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a,a; b,b
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a,b; b,a
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−10

a,b ; b,a 

a,a ; b,b 

Figure 5: A simple MMDP with a coordination problem
in both stages.

Another issue related to sequential coordination arises
when a reward is also given after the first stage, instead
of only a delayed reward at the end of the path. Just as

788889
4:4 4;5 5%4 5�54:4 .$, <=.>, B B4;5 <=.>, .$, B B5A4 B B .$, <=.$,5%5 B B <=.$, .>,

C�DDDDE
Figure 6: Translation of the multi-stage tree of figure 5 in
the dual single stage common payoff game.

in an MDP, discounting rewards becomes important. A
path of which the first link gives bad reward, may belong
to a path which receives high reward at the end. What
will be the equilibrium path depends on how important
immediate reward is opposed to for instance global or av-
erage reward on the whole path. Usually a discount factorY[Z * ,-�$.%/ weights the importance of the immediate re-
ward. Y should be chosen in function of the goal, cfr. dy-
namic programming techniques and reinforcement learn-
ing algorithms.

In Boutilier (1996) an MMDP is decomposed into lo-
cal (single stage) state games and the agents search co-
ordinated joint actions at the individual state games in-
stead of trying to find a coordinated global policy. It
is assumed that every agent knows the structure of the
game and therefore is able to compute the optimal value
function for the joint MDP. In Boutilier (1999) the agents
reason explicitly about specific coordination mechanisms.
An extension of the value iteration algorithm is studied in
which the system’s state space is augmented with the state
of the coordination mechanism adopted. In our view the
MMDP is a sequence of one stage games as in Boutilier
(1996). The only assumption we make for now, is that
the MMDP has a tree structure, i.e. there are no loops in
the state diagram of the MMDP and paths are disjunct.
Unlike Boutilier (1996) we allow that the rewards of the
stage games are stochastic.

Exploring selfish reinforcement learning is able to
overcome typical coordination problems in single stage
games, (Verbeeck et al., 2003) even in case of stochastic
rewards. In section 4 we enhance hierarchical agents with
the same exploration abilities as ESRL agents have, so
that independent HESRL agents are able to find optimal
paths in MMDP trees. The next section first introduces
hierarchical learning automata.

3 Hierarchical Learning Automata

In this section the theory of learning automata and au-
tomata games is briefly reviewed and hierarchical Learn-
ing automata are discussed. The latter will form the basis
of the HESRL agents, which are introduced in the next
section.



3.1 Learning Automata
A learning automaton formalizes a general stochastic sys-
tems in terms of states, actions, state or action prob-
abilities and environment responses, see Narendra and
Thathachar (1989); Thatthachar and Sastry (2002). A
learning automaton is a precursor of a policy iteration
type of reinforcement learning algorithm and has some
roots in psychology and operations research. The design
objective of an automaton is to guide the action selection
at any stage by past actions and environment responses, so
that some overall performance function is improved. At
each stage the automaton chooses a specific action from
its finite action set and the environment provides a random
response, see Figure 7.

In a variable structure stochastic automaton the proba-
bilities of the various actions are updated on the basis of
the information the environment provides. Action proba-
bilities are updated at every stage using a reinforcement
scheme. It is defined by a quadruple \K�]�	^_�a`b�dc=e for
which � is the action or output set \>� ! ���bfN��"$"�"d�hg�e of the
automaton , ^ is a random variable in the interval * ,-�$.%/
, ` is the action probability vector of the automaton or
agent and c denotes an update scheme. The output � of
the automaton is actually the input to the environment.
The input ^ of the automaton is the output of the environ-
ment, which is modeled through penalty probabilities M 
with M ji �#* ^1kl�  /m�	�]�-.]"�"�"d� .

AUTOMATON

a, b
p

ENVIRONMENT

α = { α , ..., α }
1         n

OUTPUTINPUT

β = { 0, 1 }

Figure 7: A Learning Automata - Environment pair

A linear update scheme that behaves well in a wide
range of settings2 is the linear reward-inaction scheme,
denoted by

Han
ohprq J . The philosophy of this scheme is es-
sentially to increase the probability of an action when it
results in a success and to ignore it when the response is
a failure. The update scheme is given by:`  Has ?t.>J i `  H�s Jj?u4 H .v<w^ H�s J	J H .'<x`  Has JdJ

if �  is chosen at time
s

2 y{zI|r}:~�� is what is called absolutely expedient and � optimal in
all stationary random environments. This means respectively that the
expected average penalty for a given action probability is strictly mono-
tonically decreasing with n and that the expected average penalty can be
brought arbitrarily close to its minimum value.

`-� H�s ?�.KJ i `-� H�s J�<�4 H .v<w^ H�s J	J�`;� H�s J
if �����i � 

The constant 4 is called the reward or step size parame-
ter and belongs to the interval * ,-�$.%/ . In stationary environ-
ments ` H�s J &:�V� is a discrete-time homogeneous Markov
process and convergence results for

Han ohprq J are obtained.
Despite the fact that multiple automata environments are
non-stationary, the

H�n ohprq J scheme is still appropriate in
learning automata games.

3.2 Learning Automata Games
Automata games were introduced to see if automata could
be interconnected in useful ways so as to exhibit group be-
havior that is attractive for either modeling or controlling
complex systems. A play � Ha� J i H � ! Ha� Jr"�"$"	� & H�� JdJ ofs

automata is a set of strategies chosen by the automata
at stage

�
. Correspondingly the outcome is now a vec-

tor ^ H�� J i H ^ ! Ha� Jr"�"$"	^ & Ha� JdJ . At every instance all au-
tomata update their probability distributions based on the
responses of the environment. Each automaton participat-
ing in the game operates without information concerning
payoff, the number of participants, their strategies or ac-
tions.

A1

An

. . . 
Environment

α β

β1α1
p1

pn

nn
...

Figure 8: Automata Game formulation.

The following results were tested and proved in Naren-
dra and Thathachar (1989): In zero-sum games theHan
ohpIq J scheme converges to the equilibrium point if it
exist in pure strategies, i.e. if there is a pure Nash equi-
librium. In identical payoff games as well as some non-
zero-sum games it is shown that when the automata use aHan
ohpIq J scheme the overall performance improves mono-
tonically. Moreover if the identical payoff game is such
that a unique equilibrium point exists, convergence is
guaranteed. In cases were the game matrix has more than
one equilibria the

Han ohprq J scheme will converge to one of
the Nash equilibria. The solution obtained depends on the
initial conditions.

Learning automata games form the basis for ESRL
agents. In the same way hierarchical learning automata
form the basis for HESRL agents.

3.3 Hierarchical Learning Automata
For our approach, we were inspired by the work of
K.S.Narendra and Parthasarathy (1988) in which several



hierarchies of learning automata are able to solve a se-
quence of stochastic identical payoff games at various lev-
els.

A simple hierarchical system of learning automata as
in figure 11 can be thought of as a single automaton (or
agent) whose actions are the union of actions of all au-
tomata at the bottom level of the hierarchy. We call this
agent a hierarchical agent. When different step sizes are
used at the various levels, the single automaton can still be
absolutely expedient3, (K.S.Narendra and Parthasarathy,
1988). The hierarchical agent can be generalized further
to situations where each automaton acting at any level re-
ceives a response from a local environment in addition to
the the global response obtained at the end of the cycle.
An example is given in figure 12. In this example two
hierarchical agents interact at two different levels. They
receive an environment response on each level. As such
they will be able to learn and play the two stage trees
given in section 2.

     A

a1 a2

A_2A_1

a21 a22a11 a12

ENVIRONMENT

Figure 9: A simple hierarchical system of learn-
ing automata with two stages, from K.S.Narendra and
Parthasarathy (1988)

The interaction of the two hierarchical agents of figure
12 goes as follows. At the top level (or in the first stage)
agent . and agent U meet each other in the stochastic game�

. They both take an action using their top level learn-
ing automata

�
and � . Performing actions 4  by

�
and5 � by � is equivalent to choosing automaton

� 
and � �

to take actions at the next level. The response of envi-
ronment �#. , ^ ! Z \>,���.le , is a success or failure, where
the probability of success is given by �  � . At the sec-
ond level the learning automata

��
and ��� choose their

actions 4 {� and 5	�d� respectively and these will elicit a re-
sponse ^ f from environment �(U of which the probability
of getting a positive reward is given by �����>� �d� . At the end
all the automata which were involved in the games, up-
date their action selection probabilities based on the ac-
tions performed and the response of the composite envi-
ronment, i.e. ^ Has J i�� ^ ! H�s Jv? H .�< � J�^If Has J , where

3This means that the expected average penalty for a given action
probability is strictly monotonically decreasing with time.

a1 a2 b1 b2

a11 a12 a21 a22 b11 b12 b21 b22

M ’ =[m’_ij,kl] 4x4

M = [m_ij] 2x2

   ENVIRONMENT  E_ 2

  ENVIRONMENT  E_1

β_2

   β_1

 LA   A

LA   A_1 LA    A_2 LA    B_1 LA    B_2

LA   B

Agent 1 Agent 2

Figure 10: Interaction of two hierarchies of learn-
ing automata at two stages, from K.S.Narendra and
Parthasarathy (1988)

� Z * ,-��.�/ .
To let these agents play for instance the tree game of

figure 1, we have to map the immediate rewards in the tree
to the environment responses of the hierarchical learning
automata system. We translate the rewards of figure 1 in
stochastic rewards, i.e. we scale the rewards of the tree in
figure 1 between , and . and use these results as a prob-
ability of success4 in the update of the learning automata.
In figure 1 no rewards are given after the first stage, so�

becomes the null matrix as is shown in figure 11. Af-
ter the second stage possible rewards are .>,-��<=.>, and B ,
which gives scaled probabilities of .��	, and ,-"�QlB for

� �
respectively. The actions taken by the agents in the first
stage are not neglectable, as they determine the game of
the next stage and the learning automata which are going
to play it. In the tree of figure 1 all rewards are given at
the end, therefore we should set the weight factor

��i , .
In general the hierarchical agent should have as many

levels of automata as there are stages in the tree and a suit-
able weight factor

�
(cfr a discount factor in RL). The ma-

trices are not known to the agents, i.e. learning is model-
free.

When every automaton of the hierarchy uses a linear
reward inaction scheme and the step sizes of the lower
levels automata vary with time, the overall performance
of the hierarchical learning automata system will improve
at each stage, (K.S.Narendra and Parthasarathy, 1988). At
any stage

s
the step size of all the lower level automata

taking part in the game is changed to:

4 Has J i 4 Has <�.>J`  H�s J
where � is the action taken by this automaton during the

previous game iteration, and `  H�s J is the probability this
4The reason for this is that we use what is called a P-model learning

automata. This means that the reward they recieve from their environ-
ment is binary, i.e. the action was a succes or a failure. This is however
no limitation, as other richer learning automata exist for which the P-
model algorithms are extended.



� i�� ,�" ,S,-" ,,�" ,S,-" , �
� � H ,-��,�J i�� .N" ,S,-" ,,-" , .N" , �
� � H ,-�$.>J i � .N" ,S,-" ,,-" , .N" , �
� � H .��	,WJ i � ,-"�QlBP,-"�QlB,-"�QlBP,-"�QlB �
� � H .���.KJ i�� ,-"�QlBP,-"�QlB,-"�QlBP,-"�QlB �

Figure 11: Translation of the multi-stage tree of figure 1
in environment responses for the hierarchical learning au-
tomata. The joint action chosen at the first stage, decides
the game that is played at the second stage.

automaton has for action � after iteration
s

. However in
the experiments we will see that hierarchical agents will
not always converge to optimal paths. Therefore we turn
to hierarchical exploring selfish reinforcement learning.

4 Hierarchical Exploring Selfish
Reinforcement Learning

4.1 ESRL

The technique of Exploring Selfish Reinforcement Learn-
ing was introduced in Nowé et al. (2001) and Verbeeck
et al. (2003) for respectively single stage games of con-
flicting interest and single stage games of common inter-
est5. We focus on the common interest version of the al-
gorithm here. The main idea of the technique is to explore
the joint action space � ��¡������ of the agents as efficient
as possible by shrinking it temporarily during different
periods of play. At the beginning of learning, agents be-
have selfish or naive; i.e. they ignore the other agents in
the environment and use a

Han ohprq J reward-inaction learn-
ing automata update scheme to maximize their payoff.
The first period of play ends when the agents have found a
Nash equilibrium. As mentioned in section 3.2 an

H�n¢ohprq J
scheme will converge to one of the Nash equilibria of the
learning automata game, under a suitable step size. So the
agents do converge after a certain number of iterations6.

5In these references we did not call our technique ESRL yet.
6In this paper the number of iterations done in one period (we call it

the period length) is chosen in advance and thus a constant. In a newer
version of the algorithm, the agents themselves learn when they are con-

## EXCLUSION PHASE

if (convergence has happened) \
action := action converged to ;

if (new payoff(action)
�

best payoff so far(action)) \
best payoff so far(action) := new payoff(action) ;e

if (more than 2 actions(my actionSet ) \
my actionSet := my actionSet - action;e

else \
my actionSet := my original actionSet ;e

random initialize prob of not excl actions;e
Figure 12: Pseudo code of the exclusion phase for the
common-interest ESRL agents.

Which Nash equilibrium the agents will find is not
known in advance, it depends on the initial conditions and
the basin of attraction of the different equilibria.

Next all the agents exclude the action they converged
to in the previous period of play. If the average payoff
for this action was better than the average payoff they re-
ceived so far for that action, they store this average as a
new best payoff so far for that action. We call this part of
the algorithm the exclusion phase.

A new period of selfish play can now restart in a smaller
joint action space and convergence to a new joint action
will take place. As such agents alternate between play-
ing selfish and excluding actions. When the agents have
no actions left over in their individual action space, the
original action space is restored and learning restarts in
the full joint action space7. To enlarge the possibility that
they shrink the joint action space in as many ways as pos-
sible, and thus collecting information about as many joint
actions as possible8, they take random restarts, i.e. they
initialize their action probabilities (of the not excluded ac-
tions) randomly at the start of a new period.

As agents remember the best payoff they received for
each action, ESRL was proved to converge in fully co-
operative games to the optimal solution without need-
ing communication, even in stochastic environments Ver-
beeck et al. (2003). The pseudo-code of the exclusion part
of the algorithm is given in figure 12.

So thanks to action exclusions and random restarts,

verged.
7At least for symmetric games in which all agents have the same

number of actions.
8Actually this means that there should be enough exploration.



ESRL agents avoid to converge to local optima. We will
enhance hierarchical agents with the same abilities to let
them avoid to converge to a suboptimal path in the multi-
stage tree.

4.2 HESRL

HESRL agents are hierarchical agents with added explo-
ration abilities. The idea for HESRL agents is to let them
converge to a path in the multi-stage tree and then ex-
clude that path or a part of that path from the tree, so that
in a new period of play other paths can be explored in
a smaller joint path space, i.e. the space of all possible
paths. So initially HESRL agents behave as common hi-
erarchical agents from section 3.3; and after enough iter-
ations they will converge to one path in particular, though
not necessary the optimal one. As the actions for the hier-
archical agents in multi-stage trees are sequences of local
actions, the exclusion phase can now be defined in differ-
ent ways.

A first approach could be, a breadth first method of ex-
cluding. This means that the agents exclude only the first
link of the path. More concrete this means that the learn-
ing automata of the first stage of every agent excludes the
action that it converged to. So all paths which start from
that link will be excluded. After only a few periods of
selfish play, all actions of the first level automaton will
be excluded and thus all paths will be excluded. If this is
the case all excluded actions of the first level automata of
all the agents are freed again, and a new period of selfish
play restarts in the original joint path space. Action prob-
abilities of all learning automata are initialized randomly
at the beginning of every period so that as many paths as
possible can be found. The pseudo code of breadth first
exclusions is given in figure 13.

Alternatively, an agent could randomly decide to ex-
clude any action involved in the path. In a second ap-
proach the agents exclude the action from that learning
automata, that was involved on the bottom level. We call
this approach a depth first exclusion method. Off course
after a while all the actions of an automaton on the bot-
tom level could become excluded. In that case the ac-
tion of the automaton of the previous level, which leads
to the corresponding bottom level automaton should also
be excluded. So after the first period of selfish play, ex-
actly one path becomes excluded. After several periods
of play more paths become excluded and when eventually
exclusions reach the first level automaton of the agent, all
the paths become excluded and thus the joint path space
should be freed again. Again randomization on the action
probabilities of all learning automata at the different lev-
els is done so as to increase the number of different paths
the agents converge to. The pseudo code of depth first
exclusions is given in figure 14.

In the next section hierarchical agents and HESRL
agents are tested against the multi stage trees of section 2.
Furthermore, breadth-first and depth-first exclusions are

## EXCLUSION PHASE

if (convergence has happened) \
path := path converged to;
action := first action(path);
new payoff := payoff(path);

LA := sequence of LA active in path;
Top LA := first (LA);

if (new payoff
�

best payoff so far(action) \
best payoff so far(action) := new payoff ;e

if (more than 2 actions(actionSet TopLA) \
actionSet TopLA := actionSet TopLA - action;e

else \
actionSet TopLA := original actionSet TopLA ;e

for each LA DO \
random initialize prob of not excl actions;ee

Figure 13: Pseudo code of the exclusion phase for the
common-interest HESRL agent with breadth-first exclu-
sions.



## EXCLUSION PHASE

if (convergence has happened) \
path := sequence of actions converged to;
action := last action(path);
new payoff := payoff(path);

LA := sequence of LA active in path;
Top LA := first (LA)
Bottom LA := last LA(LA)

if (new payoff
�

best payoff so far(action) \
best payoff so far(action) := new payoff ;e

actionSet := actionSet(Bottom LA) ;
actionSet := actionSet - action;

while (actionSet = emptySet) and
(Bottom LA �i Top LA) \

path := path - action;
LA := LA - Bottom LA;
action := last action(path);
Bottom LA := last LA(LA);
actionSet := actionSet(Bottom LA);
actionSet := actionSet - action;e

if (Bottom LA = Top LA) and (actionSet = emptySet) \
for each LA DO \

actionSet(LA) := original actionSet(LA) ;e
for each LA DO \

random initialize prob of not excl actions;ee
Figure 14: Pseudo code of the exclusion phase for the
common-interest HESRL agent with depth-first exclu-
sions.

evaluated and compared.

5 Experiments
In this section we report on the results of hierarchical
agents and HESRL agents playing different multi-stage
games. In a first subsection we test how well the agents
can cope with the typical coordination problems men-
tioned in section 2. The next subsection studies the effect
of discounted rewards. In the last subsection breadth first
exclusions and depth first exclusions are compared. In
all experiments the step-size parameter 4 is initially set to,-" ,�B . Note that the experiments with the HESRL agents
only show the exploration phase, i.e. after enough peri-
ods are played in which different joint actions are found
an exploitation phase should be added in which the agents
play the best path they found.

5.1 Hard Coordination problems
As seen in section 2, the multi-stage game of figure 1
combines two hard coordination problems. A first prob-
lem is that multiple equilibrium paths exists, so that
agents have to coordinate on the same equilibrium. Sec-
ondly the equilibrium path is surrounded by low reward
paths. In figure 15 the average payoff for hierarchical
agents9 is given for the game of figure 1.The average is
approximately ,-" £ . This means that in almost every run
of the game the hierarchical agents converge to one of the
suboptimal paths of the tree, which gives on average a
payoff of ,-"�QlB . In only a few runs an optimal path, which
gives payoff .N" , is reached.

Figure 16 and figure 17 give the average of a typical
run of HESRL agents using respectively breadth-first and
depth-first exclusions. The period length is set to .$,�,N,
iterations, i.e. after .>,N, iterations of playing selfish, the
agents run their exclusion phase of which the pseudo code
is given in section 4. In both experiments an optimal path
is reached. The breadth-first HESRL agent in figure 16
find an optimal path in the first and fourth period of selfish
play. The depth-first HESRL agents find an optimal path
in the third and fourth period. Over UN, different runs both
types of HESRL agents find an optimal path in all runs.

The game tree of figure 5 has 2 coordination problems,
one on both stages of the game. It appears that hierar-
chical agents perform sligtly better on this problem. Fig-
ure 18 shows that hierarchical agents now reach an aver-
age of approximately ,�" ¤�O . So they find on average opti-
mal paths more frequently than for the previous problem.
When we compare the dual single stage games of these
multi-stage trees, given in respectively figure 2 and fig-
ure 6 we can see that this may not come as a surprise.
Both games have the same level of difficulty. Although
the second game has a coordination problem on every
stage of the game, this doesn’t make the overall single

9The average is calculated over 100 different runs.
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Figure 15: The average payoff for hierarchical agents
playing the multi-stage tree of figure 1.
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Figure 16: The average payoff for HESRL agents with
breadth-first exclusions playing the multi-stage tree of fig-
ure 1.

stage game more difficult. In fact, the Nash equilibria are
now situated on the diagonal, which apparently makes it
easier for the hierarchical agents to reach them.

The results for HESRL agents are given in figure 19
and figure 20. Again both types find an optimal path. The
same period length is used, i.e. .$,�,N, iterations. Again a.>,N,:¥ converge to one of the equilibrium paths is reached
when different runs are played.

In figure 19 you can see that after the first two periods,
i.e. from epoch O�,N,N, until BN,N,�, , the agents are reaching
a suboptimal path, whereas in figure 20 the agents find
an optimal path in the first 4 periods. This is because
the agents use a different exclusion technique. Indeed,
in figure 19 the agents have found U equilibrium paths,
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Figure 17: The average payoff for HESRL agents with
depth-first exclusions playing the multi-stage tree of fig-
ure 1.

i.e.
H 4:4I�L6�6lJ and

H 5%5K�A6N6NJ , but after these U periods, the
agents have excluded all paths that begin with action 4:4
and action 5%5 , so only suboptimal paths are left over in
the joint path space, while actually there X different joint
equilibrium paths. With depth-first exclusions only one
path is excluded from the joint path space at a time, so the
depth-first HESRL agents can find all equilibrium paths
in sequential periods, that is exactly what happens as is
shown by figure 20.
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Figure 18: The average payoff for hierarchical agents
playing the multi-stage tree of figure 5.
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Figure 19: The average payoff for HESRL agents with
breadth-first exclusions playing the multi-stage tree of fig-
ure 5.
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Figure 20: The average payoff for HESRL agents with
depth-first exclusions playing the multi-stage tree of fig-
ure 5.

5.2 Discounting Rewards
Figure 23 gives an example of a sequential game prob-
lem which gives immediate reward after every stage. It



was already reported in (K.S.Narendra and Parthasarathy,
1988). We played it with hierarchical agents and HESRL
agents using a weight factor of ¦:4W����4 i ,-"§B . The dual
single stage game is given in figure 22. Important to no-
tice is that the equilibrium of this game is situated at the
joint action

H 4:4I��5�5%J with an average reward of ,�"§QNUNB . So
in the first stage agent . should choose action 4 and agentU should choose action 5 . However this is not the optimal
joint action of the first stage game

�
, i.e. joint actionH 4I��5%J gives an average payoff of ,�" R , while joint actionH 4I�	4;J gives an average payoff of ,-"�Q .

� i � ,�"§Q¨,-" R,�"©.ª,-"�.«�
� � H ,-��,�J i�� ,-" RS,-"§U,-" OS,-"�.«�
� � H ,-��.KJ i¬� ,-" OS,-" £�B,-"§U ,-"§U��
� � H .N��,�J i � ,-" X,-"�.,-"§UP,-"�. �
� � H .N�$.>J i � ,-" OS,-"§U,-"§UP,-"§U1�

Figure 21: A sequential stage game from K.S.Narendra
and Parthasarathy (1988). The joint action chosen at the
first stage, decides the game that is played at the second
stage.

�®i ,�" B
Notice that there is only one optimal path in this game,

the dual single stage game has a unique Nash equilibrium.
This explains why hierarchical agents always converge to
the optimal path in this game, as can be seen in figure 23.
Their average payoff is approximately ,-"�QlUNB , which is ex-
actly the Nash equilibrium payoff of the dual single stage
game. From a coordination point of view, is this an easy
coordination problem.788889

4W4 4:5 5A4 5%54:4 ,-" R�BP,-" XWB¨,-" XWBP,-"�QlU�B4;5 ,-"§B ,-" X ,-" X ,�" X5A4 ,-"§UNB ,-"�. ,-"§U ,�"©.KB5%5 ,-"�.>B ,-"�. ,-"�.>B ,�"©.KB
C�DDDDE

Figure 22: The dual single stage game of the sequential
game given in figure 21 with

�xi ,-"§B .

This is also shown by the results of the HESRL agent,
see figures 24 and 25. Convergence to the optimal path

happens always in the first period.
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Figure 23: The average payoff for hierarchical agents
playing the sequential game problem of figure 21.
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Figure 24: The average payoff for HESRL agents with
breadth-first exclusions playing the sequential game prob-
lem of figure 21.
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Figure 25: The average payoff for HESRL agents with
depth first exclusions playing the sequential game prob-
lem of figure 21.

5.3 Large Joint Path Space
To put the HESRL exclusion techniques to the test and to
make a comparison between depth-first and breadth-first
exclusions we experimented with a larger joint path space.
We scaled the game of figure 5 up to three players, all with
three actions, i.e. 4 , 5 or M . This results in U�Q f i QNUl¤ dif-
ferent paths possible. The equilibrium paths are reached
when all players play the same action in every stage, for
instance

H 4:5%M��	4;5AM���4;5AM�J is an equilibrium path. In total
there are ¤ equilibrium paths. On average over .$, runs of



.KUl,�" ,�,N, iterations the breadth-first technique managed to
converge to an equilibrium path in £N,:¥ of the runs. This
good result is due to the fact that the large joint path space
is quickly reduced with this technique. And because of
the many restarts the agent is still able to find an equilib-
rium path. We also ran this experiment with the depth-
first technique. Here we only reached an equilibrium pathX out of .>, times. The depth-first exclusion technique
caused a slower reduction of the amount of paths result-
ing in a lower percentage of optimality.

6 Discussion

We made a first step in the direction of independent agents
learning a sequence of actions in stochastic multi-stage
environments with only limited communication. For this
we use hierarchical exploring selfish RL agents, of which
the main idea is to exclude actions locally and as such
shrink the joint path space.

For now we only experimented with tree structured
multi-stage games, however some interesting problems
posses this structure. In J.Zhou et al. (1999) a two level
tree structured set-up is studied in which the first level
represents a group decision concerning the game envi-
ronment to be played and the second level represents the
choice of action within the selected environment. The is-
sue under study is the effect of delays in the exchange of
local information. It would be interesting to let indepen-
dent HESRL agents play these games.

HESRL agents proved to be better than hierarchical LA
agents in tree structured multi-stage games with hard co-
ordination problems. Even games with multiple coordina-
tion problems at different stages of the game didn’t appear
more difficult for the HESRL agents. When rewards are
discounted, HESRL agents still find an equilibrium path,
even when suboptimal paths exist with a high reward on
the first stage.

Two types HESRL agents were tested and compared,
i.e. HESRL breadth-first excluding agents and HESRL
depth-first excluding agents. The breadth-first exclud-
ing agents seem to be a better choice in larger joint path
spaces. However more experiments should confirm this.

For now HESRL agents use a constant period length,
however in the latest version of the ESRL algorithm, the
agents decided themselves when they are converged to a
Nash equilibrium. This usually results in shorter periods.
The same behavior can be implemented for the HESRL
agents.

We didn’t investigate the effect of stochastic transitions
yet, however we believe that stochistic transitions will
have the same effect as playing an equivalent game with
deterministic transitions but adapted stochastic payoffs.
We believe that as long as the noise is reasonable low the
HESRL agents will cope with it, however further investi-
gations are necessary.
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Abstract

This paper presents a model for adaptive agents. The model describes the behavior of an agent as a graph of
roles, in short abehavior graph. Links between roles provide conditions that determinate whether the agent
can switch roles. The behavior graph is assigned at design time, however adaptive role selection takes place at
runtime.
Adaptivity is achieved through factors in the links of the behavior graph. A factor models a property of the
agent or its perceived environment. When an agent can switch roles via different links, the factors determine
the role the agent will switch to. By analyzing the effects of its performed actions the agent is able to adjust
the values of specific factors, adapting the selection of roles in line with the changing circumstances.
Models for adaptive agents typically describe how an agent dynamically selects a behavior (or action) based
on the calculation of a probability value as a function of the observed state for eachindividual behavior (or
action). In contrast, the model we propose aims to dynamically adapt logicalrelations between different
behaviors (called roles here) in order to dynamically form paths of behaviors (i.e. sequences of roles) that are
suitable for the current state.
To verify the model we applied it to the Packet-World. In the paper we discuss simulation results that show
how the model enables the agents in the Packet-World to adapt their behavior to changes in the environment.

1 Introduction

Adaptability is a system’s capacity to take into account
unexpected situations. Multi-agent systems are partic-
ularly characterized by the property that not everything
can be anticipated in advance. In the context of cogni-
tive agent systems the problem of adaptation is tackled
by introducing learning techniques. Traditional learning
techniques however do not fit the approach of behavior
based agents since these agents do not build a symbolic
model of their environment.

To deal with the problem of adaptation an agent has
to take into account the quality of the effects realized by
its past decisions. Several techniques for behavior based
agent architectures have been proposed to realize adapta-
tion, some examples are Maes and Brooks (1991), Dro-
goul (1993) or Bonabeau et al. (1998). In our research
group we also developed two architectures for adaptive
agents, see Schelfthout and Holvoet (2002) and Wolf and
Holvoet (2003). All these models typically describe how
an agent dynamically selects a behavior (or action) based
on the calculation of a probability value in function of
the observed state for eachindividual behavior (or ac-
tion). The contribution of this paper is a model that aims
to dynamically adapt logicalrelationsbetween different
behaviors (called roles here) in order to dynamically form
paths of behaviors (i.e. sequences of roles) that are suit-
able for the current state.

This paper is structured as follows. Section 2 intro-
duces the basic model for agent behavior. In section 3 we
extend the model for adaptive behavior. Section 4 evalu-
ates the model for the Packet-World application. We show
how the model enables the agents in the Packet-World to
adapt their behavior to changes in the environment. Fi-
nally we conclude in section 5.

2 Basic model for agent behavior

In this section we introduce the basic model for agent
behavior. The basic model describes the behavior of an
agent as a graph, in short abehavior graph. A behav-
ior graph consists ofroles that are connected by means
of links. An agent executing a certain behavior graph is
“moving” through this graph, executing actions in a role
and moving to the next role via links connecting the roles.
We now describe these concepts in detail.

2.1 Roles

A role is an abstract representation of a sequence or com-
bination of actions the agent executes when it is in that
role. A role abstracts from the number and detail of its
actions as well as the applied action selection mechanism
within the role. At each moment in the agent’s lifetime
there is exactly one active role, called thecurrent role, all



other roles are inactive.
We choose the term role instead of task for the reason

that a role is an organizational concept: it captures the
fact that an agent is part of a multi-agent system, and thus
part of an organization. We will also introduce the con-
cept of dependency roleslater to explicitly model both
inter-agent dependencies, as well as a form of intra-agent
parallelism.

The decision which combination of actions is grouped
into a role is left to the human designer. He or she can
choose to use atomic actions as a role: this leads to agents
consisting of many fine-grained roles, and thus many
links between those roles. It is likely that such a design
generates a lot of overhead when executed. On the other
hand, the designer can choose to group many actions into
a few big roles. This makes the behavior graph look very
comprehensive, while hiding a lot of complexity in the
roles themselves. In practice the designer likely should
strike a golden mean, taking into account the tradeoff be-
tween the overhead of minimal roles and the complexity
of weighty roles.

2.2 Links

Besides roles, the behavior graph consists of directed
links that connect roles. A link starts at asource roleand
points to agoal role. Several links can start from the same
role and several links can point to the same role. When an
agent is executing a certain role, it can decide that it wants
to switch roles to any one role that is linked with the cur-
rent role.

Additionally, acondition is associated with each link,
that determines whether the link isopenor closed. The
condition is evaluated at runtime, and influences the se-
lection of the next role the agent can execute: if a con-
dition closes a link, the agent cannot switch to that link’s
goal role. An agent can only switch roles via open links.

These conditions are used to model that during execu-
tion, certain goal roles can not be executed (or it makes no
sense executing them) from certain source roles. Links
represent a logical connection between roles, based on
the current context of the agent. Some roles are inde-
pendent of each other - these are not connected at all, or
only through intermediate roles. The links in the behav-
ior graph represent all possible paths the agent can follow
through the graph in order to reach its goals.

2.3 Role pre-conditions

The condition of a link determines whether roles can be
switched via that link, i.e. whether the goal role can be-
come current role. Often however, a role requires certain
general conditions before it can be activated. For example
a role may require particular resources in the environment
to become active. We call such general conditions thepre-
conditionsof that role.

It is possible to integrate pre-conditions as conditions
in each link that points to the role. However, this would
require a copy of the pre-condition in each link. Therefore
we decided to integrate pre-conditions in the roles them-
selves. Putting pre-conditions in roles promotes reuse of
the role since it uncouples the links from the context of
the roles (since the latter can be integrated in the pre-
condition).

In summary, a switch from role A to role B is only pos-
sible if

• role A is the current role

• there is a link L from A to B;

• link L’s condition is true, and L is thus open;

• role B’s pre-condition is true.

2.4 Dependency roles

It is obvious that in general an agent must be able to per-
form identical actions in several different roles, as well
as be able to respond to events that occur asynchronously
and in parallel to the agent’s current activities. An ex-
ample is an agent that is able to respond to requests for
information. When the agent receives a request it should
be able to answer, no matter in which particular role the
agent is at that moment. If we wanted to model this in the
approach described above, we would have to duplicate the
answering functionality in each role.

To avoid this duplication a new role can be introduced
that is responsible to handle requests. All roles from
which the agent must be able to answer requests are con-
nected to this new role. Because requesting agentsde-
pendon the answers produced by this new role we call
such role adependency role. Dependency roles are sim-
ilar to roles in the dependencies layer of the Cassiopeia
approach, described in Drogoul and Zucker (1998).

Fig. 1 depicts a simple example of a behavior graph. In
this example, the agent has two roles,Move andWork.
An agent without work todo is in theMove role. In this
role the agent moves around looking for work. When
it detects work, theWork Detected link opens and the
agent switches to theWork role. As soon as the work is
finished the agent again switches to theMove role via the
Work Finished link. The right part of Fig. 1 illustrates
the common dependency of both roles to answer to a re-
quest of the headquarters to send the agents’ current loca-
tion. This functionality is modelled as theSend Position
dependency role on top of the behavior graph.

Whereas a role of the behavior graph becomes active
through role switching via a link, a dependency role be-
comes active via the connection with the current role
when a dependency is detected. The dependency role then
gets priority over the current role to resolve the depen-
dency after which the underlying role takes over again. If
the dependency role is not connected to the current role
the moment the dependency appears, the resolution of the



Figure 1: Example of a simple behavior graph on the left, boxes are roles, ellipses are links. On the right the representation
of a dependency role.

dependency is delayed until a role connected to the appli-
cable dependency role becomes active.

2.5 Refreshment of information

A final aspect of our basic model concerns the refresh-
ment of information. When new information becomes
available to the agent it may switch roles. In the proposed
model it is only necessary to update the information in
the links that start from the current role. After all, only
the goal roles of these links are candidates to become the
next current role. This approach not only saves computa-
tion time, more important is its impact on the scalability
of the model. Since the refreshment of information hap-
pens only locally it is independent of the number of roles
and the size of the behavior graph.

3 Model for adaptive behavior

In this section we extend the basic role based model to-
wards adaptive agents. An adaptive agent dynamically
changes its behavior according to altering circumstances
it is faced with. First we introduce dynamic links for be-
havior graphs, based on factors. Then we zoom in on
adaptive factors.

3.1 Dynamic links based on factors

In the basic model a link can be open or closed, allowing
role switching or not. Now we extend a link to have a
certainrelevanceto switch roles. The relevance is deter-
mined through a set of relevantfactors. A factor models a
property of the agent or its perceived environment. An ex-
ample of a factor is the distance to a target (when the agent
is close to the target the factor is high and the other way
around). When the link is evaluated each factor returns a
value that indicates the current strength of the property of
that factor. Based on a mathematical function the agent

then calculates (using the values of all the factors of the
link) the relevance to switch roles via that link.

A simple approach is to use a linear sum, i.e. the rele-
vance to switch roles is then:

P =
∑

i

wi.fi

where0 ≤ wi ≤ 1 is the weight of factori andfi its cur-
rent value, with

∑
i fi = 100. A disadvantage of this sim-

ple model is that none of the factors is able to dominate
the result and so force a role switch along the link. To re-
solve this problem we can give a link a standard relevance
to switch roles. This relevance can then be influenced
by the factors as follows:P = Pstandard +

∑
i wi.fi

Pstandard is the pre-defined standard relevance,wi the
weight of factori and−100 ≤ fi ≤ 100 the value of
the factor. This method is more flexible, e.g. it supports
the negative influence of a factor. However it suffers from
another problem: saturation. A link with a relevance of
99 % has almost the same relevance to switch roles as
a link with a relevance of 400 %. More complex calcu-
lations can also be used, such as Boltzmann exploration
(L.M. Kaebling and Moore, 1996).

Based on the relevances of all links that start from the
current role (and for which the preconditions of the goal
role hold) the agent then calculates to which role it will
switch. The most simple approach selects the link with
the highest relevance, alternatively a stochastic probabil-
ity over the candidate links can be used to calculate a de-
cision.

3.2 Adaptive factors

As stated above, factors model conditions to switch roles
via one of the candidate links. We introduce two kind of
factors, pre-defined and self-learning factors.

Pre-defined factorsallow a designer to express rel-
ative preferences for role selection. The definition of
pre-defined factors requires a thorough knowledge of the



Figure 2: Example of the Packet-World

problem domain. The designer has to identify the relevant
properties of the agent or its surrounding environment that
affect its role selection. Based on the values of the factors
in the links that start from the current role, the agent dy-
namically calculates to which role it will switch.

Self-learning factorsgo one step further and allow an
agent to adapt its behavior over time. Self-learning fac-
tors take into account the good or bad experiences of re-
cent role selections. The result of a role selection is de-
termined by the past performance of the goal role. The
calculation of the performance can be done locally, by the
goal role itself (e.g. the success of getting an answer to a
request) or globally, i.e. a general evaluation function can
be used that takes into account macroscopic information
(e.g. an agent that follows an alternative route to a target
to avoid a blockade). During refreshment, the result of the
performance calculation is returned back to the link that
uses it to adjust the values of its self-learning factors.

Sometimes however the result of actions is not imme-
diately available, e.g. the answer to a question sent to an-
other agent may be delayed. Meanwhile the agent may
have left its previous role. To deliver late results at the
right links we introduce agraph manager. The graph
manager is a module internally to the agent that handles
the delivery of late results. Self-learning factors can sub-
scribe themselves at the graph manager when they expect
a late result of a goal role. As soon as the result is avail-
able the goal role returns it to the graph manager. During
the next refreshment, the graph manager passes the result
to the correct link which updates the self-learning factors
to which the result applies.

Contrary to most traditional models for adaptive selec-
tion of behavior that dynamically selects a behavior based
on the calculation of a probability value in function of the
observed state for eachindividual behavior, self-learning
factors enable an agent to construct logicalrelationsbe-

tween different roles in order to dynamically form paths
of roles that are suitable for the current state. When the
circumstances change, the agent dynamically adjusts its
self-learning factors and shifts its paths of roles accord-
ingly.

For example, in Q-learning, a value is learned for ev-
ery possible action in a certain state. In our model, ev-
ery role represents an abstract action or group of actions,
that are linked with each other using various kinds of pre-
conditions on the state. In a sense, whereas Q-learning
links all states through an action - value pair, we link ac-
tions through a condition on the state. Thanks to the in-
troduction of factors, we are able to change the influence
of a certain property of the environment on the agent’s ac-
tions adaptively. Because actions are linked, it is easier to
learn paths of actions, rather than paths of states.

In one extreme, the behavior graph can be completely
linked, so that the agent can learn all useful paths himself
during execution. However, usually some human designer
knowledge is already encoded in the graph, so that obvi-
ously useless links can be avoided beforehand.

4 The model applied to the Packet-
World

In this section we apply the model for adaptive behav-
ior to the Packet-World. First we introduce the Packet-
World application and describe a basic behavior graph for
agents in the Packet-World. Next we discuss the problem
of the ’sparse world’ in the Packet-World. To resolve this
problem, we extend the basic behavior graph to enable the
agents to adapt their behavior when the world gets sparse.
Finally, we show simulation results that demonstrate the
improved performance of the adaptive agents over the ba-
sic agents for a sparse world.



Figure 3: A behavior graph for a basic agent in the Packet-World. On the right the representation of the dependency role
to answer to questions.

4.1 The Packet-World

The Packet–World, Huhns and Stephens (1999) Weyns
and Holvoet (2002), consists of a number of different col-
ored packets that are scattered over a rectangular grid.
Agents that live in this virtual world have to collect these
packets and bring them to their correspondingly colored
destination. We call ajob the work of the agents to deliver
all packets in the world. The left part of Fig. 2 shows an
example of a Packet–World with size 10 in which 8 agents
live. Colored rectangles symbolize packets that can be
manipulated by the agents and circles symbolize destina-
tions.

In the Packet–World agents can interact with the envi-
ronment in a number of ways. An agent can make a step to
one of the free neighbor fields around him. If an agent is
not carrying any packet, it can pick up a packet from one
of its neighbor fields. An agent can put down a packet
it carries at one of the free neighbor fields, or of course
at the destination point of that particular packet. Finally,
if there is no sensible action for an agent to perform, it
may wait for a while and do nothing. Besides acting into
the environment, agents can also send messages to each
other. In particular agents can request each other for in-
formation about packets or the destination for a certain
color of packets.

It is important to notice that each agent of the Packet–
World has only a limited view on the world. The view–
size of the world expresses how far, i.e. how many
squares, an agent can ’see’ around him. The right part
of Fig. 4.1 illustrates the limited view of agent 8, in this
example the view–size is 2.

We monitor the Packet–World via two counters that
measure the efficiency of the agents in performing their
job. A first counter measures the energy invested by the
agents. When an agent makes a step without carrying a
packet it consumes one unit of energy, stepping with a

packet requires two units of energy. The energy required
to pick up a packet or to put it down is also one unit. Fi-
nally, waiting and doing nothing is free of charge. The
second counter measures the number of sent messages.
This counter simply increments for each message that is
transferred between two agents. The overall performance
can be calculated as a weighted sum of both counters.

4.2 A behavior graph for agents in the
Packet-World

Fig. 3 depicts a behavior graph for a basic agent in the
Packet-World. The behavior of a basic agent is simple, it
moves to the nearest packet, picks it up and brings it to
its destination. If the agent does not perceive any packet
(or the destination it is looking for), it searches randomly.
However, if it perceives another agent it asks if the other
agents knows the target.

We translated this simple behavior into six roles. In the
role Search Packet the agent randomly moves around
looking for packets. However, if it perceives other agents
it switches to the roleAsk Packet requesting the farthest
agent whether it perceives a packet. Perceiving another
agent is modelled as a precondition of theAsk Packet
role. The link to switch from theSearch Packet role to
the Ask Packet role has no condition. We call such a
link a default link. A default link is indicated by an ar-
row without an oval with a condition. The accompanying
number (0 . . . 1) denotes the chance for an agent to switch
roles via that link1. A link with a chance1 will always
be open. A link with a chance of0.33 indicates that if
all other conditions hold, the agent changes roles via that
link in only 33 % of the cases. When the requested agent
receives the question, it switches, independent of its cur-
rent role, to theAnswer to Question role to give the re-

1The default value for a chance is 1, this value is not annotated.



Figure 4: On the left, energy usage during the evolution of the Packet-World, on the right, the number of sent messages.

questing agent an answer. Since the requesting agentde-
pendson the requested agent, theAnswer to Question
role is modelled as a dependency role. When the re-
quested agent receives the location of a packet, it switches
via theSee Packet link to the roleTo Packet, other-
wise it continues to execute theSearch Packet role. In
the roleTo Packet the agent moves straight on to the
packet. If meanwhile the packet is picked up by another
agent, the agent returns via theNo Packet link to the
Search Packet role to look for another packet. If it per-
ceives other packets it switches again to theTo Packet
role and moves to the nearest perceived one. If no other
packet is visible the agent keeps searching for a packet
in the Search Packet role. Finally when the agent
succeeded in picking up a packet it switches via the
Picked Packet link to theSearch Destination role. In
a similar way the agent then searches for the destination
of the packet it carries. When the agent finally delivers
the packet it enters theSearch Packet role to look for
the next packet.

4.3 The problem of the sparse world

We observed the behavior of the basic agents in the
Packet-World and noticed a particular problem for the
agents. When the agents deliver packets at the destina-
tion the number of remaining packets in the environment
decreases. When the world gets sparse, i.e. when only
a couple of packets are left, we observed that the behav-
ior of the agents becomes inefficient. We called this the
’sparse world’ problem.

Fig. 4 shows simulation results that illustrate the effects
on energy consumption and communication traffic when
the world gets sparse. As the number of packets in the
environment decrease, the graphs have to be read from
the right to the left side. The left graph shows the en-
ergy used by the agents for each packet that is delivered.

From the start (in this case the number of initial pack-
ets was 36) until approximately 8 packets the energy con-
sumption is fairly constant. However the required energy
to deliver the remaining packets strongly increases. The
right graphs shows the number of messages sent for each
packet that is delivered. Similar to the energy consump-
tion, the number of sent messages increases remarkable
when the number of remaining packets becomes less then
8.

From the observations, we identified three kinds of
problems for the agents when the world got sparse:

1. The number of requests for packets explodes while
most agents can not give a meaningful answer. We
call this therequest explosionproblem.

2. Most agents keep searching aimlessly for packets
wasting their energy. We call this theenergy waste
problem.

3. When several agents detect one of the few packets all
of them run at it while in the end only one agent is
able to pick it up. We call this thestormingproblem.

4.4 A behavior graph for adaptive agents

To resolve the problems with the sparse world, we de-
signed an adaptive agent according to the model described
in section 3. Fig. 5 depicts the behavior graph of the adap-
tive agent.

We reused the roles of the basic agent for the
adaptive agent. We added two extra waiting roles,
Wait to Search andWait to Collect. Similarly as to
the basic agent, the adaptive agent has a dependency role
Answer to Question to answer questions sent by other
agents (this dependency role is not depicted). As for the
basic agent, the adaptive agent is able to answer questions



Figure 5: A behavior graph for an adaptive agent that deals with the sparse world problem.

from all roles of the behavior graph. The symbolFB de-
notes that feedback (for self-learning factors) is passed
from a goal role back to the connected link.

Now we explain the adaptive behavior of the agent.
First we discuss how the agent adapt its behavior to cope
with the request explosion problem. Then we look at the
energy waste problem. Finally we discuss how the agent
adapt its behavior to deal with the storming problem.

The request explosion problem. We start with the
role Search Packet. As long as the agent does not per-
ceive a packet it searches randomly for one. However,
if it perceives one or more agents itmay switch to the
Ask Packet role to request the farthest agent for the lo-
cation of a packet. The decision whether the agent re-
quests another agent for information depends on the state
of the Ask Packet Location link. In this link we in-
troduce aSuccess factor. The value of this factor deter-
mines the chance whether the agent sends a request or not.
The value of theSuccess factor is affected by the previ-
ous success of the goal roleAsk Packet. If a request is
answered with a requested information, theAsk Packet
role returns a positive feedback to theSuccess factor of
the Ask Packet link, otherwise a negative feedback is
returned. It is not difficult to see that the self-learning
Success factor enables the agent to adapt its behavior to
cope with the request explosion problem. If the number
of successful requests decreases, the chance that the agent
will send new questions decreases too.

The energy waste problem. Besides searching ran-
domly or asking another agent for a packet location, the
agent may also switch from theSearch Packet role to
theWait to Search role. In theWait Trigger link we
added theSearch Period factor that reflects the time the
agent searches for a packet. TheSearch Packet role
measures the search time for packets. When the search
time exceeds the value of theSearch Period factor the
agent switches to theWait to Search role. As such the
agent enters theWait to Search role more frequently
when the time to detect a packet increases. The link
Wait Done determines when the agent restarts search-
ing, i.e. when it returns back from theWait to Search
role to theSearch Packet role. We introduced a fac-
tor Wait Period in the Wait to Search link that re-
flects the usefulness of waiting. If the agent after a wait-
ing period returns to theSeach Packet role and then
again fails to find a packet (before it switches to the
Wait to Search role), theSearch Role returns negative
feedback to theWait Period factor. As a consequence
the agent increases the time it waits in theWait Search
role. However if the agent quickly discovers a new packet
the Search Packet role returns positive feedback, de-
creasing the next waiting time. TheWait Search role
enables the agent to deal with the energy wasting prob-
lem.

The storming problem. As soon as the agent finds a
packet, it switches to theTo Packet role. In addition



to the basic behavior we introduced theWait to Collect
role. TheSpot Same Target link from theTo Packet
role to theWait to Collect role is influenced by the be-
havior of the other agents within the perceptual scope of
the agents. TheSpot Same Target link contains two dy-
namic factors:Same Target andNearest to Target.
TheSame Target factor increases the chance to switch
to theWait to Collect role when the agent suspects that
other agents move to the packet it is looking for. There-
fore the agent compares (in theTo Packet role) for each
visible agent the distance to the packet it is looking for
with the distance to the nearest (visible) packet for the
other agent. The second factorNearest at Target de-
creases the chance to switch to theWait to Collect role
when the agent believes it is nearer to the targeted packet
than the other agents inside its perceptual scope. There-
fore the agent simply compares its own distance to the
target packet with the distance of each visible agent to the
packet. From theWait to Collect role the agent returns
to theSearch Packet role via a default link. In Fig. 5 the
chance to switch back is set to 0.3. TheWait to Collect
role enables the agent to deal with the storming problem.
Especially when only a few packets are left, the factors in
theSpot Same Target link work very efficient.

When the agent picks up a packet it switches to the
Search Destination role. From then on, until the packet
is delivered, the adaptive agent behaves the same way as
the basic agent does.

4.5 Simulation results

To verify whether the adaptive agents behave as desired
we did two types of simulations. First we compared the
behavior of the basic agents with the adaptive agents in a
sparse world. Then we put the agents in a homogeneous
world and looked at a the behavior of both types of agents
when the world gets sparse.

4.5.1 Simulation results for a sparse world

In this simulation we are only interested in the behavior
of the agents with respect to the problems of the sparse
world. Fig. 6 depicts the sparse world of the first simula-
tion. The environment size is 45x45. In the MAS there
are 3 colors of packets, with for each color 3 packets.
Packets and destinations are positioned such that agents
with a large perceptual scope perceive a couple of pack-
ets and the corresponding destination. Packets are located
far enough from the agents to clearly distinguish the en-
ergy consumption for both types of agents. Furthermore,
we clustered the agents to accentuate possible storming
behavior.

Fig. 7 compares the energy usage and communication
traffic for both types of agents. The depicted graphs rep-
resent the average results of energy consumption (on the
left) and requests for packets (on the right) for 80 runs.
The right figure illustrates the significant reduction of re-

quests for packets for adaptive agents. The left figure il-
lustrates the decreased energy consumption to deliver the
packets. The simulation results demonstrate the improved
behavior of the adaptive agents in the sparse world. The
adaptation of the behavior appears very quickly, in the
example the effects of adaptation are already noticeable
after two of the last 8 packets where delivered.

4.5.2 Simulation results for a homogeneous world

In this section we show how adaptive agents change their
behavior while the environment changes and the world
becomes spare. Fig. 8 depicts the test world we used in
this simulation.

In the environment of size 32x32 we put 25 packets
of 2 different colors, homogenously scattered. 10 agents
spread over the world have to collect the packets and bring
them to the correct destination.

The average simulation results for 80 runs are depicted
in Fig. 9 (in the graphs only the results for the collection
of the last 40 packets are depicted). The figure shows that
adaptation starts to work when approximately 10 packets
are left in the environment. From that point on, the en-
ergy consumption as well as the communication is signif-
icantly lower for adaptive agents. The simulation results
demonstrate that adaptive agents recognize the changes in
the environment and change their behavior accordingly.
As an overall result, we calculated an expected gain of 12
% for the adaptive agents in the second simulation.

5 Conclusions

In this paper we proposed a role based model for adaptive
agents. The model describes the behavior of an agent as
a graph of roles. Adaptivity is achieved through factors
in the links of the graph. Pre-defined factors express rel-
ative preferences for role selection. Self-learning factors
reflect the extent of success of recent role selections, en-
abling an agent to dynamically form paths of roles that
are suitable for the current state. Adapting the logicalre-
lationsbetween different roles contrasts to most existing
approaches for adaptive behavior selection that dynami-
cally selects a behavior based on the calculation of a prob-
ability value for eachindividual behavior. The model is
similar to a reinforcement learning approach (L.M. Kae-
bling and Moore, 1996), with the notable difference that it
allows a designer to logically group large numbers of state
together in a role, and thus avoids a state-space explosion.
It also allows easy integration of ”common knowledge”
through the pre-defined factors.

A prerequisite to apply the proposed model is sufficient
knowledge of the domain. To design a behavior graph,
the designer must first be able to identify the roles for
the agents and all the possible and necessary switches
between roles. Binding conditions for a role to become
active have to be modelled as pre-conditions, dependen-
cies between roles are modelled as separate dependency



Figure 6: The sparse world used in the first simulation.

Figure 7: Comparison non-adaptive versus adaptive agent for a sparse world. The left figure denotes the energy consump-
tion vs. the number of packets, the right figure the number of sent messages vs. the number of packets.



Figure 8: The homogeneous world used in the second simulation.

Figure 9: Comparison non-adaptive versus adaptive agent for a homogeneous world. The left figure denotes the energy
consumption vs. the number of packets, the right figure the number of sent messages vs. the number of packets.



roles. Second, to identify the factors in the links, the de-
signer has to identify the relevant properties for the agent
to switch roles. And finally, to define self-learning fac-
tors, the designer needs a notion of the relevance of the
performance of roles. On the other hand the designer does
not have to manage the problems all alone. Adaptivity
adds value by adjusting the behavior of the agent at run-
time according to the changing (not explicitly foreseen)
circumstances.

To illustrate that the model works, we applied it to
the Packet-World. We discussed simulation results that
demonstrate that the model enables the agents to adapt
effectively to a changing environment.
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Abstract

We consider a class of problem in which a group of (physical) agents must continuously perform tasks that arise
at arbitrary locations across a large space. To complete each task, one or more agents will be required to move
to its location, and stay there for a period of time. A hybrid scheduling algorithm is derived in which proposed
plans are evaluated using a combination of short-term lookahead and a value function acquired by trial-and-
error learning with a simulation (reinforcement learning). We demonstrate that the dynamic scheduler can
learn not only to allocate agents to tasks efficiently, but also to position the agents appropriately in readiness
for new tasks, and conserve resources over the long run.
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1 Introduction

Dynamicscheduling is a resource allocation problem in
which the plan must be reviewed constantly in response
to exogenous events (e.g. user-specified tasks entering
the system). A plan consists of an ordered allocation of
agents to tasks, together with any associated parameters.

A “heterogeneous task stream” contains tasks of sev-
eral types (possibly from many different users/clients).
The tasks may have individual constraints on their suc-
cessful completion (e.g. earliest or latest start or finish
times), or joint constraints (e.g.completion of task A be-
fore starting task B).

This paper describes a part of a proprietary QinetiQ
software suite for dynamic scheduling in multi-agent sys-
tems. We focus here on the case where the resources are
physical agents (vehicles or robots) and the tasks arise
at various locations across the space in which they op-
erate. For example, an on-demand transport system con-
sisting of many individual road vehicles will be required
to review its planned schedule whenever a new journey
request enters the system.

We view the problem as one of optimal control (se-
quential decision making) in a partially observable envi-
ronment. Boutilier et al. (1999) survey of existing work
in this topic area, which links operations research (OR),
reinforcement learning (RL) and planning. This con-
trasts the usual formulation of multi-robot task alloca-
tion (MRTA) as a static optimization problem Gerkey and
Mataric (2003).

The partial observability arises from not being able to
predict what new tasks will arise in the stream of tasks

that is provided to the agents. Therefore it is not possible
to plan beyond the tasks that are already known. To ob-
tain a near-optimal solution requires the agents not only to
complete the known tasks as rapidly as possible, but also
to remain well-positioned for new tasks, and to preserve
resources (e.g. fuel or battery power).

From a decision-theoretic viewpoint, the state of the
system is high-dimensional, because it includes the state
of each agent, the known tasks, and the distribution of
unseen tasks. The actions available to the decision-maker
are assignment of agents to tasks. The cost function that
is to be optimised consists of the accumulated “rewards”
received for successful completion of tasks.

1.1 Paper outline

Section 2 introduces sequential decision theory formula-
tions of the problem, and identifies the need for approx-
imate solution methods. Section 3 describes the hybrid
planning/learning approach and its underlying assump-
tions. Section 4 provides an evaluation of the hybrid ap-
proach, comparing with short-term planning and a heuris-
tic approach. This is followed by a discussion (section 5)
and conclusions (section 6).

2 Theoretical foundations

A formal description is given of the Markov Decision Pro-
cess (MDP) model that underlies dynamic programming,
reinforcement learning and optimal control. Models for
partial observability are introduced, and the need for ap-
proximate solution methods is identified.



2.1 Markov Decision Process

An MDP is a discrete-time model for the stochastic evolu-
tion of a system’s state, under control of an external input
(the agent’s action or agents’ joint action). It also models
a stochastic reward that depends on the state and action.

Definition A Markov Decision Process is given by
< X, A, T, R > whereX is a set of states andA a set
of actions.T is a stochastic transition function defin-
ing the likelihood the next state will bex′ ∈ X given
current statex ∈ X and actiona ∈ A: PT (x′|x, a). R
is a stochastic reward function defining the likelihood
the immediate reward will ber ∈ R given current state
x ∈ X and actiona ∈ A: PR(r|x, a).

2.2 Optimal policy

Combining an MDP with a determistic control policy
π(x), that generates an action for every state gives a
closed system. A useful measure of policy performance,
starting at a particular state, is the expected value of the
discounted return:

rt + γrt+1 + γ2rt+2 + . . .

γ < 1 is a discount factor that ensures (slightly) more
weight is given to rewards received sooner. For a given
policy π and starting statex, we writeVπ(x) for this ex-
pectation. If a trial has finite duration, then the infinite
sum is truncated, and we can allow the caseγ = 1 (finite
horizon undiscounted return).

A very useful quantity for deriving optimal control
policies is the state-action valueQπ(x, a) which is the
expected discounted return in statex when taking action
a initially, then following policy π for action selection
thereafter. Given an MDP and a discount factor, there ex-
ist optimal value functionsQ∗ andV ∗ that satisfy:

V ∗(x) = max
a

Q∗(x, a)

Q∗(x, a) = R(x, a) + γ
∑

x′
PT (x′|x, a)V ∗(x′)

whereR(x, a) is the expected instantaneous reward for
actiona in statex, determined byPR(r|x, a). The op-
timal policy is to select the actiona that maximises the
state-action value:

π∗(x) = arg max
a

Q(x, a)

2.3 Reinforcement learning

Dynamic programming (Bellman, 1957) is a simple pro-
cess for findingπ∗ for a knownMDP, using repeated up-
dates such as:

Q′(x, a) ← R(x, a) + γ
∑

x′
PT (x′|x, a) max

a′
Q(x′, a′)

This causesQ to converge toQ∗ when applied repeatedly
in every state-action pair(x, a).

Reinforcement learning (RL) attempts to find the opti-
mal policy for anunknownMDP by trial-and-error inter-
action with the system (Sutton and Barto, 1998).Model-
basedRL methods estimate the MDP, then solve it by
dynamic programming.“Conventional” reinforcement
learning methods such as Q learning (Watkins, 1989) and
SARSAestimateQ∗ (and henceπ∗) directly without esti-
matingPT explicitly. Policy searchreinforcement learn-
ing methods parameteriseπ and search directly for val-
ues of these parameters that maximise trial returns (e.g.
Strens and Moore (2002)).

2.4 The need for approximate solution
methods

Partially observable problems in which the agents cannot
observe the full system state are much more challenging.
These can be formulated using an extended model called a
partially observableMarkov Decision Process (POMDP)
that adds an observation process to the MDP. The optimal
policy can be derived in the same way as for the fully
observed case (above), but replacing the MDP’s state-
space with the POMDP “belief space” (Martin, 1967).
An agent’sbelief is its estimate for the probability den-
sity over the true system state, given the observation his-
tory. Unfortunately the set of beliefs has infinite size, and
so methods that enumerate the state space (e.g. dynamic
programming and Q learning) cannot be applied directly.
Policy search, however, remains feasible.

In dynamic scheduling domains the partial observabil-
ity usually arises not from noisy measurements of the
physical system state, but in the unknown tasks that have
not yet been presented to the agents. Even without this
uncertainty, approximate solution methods would be re-
quired, because the state space is continuous and high di-
mensional. (The state consists of agents’ physical states
and the known task descriptions.) The MDP and POMDP
models that are so useful in theory are too general, in
practice, to find solutions to even the simplest dynamic
scheduling problem. However, they offer a “perfect solu-
tion” against which approximate methods can be judged.

3 Hybrid planning and learning al-
gorithm

Although partial observability and large state spaces make
dynamic scheduling a very difficult problem, it should be
possible to simplify the solution by exploiting specific
problem structure. It is natural to attempt tofactor the
“full” MDP representing the multi-agent, multi-task sys-
tem into many smaller sub-problems that can be individu-
ally solved. It is also appropriate to exploit as much prior
knowledge about the problem as possible, to ensure best
use is made of (trial-and-error learning) simulation runs.



This prior knowledge will be presented to the system in
the form of “task models” that predict the time taken to
perform known tasks, and “state features” that compress
the state-space into a compact description for learning.

3.1 Short-term predictability assumption

The special form of partial observability found in dy-
namic scheduling leads to an approach in which we as-
sume that the short-term future ispredictableand can be
treated as a static planning problem, but the long-term fu-
ture is unpredictable and requires an approximate method
that accounts for uncertainty. Hence we propose a hy-
brid planning/learning system in which short-term plan-
ning ignores the exogenous events (new tasks entering the
system) up to some “planning horizon”, but a value func-
tion is learnt to represent the medium and long term ben-
efits of being in a particular joint state when the planning
horizon is reached.

This assumption allows replanning to be viewed as a
search over a discrete set of plans (ordered allocations of
agents to tasks). A planning mechanism must be made
available that takes as input the current joint statex (of
the agents) and a proposed planP , and yields an end state
x′ and an expected discounted returnR(x, P ), up to the
planning horizonτ . The total value of the plan is given
by:

Q(x, P ) = R(x, P ) + γτV (x′)

whereV (x′) is a state-value function that will account for
the “goodness” of being in statex′; i.e. a prediction for
the expected discounted return from the planning horizon
to the end of the trial. As we expect predicted rewards
to become less reliable with time, another discount factor,
λ can be introduced to discount more severely (in short-
term planning). Suppose planP predicts that rewardr
will be obtained at timet (from the time at which the plan
is formed). The contribution toR(x, P ) is now given by
(γλ)tr. In the experiments here, we usedγ = 1 (undis-
counted finite horizon return) andλ = 0.9986.

Normally it will not be possible to evaluate every pos-
sible plan, but many methods are available for searching
over this discrete space. (Our search method is based on
making local changes to the current plan.)

3.2 The weak-coupling assumption

Once an allocation decision (of agents to tasks) has been
made, the tasks essentially become independent in terms
of rewards received and end states (Meuleau et al., 1998).
For example, if agent A is assigned to task 3 and agent
B to task 5, the effectiveness of A in task 3 is assumed
to be independent of the individual steps taken by B in
performing task 5. (This assumption cannot be made in
all scheduling domains.) This suggests a two-level plan-
ning process in which the top level (allocation of agents
to tasks) is “globally” aware, but the lower level planning
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3 (area)
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horizon

time
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Figure 1: A plan is an assignment of tasks to agents.

(execution of individual tasks) can be achieved in alocal
context (a particular agent and particular task).

Task performance modelsprovide the lower-level plan-
ning capability. Given a particular allocation decision
(agent to task), the task performance model predicts both
the time taken to complete the task, and the likely final
location of the agent after completion. The task perfor-
mance model is also responsible for predicting the re-
wards (performance feedback signals) that will be ob-
tained on task completion. Using these performance
models, it is possible to estimate the short-term rewards
that will accrue from a particular assignment of tasks to
agents. Such an assignment is called a “short-term plan”
(Figure 1).

Strictly, a task performance model takes as input the
state of a single agentxj , the parametersyk describing a
particular task instance (k), and any allocation parameters
αjk. It provides as output a new statex′j , a durationtjk

and an expected discounted returnrjk. More generally
the task model can sample from stochastic outcomes:

P (x′j , tjk, rjk|xj , yk, αjk)

For each agent, a series of these predictions can be per-
formed to plan for the ordered list of tasks that are as-
signed to it. If a prediction takes the total time beyond the
planning horizon, then the actual end state must be inter-
polated. By appropriately discounting and summing the
individual returns ({rjk}) associated with each task allo-
cation in a planP , the short-term valueR(x, P ) of that
plan is obtained. For tasks that require agents to cooper-
ate,grouptask models can be used to predict the outcome
of assigning multiple agents to a single task.

3.3 Greedy short-term plans

A “greedy” planning approach makes use of the approxi-
mate task performance models to predict the short-term
return R(x, P ) that will accrue from a particular plan
P . Figure 2 illustrates how instantaneous rewards (solid
blocks) may be predicted by the task models. The pre-
diction is performed only up to the planning horizon.
These are summed1 over all agents to give a reward pro-
file (lower chart in the figure). The area under this profile
measures the expected return for the short-term plan.

1The rewards should first be discounted ifγλ 6= 1.
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The greedy planning approach is to search for an as-
signment of tasks to agents that maximises the short-term
expected return. This is better than simply selecting the
closest agent for each new task. However, greedy plan-
ning is not optimal because it ignores several important
factors in decision-making: a. the need for positioning of
the agents in readiness for new tasks; b. the preservation
of energy and other resources (e.g. robot battery life); c.
the approximate nature of the task performance models.

In the greedy planning, we can also make use of a set of
default behaviours that can be selected when no tasks are
scheduled. These allow the agents to reposition ready for
new tasks to enter the system. There are no rewards as-
sociated with performing the default behaviours (but they
will often be selected because they have an influence on
the position value function at the planning horizon).

3.4 Value function learning

Positioning of the agents (“readiness”) is essential in
problem domains where there are tight time constraints
on the completion of tasks. This means that agents should
be positioned so as to minimise the time taken to reach
new task locations. Resources have a value that depends
on the type of problem domain. In long-endurance do-
mains, learning strategies that minimise energy consump-
tion may be essential for effectiveness. If agents are oper-
ating in a group, there will often be an additional benefit
to balancing the use of resources as equally as possible
between them during a trial.

The representation for learning is a state-value func-
tion, that will be evaluated at the planning horizon indi-
cated in Figure 1. The value function provides an approx-
imate mapping from the state (of the agents) to the ex-
pected discounted return from that time onward. For ex-
ample states in which the agents are well-positioned (and
have full energy stores) will have the highest values. The
value function is always evaluated at the planning hori-
zon (a time in the future), rather than the current time.
This simplifies the decision-making process because the
known tasks are assumed to have no influence beyond the
planning horizon. Therefore it is the predicted statex′ of
the agents, rather than the status oftasks, that determines
the state-valueV (x′) at the planning horizon.

Learning takes place at the end of each trial, and aims
to reduce (by gradient descent) the residual error between

the actual return received during the trial and predictions
that were made during the trial using the value function.
The gradient descent rule is simple to derive for the lin-
ear function approximator used here (e.g. Sutton and
Barto (1998)), and for nonlinear generalisations such as
the multilayer perceptron. Training instances are obtained
each time replanning takes place. This occurs when-
ever a new task enters the system or an existing task is
completed, and at regular time intervals during the trial.
(Other learning rules can be considered if the function ap-
proximator or task models are known to be inaccurate:
direct policy search or policy gradient descent are more
robust, but potentially slower.)

Suppose replanning has taken placeN times during a
trial. Let (i = 1, . . . N ) index these instances. The pre-
dicted value (for the chosen plan) is given by the weighted
sum ofm state features:

vi =
m∑

j=1

wjx
(i)
j

wherex
(i)
j is state featurej for instancei. Suppose that

the recorded discounted return (from that instance on-
ward) isri. Then the residual error is given by:

ei = (vi − ri)

Summing the squared error over instances, and differenti-
ating with respect to the weights yields a steepest descent
direction in weight-space. This leads to an update rule:

w′j ← wj − β
1
N

N∑

i=1

eix
(i)
j

The learning rateβ for the feature weights was decayed
during the experiments, to force convergence of the value
function.

4 Evaluation

Evaluation of the hybrid planning/learning approach re-
quires a high-speed simulation that allows repeated tri-
als to be performed (for value-function learning). We
describe the simulation software that achieves this, a set
of state features, a challenging test scenario with 3 task
types, and the evaluation results.

4.1 Performance system

An asynchronous discrete event simulation has been de-
veloped to support machine learning and optimisation
of agent behaviours. In most simulations, the majority
of computational cost is involved in the update of the
dynamic parts of the system (e.g. the agents). Simu-
lations are normally clocked at regular intervals (“syn-
chronously”) to ensure an adequate level of accuracy (and
also for simplicity). In contrast, we aim to update the



state of each simulation element only when it is needed
for decision-making or graphical output. Where possi-
ble the update is performed analytically (i.e. by direct
calculation) but it may be necessary to apply numerical
integration in some cases. An example of analytical up-
date is the calculation of agent paths as a sequence of arcs
(corresponding to periods of constant turn rate).

At the core of the model is a scheduler that processes
events in the simulation in order. Each event is sent to a
simulation element (or higher level process) where some
processing is performed. For example, the process con-
trolling an agent in a loiter pattern will send a short se-
quence of events to the scheduler; each event, when pro-
cessed by the agent’s simulation model, causes it to up-
date its state (position, motion, energy store) to the cur-
rent time, and the new turn rate (demanded by the event)
is set.

Built upon this event handling mechanism is the abil-
ity for processes within the simulation to send messages
to each other. These messages are themselves events,
but they represent the actual information that would be
passed across a communications network (or bus) within
the operational system. Delays and failure modes can also
be simulated. Therefore the simulation is built up from
a set of processes that operate by receiving, processing
and sending messages to each other. Some of these pro-
cesses are used to represent simulated physical systems
(the agents) and others form part of the operational soft-
ware.

The system has a graphical user interface which allows
basic control of the learning system. Although learning
trials are normally executed without graphical display, it
is possible to inspect occasional trials, through two or
three dimensional display, as shown in Figure 3. Here
the agent positions are indicated by small triangles. Their
short-term plans are indicated by lines. Markers indicate
the fixed set of reference locations (w0 to w4) and loca-
tions of known tasks (all others). Detailed implementa-
tion of the performance system (dynamics, low-level con-
trol, task constraints,etc.) is beyond the scope of this
paper.

4.2 State features

The state-value function was chosen to be a linear com-
bination of state features. The state features are in-
tended to represent, in a compact form, the aspects of
the agents’ state that are relevant for subsequent decision-
making. Some are simply averages over the group of
agents, whereas others represent relational or relativistic
information. A set of reference locations were used to de-
fine the operating area for each trial. All the features are
listed here:

1. Time left : proportion of maximum trial duration
remaining

2. Bias : a constant additive term

3. Mean energy : the average of the agents’ energy
levels.

4. Max energy : the maximum of the agents’ energy
levels.

5. Median energy : the median of the agents’
energy levels.

6. Min energy : the minimum of the agents’ energy
levels.

7. Unreadiness : the average (over the reference
locations) of the distance of the closest agent to that
location.

The 7 values to be learnt are the weights for each of
these features in the value function. A positive weight
for a feature will mean that situations in which the fea-
ture is large are preferred. For example we expect one
of the energy features to have a large positive weight to
reflect the remaining endurance of the group. Thetime
left andbias features have no effect on decisions be-
tween alternative plans, because they are independent of
the agents’ states, but they can improve the accuracy of
the value function.

4.3 Example scenarios

The closed-loop simulation model was configured for re-
peated trials with 5 agents. The state of each agent is its
2D position, direction of travel, speed and energy level.
Each agent is allowed only two possible speeds (40 and
60). For these speeds, energy is consumed at 1 unit per
step and 2 units per step respectively. Each agent is able
to turn at a maximum constant rate of 0.1 radians per step.

Replanning takes place whenever a new task enters the
system, a known task is completed, and at regular inter-
vals (300 steps). The trial time is limited to 10,000 steps.
For “endurance” scenarios energy is limited to 10,000
units, but for “non-endurance” scenarios it is essentially
infinite.

The planning horizon was 2000 steps and the planning
discount factorλ = 0.9986. At trial numberk, the learn-
ing rate was chosen to beβ = β0 exp(−0.003k), where
the initial value isβ0 ≡ 0.85.

4.4 Three task types

Three types of task have been identified:



Figure 3: Simulator plan view.
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Figure 4: Learnt feature weights: endurance scenario.



Table 1: Major task types, frequencies of occurrence and
rewards.

Task type Frequency Reward
Point 80% 1
Area 18% 4
Loiter 2% 30

1. Point tasks (e.g. sensing): send one of the agents to
a location; upon arrival the task is deemed complete.

2. Area tasks (e.g.searching): move to a location, then
systematically move around the region surrounding
that location.

3. Loiter tasks: move to a location and stay there for a
period of time.

The specific instance of area task used here, is to visit 4
locations arranged in a unit square; a loiter task required
one agent to move to the specified location and stay there
(moving in a figure-of-eight pattern) for a specified pe-
riod of time. The actual task mix (Table 1) is diverse in
terms of duration (and rewards) but the three types con-
tribute almost equally to overall trial returns (i.e. summed
rewards). The default behaviours, also available to the
planner, are effectively the same as a slow-speed loiter, in
which the agent moves to (then waits at) one of the refer-
ence locations.

There is a random delay between successive tasks,
given by1000u10 whereu is uniformly distributed in the
range[0, 1]. Each task has a 1 in 10 chance of having
a precondition. This precondition has equal change of
being (completion of) each of the five preceding tasks.
Every task must be completed within a specified time
period given by2u whereu is drawn uniformly in the
range[9, 9.65]. The location of each task is uniformly
distributed across the area of operation (a 100,000-unit
square).

4.5 Results

Results were obtained using 8 runs for each approach.
Standard errors were computed and are shown as error
bars on the plots. First we give results for “endurance”
scenarios in which the group of agents may not survive
until the end of the trial unless they choose the more ef-
ficient (lower) speed and balance effort between them-
selves. Once one agent has run out of energy, it can play
no further part in the trial, and so the remaining agents
must travel further (on average) to reach new tasks.

Figure 5 shows (a decaying average of) returns at
the end of each trial for three methods: hybrid plan-
ning/learning system, the greedy planning system, and
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Figure 5: Performance comparison: endurance scenario.

a simple heuristic policy (assign each task to the clos-
est available agent). We observe that short-term planning
alone makes a big difference to the efficiency with which
the tasks are performed. Note that short-term planning
depends strongly on the availability of task performance
models: that is the ability to make approximate predic-
tions about the time that a task will take and the final agent
states.

Complementing the short-term planning with a learnt
value function to form a hybrid planning/learning ap-
proach clearly offers a major additional advantage, and
the difference is significant after 5000 trials (pairedt-test,
p = 0.03). The agents can (for example) make rational
decisions about whether it is better to move fast to com-
plete a task sooner, or to preserve energy. This is certainly
not possible in the greedy planning approach.

Figure 4 shows learning curves for the feature weights
in the value function. We note thattime left is a sig-
nificant state feature: clearly, the expected return to the
end of the trial depends strongly on the time remaining.
However it should be noted that this feature cannot di-
rectly affect behaviour because it will have the same value
when comparing two plans with the same planning hori-
zon. Of the various features describing the energy status
of the agents,min energy is the most significant. It
has positive weight, indicating that situations with large
minimum energy have higher value. The agents learn to
take actions which maximise the energy of the one with
least remaining, to balance the burden of tasks.

This provides evidence that the group as a whole is
more effective than its individual components: if some
agents “drop-out” before the end of the trial, the oth-
ers have difficulty responding effectively to the incoming
task stream. In contrast,mean energy has little impor-
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nario.

tance. The remaining two energy features (max energy
andmedian energy ) have negative weight, but no ob-
vious conclusions can be drawn because there may be a
complex interaction with themin energy feature: re-
moving one feature from the value function can often
change the signs of lesser features.

A second scenario that does not require endurance was
also studied. The only difference is that agents are given
enough initial energy to complete each 10000-step trial
at maximum speed, and so the energy features have very
little part to play. The performance results (Figure 6) fol-
low the same pattern as for the previous scenario: plan-
ning outperforms the simple heuristic, and learning in-
creases performance further. (The heuristic performance
remained below 50 and is not shown.) The benefit of
learning is significant (p < 0.01) after 7000 trials, and
does not level-off within the experiment duration (10000
trials).

The analysis of feature weights in Figure 7 shows that
time remaining is the strongest feature. However, the po-
sitional featureunreadiness , which measures mean
distances of closest agents to reference points, plays the
most important role because it can affect behaviour. A
large negative weight was learnt. This was expected be-
cause a high value ofunreadiness causes agents to
take longer to reach new tasks that appear within the op-
erational area. There is scope for additional features to be
added which encode more detailed information about the
relative positioning of the agents. The remaining (energy)
features have been omitted from this figure because they
have little influence on learnt behaviour: negative weights
are obtained because this encourages agents to select the
maximum speed.

5 Discussion

These results have shown that a hybrid planning/learning
method offers major advantages over simple heuristic
rules such as assigning the closest agent to each task.
In the scenarios given, performance has been approxi-
mately doubled. The performance improvement will de-
pend strongly on the nature of the task stream. If there
are few tasks entering the system, every task can be com-
pleted successfully using a naive policy. If there are many
tasks, the need to limit energy consumption through speed
control and effective positioning becomes important. Fur-
thermore, if there are tight time constraints on individual
tasks, it is likely that agent positioning will become very
important, and have a major impact on performance.

The experimental evaluation highlighted the need to
learn different value functions for different classes of
problem instance. For “endurance” problem instances,
where the aim is to operate the group of agents for as
long as possible, the value function will be sensitive to
the preservation of resources (e.g. energy). In contrast,
for “rapid response” problem instances that require tasks



to be completed within tight time constraints,position-
ing features will be the major influence in the learnt value
function.

6 Conclusions

We have developed a hybrid planning/learning system
that allows scheduling of a group of agents for a hetero-
geneous stream of tasks. It was assumed that the task
stream would be unpredictable, preventing planning be-
yond a short time horizon. The risk of a using short-term
(“greedy”) planning is that tactical factors (positioning of
agents in readiness for new tasks) and strategic factors
(preserving resources) are ignored. Therefore reinforce-
ment learning (exploiting a fast system simulation) was
applied to obtain a value function for taking these factors
into account.

A short-term planning element remained necessary be-
cause it is able to properly take account of the actual tasks
that are currently known to the system. This short-term
planning uses task performance models that are able to
predict the end-state and reward for each task, given a
agent assignment. Initial experiments indicated a ben-
efit from both the short-term planning and the learning
elements of the system, compared with a naive heuristic
approach that assigns the closest available agent to each
task.
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Abstract

If agents are to learn as a team and benefit from each other’s effort, single agent individual learning mecha-
nisms must be extended towards a multi-agent learning perspective. To do so, additional ways of sharing and
gathering information have to be considered so that the agents can interact during the learning process. Since
a multi-agent system is a system of agent interaction, its inborn potential can be used to serve this purpose.
In other words, rather than simply extending the traditional individual learning mechanisms with specific in-
teraction protocols, the activity that concerns the intermediate steps of the collective learning process can use
the structure of the multi-agent system, benefit from its potentialities, and follow the flow of agent interac-
tion. This form of multi-agent learning is called interactive multi-agent learning and there are good reasons to
expect that it can lead to better results in dealing with certain problems that appeal to collective learning.

1 Introduction

In this paper we address the recent field of study of inter-
active multi-agent learning (IML), proposing answers for
two main questions:

• Why should interactivity be introduced in multi-
agent learning?

• How can multi-agent learning become an interactive
process?

Concerning the first question, we discuss the costs and
benefits that can result from IML and compare it with
other multi-agent learning perspectives. As for the sec-
ond question, we discuss what kind of information should
be exchanged between the agents and how should that
exchange occur in an interactive way. Furthermore, we
complement the theoretical discussion by showing how
to modify and extend a case-based reasoning traditional
individual learning mechanism so that it can be used as
an IML mechanism.

IML is a field of study that, although considered in-
teresting and promising, has not been broadly researched
yet. Since its boundaries are still somehow undefined, we
will begin by distinguishing it from other types of multi-
agent learning. For that, we will consider the three cat-
egories proposed by Weiss and Dillenbourg (1999) and
present our own generic definition of IML.

We will use an example that helps to illustrate these
three categories. For this effect, imagine a place where
meals can be bought through three different services: take
away, snack bar or restaurant. Imagine also that this place,
called ”Three Orientals”, serves traditional food from In-
dia, China and Japan, and that all the recipes used are

exclusive and secret. Moreover, these recipes are very
difficult to learn and take a long time to master.

1.1 Multiplied learning

In this type of multi-agent learning, each agent has an in-
dividual learning mechanism and does not share his re-
sults. The learning effort is multiplied by every individ-
ual involved in it. Multiplied learning can be a solution
when agents cannot share information (privacy, hostility)
or when communication cannot be supported (communi-
cation too expensive, lack of resources).

As an example, consider that the ”Three Orientals” has
three isolated kitchens, one for each of the three different
meal services. Imagine that three chefs are hired, one for
each kitchen. Since they do not communicate with each
other, each one of them has to learn how to cook all the se-
cret recipes by himself. The learning effort is multiplied.

1.2 Divided learning

When information exchange is possible, multiplied learn-
ing becomes redundant. The division of the learning task
among the agents reduces this redundancy, but depends
on several initial definitions:

- Which are the learning subtasks;
- Which agents execute each subtask;
- When and how is the knowledge (acquired in each

subtask) transmitted and integrated.
These initial settings are the limits within which di-

vided learning occurs, but such static definitions may not
be possible (for example, the learning task may be too
complex to be clearly divided and distributed) or desirable



(for example, in an unstable or highly unpredictable en-
vironment, the transmission of information may become
too difficult and that may hinder the sharing of acquired
knowledge on preset occasions).

Consider now that the ”Three Orientals” has only one
kitchen. The learning effort can, for example, be divided
among the three chefs in the following ways: one learns
to prepare the Indian dishes, the second one the Chinese
dishes and the third one the Japanese dishes; one learns
how to prepare the ingredients, the second one how to
cook and the third one how to gather the cooked food
and arrange the dishes. By dividing the learning task,
the redundancy of the collective effort is greatly reduced.
Notice however that such initial divisions are not always
adjusted. For example, if all the services of the ”Three
Orientals” were reserved by the ”Sushi Lovers Associa-
tion” during one month, neither of the suggested divisions
would be appropriate, because during that time only one
of the chefs would be actively learning.

1.3 Interactive learning

In interactive multi-agent learning there also exists a di-
vision of the learning task, but in this case the division is
not initially set. The two basic principles of IML are:

- to let the succession of environmental events and so-
cial interactions guide the path of the learning process;

- to use the potentialities of multi-agent systems on be-
half of the learning process.

The idea behind these principles is that, by considering
the successive environmental and social states to dynam-
ically define well adjusted learning sub-tasks, by select-
ing agents to execute these sub-tasks and ways of sharing
knowledge, and by using the means of social interaction
provided by a multi-agent system to benefit distributed
learning, the global results of the collective learning pro-
cess can be enhanced. In IML, learning ceases to be a
process which is isolated from other social processes. In-
stead, as it happens in human societies, it assumes its
place inside the social system and follows its patterns of
interaction.

In the shared kitchen of the ”Three Orientals”, the
process of interactively learning how to cook the secret
recipes takes place in an unpredictable way. The three
chefs communicate frequently with each other and decide
what is the best thing to do at each moment. They influ-
ence each other’s learning path with advices and opinions.
With this system they can, for example, identify relation-
ships between the ways of preparing the same ingredi-
ents for different dishes; for instance, part of the knowl-
edge acquired by one chef while cooking Chinese rice can
help another chef that is learning how to cook Indian rice.
When the ”Sushi Lovers Association” reserves the ser-
vices of the ”Three Orientals”, the three chefs adjust to
the situation, divide the available tasks among them and
are always able to keep learning.

2 Related work

Weiss and Dillenbourg (1999) address the subject of
multi-agent learning in a general way, and propose a dis-
tinction between multiplied, divided and interactive learn-
ing. To them, it is this last category that may ”explain
all the benefits of multi-agent learning”. Kazakov and
Kudenko (2001) consider interactive learning to describe
”true distributed learning” and they add that ”very little
research exists in this area”.

Some works (Makar et al. (2001) and Turner et al.
(2002) are examples) address the subject of multi-agent
reinforcement learning in ways that show some degree of
agent interactivity.

Ontãnon and Plaza (2002) introduce a case bartering
protocol to improve multi-agent learning. Although their
work addresses agent interaction over previously learned
information, it does not discuss the exchange of data dur-
ing the learning process.

Nunes and Oliveira (2003) discuss the benefits of mu-
tual agent interaction during the learning process, and
propose an advice exchange technique that allows coop-
erative learning. Although we also propose advice ex-
change (among other ways of interaction) in our investi-
gation, there are important differences in the way the ex-
change is made and in the kind of information exchanged.

Graça and Gaspar (2003) show that, on a dynamic
multi-agent environment, the collective learning task can
be optimised through simple agent interaction.

3 Interactivity and communication

Learning in an interactive way depends on the existence
of a communication system that allows information ex-
change so that the learning path can be successively de-
fined and the partial results of the learning effort can be
efficiently shared. The type of information exchanged and
the ways in which this exchange occurs must express this
interactivity.

3.1 Type of information exchanged

The interactive circulation of specific knowledge that is
related to the learning effort constitutes the core of IML,
allowing agents to share information and complement
their individual experience with external data gathered
from other agents. The agents can share not only raw
results (for example, a set of cases in case-based rea-
soning) and refined results (for example, a generalization
of a set of cases), but also specific units of information
that allow a richer interaction during the learning process.
These units of information can be such as: a problem
description; a solution (for example, the solution that an
agent would select to solve a given a problem); a justifica-
tion(raw or refined data that supports a proposed solution;
an evaluation (a measure of how good a given solution is
for solving a problem). Such units can be interactively



created by the agents (according to their current experi-
ence) and allow the exchange of intermediate results (hy-
pothesis) of the learning process. Here are some examples
of messages that can be used to regulate the transmission
of this information and allow the exchange of partial re-
sults at any intermediate stage of the learning process:

- Suggestion: A possible solution for a problem.
- Opinion: An evaluation of how adjusted a possible

solution is for a problem.
- Help request: A request for advice from another agent

that includes a problem description. It may also include a
suggestion and its justification.

- Advice: The answer to a help request that may include
a suggestion and its justification.

As mentioned before, information that concerns the
state of the environment and of the multi-agent system
can also circulate in order to help the definition of sub-
tasks and the selection of agents to execute them. Here
are some ideas of how the flow of social interactions can
help to define the path of the learning process:

- Learning sub-tasks: At each moment, the current state
of the environment can be taken into account for the def-
inition of sub-tasks that can be executed in an easier or
more advantageous way;

- Selection of agents: The agents’ individual state can
be considered as a selection criteria (for example, the im-
portance of the current task can be taken into considera-
tion); the current relations between agents can be consid-
ered when forming teams to execute learning sub-tasks;

- Knowledge sharing: When in need, the agents can
ask for the help of other agents; agents can form groups
to debate different opinions on possible solutions for a
problem; contacts established for other purposes can be
used as a way of also sharing experience acquired through
learning.

3.2 Ways of Information Exchange

The generic communication protocols that, in each multi-
agent system, serve agent interaction, can be used to ex-
change information that regards the learning process. For
instance, when agents communicate while executing a
non-learning task, it may be possible to use this contact
to also exchange learned data (for example, suggestions
could be made). In order to make better use of agent
interaction on behalf of the learning process, it may be
useful to introduce specific interaction protocols. These
protocols may facilitate the transmission and exchange of
specific data units (for example, providing the diffusion
of help requests) and support specific forms of group dis-
cussion that address cooperative learning (for example,
voting schemes).

4 Costs and advantages of IML

Not all problems that involve multi-agent learning appeal
for interactivity. For instance, when there are strong re-

strictions to communication, when the agents do not co-
operate or are hostile, or when the problem has a degree of
predictability according to which a sequence of collective
learning steps (divided learning) can be easily set, then
IML may not be a viable or advisable option. The envi-
ronments that appeal for interactivity are those that con-
cern multi-agent learning on dynamic and unpredictable
problems that can be solved through mutual cooperation.
It may be adjusted to say that, in these cases, it is through
IML that the potentialities of a multi-agent system can
better serve the learning process; however, since the in-
troduction of interactivity in learning has relevant costs, it
is essential to discuss the reasons that lead us to believe
that IML mechanisms can allow better results.

4.1 Costs of IML

The introduction of interactivity in multi-agent learning
has important costs that must be considered. First, the
ways in which agent interaction occurs during the learn-
ing process have to be planned, and this plan is generally
more complex than a static initial definition (as it happens
in multiplied or divided learning). Second, communica-
tion resources must be available and allow frequent infor-
mation exchange. Third, agents have to be able to analyse
and assimilate the information that circulates interactively
during the learning process.

4.2 Advantages of IML

Comparing interactive and divided learning, we can say
that the former extends the latter (the division of the
learning effort becomes interactive) or that the latter is
a simplified form of the former (interactivity is pre-
determined). Regarding this, we discuss several advan-
tages of IML using divided learning as a reference.

According to the divided learning perspective, results
can only circulate after the learning sub-tasks are com-
pleted. When this circulation occurs at any intermediate
steps of the learning process (IML perspective), useful in-
formation can be assimilated during the performance of
sub-tasks, leading to the decrease of redundancy in the
collective effort and allowing interactive adjustments to
the path of current sub-tasks. This can also help to avoid
excessive specialization (that can result from undertak-
ing specific sub-tasks without intermediate interaction),
and create a diversity of perspectives that allows different
ways of addressing the same problems and the exploration
of new solutions.

When the learning effort is divided, there exists an ini-
tial notion of which agents will execute which learning
sub-tasks, and when will they execute them. Specially
on dynamic and unpredictable environments, considering
that specific conditions may temporarily hinder the execu-
tion of some of these sub-tasks, such initial settings may
become misadjusted. In these cases, the possibility of in-
teractively defining sub-tasks and agents to execute them



can allow selections that match the current conditions.
The division of the learning task creates dependencies

between the agents. If an agent fails to execute his task,
his fault can seriously delay or even disrupt the collective
effort. In order to avoid this, the accomplishment of each
critical duty must be assured. This may prevent the appli-
cation of divided learning mechanisms to environments
where agents are to have a considerable degree of auton-
omy and be able to decide to stop learning during a period
of time (for example, to attend to more important immedi-
ate tasks) or stop collaborating (for example, to attend to
a new privacy policy), or in which faults in the communi-
cation system may occur and cause the isolation of agents
for a significant time extent. The flexibility of IML al-
lows the collective learning task to proceed in these cases.
If necessary, the learning effort may temporarily assume
a multiplied perspective (for example, when communica-
tion becomes unavailable) and reassume its interactivity
when possible.

As a reference, imagine the cooperation between a
group of ecologists and a group of travel agents over the
management of a natural reserve. The ecologists wish to
preserve the reserve but need money to take good care of
it, and the travel agents want money but they need a well-
kept reserve to attract tourists. In learning problems that
appeal for this kind of cooperation, IML mechanisms can
be specially well-adjusted, allowing the crucial interac-
tive exchange of information between sets of agents that
perform different but complementary tasks.

Attending to these potential advantages, there are good
reasons to broaden the research of IML, for it may allow a
faster collective learning with better results, provide bet-
ter tolerance to agent or system faults, and address a wider
scope of problems.

5 Cooperative case-based reasoning

At this stage of our research, we are focusing our atten-
tion on the adaptation of a case-based reasoning (CBR)
traditional individual learning mechanism so that it can
be used as an IML mechanism. We propose a cooperative
CBR generic learning system that allows agent interac-
tion during the collective learning effort. In doing this, we
wish to illustrate how some of the ideas presented above
can be applied.

5.1 Traditional and Multi-agent CBR

The traditional individual CBR generic learning process
is based on the following four basic steps:

1. Retrieval of previously gathered cases (that concern
problems somehow similar to the current problem);

2. Selection of a solution;
3. Revision of the solution (resolution of the problem

and evaluation of the solution);
4. Storage of a new case.

In multi-agent CBR, this generic individual process has
to be modified in order to include ways of information
exchange between the agents. The information used in
the traditional CBR process is retained in a single case
base, whose contents express, at each moment, the ex-
perience acquired. In multi-agent CBR, different types
of case bases can be used: individual or collective, cen-
tralised or distributed. Our research focuses on the use
of individual case bases, a scenario in which information
exchange is crucial for the collective learning process, al-
lowing in this sense a more deep and complete discussion
concerning the introduction of interactivity. The use of
separate case bases can be justified for reasons like the
need for privacy (for example, the existence of a secrecy
policy concerning some of the data retained in individual
case bases) or the need for efficiency on data access or
storage (for example, to avoid traffic bottleneck situations
that can result from having a collective case base).

5.2 Cooperative CBR

Using the traditional mechanism as reference, we have
identified three situations that are suitable for interactive
information exchange. The first is during the process of
consulting previously gathered cases and deciding which
solution to select to solve the current problem: instead
of simply consulting his individual case base, an agent
may request the help of other agents, consider their ad-
vices and discuss possible solutions with them. The sec-
ond situation is during the revision of the chosen solu-
tion: while trying to solve a problem, an agent may again
consult other agents to exchange information and interac-
tively adjust his procedure. The third situation is during
the storage of a new case: the new case can be shared
among several agents (possibly by those involved in the
previous two situations). In Table 1, we extend the ba-
sic CBR steps in order to incorporate these information
exchange substeps.

Depending on each agent’s individual desire, the op-
portunities for interactive exchange of information can be
used or ignored. The information that circulates when-
ever an agent decides to ask for help can be useful not
only to himself but also to the other agents contacted.
For instance, during the process of selecting a solution
for a problem, if the analysis of the information is done
in group, then all the agents involved have the opportu-
nity to retain useful knowledge that circulates during the
discussion.

5.3 Agent interaction in cooperative CBR

The interactive information exchange between the learn-
ing agents involved in cooperative CBR appeals for spe-
cific processes of interaction. Considering the first of
the three situations of interactive information exchange
identified before, we propose two different protocols to
regulate the process of accessing external information,



Table 1: Cooperative CBR learning process

Basic process Extensions
I. Information
retrieval

a) Retrieval of individual cases
b) Access to external information

II. Selection of a
solution

a) Analysis of internal and exter-
nal information
b) Selection of a solution

III. Revision of
the solution

a) Access to external information
to adjust the solution while solv-
ing the problem

b) Evaluation of the solution
IV. Storage of a
new case

a) Creation of a new case
b) Distribution of the new case
for storage in different individual
case bases

analysing it and selecting a solution (steps I.b), II.a) and
II.b) of the cooperative CBR learning process presented in
Table 1). In these two protocols, the analysis of the infor-
mation and the decision is centralised on one agent. This
makes the process simpler and less expensive (regard-
ing resource consumption); the distributed variants (ways
of group discussion, voting schemes) are more complex
and expensive, but offer powerful options for interaction.
Choosing between centralised and distributed interaction
depends upon the specific nature of the learning problem
and the available resources. In the tables ahead (tables
2 and 3) we show the details of the two protocols, spec-
ifying how each step corresponds to the substeps of the
generic cooperative CBR learning process.

Let A be the agent that is searching for a solution and
that decides to ask a groupG = {B1, B2, . . . , Bn} of n
other agents for advice. In the first sequence (Table 2),
agentA sends the same help request to all agents ofG,
gathers their advices, analyses the information available,
and then selects a solution.

In the second proposed sequence (Table 3), agentA
sends one help request at a time, and waits for each an-
swer. In this case, agentA changes the contents of his
help request whenever he receives a better suggestion, one
that has a justification that is considered stronger. Consid-
ering that justifications are composed by sets of cases or
its generalizations, a stronger justification may, for exam-
ple, be one that: contains the case that better matches the
current problem and/or has a better solution (according to
the evaluation criteria in use); expresses a higher experi-
ence level of the agent proposing it.

It is important to notice that the process of selecting a
solution can consist in more than simply choosing one of
the suggestions; instead, the information received can be
used to compose solutions that combine aspects of dif-
ferent suggestions. These sequences describe the process
of interaction from the point of view of agentA. There

Table 2: Information exchange: fixed help request

Step 1 - Help request generation
Agent A consults his case base and
generates a help request Hreq =
[Problem, Suggestion, Justification] (corre-
sponds to I.a)).
Step 2 - Information exchange
2a) AgentA sendsHreq to each agent ofG (corre-
sponds to the first part of I.b)) .
2b) Each agentBi of G answers by sending his ad-
viceAdvi = [Suggestioni + Justificationi]) to A
(corresponds to the second part of I.b)).
Step 3 - Selection of a solution
AgentA analyses (corresponds to II.a)) the informa-
tion available and selects a solution (corresponds to
II.b)).

Table 3: Information exchange: iterative help request

Step 1 - Help request generation
Agent A consults his case base and
generates a help request Hreq =
[Problem, Suggestion, Justification] (corre-
sponds to I.a)).
Step 2 - Information exchange
AgentA exchanges and analyses information (corre-
sponds to I.b) and II.a)) according to the following
algorithm:
-InitialiseHvar = Hreq
-For each agentBi of G do:
a) SendHvar to Bi

b) ReceiveAdvi = [Suggestioni + Justificationi]
c) If Justificationi is stronger than
Justification, then: Suggestion = Suggestioni,
Justification = Justificationi

Step 3 - Selection of a solution
AgentA analyses (corresponds to II.a)) the informa-
tion available and selects a solution (corresponds to
II.b)).

is however another process involved in this interaction:
the process of generating an advice that is performed by
each agentBi of G. In Table 4 we present a generic se-
quence of steps that describes this process. This process
also involves information retrieval and the selection of a
solution, and in this sense, some of its steps also corre-
spond to some of the substeps of the generic cooperative
CBR learning process.

The second situation of possible agent interaction is
during the resolution of a problem. At this time, an agent
may again consult other agents to exchange information
and interactively adjust his procedure. The processes that
regulate this interaction are similar to the ones proposed



Table 4: Process od advice generation

Step 1 - Information retrieval
1a) Agent Bi receives a help re-
quest Hreq from agent A (Hreq =
[Problem, Suggestion, Justification]).
1b)Bi consults his case base and gathers information
on how to solve the currentProblem (corresponds to
I.a)).
Step 2 - Composition of a suggestion
Considering the retrieved information (if there is any),
Bi composes aSuggestioni and itsJustificationi.
Step 3 - Creation of an advice
If Bi considers hisSuggestioni useful (after com-
paring it with theSuggestion received from agentA
and also considering both justifications; corresponds
to II.a)), then he creates a new advice (Advi =
[Suggestioni + Justificationi]) and sends it to
agentA (corresponds to II.b)).

for the first situation. The third situation occurs during
the storage of a new case, when it can be shared among
several agents. The process associated to this third situa-
tion consists in simply performing a selection of a group
of agents to receive the information and send the new case
to them. The crucial point in this process is the selection
criteria. One idea is to consider those agents involved in
the previous two situations and analyze the information
they shared (their advices) in order to choose good candi-
dates (for example, an agent whose advice shows lack of
experience could be considered a good candidate).

5.4 Example of agent interaction

The following example resumes the application of the
processes of agent interaction previously described. Fur-
thermore, it suggests the kind of motivations and situa-
tions that may trigger the interaction and define how each
agent gets involved in it. Suppose that after consulting his
case base, agentA finds out that he has little experience
on how to solve his current problem. Realizing that, he
generates a help request (that includes a suggestion and
its justification) and decides to use a variable help request
protocol to send it to agentsB, C andD. AgentB is the
first to be contacted and answers that he has no experience
in solving the current problem. AgentC is the second to
receiveA’s request and, after consulting his case base,
he replies with an advice that suggests a different solu-
tion. Upon analysingC ’s advice,A decides to modify his
help request (replacing the current suggestion and its jus-
tification with the ones received fromC) and then sends
it to the third agent. AgentD analyses the request and
concludes that he agrees with the current suggestion. In
his advice he confirms the suggestion and adds his own
justification. After receiving this last advice, agentA de-

cides to accept the external suggestion to solve the current
problem. During the resolution of the problem, he finds
no need for external help (he skips the second situation of
interaction). After solving the problem, agentA creates a
new case, adds it to his case base, and, since agentsC and
D already have considerable experience in the subject,
sends only one copy of the case to agentB. It is impor-
tant to notice that whenever the information that circulates
during the interaction is considered useful it can be stored
by the agents. For example, since agentB had no expe-
rience on the problem for which his help was requested,
he could have considered useful to store the information
present in the help request.

6 Conclusion

We have proposed a definition of IML, discussed its costs
and advantages, and described ways for introducing in-
teractivity in multi-agent learning. Using a generic CBR
learning mechanism, we showed how the general princi-
ples of IML can be applied. Furthermore, we proposed
specific processes to regulate agent interaction during the
learning task and showed how the information can circu-
late in an interactive way.
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Abstract

To deal with dynamic changes of their environment, agents need an adaptive mechanism. This paper proposes
an integration of classifier-based framework (named XCS) and an agent-based framework (named DIMA). The
result of this integration is an adaptive- agent framework. It has been applied to simulate economic models.

1 Introduction

Dynamic and complex systems, such as economic mar-
kets, are characterized by a large number of agents and a
dynamic environment. To deal with the dynamic and un-
expected variations of their environment, adaptive agents
are very useful. Several learning-based multi-agent sys-
tems have therefore been realized (see Kazakov et al.
(2001), Kudenko and Kazakov (2002) and Kazakov et al.
(2003). The proposed solutions can be classified in two
categories:

• Single agent learning: Agents can learn indepen-
dently of other agents. Every agent is thus a sim-
ple learning algorithm and its environment is often
static.

• Multi-agent learning: Each agent is endowed with a
learning algorithm to build a model of its environ-
ment. The latter includes other agents.

Most realized works in multi-agent learning deal with
real-life applications. The proposed solutions are thus of-
ten ad hoc, they cannot be easily reused to build other
real-life applications. So, we still need works on generic
adaptive agent models. The purpose of this project is
to propose a generic adaptive agent framework (named
XCS-Agent). This framework is the result of the integra-
tion of an agent-based framework (named DIMA (Gues-
soum and Briot (1999))) and a Learning Classifier System
(LCS) (named XCS (Wilson (1995))). The application of
XCS-Agent to simulate economic models has allowed to
highlight the advantages of the proposed framework and
to underline the open problems (coding complex environ-
ments, exploration/exploitation, ...).

This paper is organized as follows: Section 1 presents
the example, Section 2 describes the framework XCS-
Agent, Section 3 studies the exploration/exploitation

problem, and Section 4 gives an overview of the realized
experiments to validate XCS-based agents.

2 Example

The considered application is the simulation of an eco-
nomic model. In this application, we consider a set of
firms in competition with each other within a shared mar-
ket. A firm is defined by the following main parameters:

• K, the amount of capital available,

• B, the R&D budget,

• the state variables (X vector) represent the differ-
ent types of resources (funds, people, equipment, ...)
owned by the firm,

• the Y variables represent the performances of the
firm. They are directly influenced by the X vector,

• the strategy the firm follows to allocate its resources,

• the associated organizational form. An organiza-
tional form is an abstract entity that gathers a set of
similar firms. Similar firms have similar behavior
and similar structure (see Baum and Rao (1999) and
Guessoum et al. (2003)).

Moreover, a firm is characterized by its decision process
which aims to select the most suitable strategy in a given
context. This context includes the internal parameters (K,
B, X, ...) and the firm’s perception of the other firms (their
K, their B, their Y, ...). Several solutions may be used
to represent this decision process such as inference en-
gine, case-based reasoning and LCSs (see Holland et al.
(2000)). However, the use of classifiers is more suitable to
the dynamic and unexpected variations of economic mar-
kets.



Figure 1: Overview of the framework XCS and XCS-Agent

3 XCS-Based Agent Model

This section presents first an overview of XCS, it then
describes the XCS-Based agents.

3.1 Overview of XCS

XCS is a recent LCS (Wilson (1995)) which can solve
complex learning problems. It is based on a standard clas-
sifier condition-action rules. Each classifier is character-
ized by three parameters: prediction p, error e, fitness f.
A condition corresponds to a chain of 0, 1 and #. # rep-
resents 0 or 1, the associated attribute is not taken into
account when checking the condition. The parameters p,
e and f are automatically updated according to the reward
obtained by the application of the chosen action.

In a context s, a step of XCS executes the following
actions (see Table 1):

• scan the environment (define the state of the environ-
ment),

• execute a step by using the exploration or exploita-
tion strategy.

XCS provides a set of generic classes which can be
reused to implement LCSs (see Figure 1). To implement
a LCS, one has to implement the Environment Interface.

XCS has been reused to build XCS-Agent. The agents
context and their behavior are described in the following
sections.

3.2 Agent Context

In a classifier, the condition represents the context of the
agent. It is defined by its local parameters and its percep-
tion of the environment. For instance, the firm’s context
includes:

• the capital, the resources, the budget,

• a representation of the competition (information on
the other firms),



Table 1: An example of method of the XCS step

private void doOneSingleStepProblemExplore (String state, int counter){
XClassifierSet matchSet= new XClassifierSet(state,pop,counter,env.getNrActions());
PredictionArray predictionArray= new PredictionArray(matchSet, env.getNrActions());
int actionWinner= predictionArray.randomActionWinner();
XClassifierSet actionSet = new XClassifierSet(matchSet, actionWinner);
double reward = env.executeAction(actionWinner);
actionSet.updateSet(0, reward);
actionSet.runGA(counter,state,env.getNrActions());}

• a representation of the organizational forms which
is defined by the resource variations and the perfor-
mances of the associated firms. Each variation of
a resource is described by a symbolic value (small,
medium, large). In our experiments, we use the same
fuzzy granulation (Zadeh (2001)) for the various re-
sources (see Guessoum et al. (2003)).

The various attributes of a firm are not binary. We have
thus decomposed the definition domain of each attributei
in n intervals. An attribute can be thus coded by a binary
string of n bits which indicate the corresponding interval.
However, the decomposition of the definition domain into
intervals is not easy and the performances of a firm rely on
this decomposition. Indeed, if the interval boundaries do
not fit with the natural boundaries of an optimal strategy,
the adaptive agent cannot perform optimally (see Section
5).

An action corresponds to a strategy of the firm (see Sec-
tion 2). An example of classifier is given in Table 2.

Table 2: Example of classifier

condition
K ∈ [-300,100],
B ∈ [0,100],
X[1] ∈ [2,5], ..., X[8] ∈ [1,3]
AverY[1] ∈ [3, 20], ..., AverY [3]∈ [0,3]
action
strategy1,
parameters
P = 0.5 ,
e = 0.01,
F=100.

The capital intervals are: [−300, 100], [101, 300],
[301, 500], [501, 600], [601, 800], [801, 1000000]. In the
condition of the given example (Table 2), it is represented
by 7bits: 1000000. Each bit indicates if the value belongs
to the corresponding interval.

The reward corresponds in our model to the aggrega-
tion of the variation of performances which result from
the application of the chosen strategy. It is calculated by

the following formula:

r = agreg(
Yt[1] − Yt−1[1]

Yt[1]
,
Yt[2] − Yt−1[2]

Yt[2]
) (1)

where agreg is an aggregation operator.

3.3 Agent Behavior

The used agent framework is DIMA (described in Gues-
soum and Briot (1999)). DIMA is a framework of proac-
tive components representing autonomous and proactive
entities. It is illustrated by a minimal set of classes and
methods defining the main functionality of a proactive
component. This functionality may be extended in the
subclasses. This framework is mainly composed of the
class ProactiveComponent (see Table 1) which describes:

• The goal of the proactive component, it is implicitly
or explicitly described by the method isAlive().

• the basic behaviors of the proactive component, a be-
havior is a sequence of actions that allow to change
the internal state, to perform a message or to send
a message to other proactive components. Each be-
havior is implemented as a java method of this class.

• the meta-behavior defines how the behaviors are se-
lected, sequenced and activated.

The step of a firm is defined in Table 4:

Table 4: Step of an agent

public void step() {
updateCompetitionRepresentation();
getProfitVariation();
updateBudget();
%% begin decision process
budgetRest=applyStrategy(chooseStrategy());
%% end decision process
updateCapital();
caculatePerformances();
updateMarket(); }



Table 3: Main methods of ProactiveComponent

Methods Description
public abstract boolean isAlive() Tests if the proactive component

has not yet reached his goal.
public abstract void step() represents a cycle of the meta-behavior

of the proactive component.
void proactivityLoop() Represents the meta-behavior

of the proactive component.

public void proactivityLoop()
{while (this.isAlive())
{ this.preActivity();
this.step();
this.postActivity();}}

public void startUp() Initialize and activate the meta-behavior.

public void startUp() {
this.proactivityInitialize();
this.proactivityLoop();
this.proactivityTerminate();}

XCSBasedAgent (see Figure 1) is defined as subclass
of ProactiveComponent and implements Environment.
An XCS is associated to each XCSBasedAgent and its
meta-behavior uses the XCS step (methods doOneMulti-
Step*). The step of an adaptive firm is defined in Table
5.

Table 5: Step of an adaptive firm

public void step() {
updateCompetitionRepresentation();
getProfitVariation();
updateBudget();
%% start decision process
cs.doOneMultiStepExperiment(3);
%% end decision process
updateCapital();
caculatePerformances();
updateMarket(); }

4 Exploration/Exploitation

LCSs must find a good compromise between two comple-
mentary strategies: exploration and exploitation. When
the uncertainty in the current prediction is high, the
system should better explore than exploit (see Wilson
(1996)). An adaptive agent should be able to observe
its behavior and choose the most suitable strategy ac-
cording to its experiences. To deal with that problem,
we introduce meta-rules which allow to adapt the explo-

ration/exploitation rules to the evolution of the context
and the state of the classifier set according to the vari-
ations of the firm performances. These meta-rules are
mainly based on two parameters:

• m: the number of steps during which an agent uses
exploration,

• n: the number of steps during which an agent uses
exploitation,

After each m exploration steps, the system executes n
exploitation steps. It executes then these meta-rules:

• if the Perf(t+n) =< Perf(t) then the system must still
learn, the number of exploitation steps is then de-
creased (n =n/2)

• if the Perf(t+n) > Perf(t) then the system has learned
enough, the number of exploitation steps is then in-
creased (n =n*2).

They are simple and adapt the behavior of the LCSs to the
evolution of the agent environment. They provide thus a
good solution to the Exploration/Exploitation dilemma.

5 Experiments

The proposed framework was tested on the simulation of
economic models (see Section 2). We first compared the
XCS-Based firms and firms that use a priori defined rule-
based systems. We considered two populations of firms:
rule-based firms and classifier-based firms. We injected
in each population one XCS-based firm and we observed
the performances and the number of classifier of this firm.
The considered parameters are:



• A population size =800

• A # probability = 0.5

• a learning rate (b)=0.2

• a crossover Rate=0.8

• mutation rate = 0.02

• qGA =25

• minimum error = 0.01

Figure 2: Convergence of the number of classifiers

The experiments show that the convergence of the clas-
sifier number within a population of non adaptive firms is
easier (see Figure 2). In fact, in adaptive-firm popula-
tion, the firms need a lot of time to learn and construct
their classifier populations. These results are, neverthe-
less, sensitive to some initial values of the parameters of
the XCS such as the learning rate. The learning coeffi-
cient beta is important in LCSs. Its default value, in XCS,
is 0.2. To show the influence of this parameter, we real-
ized experiments with different learning rates. Figure 3
shows that the reduction of this value improves the con-
vergence.

Figure 3: Comparison of the convergence of adaptive
firms using different learning coefficients

We set then this learning rate to 0.0001 for the rest of
the experiments. We study also the effect of the represen-
tation on the convergence of the firms. We use for this

two populations: 1) in the first population, the classifier
representation is based on a representation on 8 intervals
and 2) in the second one, the classifier representation is
based on 16 intervals. Figure 4 shows that the more pre-
cise representation allows easier convergence. So in the
rest of these experiments, we use 16 intervals.

Figure 4: Comparison of the convergence of populations
with different representations

In the second series of experiments, we studied the
Exploration/Exploitation problem. We considered three
populations of 500 XCS-based firms with different strate-
gies: exploration, exploitation, and meta-rules (Explore-
Exploit).

The results (see Figure 5) show that the population
with meta-rules (the black one in the Figure) has slightly
higher performances. We note that the difference is not
important (5 %). These meta-rules are then a good tech-
nique but more experiments are needed to find the ade-
quate parameters such as m.

6 Conclusion

This paper presented a new XCS-based agent framework
and its application to simulate economic models. The lat-
ter are dynamic and complex systems. This application
showed the advantages of using LCSs in dynamic multi-
agent environments. Large-scale multi-agent systems
provide thus very good applications to validate LCSs, but
also very challenging ones, given the continuous and non-
stationary character of these applications. The first exper-
iments are interesting but more experiments are needed to
choose the most suitable parameters and intervals to im-
prove the performances. On that point, using adaptive in-
terval techniques such as the one suggesting comparison
of the profit of populations with different strategies (see
Wilson (2000)) is a major area for future work. A second
perspective of this work is the definition of a methodology
to facilitate the development of adaptive-agent systems.
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Abstract

Agents have been employed to improve the performance of an Ant-Based Routing System on a commu-
nications network. The Agents use Neural Net based Q-Learning approach to adapt their strategy accord-
ing to conditions and learn autonomously. They are able to manipulate parameters that affect the beha-
viour of the Ant-System. The Ant-System is able to find the optimum routing configuration with static
traffic conditions. However, under fast-changing dynamic conditions, such as congestion, the system is
slow to react; due to the inertia built up by the best routes. The Agents reduce this drag by changing the
speed of response of the Ant-System. For best results, the Agents must cooperate by forming an implicit
society across the network.

1   Introduction

Ant-Based  Routing  has  some attractive  properties
for  communication  networks  due  to  the  distributed
nature  of the algorithm.  Schoonderwoerd [1996] and
Dorigo  [1997]  described  the  first  systems,  which
tackle slightly different problems (telephone networks
and datagram networks).  There  have  been numerous
improvements described, but all have concentrated on
the algorithms controlling the behaviour of the ants. 

The  drawback  to  Ant-Systems  is  that  they  are
purely reactive in nature and the probabilistic advant-
age built up by the best route in good conditions be-
comes a disadvantage if that route becomes congested.

By using ideas from the area of Subsumption Ar-
chitecture [Brooks 1986] – i.e. blending purely react-
ive agents with strategic proactive agents to create  a
more balanced society – this problem could be over-
come. 

The Ant-Colony on each node can be viewed as an
agent - the ants being only messages, rather than each
ant being viewed as an agent, which is an alternative
model. It is then a logical step to place a second agent
on a node to perform the more strategic role.

The Agent  (as distinct  from the Ant-Colony),  can
then monitor the operation of the Ant-Colony and ad-
just the parameters that affect the speed of response of
the  Ant-System.  This  should  be  done in  a  way that
does  not  increase  the  level  of Ant-traffic,  since  this
will add to the congestion being tackled.

The Agents across the network must coordinate to
some degree, since the affect  of only one taking any
action would be minimal. This would ideally be done
without explicit coordination since the messages could
also  add  to  congestion;  thus  a  parallel  is  drawn  to
Blind Game-Playing Agents studied in Reinforcement
Learning, including [Kapetanakis et al. 2003].

2   Aim

The aim of this research is to show that an intelli-
gent agent can be used to modify the parameters asso-
ciated with the Ant-system to make both the conver-
gence  from  start-up,  and  the  response  to  changing
conditions within the network, quicker,  whilst retain-
ing the stability in steady-state.

A society of Agents is required however, since the
parameters  are  changed  on a per-node basis for dis-
tributed control - an agent on each node is in control
of the parameters used on that node. At this stage, the
agents are acting independently from each other. Con-
versely,  both the ant  system and the agents use stig-
mergy – where the  environment  is  the media  for an
implicit form of communication.

An agent could observe how other agents are acting
by checking the parameters carried by ants originating
from other nodes.

3   Current Work

A significant  amount of research  has investigated
the  self-organisational  properties  of  Ant-Based  sys-
tems within telecommunications – for both load-bal-
ancing and routing purposes. 

Dorigo [1997], and many others, use two types of
ants, one to explore the network, and a second type to
propagate the information back across the network.

Other  techniques  include  Vittori  [2001],  in  which
the probabilities are interpreted as Q-values,  and the
Q-Learning reinforcement  equation is used to update
them.

However, both these papers use single-valued para-
meters, such as rate of production of ants, rate of de-
position of pheromones etc.,  that  are empirically  ob-
tained.  These  are  not  changed  at  runtime,  or indeed



off-line. 
The Vittori paper utilises Q-learning to update the

routing tables and found performance gains in doing
so. In this paper,  it  is intended to  use Q-learning to
modify the parameters used by the ants.

[Kapetanakis  et  al  2002,  2004]  discusses  agents
participating in games with other agents, where the re-
ward gained at the end of the round is a function of
the decisions made by all the agents. e.g. Agent 1 de-
cides on action A, while Agent 2 opts for action B.
The games are taken further by the addition of a prob-
abilistic affect, so that the reward is f ( A, B, P ). 

Kapetanakis'  agent's  decisions  are  made  without
conferring with other agent(s), indeed the agent is not
aware of the presence of other agents. The agents use
Q-learning,  and  are  able  to  find  successful  joint
strategies. This is analogous to the situation described
in this paper. 

Other research effort has concentrated on improv-
ing and fine-tuning the rules that govern the behaviour
of the ants. This paper attempts to branch away from
these efforts and strategically manipulate the Ant-Sys-
tem in a similar way to Subsumption Architecture.

4   Ant-System

This  section  describes  the  implementation  of  the
Ant-System used.  It  is  broadly  based  on the  system
discussed in Schoonderwoerd [1996]. 

The basis for the ant system is many simple-acting
entities displaying complex behaviour on the macro-
scale.  To this end the ants are small  packets of data
that are  kept as simple as possible. Carried within the
ant  are:  Source,  Destination,  Amount  of  Pheromone
and  Deposition Rate.  Rather than carrying code with
every ant, the processing is performed by the node.

The  Rate  of  Ant  Production is  a  self  explanatory
parameter,  and at  generation  the  ant  is  given  a uni-
formly-random destination, chosen from all the known
nodes on the network. It is also branded with an  Ini-
tial  Amount  of  Pheromone and  a  Deposition  Rate
(which describe its  longevity  and its  potency).  Once
generated, and at each node along its journey it selects
its next-hop by the generation of a uniformly random
number and the consultation  of the  local  probability
table associated with the ants final destination.

On arrival at a node, and after ensuring the ant has
not returned to its source, the ant deposits some pher-
omone. The amount of pheromone left by the ant is a
simple percentage (defined by the Deposition Rate) of
the current amount the ant has. If the ant has travelled
in a loop, it is discarded.

Before  this  is  added  to  the  probability  table  (or
pheromone  table)  it  is  multiplied  by  the  (relative)
available size of the traffic queue for the link just used
by the ant. 

The resultant amount of pheromone is added to the
local table regarding the ant's source, i.e. The ant rein-
forces the return route, not the route it is currently tak-
ing.  The tables are then normalised to sum to unity;
this has the affect of rewarding the route just used, but
also punishing all the routes not just used; a Minimum
Probability is applied to ensure all routes are explored
periodically. If the ant is at its destination it is treated

as above, then discarded.
The output  of the ant-colony is the best  next-hop

for each known node.  This is the highest probability
link, except  for when an extra threshold is applied –
i.e.  a link must exceed the probability  of the current
best route by some value for the recommendation to
change.

The affect of the ant parameters on the probabilit-
ies have been investigated with and without traffic. It
has been shown that it is possible to have a very quick
response, but with a relatively noisy steady-state con-
dition,  or  a  smoother  steady-state  but  a  slower  re-
sponse. The Rate of Production also has an affect on
the response.

An assumption is made that each and every link is
bi-directional; the discussion of the validity of this as-
sumption is beyond the scope of this paper. In Vittori
[2001] routes are reinforced in both forward and back-
wards directions; although this may aid speed of con-
vergence,  the  forward  reinforcement  has  no  logical
basis, and so the feedback may be incorrect, leading to
problems with incorrect routes.

The Ant-System is a separate entity, it is reactive in
nature and can operate with or without the Agent. The
Agent provides a supervisory and proactive role and is
described next.

5   The Agent

An agent  sits  on each  node  and monitors  the  ant
colony on that node. The agent receives reports from
the  colony,  both regular  ones and ones triggered  by
any route changes that occur.

The Agent is informed of all the parameters associ-
ated with the ants (Rate of Production, and those car-
ried  by  the  ant),  as  well  as  the  threshold  value  for
route change. 

The agent is also told the current probability of the
preferred route, as well as its mean, standard deviation
and gradient.  Obviously,  the windowing function for
calculating the mean, etc. is an important property and
this has been tuned to highlight important features.

The success or failure of the agent can be determ-
ined by a comparison between the performance of the
Ant-system by itself, and the Ant-system when super-
vised by the Agent.

The  type  of  learning  strategy  employed  by  the
agent is discussed in the next section.

6   Agent Learning Strategies

The agent is being asked to react to different states,
and should be capable  of learning the correct  action
from any state. The environment is also non-determin-
istic,  so simple  Temporal  Difference  Learning  (TD-
Learning)  would  not  be  suitable;  therefore  the  pre-
ferred strategy would be Q-Learning - where an agent
learns state-action values.

Although  Q-Learning  was  originally  based  on
tables of state-action pairs, this technique becomes un-
wieldy when there are more than a handful of states
and/or actions. Other problems occur when the system
is continuous and must be approximated to a specific
state before an action is chosen.



This  process  of  function  approximation  and  the
subsequent choice of action has been performed in a
single step by Tesauro [2002] and applied to the game
of Backgammon with remarkable success. 

In  the  context  of  Backgammon,  TD-Learning  is
sufficient,  since  the  environment  is  predictable  (the
“after-position”  of a move is deterministic).  The ex-
tension  of  this  approach  to  Q-Learning  is  a  logical
next  step,  and  has  been  investigated  by  Tesauro
[1999] himself.

Tesauro's  approach  uses  an  artificial  Neural  Net-
work, NN, to approximate the Q-value for each action
presented to the network for a particular state. Stand-
ard NNs are trained to perform known functions - e.g.
the Exclusive-Or Function – where the correct inputs
and outputs are defined. The error across the outputs
can  be  calculated  easily  by  taking  the  difference
between the desired results and the actual results. The
NN weights can then be adjusted accordingly.

Of course,  with NN-based Q-Learning the correct
outputs are  the unknown; but if  the Q-Learning Up-
date Rule [Sutton & Barto 1998] is applied instead of
the simple error, then the affect is directly equivalent
to incrementing table-entries.

The NN-Based Q-Learning system can therefore be
trained in the same way as a table-based system. Res-
ults  from [Tesauro 1999] show that  although the  Q-
values  are  shown to be less accurate  than the  table-
based  equivalent,  the  actions  selected  tend  to  be
sound. 

7   Implementation

The  System  has  been  implemented.  The  greatest
challenge  is  to  devise  a  Reward  Function  that  ad-
equately encourages desired outcomes whilst punish-
ing undesirable results. 

In the current configuration the Agent is able to ad-
just the  Initial Amount of Pheromone the ants have –
if the Rate of Production were to be adapted there is a
danger that congestion would be caused by the control
system attempting to reduce it. 

The  Agent  therefore  (usually)  has  three  actions
available to it – increase or decrease the Initial Pher-
omone or do nothing. The parameter is bounded as a
precautionary “sanity-check”, in which case an action
that would break this constraint is not presented as an
option.

The representation  of the  actions  to  the NN is of
note.

This can either be achieved by using a single input,
and using arbitrary values to represent each value (e.g.
-1 for  decrease,  0 for  stay the  same,  and +1 for  in-
crease) or, using three different inputs with a “1” in-
put to show selection (0 otherwise).

The NN must have at least a single hidden layer to
be able to approximate non-linear functions. Initially
for  speed  of  convergence  and  simplicity,  only  the
single extra layer will be used. The output layer is a
single node – the Q-value for the action considered –
whilst the input layer is composed of the data inputs
and the three action inputs. The hidden layer is com-
posed of three nodes to match the action nodes of the
input layer.

In order to achieve the objectives, the system must
be allowed to train  for a sufficiently  long time;  it  is
important  to  note  that  there  is  no  hard  distinction
between  training  and  runtime  –  the  system  will  be
constantly learning so that it is able to adapt to condi-
tions.  There  could  be  a  danger  of  “over-training”;
however,  given  the  noisy nature  of  the  environment
this is not anticipated to be a problem.

Different reward functions have been tested to find
the most effective. Ideally, the reward would be com-
posed of a smooth function of one of the (non-action)
inputs – this negates the requirement to introduce an
arbitrary threshold that may be suitable for some situ-
ations but not for others. This will allow the agent to
adapt to the maximum number of conditions; it must
be noted however,  the  the cost  of generalising solu-
tions is often prohibitive – in this case in terms of re-
search time.

The two main statistical descriptions of the system
that  could  be  used  as  the  reward  function  are  the
standard deviation of the highest ant-probability (re-
ferred to as standard deviation from now on) and the
magnitude of the change in the maximum probability.
These  will  be  maximal  when  the  conditions  on  the
network are changing, so can be used as the detection
mechanism. 

8   Experimentation

The  aim  of  the  experimentation  is  to  show  that
there  is  an  improvement  in  performance  when  the
parameters governing the ants are changed dynamic-
ally at run-time - thus taking account of changing con-
ditions on the network. 

Because  of  the  inherent  complexity  involved  in
testing  a  network,  two  relatively  simple  simulations
and then a more realistic network are used. These are
described in the following sections.

Of interest in the test, is the reaction of the ant-sys-
tem (both  managed  and  un-managed)  to  congestion;
the speed of response is of importance. A further con-
cern is that  the routing should not constantly  change
between two or more routes.

For both scenarios, the Managed Ants performance
must be compared with that of the Unmanaged Ants.
As intermediate steps, both a predetermined strategy,
with a priori knowledge of the traffic conditions, and
a simple reactive agent (using a simple threshold) are
implemented  – both  should  also  the  performance  to
some degree. This will give a further benchmark with
which to contrast the performance of the full system.

8.1 The Simulator

The simulator being used is  ns (Network Simulat-
or)  [Breslau  2000].  It  is  designed  to  model  TCP/IP
networks.  These networks are connectionless;  that  is
to say packets of data are transmitted without setting
up a definite route first. This means that at each hop,
packets are routed according to the instantaneous best
route. Packets from the same flow do not necessarily
follow  the  same  path.  Consideration  of  Circuit-
Switched  and  Connection-Oriented  networks are  left
to later discussion.



8.2 Network One

The network to be tested is shown in Figure 1(a). It
is a simple five node network. The important feature
is  that  there  are  three  equally-long  routes  between
Node 0 and Node 1, one of which, as described above,
will at times be congested. 

(a) (b)

(c)
Figure 1: Diagrams of Networks One, Two & Three

8.3 Network Two

This  scenario  exists  when  there  is  a  distinct
shortest-path between two nodes as well as longer al-
ternative routes, not sharing any links. The topology is
shown in Figure 1(b).

Where  the  shortest  route  becomes  congested,  the
ants must react  as quickly as possible to the conges-
tion.  They must overcome a large  amount  of inertia
represented  by  the  high  probability  built-up  by  the
shortest route - this inertia is greater than that of the
previous scenario.

8.3 Network Three

The third network under test, Figure 1(c), is a more
complex, but realistic, one. It is a sparsely connected
network,  with  a  number  of  cross-links.  The  route
between Nodes 0 and 1 still has a number of alternat-
ives.

8.4 The Traffic Scenario

Both network scenarios will be required to transmit
some user-data, which we shall describe as real-time,
loss-sensitive  data.  This  shall  be  transported  from
Node  0  to  Node  1,  in  all  network  topologies.  The
traffic  shall  be  offered  to  the  network intermittently
over the whole simulation causing congestion numer-
ous times.

Problems would be caused by the network dropping
the  user-data,  excessive  delay  or  excessive  jitter  -
variation  in  the  inter-arrival  time  of  packets,  often
caused by switching of routes.

The  situation  under  which  the  network  will  be
tested  is  as  follows.  The  traffic  causing  congestion,
shall represent other network load and will be set at a
level that will not, by themselves, cause packets to be
dropped, other than ants. 

The simulation will start with no data-traffic on the
network. The user-data starts before the other sources.
Firstly, a constant-bit-rate (CBR) flow uses the major-
ity  of  the  bandwidth  available  on  the  link  between
Node 0 and Node 2. Secondly, a smaller Variable-Bit-
Rate (VBR) flow also uses the same link.

This combination of traffic will result in intermit-
tent  congestion during the time when both flows are
present on the network. During congestion, traffic will
require  storage  in  queues  waiting  to  be  transmitted
and ant-packets will be dropped, having been assigned
a lower priority than other traffic.

These  two flows both stop after  a total  of fifteen
seconds. In the case of the Learning Agent,  the con-
gestion is  repeated  in an on-off fashion to allow the
NN to learn the correct response.

8.5 Comparison Tests

The Agent-Managed Ants must be compared with
the ordinary Ant-System to show that an improvement
has been made. Therefore the basic Ant-System by it-
self is used as a control test.

Further  comparisons could be  made  with both an
ideal agent  (that  is  not  constrained  by  processing
power/time)  and a simple reactive  agent  (to  confirm
whether  the  overhead  of  the  Learning  mechanism is
actually needed).

The simple reactive agent could just use a simple
threshold mechanism, so when the standard deviation
exceeds a pre-set level the age is increased, but is re-
duced when it falls below.

The expected shortcoming of this simple scheme is
that it will undoubtedly cause excessive noise during
steady  state,  and  setting  the  threshold to  the  correct
level is a non-trivial task as it may not be the same for
every  network.  For  instance  if  there  are  numerous
links from one particular node then the standard devi-
ation will be higher on average than on a node with
few links.

9   Results

Results show that the Agent is able to improve the
speed  of  reaction  of  the  network  to  dynamic  traffic
scenarios; by increasing the Initial Age in congestion,
but reducing it otherwise. Comparisons are made with
the ordinary Ant-System to evaluate the effectiveness.

9.1 Network One

Figure  2  shows two overlaid  graphs  for  Network
One.  The  graph  in  the  foreground is the  probability
plot  for Node 0 to Node 1. The graph behind shows



the  agent  manipulating  the  Ant-System  –  the  solid
looking block shows that the agent has increased the
parameter  to increase  the response-speed of the sys-
tem. It can be seen that this occurs when there is a dis-
turbance  on the  network.  At the time  of congestion,
the  congested  route  is  not  the  selected  one,  so  no
quantitative results are relevant.

Figure 2: Graphs of probabilities and Agent
manipulated Ant-parameters on Network One

9.2 Network Two

Figure 3: Graphs of probabilities and Agent
manipulated Ant-parameters on Network Two

Figure 4: Graph to show improved speed of re-
sponse with Agent-manipulation on Network Two

Figure  3  shows two overlaid  graphs  for  Network
Two. Again the top one shows part of the probability
graph (mainly the highest  probability);  underneath is
shown the age function produced by the agent. It can
clearly be seen that when there is major disruption in
the  probabilities  -  indicating  congestion  - the  age  is
changed by the agent (which shows as a solid-looking
block), speeding up the convergence time.

Figure 4 also consists of two graphs but shows one
portion of congestion in more detail.  The time before
the route is switched in this case is 3.9s, as compared
with 4.2s for the ordinary ants, and 3.7s in the case of
the ideal-agent.  The threshold solution took, anomal-
ously, 4.3s, as it was expected to improve on the or-
dinary Ant-System.

9.2 Network Three

Results from Network Three show a dramatic im-
provement in the performance of the Agent-managed
Ants over the ordinary system. Due to the larger size
of the  network,  the  route-change takes  longer  in the
first place – 9.1s for the simple Ant-Routing system to
respond.  With  the  Agent  operating  however,  the
changeover took only 6.4s; a significant improvement.
Figure 5 shows the graphs of the result.

Figure 5: Graph of probabilities and Agent-manip-
ulated Ant-parameters on Network Three

The hard-coded solution took 7.1s to respond fully
to  the  congestion,  which  suggests  that  the  learning
system adds effectiveness  to  the  Agent,  whereas  the
reactive  agent  only  improved  on the  Ant-System by
0.1s, at 9.0s.

9.4 Overall Results

It has been shown that the Agent is able to respond
to changing conditions on the network and act accord-
ingly.  It is able to learn the correct  circumstances in
which to change the response speed of the ants, both
increasing and decreasing it. 

In  comparison,  it  outperformed  both  the  ordinary
Ant-Based  Routing  System,  and  the  simple  reactive
Agent,  but  not  the  Ideal  Agent  –  which  of  course
would not be realisable (outside these simulations).



It  can be seen from the graphs presented that  the
changing of the Ant-Parameters has a  significant  af-
fect  on  the  “noise”  present  in  the  system,  and  this
could  lead  to  a  destabilising  effect,  causing  Route-
Flapping, and oscillatory problems across the network.

10 Further Work

The Agent is currently able to manipulate a single
parameter strategically;  this was for the sake of sim-
plicity,  but  it  could  easily  be  envisaged  that  more
parameters could also be adapted; such as the rate at
which pheromone is dropped, and ultimately the rate
at which ants are produced. This, as already noted is a
double-edged sword, as the ants may start to contrib-
ute to the congestion itself.

Secondly,  there  is potential  for  a further  agent  to
operate on the actual routing decision – note that the
purpose of an Ant-System is to measure the perform-
ance  of  different  routes,  while  the  Agent  described
here changes its speed of response. The Ant-System in
affect  “recommends”  a  route  and  this  further  agent
could  apply  reasoning  to  the  process  –  to  stop  the
route  “flapping”  and  to  provide  coordination  which
would  prevent  routing-loops;  as  alluded  to  in  [Ka-
petanakis  2004],  this  would  represent  a  massive  co-
ordination step.

11 Conclusions

The Ant-Based System has been shown to find op-
timal  routing  solutions  to  static  conditions,  but  has
been found to show undesirable characteristics when
put under the strain of dynamic loading. 

A solution has been sought that utilises a software
agent to adapt to these changing conditions by manip-
ulating a parameter that controls the speed of response
of the Ant-System. 

The solution has been implemented, and utilises a
Neural  Network  to  perform  Q-Learning  and  choose
the optimum action for the state of the network.

This  Agent  has  been  compared  with  an  Ordinary
Ant-Based  Routing  System,  and  two  similar  Agent-
managed  Ant  Systems,  one  representing  an  Ideal
Agent, and the other a Simple Reactive Agent. As ex-
pected  the developed  Agent,  outperforms all  but  the
Ideal Agent.
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Abstract 

 
In this paper we describe an architecture of an artificial agent that is able to autonomously generate and rank its own 
goals or intentions based on its motivations. We present an experiment conducted in a simulated environment with such 
an agent. 

 
1   Introduction 
 
Considered by many authors as the principal motiva-
tional system, emotion is one of the sub-systems that 
compose personality (Izard, 1991), a characteristic that 
agents may exhibit (Etzioni & Weld, 1995). Another 
important sub-system is the drive system (also an im-
portant kind of the motivational system). Psychological 
and neuroscience research over the past decades sug-
gests that emotions play a critical role in decision-
making, action and performance, by influencing a vari-
ety of cognitive processes (e.g., attention, perception, 
planning, etc.). Actually, on the one hand, recent re-
search in neuroscience (Damásio, 1994) supports the 
importance of emotions on reasoning and decision-
making. On the other hand, there are a few theories in 
psychology relating motivations (including drives and 
emotions) to action (Izard, 1991). For instance, in the 
specific case of emotions, within the context of the 
belief-desire theories of action (the dominant class of 
theories in today’s motivation psychology) there have 
been proposals (Reisenzein, 1996) such as that emo-
tions are action goals, that emotions are or include ac-
tion tendencies, that emotions are or include goal-
desires, and that emotions are mental states that gener-
ate goal-desires. 

Another important characteristic that agents should 
also exhibit is autonomy (Etzioni & Weld, 1995). In 
order to be autonomous, agents should be able to gen-
erate their own goals and state preferences between 
them. 

In this paper we describe an artificial agent that is 
able to autonomously generate and rank its own goals 
or intentions based on its motivations. 

The next section presents an overview of the agent’s 
architecture, giving special attention to the deliberative 
reasoning/decision-making module in which the gen-
eration and ranking of goals are included. Finally, a 
qualitative experiment is described, discussed and 
some conclusions are achieved. 
 

2   Agent’s Architecture 
 
The architecture that we adopted for an agent (Figure 
1) is based on the belief, desire, and intention (BDI) 
approach (Rao & Georgeff, 1995). Besides, the agent is 
of motivational kind, exhibiting a module of emotions, 
drives and other motivations. These play a central role 
in reasoning and decision-making since they may be 
thought as action goals (Reisenzein, 1996). The next 
subsections describe in more detail the main modules 
of the architecture. The information of the environment 
is provided to these modules by the sensors, and the 
effectors execute the actions selected. 

World

Agent

Deliberative Reasoning /
Desicion-making

Motivations

Memory Sensors

Efectors

Goals, Desires

 
Figure 1. Architecture of an agent. 

 
2.1   Memory 
 
The memory of an agent stores information about the 
world. This information includes the configuration of 
the surrounding world such as the position of the enti-
ties (objects and other animated agents) that inhabit it, 
the description of these entities themselves, descrip-
tions of the sequences of actions (plans) executed by 
those entities and resulting from their interaction, and, 
in generally, beliefs about the world. This information 
is stored in several memory components. Thus, there is 
a metric (grid-based) map (Thrun, 2002) to spatially 
model the surrounding physical environment of the 
agent. Descriptions of entities (physical structure and 
function) and plans are stored both in the episodic 
memory and in the semantic memory (Aitkenhead & 
Slack, 1987). We will now describe in more detail each 
one of these distinct components. 



 
2.1.1.   Metric Map 
 
In our approach, a (grid-based) metric map of the 
world is a three-dimensional grid in which a cell con-
tains the information of the set of entities that may al-
ternatively occupy the cell and the probability of this 
occupancy. Thus, each cell <x,y> of the metric map of 
an agent i is set to a set of pairs i

yx,φ ={< ip1 , iE1 >, 

< ip2 , iE2 >, ..., < i
ni

p , i
ni

E >, < i
ni

p
1+
,0>}, where i

jE  is the 

identifier of the jth entity that may occupy the cell 
<x,y> of the metric map of agent i with probability i

jp  

∈ [0,1], and such that ∑
+

=

=
1

1

1
in

j

i
jp . Note that the pair 

< i
ni

p
1+
,0> is included in order to express the probability 

of the cell being empty. Cells that are completely un-
known, i.e., for which there are not yet no assump-
tions/expectations about their occupancy, are set with 
an empty set of pairs i

yx,φ ={}. Note also that each en-
tity may occupy more than a single cell, i.e., there 
might be several adjacent cells with the same i

jE . 
 
2.1.2.   Memory for Entities 
 
The set of descriptions of entities perceived from the 
environment are stored in the episodic memory of enti-
ties. Each one of these descriptions is of the form 
<ID,PS,F>, where ID is a number that uniquely identi-
fies the entity in the environment, PS is the physical 
structure, and F is the function of the entity. The sen-
sors may provide incomplete information about an en-
tity (for instance, only part of the physical structure 
may be seen or the function of the entity may be unde-
termined). In this case the missing information is filled 
in by making use of the conditional probabilistic 
Bayes’s rule (Shafer & Pearl, 1990), i.e., the missing 
information is estimated taking into account the avail-
able information and descriptions of other entities pre-
viously perceived and already stored in the episodic 
memory of entities. This means some of the descrip-
tions of entities stored in memory are uncertain or not 
completely known (e.g.: element 4 of Figure 2). 

The physical structure of an entity may be described 
analogically or propositionally (Aitkenhead & Slack, 
1987). The analogical representation reflects directly 
the real physical structure while the propositional rep-
resentation is a higher level description (using proposi-
tions) of that real structure. 

The analogical description of the physical structure 
of an entity comprises a three-dimensional matrix and 
the coordinates of the gravity centre relatively to the 
entity and to the environment spaces. Notice that the 
three-dimensional matrix of the entity is a submatrix of 
the matrix that represents the metric map. 

The propositional description of the physical struc-
ture of an entity relies on the representation through 

semantic features or attributes much like in semantic 
networks or schemas (Aitkenhead & Slack, 1987). En-
tities are described by a set of attribute-value pairs that 
can be graph-based represented. 

The function is simply a description of the role or 
category of the entity in the environment. For instance, 
a house, a car, a tree, etc. Like the description of the 
physical structure, this may be probabilistic because of 
the incompleteness of perception. This means, this is a 
set F = {<functioni,probi>: i=1,2, …, n, where n is the 
number of possible functions and P(“function” = func-
tioni) = probi}. 
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Figure 2. Example of the episodic memory of entities. 
Although the matrix of the analogical description is of 
three-dimensional kind, for the sake of simplicity, it is 
represented here as a two-dimensional matrix corre-

sponding to the upper view of the entity. 
 

Concrete entities (i.e., entities represented in the epi-
sodic memory) with similar features may be general-
ized or abstracted into a single one, an abstract entity, 
which is stored in the semantic memory for entities. 
 
2.1.3.   Memory for Plans 
 
Like entities, we may distinguish two main kinds of 
plans: concrete plans, i.e., cases of plans (Kolodner, 
1993), and abstract plans. 

We represent plans as a hierarchy of tasks (a variant 
of HTNs) (e.g., (Erol, Hendler, & Nau, 1994)) (see 
Figure 3). Formally, a plan is a tuple AP = <T, L>, 
where T is the set of tasks and L is the set of links. This 
structure has the form of a planning tree, i.e., it is a 
kind of AND/OR tree that expresses all the possible 
ways to decompose an initial task network. Like in 
regular HTNs, this hierarchical structure of a plan 
comprises primitive tasks or actions (non-
decomposable tasks) and non-primitive tasks (decom-



posable or compound tasks). Primitive tasks corre-
spond to the leaves of the tree and are directly executa-
ble by the agent, while compound tasks denote desired 
changes that involve several subtasks to accomplish it. 
Tasks that are the roots of HTN plans are called goal 
tasks. For instance, the leaf node PTRANS of Figure 3 
is a primitive task, while visitEntity is a compound task 
(and also a goal task). 

m o v e T o (1 ) a n a lyze (1 )

v is itE n tity (1 )

P T R A N S (1 ) A T T E N D (1 )
 

Figure 3. A simple example of plan. Primitive tasks are 
represented by thick ellipses while non-primitive tasks 

are represented by thin ellipses. 
 

A task T is both conditional and probabilistic (e.g.: 
(Blythe, 1999)). This means each task has a set of con-
ditions C={ c1, c2, ..., cm} and for each one of these 
mutually exclusive and exhaustive conditions, ci, there 
is a set of alternative effects εi={< ip1 , iE1 >, < ip2 , iE2 >, 
..., < i

ni
p , i

ni
E >}, where i

jE  is the jth effect triggered with 
probability i

jp  ∈ [0,1] by condition ci (i.e., 

i
ji

i
j pcEP =)|( ), and such that ∑

=

=
in

j

i
jp

1

1 . Figure 4 pre-

sents the structure of a task. The probabilities of condi-
tions are represented in that structure although we as-
sume that conditions are independent of tasks. Thus, 
P(ci|T)=P(ci). The main reason for this is to emphasize 
that the Expected Utility (EU) of a task, in addition to 
the probability of effects, depends on the probability of 
conditions too. In addition to conditions and effects, a 
task has other information components. 

Each effect comprises itself a few components of 
several kinds such as temporal, emotional etc. These 
components may be of two kinds: non-procedural (fac-
tual) and procedural. The non-procedural component 
refers to the data collected from previous occurrences 
of the effect (contains the duration of the task, the emo-
tions and respective intensities felt by the agent, the 
fuel consumed, etc., in previous executions of the task 
as stored in cases of plans). The procedural component 
refers to the process through which the temporal, emo-
tional and other kinds of data may be computed (con-
tains descriptions or rules of how to compute the com-
ponents). 
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Figure 4. Schematic representation of a task in an ab-

stract plan. 
 

2.2   Motivations 
 
This module receives information from the current 
state of the environment and outputs the intensities of 
motivations (emotions, drives and other motivations). 
In this paper, this module is confined to the motiva-
tions that are related with variables that directly influ-
ence the main activities that the agent exhibits (explo-
ration and creativity1): surprise (elicited by unexpect-
edness), curiosity (elicited by novelty). In addition, we 
also consider the influence of the drive “hunger” that 
reflects the need of a power source. Nonetheless, other 
emotions, drives and other motivations may be in-
cluded in this module but not considered for the pur-
pose of this paper. 

The agent is almost continuously presented with an 
input proposition (Ortony & Partridge, 1987), which 
corresponds to some sensorial information of an entity 
(for instance, “a house with squared windows”). In 
response to this external stimulus, the surprise and cu-
riosity unit outputs the intensity of these motivations, 
respectively. 

In what concerns to surprise, we have developed a 
computational model (Macedo & Cardoso, 2001a) with 
the collaboration of the psychologists of the University 
of Bielefeld, Germany (Meyer, Reisenzein, & Schütz-
wohl, 1997), and also based on the ideas of Ortony and 
Partridge (Ortony & Partridge, 1987). The idea behind 
this model is that surprise consists of the appraisal of 
unexpectedness. Actually, there is experimental evi-
dence supporting that the intensity of felt surprise in-
creases monotonically, and is closely correlated with 
the degree of unexpectedness (see (Macedo & Cardoso, 
2001a) for more details). This means that unexpected-
ness is the proximate cognitive appraisal cause of the 
surprise experience. Considering this evidence, we 
have already proposed (Macedo & Cardoso, 2001a) 
that the surprise felt by an agent Agt elicited by an ob-
ject Objk is given by the degree of unexpectedness of 
Objk, considering the set of objects present in the 
memory of the agent Agt, which is given by the im-
probability of Objk (see(Macedo & Cardoso, 2001a) for 
more details): 

)(1))(,(
),(

kk

k
ObjPMemAgtObjNESSUNEXPECTED

ObjAgtSURPRISE
−=

=  

We define curiosity (following McDougall 
(McDougall, 1908), Berlyne (Berlyne, 1950) and 
Shand (Shand, 1914)) as the desire to know or learn an 
object that arouses interest by being novel, which 
means that novel objects stimulate actions intended to 
acquire knowledge about those objects. Thus, if we 
accept the above definition, the curiosity induced in an 
agent Agt by an object Objk depends on the novelty or 
difference of Objk relatively to the set of objects pre-
sent in the memory of Agt: 

))(,(),( MemAgtObjDIFFERENCEObjAgtCURIOSITY kk =  

                                                 
1 The agents that we have implemented have been used to 
explore unknown environments (Macedo & Cardoso, 2001b), 
and to create things (Macedo & Cardoso, 2001c). 



The measure of difference relies heavily on error 
correcting code theory (Hamming, 1950): the function 
computes the distance between two objects represented 
by graphs, counting the minimal number of changes 
(insertions and deletions of nodes and edges) required 
to transform one graph into another. 

The drive hunger is defined as the need of a source 
of energy. Given the capacity C of the storage of that 
source in an agent, and L the amount of energy left (L ≤ 
C), the hunger elicited in an agent is computed as fol-
lows: 

HUNGER(Agt)=C-L 
 
2.3   Goals/Intentions and Desires 
 
Desires are states of the environment the agent would 
like to happen, i.e., they correspond to those states of 
the environment the agent prefers. This preference is 
implicitly represented in a mathematical function that 
evaluates states of the environment in terms of the 
positive and negative feelings they elicit in the agent. 
This function obeys to the Maximum Expected Utility 
(MEU) principle (Russel & Norvig, 1995). The agent 
prefers always those states that make it feel more posi-
tive feelings (more positive emotions and the satisfac-
tion of drives). Goals or intentions may be understood 
as something that an agent wants or has to do. These 
might be automatically generated by the agent or given 
by other agents. 
 
2.4   Deliberative Reasoning/Decision-
making 
 
The reasoning and decision-making module receives 
information from the internal/external world and out-
puts an action that has been selected for execution. 
Roughly speaking, the agent starts by computing the 
current world state. This is performed taking into ac-
count the information provided by the sensors (which 
may be incomplete) and generating expectations or 
assumptions for the missing information. Assumptions 
and expectations for the current agent’s position are 
also generated. The agent has a queue of goal 
tasks/intentions ranked by their priority (i.e., EU). The 
first of the ranking is the goal/intention that is under 
achievement. Once one goal is achieved, it is removed 
from the queue and the way it was achieved could be 
learned for future reuse by simply storing its plan in 
memory as a case. However, external events or objects, 
for instance, may give rise to new goals/intentions. 
This is the next step of the reasoning/decision-making 
process: the generation of new intentions/goals, com-
putation of their EU and insertion of them in the queue 
of goals/intentions according to their priority (i.e., their 
EU). Though, if the queue was empty before this step 
and no new goals are generated in this step, the queue 
remains empty. In this case there is nothing to reason-
ing or deciding about and consequently no action is 
returned. However, the most likely is that the queue is 
not empty either before or after the step of generating 

new goals. If the first goal of the queue is still the same 
then proceed with its execution and possibly replan-
ning if necessary. However, the addition of new goals 
may have caused changes in the ranking of the goals in 
the queue because a new goal may be more EU than 
some old goals. Thus, the first goal may now be differ-
ent from the previous first goal. In this case the old first 
goal is considered suspended. This suspension could 
happen even though the goal was already under 
achievement (there was already a plan built for it and 
this plan was already being executed). Thus, a plan is 
required for this new first goal in queue, which will be 
from now on the current goal until its achievement or 
suspension. That plan could be built or retrieved from 
memory (if there is one – remember that this current 
goal may be previously suspended or even previously 
achieved in the past). 

The generation of plans is performed much like in 
HTN approaches (see (Erol et al., 1994)). We will now 
describe in more detail the step related with the genera-
tion and ranking of agent’s goals. 
 
2.4.1.   Generation and Ranking of Goals/Intentions 
 
The motivational system plays an important role in the 
generation and ranking of goals/intentions. Actually, 
according to psychologists, motivations are the source 
of goals in several manners: these goals may be in-
cluded in emotions (e.g., when an agent feels anger 
about something, a possible triggered goal might be 
fisting the entity that is on the origin of the anger), or 
emotions may be themselves the goals (e.g., an agent 
looks for states of the world that elicit certain positive 
emotions such as happiness or surprise). Therefore, an 
agent selects actions or sequences of actions that lead 
to those states of the world. For instance, an agent es-
tablishes the goal of visiting an object that seems be-
forehand interesting (novel, surprising) because visit-
ing it will probably make it feel happy. The algorithm 
for the generation and ranking of goals/intentions is as 
follows (see Figure 5). First, the set of different goal 
tasks present in the memory of plans are retrieved and, 
for each kind, a set of new goals (newGoals) is gener-
ated using the function adaptGoal(). This function 
takes as input a goal task retrieved from a plan in the 
memory of plans, the memory and the perception of the 
agent, and generates similar goals resulting from the 
adaptation of the past goal to situations of the present 
state of the world. The adaptation strategies used are 
mainly substitutions (Kolodner, 1993). Thus, for in-
stance, suppose the goal task visitEntity(e7) is present 
in the memory of the agent. Suppose also that the agent 
has just perceived three entities present in the environ-
ment, e1, e2 and e3. The entity to which visitEntity is 
applied (e7) may be substituted by e1, e2 or e3, result-
ing three new goals: visitEntity(e1), visitEntity(e2), 
visitEntity(e3). Then, the EU of each goal task is com-
puted. As said above, a task T is both conditional and 
probabilistic (e.g.: (Blythe, 1999)). Thus, the execution 
of a goal task under a given condition may be seen 
according to Utility Theory as a lottery (Russel & Nor-
vig, 1995): 
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The computation of )( k
jEEU  is performed predicting 

the emotions that could be elicited by achiev-
ing/executing the goal task. This means, the emotions, 
drives and other motivations felt by the agent when the 
effect takes place are predicted or estimated based on 
the procedural or non-procedural components of the 
effect. 

The following function is used to compute )( k
jEEU : 

∑

∑

×+×+×
=

=
×+×+×

=

=

i
i

k
j

k
j

k
j

i
i

k
jhunger

k
jcuriosity

k
jsurprise

k
j

EHUNGERECURIOSITYESURPRISE

EUEUEU

EEU

α

ααα

α

ααα

)()()(

)()()(

)(

221

221

, where, α2 = -1 and αi (i≠2) may be defined as fol-
lows: 





⇐
>−−⇐

=
otherwise

DAgtHUNGERC
i 0

0)(1
α  

, where D is the amount of energy necessary to go 
from the end location of goal task T to the closer place 
where energy could be recharged, and C is the maxi-
mum amount of energy that could be stored by the 
agent. 

In the case of exploratory and creativity behaviour, 
the surprise and curiosity of an effect of a task are elic-
ited by the objects that the agent perceives. 
 
Algorithm generateRankGoals(newRankedGoals) 
Output: newRankedGoals – the set of ranked goals 
 
newGoals ← ∅ 
setPastGoals ← {x: x is a goal task belonging to some plan in mem-
ory} 
for each goal in setPastGoals do 
 adaptationGoal←adaptGoal(goal,agtMemy,agtPercepts) 
 newGoals ← newGoals ∪ adaptationGoals  
end for each 
for each goal in newGoals do 
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end for each 
insert(goal,newRankedGoals) 
return newRankedGoals 
end 
 
Figure 5. Algorithm for the generation and ranking of 

goals. 
 
 
 

3   Qualitative Experiment 
 
We have conducted an experiment in order to evaluate 
the reasoning/decision-making process of an agent with 
the architecture described above. Special attention was 
given to the algorithm of the autonomous generation 
and ranking of goals based on motivations. To do so, 
we ran an agent in a simulated environment populated 
with several buildings (their functions were for in-
stance, house, church, hotel, etc.; for the sake of sim-
plicity, their descriptions were related with the shapes 
of their structure: rectangular, squared, etc.). Figure 6 
presents the simulated environment and the path taken 
by the agent to explore it. The agent started at location 
0, with an empty memory of entities, but with a single 
case of a past plan for visiting entities. At this location 
its visual field included objects E1 and E2, located re-
spectively at locations 1 and 2. Then the agent gener-
ated goals for visiting them by adapting the goal vis-
itEntity of the previous plan stored in memory. The 
resulting goals are: visitEntity(E1) and visitEntity(E2). 
E1 and E2 are entirely new for the agent (remember 
that the agent started with an empty memory of enti-
ties). Therefore, the surprise and curiosity that they 
may elicit when visited is maximum (i.e., 1.0). How-
ever, E1 is closer, so the hunger that may be felt when 
the agent is at location 1 is lower than in location 2. 
Hence, the agent ranks the goals as follows: visitEn-
tity(E1) followed by visitEntity(E2). A plan is gener-
ated for the first goal. After its execution, the agent is 
at location 1 with a complete description of E1 stored 
in memory as a case (case 1 of the episodic memory of 
Figure 2) and an incomplete description of E2 (because 
it has not been visited yet and therefore it is not com-
pletely known – at least the function is still undeter-
mined). In addition, the goal visitEntity(E1) is deleted 
from the queue of goals. At location 1, the agent per-
ceives E2 and E3 (E1 is also perceived, but it has just 
been visited). The agent generates the goal visitEn-
tity(E3) for visiting E3. Notice that visitEntity(E2) is 
still in the queue of goals. E3 is similar to the previ-
ously visited E1 and therefore it predicts feeling a low 
intensity of surprise and curiosity when visiting it. Be-
sides, hunger is expected to be higher in location 3 than 
in 2. So, the goals are ranked as follows: visitEn-
tity(E2) followed by visitEntity(E3). Once again, a plan 
is generated for visitEntity(E2) and then executed. The 
result is the completion of the description of E2 (case 2 
of the episodic memory of Figure 2). At location 2, the 
agent perceives E4, in addition to E3. E4 is similar to 
both E1 and E2. However, its EU is lower than that of 
E3 mainly because the agent expects a higher hunger in 
location 4 than in 3. Thus, E3 is visited. At this time, 
the agent has the episodic memory of Figure 2. An 
interesting behaviour is observed later when the agent 
has to select between visiting E11 and E12, which are 
exactly equal to E1 and E2, respectively, and at similar 
distances. Therefore, it might be expected that the 
agent would visit E11. However, this time the agent 
ranks the goals as follows: visitEntity(E12) and visitEn-
tity(E11). This is because the agent has now more cases 



describing entities similar to E11 than to E12. There-
fore, E12 is expected to elicit more surprise than E11, 
and hence the EU of visiting E12 is higher than that of 
visiting E11. 

In order to take conclusions about the quality of this 
behaviour, we asked a few humans to describe the path 
they would follow in such environment. We verified 
that there is much similarity with the path followed by 
the agent. 
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Figure 6. Experiment in a simulated environment. 

Dashed circles represent the visual field of the agent in 
different locations. 

 
4   Conclusions 
 
We have presented a motivation-based approach for the 
autonomous generation and ranking of goals. This ap-
proach is in the core of the reasoning process of agents. 
The experiment conducted allows us to conclude that 
the behaviour of an agent whose reasoning process 
includes this approach is similar to that of humans in 
the simulated environment considered. 
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fig 1 : Evolution of the entropy index
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fig 2 : Evolution of the number of CNAs
dotted line represents XOR function learning
single line represents AND function learning
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fig 3 : functional adequacy of an output of the 
MAS

dotted line represents observed output
single line represents expected output
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Abstract 

This paper presents a Multi-Agent based web content categorization system. The system was prototyped 
using a Framework for Internet data collection. The Framework and its application to E-commerce are 
presented. The advantages derived from agent’s technology usage are presented. 

 

1 Introduction 
The proliferation of unwanted information is 
becoming unbearable, imposing the need of new tools 
to overcome the situation. Either through push 
mechanisms, such as Email spamming, or by pull 
mechanisms as presented in web sites, it is necessary 
to ensure that the individuals can access the relevant 
information, avoiding unwanted information; saving 
valuable time otherwise spent on processing more 
information than that is needed and to decide which 
information to retain or discard.  

In consequence, tools to enhance the results of the 
current electronic procedures of acquiring data, 
substituting them by more efficient processes, are 
required. The “Framework for Internet data collection 
based on intelligent agents”, hereon designated by 
“Framework”, developed in UNINOVA, offers a 
user-friendly interface customized through a user's-
personalized catalogue, which is automatically 
updated with information gathered from available web 
sites. The catalogue stores, in a pre-selected ontology, 
the data collected from different web sites, avoiding 
manual useless visits to several sites. The process of 
presenting the catalogue’s-collected data is ergonomic 
and automates the user’s most common tasks. 

The autonomous data collection and semi-automatic 
catalogue updating is executed by a FIPA compliant 
Multi-Agent System (MAS), relieving the end-user 

from all the “hard work” (i.e. interfacing the web and 
the private databases). The agents increase their 
performances, taking advantage of text learning 
methods, dedicated to Internet information retrieval. 
The use of an Agent-based System was agreed due to 
its inherent scalability and ease to delegate work 
among agents. The Framework being presented was 
intensively tested in the project DEEPSIA. All the 
examples presented in this paper were produced under 
DEEPSIA’s context; i.e., the creation of personalised 
catalogues of products sold on the Internet. 

1.1 The DEEPSIA project 
The project DEEPSIA “Dynamic on-linE IntErnet 
Purchasing System, based on Intelligent Agents”, IST 
project Nr. 1999-20 283, funded by the European 
Union has the generic aim of supporting Small and 
Medium Enterprises (SME) usual day-to-day 
purchasing requirements, via the Internet, based on a 
purchaser-centred solution and tailored to meet 
individual needs. 

Usually, Business-to-Business (B2B) e-commerce 
models focus on SMEs as suppliers, often within 
virtual shops or marketplaces, nevertheless, all SMEs 
are purchasers of goods and services. Depending on 
the size of the SME, this function may be performed 
by one person the owner/manager, or the purchasing 
manager – or may be open to a number of 
staff.(Sousa, Pimentão, Pires and Garção, 2002) 



The procurement process is no exception in trying 
to find relevant information on an information-
overloaded web, magnified by the myriad of new 
commercial sites that are made available everyday. 

DEEPSIA’s purpose is to provide a purchaser 
centred solution, available on the user’s desktop and 
tailored to individual requirements, rather than a 
supplier centred marketplace. 

The reduction of time in collecting data will be 
achieved by presenting the user with a catalogue of 
products organised under an ontology representing a 
set of relevant entries, thus avoiding having to browse 
through a wide range of web pages and links that are 
not related to his/her needs. 

2 The Deepsia’s adopted 
framework 

DEEPSIA adopted a framework composed of three 
subsystems, responsible for performing specific tasks, 
and interacting with each other through data and 
information flows. 
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Figure 1: Conceptual description of the most 
relevant components (represented by rectangles) and 

software Agents (represented by circles) that compose 
the Framework. 

 
Depicted in Figure 1, the Framework’s subsystems 

are: a Dynamic Catalogue (DC), responsible for data 
storage and presentation; a Multi-Agent System 
(MAS), responsible for autonomous data collection, 
and semi-automatic catalogue process update; and an 
optional Portal and Agents Interface System (PAIS), 

responsible for interfacing directly with the web data 
suppliers. 

2.1 Dynamic Catalogue 
The Dynamic Catalogue is the user interface, which is 
responsible for presenting the information collected 
by the MAS based on the user’s preferences. The 
dynamic on-line catalogue communicates with the 
MAS in order to provide the end-users with all the 
required information. The catalogue holds not only 
the information about the data selected by the agents 
on the web, but also the information about the sites 
contacted, the ontology in use (configurable by the 
user) and all user requirements regarding the data 
gathered and stored. The electronic catalogue’s data is 
stored in a database (DB) and it is made available 
through a web-browsing interface. For concept 
storage, ontology and conceptual graph approaches 
were selected in order to create a user-friendly 
interface (Tan, 1993). 

For the customisation of the architecture to the 
project, the DEEPSIA’s consortium selected the 
Universal Standard Products and Services 
Classification (UNSPSC), from ECCMA, as the base 
taxonomy for the ontology system. ECCMA - 
Electronic Commerce Code Management Association, 
presents itself as a not-for-profit, unbiased, 
membership organisation that oversees the 
management and development of the UNSPSC 
Code.(ECCMA, 2002) 

The UNSPSC code file being used contains more 
than 12,000 commodities, spanning fifty-six industry 
segments. The UNSPSC code has been implemented 
worldwide within major procurement and financial 
software systems. It is based on B2B commerce and 
any size of company throughout the world can benefit 
from its use. 

The dynamic catalogue is filled with information 
provided using two search mechanisms: The Direct 
Search and the Autonomous Search. 

2.2 Direct Search 
The PAIS implement the direct search system, using 
Portal Agent Interfaces (PIA), adopted by the 
commercial web sites and a Collector Agent, which is 
the multi-agents’ systems interface to manage the 
PIAs. 

The PIA is responsible for creating an interface 
between one specific web supplier’s portal (Internet 



Site PIA agent adopters) and the MAS. The PIA is a 
facilitator agent installed in the web supplier's site. 
With this agent, the web supplier creates a dedicated 
interface to interact with the MAS, thus enabling 
direct querying to their sites’ private databases. It is 
not mandatory for this agent to be adopted by the web 
suppliers, since the MAS is able to collect 
information based on the autonomous search strategy. 
Nevertheless, its inclusion provides the web suppliers 
with a much more integrated and flexible interface 
and enables the possibility of direct querying to web 
suppliers’ DB, i.e. the MAS is able to query the web 
supplier about specific information. 

2.3 Autonomous Search 
Focusing in the MAS it would be possible to identify, 
several types of agents that accomplish subsidiary 
tasks contributing to the ultimate goals of the system. 
The tasks performed by the different agents, include 
between others: message processing, name resolution 
service, web page discovery, etc. These agents are not 
described in this paper since their role is quite 
common and it is not relevant in the context of 
information retrieval. 

The agents responsible for performing the 
autonomous search can be identified in the Figure 1, 
following the path that goes through the Web Crawler 
agent (WCA), the Miner agent (MA), and the 
database (DB), with the connection with the Ontology 
agent. The WCA has the responsibility of crawling 
and identifying pages with the user’s interest themes. 
The MA has the responsibility to identify the relevant 
concepts included in the pages selected by the WCA, 
with the support of the Ontology Agent (that stores all 
the concepts that the system recognises), and send the 
concepts, together with the ontology classification, to 
the user’s catalogue. 

The Ontology agent is responsible for ontology 
management and for classifying the concepts found. 
The Ontology agent answers to queries from the 
miner for product classification purposes. 

To keep the Agent’s simplicity, all the learning 
processes (feature selection, classifiers creation, DSS-
Decision Support System definition) are performed by 
the special Tutor Agent, (omitted from figure 1 to 
improve readability). Their achieved results are 
mapped to XML and then communicated, using FIPA 
compliant agent messages, to the respective agents 
(the Crawler and Miner) (FIPA00061, 2000). The 
basic behaviour of all agents is based on a bootstrap 

knowledge, complemented in time, by the Tutor 
Agent whenever new conclusions are achieved.  

Applying the Autonomous Search Mechanism to 
product promotions’ identification scenario (one 
objective of DEEPSIA), it will result in the following 
tasks division. A WCA is the responsible discovering 
and deciding if a page is a product promotion page or 
not. The MA is responsible for the product 
identification and for determining the promotion’s 
associated conditions (price, quality, etc). 

2.4 The Web Crawler Agent (WCA) 
The WCA automatically fetches web pages looking 
for pre-selected themes defined by the user. The 
search starts by fetching a seed page, and then all the 
pages referenced by the seed page, in a recursive 
approach. Therefore, each time the end-user finds a 
new site containing the selected theme, he/she can 
send its URL to the WCA in order to start a deep 
search for useful information starting at that location. 

In the on-line process, the WCA agent uses the last 
DSS sent by the Tutor, in order to classify and assign 
a trust factor to each page found. 

The trust factor assigned is based on the 
performance estimated to the DSS in use by the 
WCA. After the classification process the pages are 
sent to the Miner agent. 

2.5 The Miner Agent (MA) 
The MA is responsible for the analysis of the web 
pages found by the WCA. Once found and classified 
by the WCA, the MA analyses each page and the 
relevant information presented on the page will be 
selected for storage on the catalogue’s database. 

The main challenge for this agent is the selection of 
the data to be loaded into the catalogue. In fact, it is 
expectable to find a huge amount of non-significant 
data that must be avoided in order to produce easy-to-
read and directly comparable catalogues. There are 
two fundamental problems to overcome, concept 
identification and concept classification. 

To illustrate the problem under analysis, using a 
DEEPSIA’s example, observe  

Figure 2 where a web page for product selling is 
presented. Imagine what would be needed to identify 
the products included in the table. The first task is to 
identify how and where to find the product 
information (concept identification). The second task 



would be the product’s classification (concept 
classification). 

 

Figure 2: An example of a commercial page from 
the Internet 

 
In the on-line process the MA uses a forward 

inference decision support system for concept 
identification and a reverse index keyword system for 
concept classification. The rules instantiated in both 
systems are maintained by the Tutor Agent. 

Despite the classification given to each page by the 
WCA, the MA will overwrite this value according to 
the quality of the information found during the 
analysis process.  

3 The Tutor Agent (TA) 
The Tutor Agent’s role is to support the user to 
perform all the text learning techniques, in an off-line 
process, in order to create Decision Support Systems 
(DSS) for the WCA and the MA. 

3.1 Web Crawler Agent DSS 
For the WCA, the TA’s role is to support the user in 

performing the classical learning tasks of: 
Corpus creation: the creation of a database of 

samples to perform supervised learning. As in all 
supervised learning process, knowledge is extracted 
from a set of classified observations (the corpus) that 
are previously stored (Mitchell, 1996). The corpus, 
used for the experimental results was created during 
the DEEPSIA project. The corpus was built using one 
hundred commercial web sites, from an arbitrary 
Internet site selection. The corpus included a total of 
3579 documents, tagged as selling or non-selling 

samples. Unlabelled documents, or double document 
tagging (i.e. one document classified in both 
categories) were not allowed. The corpus included 
2528 selling documents and 1051 non-selling 
documents. 

Feature selection: identification of the most 
relevant words to be selected for the vector in order to 
reduce the vector’s size, usually superior to 30.000 
dimensions (one dimension for each word found in 
the dictionary). The first step consisted in removing 
all the features included in the stop list 
DTIC/DROLS. This list retains most of the words in 
the standard Verity Stop List and adds the words from 
the DTIC/DROLS stop word list (the full list can be 
found at http://dvl.dtic.mil/stop_list.html). The second 
step consisted in performing feature selection (over 
all words still included in the corpus) using feature’s 
Mutual Information (Yang and Pedersen, 1997), 
Conditional Mutual Information  and Chi-square. Just 
the most expressive features are selected to be 
included in the vector for document representation. 
The exact number of features to be selected (the k-
trash-older) is dynamically de-fined depending on the 
system’s performance. 

Creation of classifiers: the creation of several 
possible classifiers in order to produce alternative 
classification procedures. The classifiers are produced 
using the pre-selected features vector. The methods 
studied were the K nearest neighbour, K weighed – 
NN (Yang and Liu, 1999), C4.5 (Quinlan, 1993) and 
Bayesian classifier (Hastie, Tibshirani and Friedman, 
2001). 

Setting up a Decision Support System: the creation 
of rules in order to perform the classification task. 
The setting up of the DSS is defined based on the 
available classifiers and the analysis of their 
performance. The currently selected DSS is the rule 
of majority applied to the classifications assigned by 
the selected classifiers. 

Creation of the Equivalent Decision Support System 
(EDSS) for Performance Optimisation. In order to 
enhance the system global performance an effort was 
made on the creation of an EDSS, which was 
presented in (Sousa, Pimentão, Pires and Garção, 
2002). 

Regarding feature selection methods, the best 
method used was the Conditional Mutual Information 
(CMI), because of its capability to eliminate 
correlated features. Genetic Algorithms were used to 
overcome the computational complexity with a 



remarkable performance, even if they do not 
guarantee the best solution. The C4.5 classifier 
induction was used for testing the feature selection 
process. The slight improvements achieved with CMI 
over the other methods are particularly relevant, since 
C4.5 already eliminates correlated features.  

Regarding the induced classifiers using the best 
feature ranking, the best results were achieved using 
decision trees.  

Regarding the Decision Support System 
development the best results were achieved using nine 
C4.5 decision trees induced using different training 
sets over the original corpus. The trees were 
aggregated using the majority rule.  

Finally, the created EDSS increased the system 
performance reducing the number of used decision 
trees. 

4 Why Agent technology? 
The agent technology is not a generic panacea to be 

applied to every day problems. Between others, the 
general complexity of the paradigm, the imposed 
communication and computational overhead, and the 
usage of a real distributed programming approach 
must be taken into account at the decision’s moment. 
Furthermore, the lack of a sound theory and standards 
to support the analysis’ and implementation process, 
together with the inexistence of robust, scalable and 
secure agent development platforms and agent 
deployment platforms are real obstacles to produce 
fast, reliable, and secure systems. 

Therefore, the usage of agent’s approach must be 
carefully analyzed and specially applied to real 
distributed, modular, decentralized decision making 
and ill-structured problems. Then the advantages will 
overcome the disadvantages and the achieved 
solutions are flexible, natural and elegant.  

The nature of the problem under study is difficult to 
deal with, using traditional software engineering 
techniques. Even the traditional distributed 
approaches are difficult to applied because of the 
decentralized decision making and the geographical 
distribution. Therefore, the agent approach seamed 
suitable at the beginning of the project.  

In fact, the agents’ paradigm confirmed this 
assumption throughout the project execution coping 
efficiently with the day-by-day problems and 
situations.  

The agents’ modular approach enables a flexible 
source encapsulation increasing reusability, and fast 
and easy error detection and correction. The fact that 
every agent implements an independent decision 
maker allowed the implementation of a natural 
decentralized decision system. The straightforward 
capability to introduce, eliminate, or change agents, or 
agent types, adapted to the problem’s ill-structure 
facilitated the development and implementation, since 
the error reflexes, or unexpected behaviors resulting 
from changes are self-contained and avoided 
secondary reflexes. 

The agents’ intelligence is the result of applying 
learning techniques, specifically the supervised text 
learning and the if-then-else rules.  

5 Conclusions 
The "Framework for Internet data collection based on 
intelligent agents" is a generic approach; its context 
definition is done using the training process of the 
Crawler and of the Miner agents. Depending on the 
class, the ontology and the rules definition, the system 
may be adapted to distinctive objectives and we hope 
time and experience will continue to support our 
expectations. 

The framework was under extensive tests in the 
DEEPSIA’s project, and the achieved results were 
very positive and above the consortium’s 
expectations. Although the used corpus is dedicated 
to e-procurement, the global results achieved are 
encouraging and the framework is now under testing 
with other corpus. 

The use of different learning techniques and DSS 
was a priority from the beginning of the project as the 
joint effort of all learning techniques increases 
drastically the performance of the platform, taking 
advantage of the particularities of each technique 
concerning its success ratio in terms of quantity and 
aim. 

The Framework has shown to be fit for the 
application in the DEEPSIA scenario. During the 
project, we reached the conclusion that SMEs, would 
rather prefer to monitor a set of pre-selected sites 
(their usual suppliers), than to search the whole 
World-Wide-Web trying to identify new web sites 
(most of them not relevant to the business of the 
company). In this environment the DEEPSIA solution 
is quite effective. Since the corpus from where the 
DSSs are inducted is created with the pages from the 



user’s selected sites, the corpus is roughly equal to the 
universe; therefore the estimated precision and recall 
values achieved are very similar to the real values. 
For further information about the project, the latest 
achievements and access to the prototype please 
consult the DEEPSIA’s web site on www.deepsia.org. 

Generically speaking, the architecture contributes to 
a new solution for information retrieval based on text 
learning techniques. 

The usage of agents was fundamental to achieve the 
results in a short period. 

The association of both technologies, agents and 
leaning, enabled promising results and the creation of 
a generic approach applicable in different 
environments. Its usage in Finance and Military fields 
are already under analysis with similar results. 
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Abstract

Re-use of software components is standard practice in software design and development in which humans play
an important role. In many dynamic environments, however, (semi-)automated configuration of systems, is
warranted. This paper examines three such domains: Agent Factories, Web service configuration and general
software composition. The differences and similarities between these approaches, and the progress that is
being made are discussed.

1 Introduction

Re-use of software components is part of many
approaches to software design and development
((e.g.,Biggerstaff and Perlis (1997))). Most approaches
assign an important role to human developers. In dy-
namic environments (semi-)automated configuration of
systems can reduce, or even eliminate, the human effort
required. In dynamic environments (semi-)automated
configuration of systems from reusable components, is
warranted. This paper examines three such domains:
Agent Factories, Web service configuration and general
software composition. The differences and similarities
between these approaches, and the progress that is being
made, are explicitly addressed.

Agents are active entities in dynamic, changing envi-
ronments supported by the Internet. There are different
ways for agents to adapt to such changing environments
(e.g., see Splunter et al. (2003)). One is the Agent Fac-
tory approach in which first a need for change is identified
and then agents are adapted. Another is the evolutionary
approach in which agents continually adapt to their envi-
ronment through implicit learning. The first mandates an
understanding of the structure of an agent, and the com-
ponents involved. The second mandates an understanding
of the parameters involved in learning. This paper exam-
ines the first approach.

The Internet provides infrastructure to host agents and
mobile processes. It also provides the infrastructure
needed for both agents and humans to access Web ser-
vices. In many business chains a number of Web services
play a role. Web services need to be combined - config-
ured. Availability of Web services, for example, is often
crucial. If a particular Web service is not accessible an

alternative service or combination of services needs to be
found almost instantaneously. Automated configuration,
although not currently acquired, is being actively pursued.

Within component based software engineering ap-
proaches automatic configuration is not often persued,
but, when it is, it focuses mostly on the intial design. It,
thus, provides the basis for both agent and Web service
configuration.

This paper is organised as follows. Section 2 briefly
introduces and analyses three Agent Factories. Sec-
tion 3 introduces and analyses Web service configura-
tion. Section 4 introduces and analyses one approaches
to component-based configuration from a software engi-
neering perspective. Section 5 compares these three over-
all approaches to component-based configuration by fo-
cussing on strengths and weaknesses on a number of as-
pects, related to the end-products, reusable components,
and the configuration process. Section 6 concludes this
paper with directions for future research.

2 Agent Factories

Agent Factories are either services or toolkits for (semi-
)automated creation and (optionally) adaptation of soft-
ware agents. These environments are strongly related to
methodologies for agent application development. They
include support for agent modelling (e.g. AUML),
generic agent models (e.g by DESIRE, ZEUS, or InteR-
Rap) and prototype generation. Examples of prototyp-
ing environments include the ZEUS toolkit (Nwana et al.
(1998)), LEAP (Berger et al. (2001)), the (Dutch) Agent
Factory (Brazier and Wijngaards (2001)), the (Irish)
Agent Factory (Collier and O’Hare (1999)), and the (Ital-
ian) Agent Factory (Cossentino et al. (2003)). This paper



refers to the last three as the Dutch, Irish, and Italian agent
factoriesand describes them in more detail in this paper.

In general, agent factories produce software agents,
which are executed in the context of specific agent
plaforms.

Dutch Agent Factory. This approach focuses on au-
tomation of the creation and adaptation of compositional
agents. The nature of the components, of which an agent
is composed, is graybox. These components provide
mechanisms to implement an agent’s processes, knowl-
edge & information and control. Component composition
is regulated by explicitly defined ’open slots’ in compo-
nents & templates based on generic agent models. Com-
ponents are defined at two levels of abstraction: concep-
tual and operational. Minimal ontologies are used for
annotation of components and interfaces, without adher-
ing to standard ontologies or languages. Repositories for
building blocks have not yet been further researched; only
local re-use is supported.

The configuration process itself is automated, and in-
cludes reasoning on, and modification of, the require-
ments on the desired configuration. Configuration cre-
ation is automated, based on a generic model of design
theory: the Generic Design Model (Brazier and Wijn-
gaards (2002)). Retrieval and assembly are modelled
as separate processes. Adaptation is approached as re-
design, supported by the Generic Design Model. Com-
ponent retrieval has not yet been automated. Assembly
has been automated, partially being incorporated in the
operational architecture used for the agents. Execution of
configured agents is done by means of an agent platform.
Agent platforms for which agents have been configured
are AgentScape, FIPA-OS, and JADE.

Italian Agent Factory. The Italian Agent Factory is
based on a toolkit that supports the multi-agent system de-
sign methodology PASSI (Cossentino and Potts (2002)).

The nature of the components is graybox. Components
are configured and structured for five different configu-
ration perspectives used within PASSI: knowledge, so-
cial, computer, architectural, and resource. The first two
can be related to the conceptual level, and the remaining
three to the operational level. Conceptual components are
based on roles and tasks, operationally software compo-
nent are used for modelling. Component composition is
done by pattern merging on the conceptual level, on the
operational level code is reused linked to the conceptual
patterns. The interfaces of the software components are
locally developed and defined.

The configuration process results in a skeleton of code
that needs to be completed by a human programmer. An-
notation of the different patterns is done using AUML,
state charts, and activity diagrams. Annotation for human
desigenrs is supported by the Rational Rose tool. The cre-
ation of an extensive repository of patterns is still an open

research issue. The re-use community of the patterns is
limited to the Italian Agent Factory.

The Italian Agent Factory’s configuration creation pro-
cess is semi-automated as a support tool. Configuration
adaptation does not seem to be explicitly supported. Pat-
tern retrieval seems to be mainly done by a human de-
signer. The assembly of components is partially auto-
mated: a skeleton with partial completed code is the soft-
ware product of the Italian Agent Factory. The execu-
tion is by means of a FIPA-compliant agent platform. The
agents produced adhere to the interface standards set by
FIPA for agent platforms.

Irish Agent Factory. The Irish Agent Factory is de-
veloped as a complete system to enable Agent Oriented
Software Engineering, complete with a formal theory on
agent commitments, agent programming language, and a
run-time environment. This paper focuses on the tool to
create agents.

The Irish software components are graybox, all pro-
grammed and developed within the same methodology.
The conceptual components are modeled as roles and
tasks, time with a focus on the use of commitments. The
components’ interfaces are developed and defined locally.
Conceptually component composition is done by config-
uring a set of actuators and perceptors. Operationally
agents are created by module-based development. Dif-
ferent default sets of actuators, perceptors, and modules
are offered to support default implemnetations of differ-
ent classes of agents. Annotation is application specific
in the Irish Agent Factory’s own high level programming
language (AF-APL) with the addition of behaviour dia-
grams. Repositories of components have not been devel-
oped. Due to the specific theory, programming language,
and run-time environment the reuse community consists
only of the Irish Agent Factory.

Configuration creation is primarily done by a human
designer, where the toolkit mainly acts as a smart inter-
face. A number of default configurations is offered that
can be used for initial configuration. Component retrieval
is limited, a lookup service is associated which can (par-
tial) retrieve designs via design identifiers. Assembly is
done by either retrieving pre-fabricated configurations, or
semi-automated by the toolkit. Execution is by means of
the agent platform associated with the Irish Agent Fac-
tory.

Discussion. In the three Agent Factories discussed
above agents are developed on the basis of instantiated
’patterns’ (e.g. ’generic models’), or combinations of
agent-components. The Italian and Irish agent factories
focus on semi-automated generation; automated genera-
tion of agents is demonstrated by the Dutch agent factory.
Automated adaptation of previously configured agents is
only achieved by the Dutch Agent Factory. Nevertheless,
all three Agent Factories pave the road for component-
based agentadaptation.



All these Agent Factories produce agents for agent plat-
forms that are FIPA compliant. Each agent factory uses
its own approach to define components, interfaces, and
annotation. All agent factories provide mechanisms re-
lated to process, data/information & knowledge, and con-
trol within software agents. All agent factories distinguish
conceptual and operational levels of configuration. At the
conceptual level, the Italian agent factory merges its com-
ponents (patterns), while the Dutch and Irish agent fac-
tories combine components. All agent factories combine
components at the operational level.

All agent factories are rather small-scale, both in the
number of annotated components provided and associ-
ated (re-use) community. Annotation of components is
often not explicitly supported, but sometimes implicit in
the development of components (i.e. the Irish Agent Fac-
tory.

Not all agent factories use standard Software Engineer-
ing modelling support for creating agents. The Italians
use AUML, state charts, activity diagrams, and extended
Rational Rose. The Irish have explored the option of ex-
tending their methodology with AUML. The Dutch Agent
Factory lacks standard SE modelling support technolo-
gies.

3 Web Service Configuration

The Stencil Group1 defines web services as ”loosely cou-
pled, reusable software components that semantically en-
capsulate discrete functionality and are distributed and
programmatically accessible over standard Internet pro-
tocols”. Web services are related to the Semantic Web, in
which data is defined and linked to make it accessible and
interpretable for automated systems.

A configuration of Web services describes which Web
services combined,control, and the information exchange.
A configuration of Web services involves multiple pro-
cesses on different hosts as individual Web services are
offered and hosted by different parties. In contrast to
agents, the behaviour of both a configuration and of sin-
gle Web services is purely reactive and static. In gen-
eral, two perspectives on Web service configuration can
be identified (Srivastava and Koehler (2003)): a more
syntactic-oriented Business Process composition and a
more Semantic-Oriented service composition. The Busi-
ness Process perspective models Web services as business
processes, without attaching detailed semantics, and uses
standardised technologies to describe Web services such
as WSDL, SOAP, andUDDI. Web service configurations
are described by orchestration languages such asXLANG ,
WFSL, BPEL4WS, or WSMF. This perspective is success-
ful in human-supported discovery, composition, and mon-
itoring of Web services. The Semantic-Oriented perspec-
tive extends the Business Process perspective by identify-
ing the need of explicit semantics to enable the automa-

1http://www.stencilgroup.com/ideasscope200106wsdefined.html

tion these tasks. Standard languages (e.g.OWL) and on-
tologies (e.g.,OWL-S (formerly DAML -S)) are available
for semantically annotating Web services. This paper fo-
cuses on the two Semantic-Oriented approach discussed
below.

eFlow. eFlow (Casati et al. (2000)), developed by the
Hewlett-Packard Company, is oriented to adaptation of
workflow models of composite Web services. Web ser-
vices are treated as blackbox components. The compo-
nent structure is based on workflows: activities with a
data flow and control flow are modelled. The compo-
nent interfaces are based on standard Internet protocols,
and are described inWSDL. Component composition is
regulated using a self-defined model, in which workflow
concepts have been reused and extended. AnXML spec-
ification and aDTD to constrain syntax are used for an-
notation. The component availability is low, due to the
specificXML annotation.

eFlows main consideration is the focus on adaptation.
Adaptations is performed in the context of monitoring
Web service configuration, to minimize or eliminate hu-
man intervention. Component retrieval is done by bro-
kers using centralised repositories, and the execution and
monoring is performed by an eFlow engine.

Cardoso Cardoso and Sheth (2002) focus on the inte-
gration of new Web services in existing workflows. Web
services are blackbox components. The component struc-
ture is based on modelling activities with a data flow and
control flow, extended with annotations on the Quality
of Service (QoS). Component composition is based on
workflow integration, and supported by abstract Service
Templates. For annotation DAML-S has been used in
examples. The DAML-S Profile ontology has been ex-
tended to include more details on the QoS. This approach
has a prototype with a self-defined local repository and
discovery service, though usage of UDDI is also consid-
ered. The reuse community of the components is larger
(the additional QoS attributes are only extensions to ex-
isting standards, not rendering components incompatible
with other approaches). Component availability, includ-
ing QoS annotations, is small.

In the configuration process of Cardoso’s approach
configuration adaptation is semi-automated. The human
designer is supported in the creation and refinement of ab-
stract Service Templates. This approach is not specifically
targeted to the creation of Web service configurations
from scratch. Component retrieval is semi-automated:
based on an abstract Service Template possible Web ser-
vices for refinements are retrieved based on aspects of
QoS, similarity of textual descriptions or names, and se-
mantic similarity of inputs and outputs. The assembly and
execution a configuration is not clear.

Discussion. Within Web services configuration the ser-
vices are blackbox components with standardised inter-



faces. The component interface standards are based on
standard Internet protocols and described usingWSDL

andSOAP: generally accepted standards. The component
structure is mostly process-based: in the workflow per-
spective it consists of activities with a control and data
flow.

The components themselves are annotated in standard
annotation languages asWSDL andOWL. The latter lan-
guage is mostly used by semantic-oriented matching ap-
proaches, for which standard ontologies for Web services
are available inOWL-S. Annotating Web services is an in-
herent part of the Web service development process. Un-
fortunately, most approaches do not focus on creating rich
domain ontologies to be reused when describing other ser-
vices. A large number of Web services is available where
annotations are limited to only theWSDL descriptions. A
smaller number of components is available with semantic
rich OWL-S descriptions

The use of globally shared repositories support a global
reuse community and widely available Web services. The
communities involved in the semantic Web are still grow-
ing, which may positively influence the availability of
well-annotated re-usable Web services.

As Web services, by their very nature, can appear,
change, or disappear while being used in compositions,
the need for automated adaptation is recognised, and
progress is made. Most approaches to automated config-
uration are still in development; configuration creation is
often approached as a (simple) planning problem. Com-
ponent retrieval is semi-automated, i.e.UDDI is used as a
repository that can be queried, but human intervention is
still required to determine whether the resulting Web ser-
vice are useable. The Semantic-Oriented perspective has
extended (e.g. MatchMaker by Paolucci et al. (2002))
UDDI to handle further automated semantic querying, by
including approximate answers. Execution of Web ser-
vices configurations is done by workflow execution en-
gines, e.g.,BPWS4J, and theBPEL Orchestration Server.
For execution ofDAML -S descriptions research is still
evolving (e.g. see Gaio et al. (2003)), as the research
area is still young.

4 Component-Based Software En-
gineering

Component-based software engineering focuses, in gen-
eral, on developing components (e.g.,CORBA, Java
Beans, .NET). while software composition is often
only supported by tools, not automated, although excep-
tions are present. Examples of modelling support are
UML 2, or tools such as Rational Rose3. In this paper
Quasar(de Bruin and van Vliet (2003)), a semi-automated
approach to software composition based on feature com-
position, is discussed.

2http://www.uml.org
3http://www.rational.com

Quasar. Quasar is a tool to support top-down compo-
sition of software architectures. In this approach, an ar-
chitecture is derived to fulfill a of quality concerns. A
Quasar specific feature-solution graph is used to connect
quality requirements to solution fragments at the architec-
tural level: a form of composition knowledge. An archi-
tecture is derived by systematically composing solution
fragments. Both functional and non-functional require-
ments are addressed.

The reusable components, in this approach design so-
lutions, are often patterns but may also be individual
software components. Design solutions are represented
by use case maps (UCM) whereby both behavioural and
structural aspects are expressed. Components are dis-
tinguished from sockets and stubs, with which compo-
nent composition is regulated, via a refinement process.
Quasar usesBCOOPL( de Bruin (2003)) to specify inter-
face definitions, including pre- and post-conditions and
-processing via pre- and post-stubs. Composition tem-
plates support composition of design solutions.

Annotation of design solutions are encoded in feature-
solution graphs. These graph are not automatically gen-
erated. A number of prototype components are available.
The configuration creation process is semi-automated: ar-
chitectures are derived iteratively by first generating a ref-
erence architecture, focussing on functional requirements
followed by non-functional requirements. The choices of
which requirements to focus on, is left to the human de-
signer. This process may include backtracking to resolve
conflicting requirements.

Discussion. Component-based software configuration
is a broad field. Automated approaches in component-
based software engineering are often very domain-
specific (comparable with agent-configuration and Web
service configuration). In general, components are well-
defined structures, for which composition is explicitly
regulated by defining ’hooks’. Both components and
hooks are well-defined on a syntactical level, sometimes
involving semantic annotations (by associating features to
solutions in Quasar). Only small sets of annotated com-
ponents are available, and the more general an approach,
the more support is provided for large-scale repositories.
Simple, exact-matching, retrieval is often provided. Con-
figuration of software components is almost never fully
automated. This is due, in general, to software com-
ponents being difficult to reuse as their domain speci-
ficity conflicts with reuse genericity (Sametinger (1997)).
Assembly of software compositions is, in general, sup-
ported.

5 Comparative Analysis

Agents, services and general compositional software have
different characteristics, but also commonalities. The
comparison in this section is structured by focussing on



four aspects: component definition, component annota-
tion, component availability, and configuration process.

Component definition. Although all approaches ex-
plicitly define components, the Web service approaches
employ standards, used by a large community. The com-
ponent definition, however, is a blackbox approach, with-
out providing hooks for composition: composition re-
quires new configuration languages. In the Agent Facto-
ries and component-based software engineering compo-
nents are graybox, providing hooks for composition. All
approaches distinguish conceptual and operational levels
in their component definitions.

Web services are intended to be a globally reused, in an
open domain. The Web service community builds on the
existing (Web-)protocols, e.g. SOAP, HTTP, while the
agent community has inter-agent protocols, but have no
standards for the interfaces of the components of which
agents themselves are composed. The software compo-
sition approach provide no restrictions on domain and/or
interfaces, yet automated configuration is limited to spe-
cific domains of application.

Component annotation. The adoption of standards
for annotation facilitates the development of automated
configuration processes. Only the Web service com-
munity has emerging computer-interpretable annotation
standards, the other approaches do not as yet. Human-
understandable annotations of software engineering, like
UML, are widely applied and accepted (broader than the
Web service annotation standards). The annotations of the
Web service communities do not extend these SE stan-
dards. Within the Agent modelling community the SE
annotations are more generally accepted (e.g. AUML).

Component availability. Automated configuration of
software depends on the availability of configurable soft-
ware components: a critical mass is needed for auto-
mated configuration to be successful. Annotated Web ser-
vices are becoming more widely available, due to a large
supportive community and the creation of semantic de-
scriptions being part of the development process of Web
services. Agents, however, are often developed without
a focus on re-usability of agent-components, leading to
scarce availability of annotated agent-components. Soft-
ware components are being developed in large quantities,
around the world, but are usually not geared for auto-
mated reuse, lacking computer-interpretable annotations.

Configuration processes. Fully automated configura-
tion is not widely supported. All communities research
automated adaptation, whereby the agent community of-
ten focuses on learning algorithms without structural
adaptation. The Web service community focuses on
adaptation, mostly studied in the context of business-
processes. Component-based software engineering has

traditionally had its main focus semi-automated adapta-
tion, but is moving towards automated adaptation (e.g.,
see also the developments in self-managing, and self-
healing systems).

Discovery and retrieval of software components is im-
portant. Annotation of components will facilitate their au-
tomatic discovery and retrieval. The Semantic Web com-
munity experiments with public services, and uses rea-
soning about the annotations. Within the Agent Factories
retrieval of re-usable components is not extensively stud-
ied, and no large repositories are publicly available. For
software-composition communities repositories are avail-
able, however mainly for computer-supported discovery
and retrieval. For automated discovery and retrieval the
repositories are often limited in size and non-public.

6 Discussion & Future Work

The comparison is limited, discusses the issues involved
in each of the approaches. Internet applications require
flexibility to accomodate changes in their environment.
As manual adaptation is not pragmatic when multitudes
of agents and Web services are in use, automated adap-
tation becomes a necessity. Unfortunately, the current
state of the art, even in software engineering, does not in-
clude fully automated component-based adapation. Cur-
rent research focuses on component-based configuration
of agents, Web services, and software composition: a pre-
condition for adaptation. Progress has been made in au-
tomation of component-based configuration.

Automated component-based configuration of, e.g.,
software agents, entails a thorough understanding of both
configuration processes, and the components to be config-
ured. The agent community has made the most progress
in automation of the configuration process. The Web
service community has made the most progress in de-
velopment and annotation and in the discovery and re-
trieval of these components. The software composition
community has made the most progress in structuring
and modelling components, and on supporting the hu-
man designer. Interdisciplinary research may be most
fruitful, when (1) combining configuration-expertise with
annotation-expertise, (2) generalising and standardising
reusable, configurable, components, and (3) when the
current structuring and modelling practices of SE are
used. Once automated component-based configuration
has proven to be feasible, research can focus on auto-
mated component-based adaptation as a new challenge.
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