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The AISB 2004 Convention 
 
On behalf of the local organising committee and all the AISB 2004 programme committees, I am 
delighted to welcome you to the AISB 2004 Convention of the Society for the Study of Artificial 
Intelligence and the Simulation of Behaviour (SSAISB), at the University of Leeds, Leeds, UK. 
 
The SSAISB is the oldest AI society in Europe and it has a long track record of supporting the 
UK AI research community.  This year, the underlying convention theme for AISB 2004 is 
“Motion, Emotion and Cognition”, reflecting the current interest in such topics as: motion 
tracking, gesture interface, behaviours modelling, cognition, expression and emotion simulation 
and many others exciting AI related research topics.  The Convention consists of a set of 
symposia and workshop running concurrently to present a wide range of novel ideas and cutting 
edge developments, together with the contribution of invited speakers:  

• Prof Anthony Cohn 
Cognitive Vision: integrating symbolic qualitative representations with computer vision; 

• Prof Antonio Camurri 
Expressive Gesture and Multimodal Interactive Systems; 

• Dr David Randell 
Reasoning about Perception, Space and Motion: a Cognitive Robotics Perspective; and  

• Dr Ian Cross 
The Social Mind and the Emergence of Musicality,  

not to mention the many speakers invited to the individual symposia and workshop, who will 
made the Convention an exciting and fruitful event. 
 
The AISB 2004 Convention consists of symposia on: 

• Adaptive Agents and Multi-Agent Systems; 
• Emotion, Cognition, and Affective Computing; 
• Gesture Interfaces for Multimedia Systems; 
• Immune System and Cognition; 
• Language, Speech and Gesture for Expressive Characters; and the  
• Workshop on Automated Reasoning. 

 
The coverage is intended to be wide and inclusive all areas of Artificial Intelligence and 
Cognitive Science, including interdisciplinary domains such as VR simulation, expressive 
gesture, cognition, robotics, agents, autonomous, perception and sensory systems.  
 
The organising committee is grateful to many people without whom this Convention would not 
be possible.  Thanks to old and new friends, collaborators, institutions and organisations, who 
have supported the events.  Thanks the Interdisciplinary Centre of Scientific Research in Music 
(ICSRiM), School of Computing and School of Music, University of Leeds, for their support in 
the event.  Thanks to the symposium chairs and committees, and all members of the AISB 
Committee, particularly Geraint Wiggins and Simon Colton, for their hard work, support and 
cooperation.  Thanks to all the authors of the contributed papers, including those which were 
regretfully not eventually accepted.  Last but not least, thanks to all participants of AISB 2004.  
We look forward to seeing you soon. 
 
Kia Ng 
AISB 2004 Convention Chair  
ICSRiM, University of Leeds, 
School of Computing & School of Music, 
Leeds LS2 9JT, UK 
kia@kcng.org   www.kcng.org 
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On Relation between Emotion and Entropy

Roman V. Belavkin�
School of Computing Science, Middlesex University

London NW4 4BT, UK
R.Belavkin@mdx.ac.uk

Abstract

The ways of modelling some of the most profound effects of emotion and arousal on cognition are discussed.
Entropy reduction is used to measure quantitatively the learning speed in a cognitive model under different
parameters’ conditions. It is noticed that some settings facilitate the learning in particular stages of problem
solving more than others. The entropy feedback is used to control these parameters and strategy, which in
turn improves greatly the learning in the model as well as the model match with the data. This result may
explain the reasons behind some of the neurobiological changes, associated with emotion and its control of
the decision making strategy and behaviour.

1 Introduction

It is popular to believe now that emotion is an impor-
tant (if not essential) component of intelligence (Salovey
and Mayer, 1990). This is, however, hard to prove unless
some quantitative methods are introduced that will allow
us to evaluate such claims in an experiment. An example
of such an experiment could be a competition between
several agents, with architectures incorporating various
theories of emotion and cognition. In practice, however,
the results of such an experiment would very hard to in-
terpret because of the great number of components (e.g.
perception, memory, planning, action, etc) involved in the
agents’ architectures.

The research described in this paper pursues a different
approach by studying the effects of emotion on decision
making and learning. Using entropy reduction as a quan-
titative measure of learning allows for a better analysis
and comparison of the results from different experiments.

The ability to learn is one of the most important fea-
tures of intelligent systems. While leaving to philoso-
phers the question of what is the purpose of learning, let
us assume that this process is beneficial to intelligent sys-
tems, and the faster and more effectively it occurs the
better. From information theory point of view learning
is equivalent to reducing the uncertainty (entropy) about
the environment and the system itself within this envi-
ronment. Many areas of artificial intelligence have al-
ready successfully employed the mathematical apparatus
of information theory, which advanced greatly the neural
networks learning algorithms, search methods and case–
based reasoning systems. Recently, the notions of infor-
mation and entropy have been applied to analyse and con-
trol cognitive models (Belavkin and Ritter, 2003). In par-
ticular, it became possible for the models implemented in
hybrid cognitive architectures, such as ACT–R (Anderson
and Lebiere, 1998), which mixes the high level symbolic

processing with the low level subsymbolic computations
accounting for fuzzy or probabilistic properties of cogni-
tion.

The comparison of model results with data (e.g. from
human subjects or animals) is one of the most important
aspects of the cognitive modelling research. A cognitive
model of a classical animal learning experiment will be
used in this study to evaluate theoretical predictions.

In the next Section, the most general effects of basic
emotions and arousal on behaviour will be discussed and
grounded in the relevant literature. The ambiguity of the
term emotion will be avoided by replacing it with the prin-
ciple components of emotions.

The notion of entropy and its application to cognitive
models will be discussed in Section 3. This section will
repeat some of the previous work (Belavkin and Ritter,
2003). Section 4 will highlight how speed of learning in
the model varies as a function of some parameters in the
architecture. These parameters (namely the noise vari-
ance and goal value used in decision making mechanism)
have been used before to simulate different levels of moti-
vation and arousal (Lovett and Anderson, 1996; Anderson
and Lebiere, 1998; Belavkin, 2001). The entropy reduc-
tion will be used to measure the speed of learning in the
model.

Section 5 will discuss the idea of using the entropy of
success as a feedback parameter to control the decision
making mechanism of the architecture. It will be shown
how entropy evaluating model’s own performance moder-
ates the choice strategy and controls the behaviour mak-
ing it more adaptable. In addition, the model match with
the data improves, which supports the idea that a similar
strategy control takes place in subjects. Some more spec-
ulative ideas about the role of emotion in evaluating the
entropy and controlling the behaviour will be discussed
in the end of the paper.



2 The Principle Components of
Emotions

The important role of emotion in cognition has been ex-
tensively discussed in the literature, particularly over the
last two decades (Salovey and Mayer, 1990; Damasio,
1994; LeDoux, 1996). Despite the great interest in the
subject of emotion across several disciplines of science,
there is still lack of understanding and clear definition of
what emotion actually is. Psychologists and philosophers
still cannot agree on some of the fundamental points in
the subject, such as what comes first: Feelings or thought?
(Schachter and Singer, 1962; Zajonc, 1980).

This ambiguity is multiplied when one attempts to inte-
grate emotion into a unified theory of cognition, and into
its computational implementations, such as ACT–R (An-
derson and Lebiere, 1998) or SOAR (Newell, 1990). The
need to include emotion into cognitive models, however,
is rarely disputed (Simon, 1967). With the existence of
many computational models of affect (see Hudlicka and
Fellous (1996) for a review) and even a greater number of
different emotions (Lambie and Marcel, 2002), the prob-
lem seems to be intractable. However, the dimensionality
can be reduced if we concentrate our research on measur-
able and the more consistent features of the phenomena,
or what we shall call theprinciple components of emo-
tions.

Probably the most common measure of various emo-
tional experiences isvalenceindicating whether an emo-
tion is positive or negative. Cannon (1929) argued that all
emotions can be classified into ‘fight or flight’, which is
probably not far from the truth. Another important mea-
sure isarousal, or the intensity of emotional experience.
Arousal is a broad term covering a variety of phenomena,
but generally it is associated with different levels of ac-
tivation of the autonomic nervous system (ANS), and it
can be influenced by external or internal stimulation in-
cluding emotion (Humphreys and Revelle, 1984). As has
been shown by Russell (1983, 1989), valence and arousal
are the two most common dimensions in classifications of
emotions, and they are included in many other classifica-
tions (Plutchik, 1994).

Both valence and arousal are measurable and even pre-
dictable. Indeed, negative emotions occur when we ex-
perience a failure in achieving a particular goal. On the
contrary, a success is accompanied by positive emotions.
Arousal can be either measured directly in subjects (e.g.
using galvanic skin response), or predicted based on the
strength of the stimuli (e.g. reward or penalty). There-
fore, in this paper, when discussing the role of emotion in
cognition, we shall concentrate on the effects of arousal
and valence, and we shall not consider other aspects of
the phenomenon, such as particular emotions or their role
in social interaction and so on.

On individual level, emotion is known to play a role in
different aspects of cognition, such as perception, mem-
ory, action and learning (LeDoux, 1996). There is quite

a lot of experimental evidence suggesting the relation be-
tween arousal and cognitive performance. For example,
the studies of the inverted–U effect showed the relation
between arousal and the speed of learning (Yerkes and
Dodson, 1908; Mandler and Sarason, 1952; Matthews,
1985). Another series of experiments showed how the
expectation of positive or negative outcomes may change
the decision making strategy (Tversky and Kahneman,
1981; Johnson and Tversky, 1983). Below is the sum-
mary of some effects of valence and arousal that can be
useful in designing a cognitive model:

� Positive valence is associated with success, choice
involving gains, risk aversive behaviour. Negative
valence is associated with failure, choice involving
losses, the behaviour is usually more risk taking
(Tversky and Kahneman, 1981; Johnson and Tver-
sky, 1983).

� Low arousal is associated with low level of stimula-
tion or motivation, actions requiring less efforts are
more likely. High arousal is associated with high
level of stimulation or motivation, actions involv-
ing more efforts are more probable (Humphreys and
Revelle, 1984).

It has been suggested before (and will be discussed in
Section 4 of this paper) how to achieve the above types
of behaviour in cognitive models using parameters ma-
nipulation (Belavkin, 2001). The speed of learning in the
model under these parameters settings will be measured
by means of entropy reduction. In the next section, we
discuss some definitions of entropy and an example of
calculating it a cognitive model.

3 Information and Learning

Learning is one of the most important characteristics of
intelligence. It allows a subject or a system to improve
the performance in certain tasks or class of problems. The
most obvious measure of such an improvement is an in-
crease of success rate, or equivalently a reduction of fail-
ures (errors). Ultimately, learning reduces the uncertainty
of the outcome with the success being more probable one.
Thus, entropy reduction could be a convenient measure of
learning. However, in practice it is impossible to measure
directly in subjects the parameters necessary for entropy
computations (e.g. synaptic weights), and traditionally
learning is judged based on external observations (i.e. the
reduction of errors such as shown on Figure 1).

Unlike the brains of subjects, however, cognitive ar-
chitectures allow for a relatively easy access to all the
internal variables. This opened a possibility to measure
the learning in cognitive models directly by calculating
the entropy change or information (Belavkin and Ritter,
2003). The advantage of using the entropy is that it pro-
vides a compact display of the internal changes in a model



as a result of learning, which may not always have exter-
nal manifestations. In this section, the use of entropy to
describe learning in intelligent systems will be described
and shown on example of a cognitive model.

3.1 Entropy and surprise

In the most general case, entropy
�

is a monotonous
function describing the complexity (or uncertainty) of a
system, such as

�������
	
, where

	
is the number of

states a system can be in. This canonical definition as-
sumes no information about the probabilities of individ-
ual states. If, however, we know the probabilities�
����� of
different (random) states� , then the entropy can be calcu-
lated as:

� ����� �����
����� �
������� ��� � �
����� ��� �
������� (1)

where
�
��� � denotes the expected value operator. If all

states� are equally probable, then entropy (1) equals���
	
, and it corresponds to the maximum value of

�
for given

	
. Thus, the uncertainty can be reduced if by

means of Bayesian estimation we find out which states
have greater likelihood. Shannon (1948) defined infor-
mation as the difference between entropy before and after
an observation of some event� :

 ��!"�#�$� �%� �&!'� �(� �&!*)+�$�
Here, ! denotes some variable, the information about
which is received indirectly through observation of� .

Interestingly, information and entropy have been used
before to explain one basic emotion — surprise. Indeed,
the lower is the probability� of event � , the greater is
the amount of information

�,��� �
����� received when this
event happens (i.e. the greater is the surprise). This early
observation points to the possibility that our nervous sys-
tem and body reacts to the amount of information re-
ceived, and the feedback seems to be proportional to this
amount. Note, however, that surprise can be positive as
well as negative, and the reaction can be different in each
case. In this paper, we shall look more carefully into the
nature of such a feedback, and investigate using a cogni-
tive model whether this feedback is beneficial for an in-
telligent system (i.e. helps in learning and adaptation).

3.2 Uncertainty of success

It is quite difficult to estimate the entropy of a large sys-
tem with many states (e.g. a cognitive model). How-
ever, for an intelligent system it is possible to look at the
problem from a different perspective: The uncertainty of
whether it achieves the goal or not (Belavkin and Ritter,
2003). Theentropy of successhas been defined as

�
SF

���.- �
�0/1� ��� �
�0/1�32(�
�04$� �5� �
�64$�078� (2)

where �
�64$� is the probability of success in achieving the
goal, and �
�0/1� is the probability of failure. Note that

�
�0/1� �:9�� �
�04$� . If a system (e.g. a cognitive model) has
to choose from a set of; alternative decisions to achieve
the goal, then the probability of success is:

�
�04$� �=<
>@?8A �
�043�#BC�

�=<
>@?8A �
�04D)+BC�#�
��BC�E� (3)

where �
�043�#BF� is the joint probability of successful out-
come andB th decision,�
�64G)�BC� is the conditional prob-
ability of success given thatB th decision has been made,
and �
��BC� is the probability ofB th decision. Thus, to cal-
culate the entropy of success

��HFI
, one should estimate

probabilities�
�04D)+BC� and �
�&BF� , which depend on specific
architectural implementation (i.e. SOAR, ACT–R, neural
networks, etc).

Conditional probabilities�
�64J)$BF� represent the prior
knowledge about the likelihood to achieve a success, if
certain decisions (and associated actions) are taken. Note
that a problem solver may not be aware of or not consid-
ering some decisions initially. However, the number of
decisions; to choose from may increase with time as the
result of learning. Probability�
�&BC� depends on the way
the decision making (e.g. rule selection algorithm) is im-
plemented. Thus,�
��BC� is more related to the architecture
rather than the knowledge of a system. As an example, let
us consider the ACT–R cognitive architecture (Anderson
and Lebiere, 1998).

3.3 Computation of entropy in ACT–R

ACT–R (Anderson and Lebiere, 1998) is a general pur-
pose hybrid cognitive architecture for developing cogni-
tive models that can vary from simple reaction tasks to
simulations of pilots navigating airplanes and operators
of airtraffic control systems. ACT–R follows the approach
of unified theories of cognition(Newell, 1990), in which
several theories about different aspects of cognition are
used in a single simulation system. Today, ACT–R has
emerged as the architecture of choice for many cognitive
modelling problems.

In ACT–R, decisions are encoded in a form of produc-
tion rules, and during the model run the number of suc-
cesses and failures of each rule is recorded by the archi-
tecture. This information is used to estimate empirically
the probabilities�
�04K)+BC� of success forB th rule:

�
�64K)+BC�ML�� > � Successes>
Successes> 2 Failures>'N (4)

Here � > is statistics ofB th rule. In addition, ACT–R

records the efforts (i.e. time) spent after executing the rule
and actually achieving the goal (or failing). This informa-
tion is used to calculate the average costO > of B th rule.
Parameters� > and O > represent subsymbolic information
about the decisions, and can be learned statistically. On
symbolic level, a model can learn new rules as well as
new facts used by these rules.

When several alternative rules are available that match
the current working memory state (i.e. the current goal,



perception, retrieved facts), then one rule has to be se-
lected using the conflict resolution mechanism. In ACT–
R, this is done by maximising the expected utility of rules
in the conflict set:B �.PRQTSVUWPRXZY > , where

Y > � � >#[ � O > 2\���#]�^E� N (5)

The above equation has allowed ACT–R to model suc-
cessfully some important properties of human (and ani-
mals) decision making: Probability matching (use of� >
in utility); The effect of a payoff value ([ represents
the goal value); Stochasticity (the utility is corrupted by
zero–mean noise of variance] ^ ) (Anderson and Lebiere,
1998).

Although there are other mechanisms in ACT–R, such
as chunks (facts) retrieval, that may affect rules’ selection,
the probability �
��BC� that B th rule will be chosen can be
approximated by Boltzmann equation as:

�
�&BC�ML _
`a�b�cTd

<e ?8A _
`agfhcid � (6)

where jY > is the utility not corrupted by the noise, andk �ml n ]porq is called thenoise temperature. Now, using
approximations (6) and (4), one can calculate the success
probability (3) and entropy of success (2).

3.4 A model example

The reduction of entropy of success has been used to anal-
yse the learning in an ACT–R model of the Yerkes and
Dodson (1908) experiment (Belavkin, 2003). In this clas-
sical experiment, mice were trained over several days to
escape discrimination chamber (a box with two doors)
from one particular door, and the number of errors was
measured for every day. Figure 1 shows an example of
the learning curve representing the number of errors pro-
duced by the model in this task during 10 tests per each
simulated day. The learning curve, however, does not pro-
vide a very detailed picture of what and when is learned.

The performance of the model improves because it
learns new production rules, and then by trying these rules
the model updates their statistics (� > and O > ) and uses
the most efficient and effective ones. Figure 2 shows the
traces of probabilities� > of production rules relevant to
the problem goal in the same experiment. One can see
that as new rules and statistics are learned after Day 1,
the number of errors decreases (see Figure 1). However,
the model produces more errors during Days 5, 6 and 7,
which means that the model did not have sufficient knowl-
edge, and the errors forced the model to learn more rules.
The model learned new rule during Day 5, but the trace
of its statistics indicates that the rule was not very help-
ful (probability of success quickly decreased to� > L N s ).
The new rules learned on Day 7 turned out to be more
successful, and the model did not produce any errors after
simulated Day 8. One can see that probability trace re-
veals much more about the learning in the model than the
number of errors.

Errors per day

A B 1 2 3 4 5 6 7 8 9 10

0
1
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4
5
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7
8
9
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Days

Errors

Figure 1: Error curve produced by the model in one ex-
periment.

Expected Probabilities
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Figure 2: Dynamics of probabilities of rules matching the
problem goal. The number of curves increases as new
rules are being learned.

Relative Entropy of Success
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Figure 3: Relative entropy of success of the choice rules.
Entropy increases on errors (see Figure 1) and when new
rules are learned.

Figure 3 shows the dynamics of relative entropy of
success (relative to the maximum entropy

�5�ut
), calcu-

lated using equations (4) and (6) over the probabilities
of rules shown on Figure 2. The entropy clearly decays
over time indicating the amount of information gained by
the model. Also, the entropy increases when the model
produces errors, which confirms the idea that entropy of
success predicts how certain is the outcome. However,
one may notice that the entropy increases most dramati-
cally when new rules are learned (i.e. Days 5 and 7). This
can be explained as follows. When new rules are cre-
ated, the number; of decisions increases, thus making
the system more complex (recall that entropy is a func-
tion of the number of states). Moreover, the probabilities
�
�04v)wBC� of the new rules initially have default prior esti-



mates (e.g. .5), and they can only be updated statistically
after their application. If the new rules improve the per-
formance, then the entropy of success reduces again (see
Day 8, Figure 3).

This example illustrates how entropy change or infor-
mation can be used as a quantitative measure of learning
in a cognitive model. In the next section, the entropy will
help analyse how the speed of learning in the model varies
as a function of parameters settings in the ACT–R archi-
tecture.

4 Variable speed of learning

In ACT–R, the choice of decisions does not depend only
on the statistical information about the rules (i.e. esti-
mates of probabilities). Indeed, choice probability (6) de-
pends also on two global parameters in the architecture:
The amount of noise (noise variance] ^ parameter) and
the goal value[ used in the utility equation (5). Asymp-
totic analysis of choice probability as a function of] ^
and [ has suggested how different levels of arousal and
valences can be simulated in an ACT–R model (Belavkin,
2001):

� At a low noise variance] ^ , the choice is more ratio-
nal and driven by utility maximisation. Thus, it can
be well suited for simulation of the risk aversive be-
haviour typical for choice with positive expectations
(Tversky and Kahneman, 1981; Johnson and Tver-
sky, 1983).

� On the contrary, high noise variance leads to a risk
taking, irrational choice, which is less defined by
utility maximisation. According to Tversky and
Kahneman (1981), this is characteristic of choice
with high expectation of a negative outcome.

� At a low goal value[ , the costsO > make more sig-
nificant contribution to the utility (5). Thus, deci-
sions with higher costs are less likely to be chosen.
This is suitable for simulating a low arousal state.

� On the contrary, high goal value[ is better for simu-
lating a high arousal level, because under these con-
ditions the model is more likely to take costly deci-
sions.

Let us measure how the speed of learning in the model
changes under different conditions. We shall use the en-
tropy reduction as a measuring tool. However, because
one of the parameters to be changed is noise variance, it
is necessary to make the calculation of entropy indepen-
dent of these changes. This means substituting the choice
probability (6), which depends onk (noise temperature),
by a different probability. For example, we can assume
that the choice of a rule is completely random:�
��BC� � A

< ,
where; is the number of rules (decisions). In this case,

probability of a success�
�04$� can be calculated as

�
�64$� �
9
;

<
>x?8A � > N (7)

The entropy associated with this probability (calculated
similarly by eq. 2) can be used to estimate the knowledge
accumulated in the system in the form of empirical prob-
abilities � > , because it is independent of the way the deci-
sions are made. We refer to this entropy as theentropy of
knowledge

��y
.

The experiments showed that
��y

decays differently un-
der different noise variance settings. It turns out that al-
though noise hinders the performance of the model, at
the same time it may help learn faster. Figure 4 illus-
trates the probability learning in the model for two noise
settings: Left plot shows traces of probabilities with low
noise (k �z9R{

of goal value[ ), and right plot for high
noise settings (k �Jt�|�{

).1 One can see that at a higher
noise settings (top right), probabilities of rules were up-
dated much more often than at a lower noise (top left).
Therefore, the model on the right has better estimates of
probabilities. Also, the new and probably more successful
rules have been learned earlier in the case of high noise.

Probability Learning   ( T = 1% )
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P Probability Learning   ( T = 20% )
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Figure 4: Probability learning under a low noise (left) and
a high noise conditions (right).

Entropy of Knowledge  ( T = 1% )
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Figure 5: Dynamics of entropy under a low noise (left)
and a high noise condition (right).

The corresponding traces of entropies
� y

are shown on
Figure 5. One can see that by day 10 the entropy on the
right plot decayed significantly more than on the left plot.
Thus, by day 10 the model with a greater noise gained
more information than the model with less noise. These

1Here noise temperature is calculated as a proportion of the goal
value: }~$�1�r���r�R� .



results confirm the idea that exploratory behaviour, trig-
gered by an noise increase in ACT–R, facilitates learning
in the model.

In the next section, the question of adaptation of be-
haviour and dynamic control over the parameters in the
architecture will be discussed.

5 Entropy feedback and adaptation

The analysis of
��y

reduction for different noise settings
suggested that an intelligent system could benefit from
dynamic control over the noise variance. Indeed,

1. At the beginning of solving a problem, exploratory
behaviour (high noise) would help gaining the in-
formation about the task or the environment more
quickly.

2. After the important knowledge has been acquired,
the choice should concentrate on more successful de-
cisions, which is achieved by the reduction of noise.
This should improve the performance.

3. If the environment changes and the number of errors
suddenly increases, then a noise increase can speed–
up the learning and adaptation of behaviour.

Note that the dynamics of the noise variance, described
above, corresponds to the dynamics of entropy in the
model (e.g. Figure 3). A simple way to control the noise
variance by the entropy parameter has been proposed re-
cently (Belavkin, 2003). More specifically, noise temper-
aturek was modified in time as:

k ���+� � kC� ��HCI �&�+�E� (8)

where� is time, andk � � k � | � is the initial value of the
noise. One can view the noise here as a compensation
for the ‘missing information’, and the otherwise rational,
utility–based choice behaviour is corrupted proportion-
ally to the uncertainty.

As predicted, the model with dynamic noise converges
faster to a successful behaviour (no errors), and adapts
better to changes. What is even more interesting, is that
the model fit to the data has improved as well: In one
experiment, � ^ increased fromN0�R� to N � n and the root
mean square (RMS) error reduced from

9r� N t�{ to �gN � { .
Figure 6 shows the learning curves from the static noise
model (top) and dynamic noise model (bottom) compared
against the data from Yerkes and Dodson (1908). A sim-
ilar improvement has been consistent across several data
sets.

The dynamics of noise variance, controlled by the en-
tropy feedback, implements one well–studied heuristics.
Indeed, by looking at the Boltzmann equation (6), one can
notice that the decrease of noise temperaturek is similar
to the optimisation by simulated annealing (Kirkpatrick
et al., 1983).
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Figure 6: Static noise model (top) and dynamic noise
model (bottom) compared with the data (Yerkes and Dod-
son, 1908). The dynamic model achieves the better
match.

Furthermore, noise variance is not the only parameter
in the ACT–R conflict resolution that can optimise the
learning process. It was shown that goal value[ con-
trols the type of the search (Belavkin, 2001): Low[
implements the breadth–first search, while high[ corre-
sponds to the depth–first search strategy. A search method
combining these two strategies is known as the best–first
search (from breadth to depth). Thus, gradual increase
of [ during problem solving can implement the best–first
search method.

One can see that the suggested dynamical control of
the decision making parameters in the architecture im-
plements some well–known optimisation heuristics, and,
therefore, should improve the overall problem solving
performance.

6 Discussion

It has been shown in the previous section how dynamic
control over two parameters in the ACT–R cognitive archi-
tecture improves the learning and adaptive capabilities of
the model. In particular, entropy of success has been used
as a feedback parameter to control the choice strategy. In
addition, this control has improved the match between the
model and data. On the other hand, the same parame-
ters have been used to simulate the effects of the principle
components of emotions (valence and arousal). There-
fore, the dynamic changes of the parameters during prob-
lem solving may represent the changes in the behaviour
due to experiencing emotions of positive or negative va-
lence and the resulting changes of the arousal level. This
idea is supported by a number of works in neuroscience
and artificial neural networks.

Indeed, in neural networks, the effect of noise can be
simulated by changing the bias (or activation threshold)
of neurons (Hinton and Sejnowski, 1986). Some neuro-
transmitters in the brain have a similar effect, and there



are areas of the brain (e.g. amygdala) that have connec-
tions with the areas of neocortex believed to be respon-
sible for decision–making (LeDoux, 1996). The role of
such interactions have been discussed in the reinforce-
ment learning literature (Sutton and Barto, 1981; Barto,
1985). However, one of the unknown variables there is
the amount of reinforcement (e.g. the noise temperature).
It has been shown how the entropy of success may help
optimise this parameter. Interestingly, entropy and noise
temperature have been used for control in the work on
analogy by Hofstadter and Marshall (1993).

Today, the idea that emotion plays an important role
in controlling and regulating the decision making and ac-
tions aspects of cognition is shared by many researchers
(Bartl and Dörner, 1998; Sloman, 2001). The results, dis-
cussed in this paper, illustrated how the learning in an
intelligent system can be improved by using the entropy
of success of the system to moderate and control its own
behaviour. These observations suggest that appreciation
of the system’s own performance (entropy of success)
and regulating the decision making strategy may indeed
be one of the main functions of emotional system in the
brain. Including such an information theoretic feedback
mechanism into the design of cognitive models, agent ar-
chitectures or robots will not only improve their perfor-
mance, but also will extend our knowledge about the mind
and emotion within its context.
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Abstract

Artificial creatures form an increasingly important component of interactive computer games. Examples of
such creatures exist which can interact with each other and the game player and learn from their experiences.
However, we argue, the design of the underlying architecture and algorithms has to a large extent overlooked
knowledge from psychology and cognitive sciences. We explore the integration of observations from studies of
motivational systems and emotional behaviour into the design of artificial creatures. An initial implementation
of our ideas using the “simagent” toolkit illustrates that physiological models can be used as the basis for
creatures with animal like behaviour attributes. The current aim of this research is to increase the “realism” of
artificial creatures in interactive game-play, but it may have wider implications for the development of AI.

1 Introduction

Over the last few decades Artificial Intelligence (AI) has
become more than a philosophical consideration or sci-
ence fiction plot device. With hardware advances it has
become possible to incorporate more powerful AI into
games as well as increasingly complex graphics and en-
vironments. A recent poll of developers showed a sev-
enfold increase in CPU time used for AI in the average
game since 1997 (Johnson, 2002). A large proportion
of this interest in AI is in improving the behaviour of
NPCs (non-player characters), making them more believ-
able and engaging. It is important to stress the difference
between this ‘character-based’ AI and that in strategic or
turn-based games. Isla and Blumberg (2002) elucidate
this in a recent paper:

“These latter categories might be considered attempts
to codify and emulate high-level logical human thinking.
Character-based AI, on the other hand, is an exercise in
creating complete brains. Strategic and logical thinking
in this type of work usually takes a back seat to issues of
low-level perception, reactive behaviour and motor con-
trol....work is often rendered with an eye towards recre-
ating life-like behaviour, and emotion modelling and ro-
bustness are often also central issues.” (2002, p.1)

Essentially ‘character-based’ AI is a move away from
programming an artificial opponent capable of playing
against the human mind in intellectual or strategic games
such as chess. Rather than refining specific high-level log-
ical thinking, the aim is to capture life-like behaviour and
move towards modelling a complete mind. Thus it aims
to populate the game environment with agents who act in
a realistic and capable manner. Enemy ‘bots’ in games

such as “Quake” or “Half-life” do not need to understand
chess or engage in complex reasoning, but they do need
to navigate their environment and know when to attack
the player. These virtual ‘creatures’ should be able to per-
ceive and learn about the environment on their own, make
decisions, and in some instances interact with other ‘crea-
tures’ in a limited way.

The applications for this type of AI are becoming in-
creasingly popular in commercial games, and fairly so-
phisticated designs are emerging. For example Peter
Molyneux’s game ‘Black and White’ included creatures
with impressive learning and the potential to develop in-
teresting ‘personalities’ depending on how the player in-
teracted with them. ‘Bots’ in games such as the “Quake”
series need to navigate a 3D environment realistically as
well as try to kill the player without being shot in the pro-
cess. In later incarnations of similar games, for exam-
ple “Return to Castle Wolfenstein”, the bots also interact
with each other and can develop limited team-based plans.
However at present knowledge from psychology and cog-
nitive sciences about the processes of the mind appears to
a large extent to be under used or overlooked in the design
of game AI.

This is clearly an interesting area not just in terms
of making better games, but in the development of new
AI techniques and algorithms. Laird (2002) argues that
computer games provide challenging environments and
offer many isolated research problems. As the worlds
become more realistic, so too must the behaviour from
their characters become more complex. Psychologists, in
particular those who have worked on animal cognition,
have been studying and detailing the behaviours of au-
tonomous creatures in complex environments far longer



than AI researchers have been attempting to model them.
Yet many designers of ‘virtual creatures’ seem unaware of
recent developments in psychology and how these might
be applied. Emotion provides a good example of one such
area of research.

Laird mentions that “emotion may be critical to cre-
ating the illusion of human behaviour”, but seems at a
loss how to go about incorporating this - “Unfortunately,
there are no comprehensive computational models of how
emotions impact with behaviour. What are the triggers for
anger? How does anger impact other behaviours?” (Laird
(2002), p.4).

Isla and Blumberg (2002) also discuss the modelling
of emotions in character-based AI. They point out that
much of the work done so far uses emotion as a “di-
agnostic channel”; a convenient indicator which can be
routed from an internal “emotion” value straight to a
facial-expression or visual animation. This value is usu-
ally derived from a series of expressions to calculate how
‘happy’, ‘sad’ or ‘angry’ the character is feeling. Isla &
Blumberg assert that “emotions clearly play a far larger
role in our behaviour ... (they) influence the way that we
make decisions, the way we think about and plan for the
future and even the way we perceive the world” (2002, p.
4). The general approach of Blumberg and other mem-
bers of the MIT ‘synthetic character research group’ is
that Game AI should be inspired by work from animal
learning and psychology. For example they discuss how
the Pavlovian conditioning paradigm can be used, and the
importance of the character being able to form predic-
tions about the world. With regard to emotions, they dis-
cuss their possible application in “action-selection func-
tions”, and making exploratory decisions through a “cu-
riosity emotion”. However, they make no reference in this
case to work done in psychology.

Emotion is certainly very subjective and personal, and
at first seems quite inaccessible to the manipulations and
measurements of science. However psychologists have
been theorising about emotion for over a century. Since
William James first tried to define emotion in his 1884
thesis, research has been done to investigate what emo-
tion is, and more importantly if and how it interacts with
the rest of our cognitive system. James himself contended
that emotions were nothing more than the feelings which
accompany bodily responses to a stimuli. Recent work in
cognitive neuroscience provides evidence to the contrary:
emotions are linked to brain function, to the point that
neural systems of emotion and other mental behaviour are
interdependent (Gazzaniga, Ivry and Mangun, 2002). The
implications of these results are now finding interest in
current work in AI. In this work it is important to focus
away from the subjective, conscious ‘feelings’ of emo-
tion and study the underlying systems which give rise to
them and their impact on behaviour. Generally, it seems
that these systems are heavily involved in reactive mech-
anisms and learning, and possibly also decision making
and attention.

This paper describes our work towards the develop-
ment of a basic agent architecture which incorporates mo-
tivational and emotional elements derived using ideas and
findings from psychology to inform the design. In partic-
ular this aims to incorporate some emotional mechanisms
that have a deep effect on the decision making process.

The remainder of this paper is organised as follows:
Section 2 reviews literature on the psychology of ani-
mal motivation, Section 3 outlines work from current de-
velopments in artificial intelligence, Section 4 describes
our working environment, Section 5 introduces the archi-
tecture of our artificial creature agents, Section 6 gives
some initial results and finally Section 7 draws conclu-
sions from our current study and considers how the work
might be extended.

2 Animal Motivation Theories

In this section we explore some key observations from
animal motivation theories and their implications for the
design of our model for an artificial creature.

2.1 Miller’s equilibrium model and the
approach-avoid conflict

Generally speaking, animals react to signals they receive
from environmental stimuli. Depending on the nature
of the stimulus itself and knowledge of past experience
with this type of object, the animal will either approach
or avoid it. An approach-avoidance conflict occurs when
these signals impel an animal towards these two incom-
patible forms of action.

Gray (1987) notes that conflict of this kind is extremely
common. For animals, it is particularly apparent in their
behaviour towards a novel object. Novelty is an important
stimulus for both eliciting fear (avoidance) and encourag-
ing exploration (approach). In general, animals appear
to avoid extremely novel stimuli, but be attracted to ones
which are mildly novel.

Experimental psychologist Neal Miller performed a se-
ries of studies on the approach-avoid behaviour of rats.
The resulting findings allowed him to develop a model
which incorporates the various factors involved.

In Miller’s basic experimental situation, a rat is trained
to run down an alley to get a food reward. However, every
time it reaches the goal, it receives a shock. This sets up
a conflict situation. Miller observed that the rat ended up
oscillating round an equilibrium ‘stopping point’ a certain
distance from the goalbox. The distance of this point from
the goal is defined by the strength of the tendencies to
approach and avoid the food. The diagram below shows
the factors that affect these tendencies and the resulting
decision. Miller’s model is represented in Figure 1.

Note that the factors include both internal states of the
rat as well as external information from the environment
and previous experience. Increasing the hunger or de-



Figure 1: Miller’s equilibrium model. (Adapted from
Gray (1987), p.142.)

creasing the shock intensity will in turn affect the ap-
proach/stop tendencies, and move the equilibrium point
closer to the goal. If the approach tendency is much larger
than the stop one, you would expect the rat to actually
reach the food.

Another point is that ‘distance to the goal’ is a criti-
cal factor in both ‘approach’ and ‘stop’ tendencies. How-
ever distance cannot affect them in an identical manner:
if this was the case then whichever was stronger at the
start point would be stronger at the end, resulting in a be-
haviour where the animal either stops as far as possible
from the goal, or completely approaches it.

Work in Miller’s (1951, 1959 as cited in Gray 1987)
laboratory demonstrated that the strength of the avoidance
tendency increases more rapidly with nearness to the goal
than that of approach.

Miller noted that there are two main forces behind the
tendencies: those that are internal to the animal (such as
hunger or other ‘drives’), and those relating to the envi-
ronment and the stimulus itself. They pointed out that
there are no internal sources of motivation for the avoid-
ance tendency, and hence it is more purely dependent on
environmental factors than the approach tendency. This
helps explain why distance has a greater effect on the
avoid tendency, especially when near to the goal.

It is clear then that the action towards a certain object is
not clear-cut. It is not a simple case of approaching food
and avoiding negative objects. Where an animal has learnt
to associate pain with an otherwise positive stimulus it
may avoid it; conversely if it is hungry enough it will still
approach food even if this means receiving a shock.

In terms of programming design, this means that it is
wrong to divide the world up into ‘good’ and ‘bad’ ob-
jects. Instead, every object has the potential to be an over-

all positive-approach stimulus or a negative-avoid one. It
depends not just on the properties of the object, but also
what it is associated with and the current internal condi-
tion of the animal. This notion of approach-avoid con-
flicts forms the core of our system design.

2.2 Motivation systems

It is difficult to find one all-inclusive definition of motiva-
tion, instead there are various different features which are
important to consider.

Firstly, a motivated action differs from a reflex because
it is not simply a reaction to an external stimulus. It is
also in someway ‘driven’ by internal states. Teitelbaum
(1977, as cited in Toates 1986) argues that “To infer moti-
vation we must break the fixed reflex connection between
stimulus and response.” Teitelbaum feels that motivation
is always directed towards obtaining a certain goal.

Epstein (1982, as cited in Toates 1986) also argues that
motivations are complex properties that arise from both
external and internal factors. He also considers a third
factor: what the animal remembers from past encounters
with an incentive object, and the consequence of this en-
counter.

There are a variety of different models of motivation, of
which the simplest is a homeostatic model. Essentially, a
homeostatic model is about maintaining essential param-
eters (e.g. energy level, fluid level) at a near constant ‘nor-
mal’ level. If there is a disturbance then corrective action
is taken. Homeostatic mechanisms are driven by ‘neg-
ative feedback’, which can ‘switch off’ motivation once
the deficit has been recovered. The homeostatic model is
represented in Figure 2.

According to Grossman (1967, as cited in Toates 1986),
there are two types of motivation systems: one which is
homeostatic and includes hunger, thirst and other internal
factors, while the other is only driven by external factors
and includes sex, exploration and aggression.

This dichotomy, however, is too simple, and models
developed later do not separate out motivations into these
two different types. Homeostatic mechanisms may play a
part in explaining the negative-feedback aspects of hunger
and thirst, but by themselves are not sufficient as a model.
There are other factors to take account of, such as the
availability or ‘cost’ of food - when access to food is made
difficult and more energetically costly, animals eat less
Toates (1986).

Homeostatic models which look at correcting an en-
ergy depletion also do not explain why animals (or indeed
people) will overeat if provided with sweet or tasty foods.
A final problem is that they do not adequately explain how
having a water deficit can then steer an animal towards a
water-related goal: in other words they miss the link be-
tween the internal state of the animal, and acting towards
the external incentives available.

In Bindra’s theory (1976, 1978, as cited in Toates
1986), the emphasis is on the role of ‘incentive stimuli’



Figure 2: Homeostatic model of motivation. (Adapted from Toates (1986), p.37.)

as well as internal states in the motivation of behaviour.
An incentive stimulus is an object or event judged as ‘he-
donically potent’ - one which is affectively positive or
negative. This is similar to Miller’s approach/avoid ten-
dencies; an animal will react in an appetitive way to he-
donically positive incentives, and in an aversive way to
negative ones.

Whether a stimulus is seen as hedonically potent de-
pends on various factors, including previous experience
with that stimulus as well as physiological states. An ani-
mal may assimilate information about a stimulus which it
sees as ‘neutral’; later on, if the physiological state of the
animal changes, that same object could become a positive
incentive. For example, an item of food may appear as
neutral while the animal is satiated, but once it becomes
hungrier that same piece of food becomes a positive in-
centive which elicits an appetitive reaction.

Bindra develops these ideas into a concept of a ‘cen-
tral motivational state’ (c.m.s), which he defines as “a
hypothetical set of neural processes that promotes goal-
directed actions in relation of particular classes of incen-
tive stimuli” (Bindra, 1974 as cited in Toates 1986).

Figure 3: Bindra’s model of motivation. The food acts
as an incentive stimuli in the feeding motivation system.
(Adapted from Toates (1986), p. 43.)

A c.m.s arises from an interaction of ‘organismic
states’ (e.g energy level, testosterone) and the presence
of incentive stimuli, see Figure 3. If there are no relevant
stimuli present, for example no food when the animal is
hungry, then a depletion of energy will not cause system-
atic goal-directed behaviour. Instead, an increase in gen-
eral activity may be observed. Also, Toates (1986) notes
that novel hedonically neutral stimuli may still arouse
some exploration.

In contrast to the homeostatic model, where the internal
state drives behaviour, the existence of an incentive stim-
ulus is key. In feeding c.m.s, energy depletion only serves

to accentuate the food representation. This explains why
tasty and palatable food is sufficient to motivate consuma-
tory behaviour without any kind of energy deprivation.

Thus we can conclude that a homeostatic model is too
simplistic for understanding how animals are motivated.
All the theories outlined here emphasise a complex inter-
play between the internal states of the animals with the
properties of objects in their external environment. In
Bindra’s model, an animal cannot just feel motivated to
eat because its energy level is depleted - it is only moti-
vated to act in the presence of hedonically potent stimuli.
These ideas counter the notion than an animal, once at a
certain ‘level’ of hunger, then sticks rigidly to an explicit
goal of ‘find food’ until its hunger is reduced.

Thus our system needs to include a motivation system
which is more flexible than is perhaps usual in existing
artificial creatures. The motivation system is a key aspect
in that it affects the decision of how the creature should
act at each turn in a game.

2.2.1 Toates System theory model of motivation

Figure 4: Toates’ system theory model.K1 represents the
energy ‘gain’ of the system, which determines the level
and type of motivation. (Adapted from Toates (1986),
p.49.)

Toates (1986) describes his own ‘systems theory’
model which draws together ideas on motivation similar
to Bindra’s work. Toates’ model is shown in Figure 4.
This type of model makes a good bridge from psycho-
logical models to computation ones. Toates’ model takes
account of the three important factors:

• the need for a sensory stimulus to arouse a motivated
response.

• the role of the energy level or internal states of the
animal in adjusting the ‘sensitivity’ of the system.



• information from past experiences.

K1 represents the ‘gain’ or sensitivity of the nervous
system, and subsequent motivation. If the sensory stimu-
lus ‘revives’ negative memories of a past experience with
this object, it will reduce the value ofK1. If K1 drops
to negative numbers this will result in an active avoidance
response at the motivation level.

TheK1 parameter in Toates’ model provides a conve-
nient mechanism to encapsulate all the factors involved in
motivation in a single number, making the programming
of subsequent processes neater. However, it seems likely
that there is more to animal motivation systems than de-
scribed by Toates. Specifically, there is probably a role
for emotions, such as fear or pleasure, in motivation and
related decision making.

2.3 Emotions

In game AI where emotions have appeared at all, it is gen-
erally at a cosmetic level - giving the character the ap-
pearance of showing a certain emotion. Here we are con-
cerned not with the subjective feeling or visual appear-
ance of emotions, but rather the underlying mechanisms
which give rise to these states.

In this section we review three examples from neuro-
science and animal behaviour providing emotional mech-
anisms that could play a part in the motivation system of
our artificial creatures.

2.3.1 Neuroscience and Fear Conditioning

Joseph LeDoux (LeDoux, 1999) identifies two neural
routes - one cortical and one subcortical - involved in
emotional learning (such as that involved in fear condi-
tioning). The amygdala is a major part of the subcortical
route, and removing it prevents fear conditioning from oc-
curring at all. LeDoux suggests that the role of this sub-
cortical route is as a quick-and-dirty reaction mechanism;
emotional responses such as fear begin in the amygdala
before we even recognise completely what it is we are re-
acting to.

LeDoux maintains that “Emotion is not just uncon-
scious memory: it exerts a powerful influence on declara-
tive memory and other thought processes.” According to
Antonio Damasio, one such thought process is that of de-
cision making. He argues that the idea of a totally rational
decision maker is not appropriate when quick decisions
must be made, and affective memories are invaluable in
these cases (Damasio, 1994).

Damasio proposes a “somatic marker hypothesis”
which suggests that certain structures in the prefrontal
cortex create associations between somatic responses trig-
gered by the amygdala and complex stimuli processed in
the cortex. The idea is that both positive and negative as-
sociations can be created. Somatic markers help limit the
number of possibilities to sort through when making a de-

cision by directing the person away from those associated
with negative feelings.

These ideas suggest that not only do affective associ-
ations play a part in decision-making, but that there is a
physically different route in the brain which processes ba-
sic emotional information. In terms of the design of an ar-
tificial creature, it would seem sensible to have a similar
route, whereby fearful reactions can override more com-
plex processing and steer the animal away from danger.

How do these findings relate to the design of synthetic
characters? Firstly, as asserted by LeDoux, whilst con-
sciousness is needed for the subjective feeling of emotion,
the basic function of emotional processing and response
can be found even in a fruit fly. Thus it seems a possi-
ble and useful task to incorporate emotional learning into
an AI agent in some way. Since fear conditioning has
been extensively studied, it would seem to make a good
choice as a place to start. Damasio’s hypothesis of ‘so-
matic markers’ suggests ways that emotion is important in
decision making as well as aspects of learning. It would
be interesting to see if basing algorithms around his hy-
pothesis could make for a more ‘emotional agent’; one
that makes more than completely rational, logical deci-
sions as is generally the case in current game AI. Could
this make for a more believable character?

2.3.2 Learning

Toates (1986) notes that when it comes to motivation sys-
tems, animals respond to ‘primary incentives’ (such as
food) and ‘cues predictive of primary incentives’. In fear-
conditioning, animals learn to associate a particular stim-
ulus (e.g. the sound of a bell) with an aversive stimulus
such as shock. Once this has occurred, the initial stimulus
alone is enough to rouse the animal into a state of fear.

In this way, fear plays a role in animal learning. If a
stimulus puts the animal in a state of fear, then its aver-
sive reaction to a subsequent powerful or noisy stimulus
is enhanced Toates (1986).

Combined with Damasio’s theory, this means that any
stimuli occurring while the animal is in a state of fear
will be associated more strongly with a negative somatic
marker. To replicate this idea, the design of an AI archi-
tecture could include a process whereby being in a state of
fear affects the strength and type of associations formed
by the program.

An advantage of reacting fearfully to cues which pre-
dict pain is that the animal will take an appropriate avoid-
ance response before the pain actually occurs.

Gray (1987) explains that rats respond differently in
two conditions - receiving a shock, and being exposed to a
stimulus that they have learnt predicts a shock occurring.
In the first condition, there is a great increase in activ-
ity, frantic scampering, or attacking some feature of the
environment. In contrast, encountering a stimuli which
predicts shock results in the rat freezing. Gray suggests
this is an adaptive response that occurs when a rat spots



a predator - it freezes in an attempt to avoid detection.
He also adds that the response is affected by distance - if
the stimulus (or predator) gets too close, the rat shows a
strong aversive reaction.

By incorporating fear appropriately into learning and
decision mechanisms, an approach to AI could be devel-
oped that responds pre-emptively rather than just reac-
tively to pain. Also, the priming effect of fear on forming
associations may result in a program which learns to avoid
painful situations more efficiently than one with no fear.

2.3.3 The Role of Pleasure

Emotions can also impact animal behaviour to support
positive behaviour. For example, there is the concept of a
‘positive feedback’ priming mechanism that helps to sus-
tain certain activities. Evidence for this was found by Mc-
Farland and McFarland (1968, in (Toates, 1986)). They
noticed that interrupting doves while they were drink-
ing caused them to ‘lose momentum’. This implies that
there was something about drinking itself that increased
the motivational state of the dove. Toates (1986, p. 116)
explains that an animal needs such a positive feedback ef-
fect, particularly in situations where simultaneous feeding
and drinking tendencies exist of almost identical strength.
If it decides to eat and only negative feedback exists, then
after the first couple of mouthfuls the feeding motivation
will drop, in turn making the drinking tendency stronger.
The animal would end up oscillating between food and
water, which is costly in terms of time and energy. It
would be more advantageous to stick with one activity
for a longer period of time before switching.

It would seem vital to have some kind of positive feed-
back mechanism to reduce the chance of the AI oscil-
lating, and hence to look more believable as well as be-
ing more efficient. While the animal motivation literature
does not discuss pleasure as such, this concept makes at
least a good metaphor for the ‘positive feedback’ concept.
It would make sense that the animal would feel something
good when it starts eating or drinking. Essentially, plea-
sure can be thought of as a reward from an internal, rather
than external, origin. Finally, in the same way that the fear
emotion might enhance learning about dangerous objects,
it would seem a good idea to have a similar ‘emotion’
which affects the learning about really positive objects or
encounters.

3 Artificial Intelligence

In order to make use of the ideas from the previous sec-
tion, we need to consider what sort of design and frame-
work would be conducive to the incorporation of emo-
tional processes. Despite the lack of sophisticated emo-
tional agents in modern computer games, emotions in
general are not a new topic for AI. For example, Si-
mon (1967) had already explored the need to account for
‘alarm mechanisms’ in artificial systems.

Since the 1980s, many different programs have been
specified and sometimes implemented. One of the most
notable examples in this area is the work of Sloman (Slo-
man, 1999)(Sloman, 2000) (Sloman, 2001). He argues for
more sophisticated theories of affect and emotion, and has
suggested an architecture-based approach to the design of
affective agents. This means starting with specifications
of architectures for complete agents, and then finding out
what sorts of states and processes are supported by those
architectures. Sloman himself specifies a multi-level ‘Co-
gAff Architecture Schema’ (Sloman, 2001) in which ‘af-
fective’ states and processes “can be defined in terms of
the various types of information processing and control
states supported by different variants of the architecture,
in which different subsets of the architecture are present.”

It interesting to note that Sloman has severe objections
to Damasio’s hypothesis and does not believe that “emo-
tions somehow contribute to intelligence: rather they are a
side-effect of mechanisms that are required for other rea-
sons.” Despite the debate over emotions and intelligence,
Sloman’s work is still consistent with that of LeDoux and
neuroscience in general. For example, the ‘reactive layer’
in his architecture which monitors automatic responses is
similar to the direct activation of the amygdala from the
sensory thalamus e.g in fear conditioning. His ‘delibera-
tive’, reasoning layer is equivalent to the slower reasoning
performed in the cortex. The ‘meta management’ layer,
for monitoring internal states and processes is a little more
tricky to pinpoint, however LeDoux (1999) identifies neu-
ral systems which may support the awareness of the activ-
ity of bodily responses.

Work done by Moffat (2001) ‘on the positive value of
affect’ also draws on psychology to improve AI perfor-
mance, and provides more inspiration for the relevance of
emotion. Moffat feels that cognitive psychologists tend to
focus on the function of negative emotions (such as fear),
but positive emotions are also important, particularly in
learning. On the other hand, machine ‘learning classi-
fier systems’ (LCSs) model reward and not punishment.
‘EMMA’, the model resulting from attempts to combine
positive and negative affect, was found to learn certain be-
haviours better than the LCSs. More importantly, Moffat
found that the ‘emotions’ provided a way of signifying
importance to EMMA:

“LCSs do not distinguish between stimuli of varying
priorities.... EMMA devotes her attention and all her re-
sources to the most important aspect of her current sit-
uation. In this respect, emotion is a kind of biological
optimiser that could be put to good use in artificial agents
too; especially learning ones” (Moffat, 2001), p.61.

Moffat’s work suggests the importance of incorporat-
ing negative and positive affect. Our work adopts an
archictecture-based model as advocated by Sloman. This
means rather than trying to code specific behaviours and
abilities as they are needed, the starting point is to spec-
ify an architecture for a complete agent, and investigate
which processes are supported by that architecture.



4 Agent and Game Design

In this section we outline the “simagent” toolkit used to
implement our prototype agent system, and the design of
a simple game framework to explore agent behaviour.

4.1 Programming Environment

The “sim agent” toolkit developed by the ‘Cognition and
Affect project’ at University of Birmingham, is designed
with the specific intention of enabling the building of
agent architectures1. It runs using the Pop-11 language
within the POPLOG environment, on both Linux and
Windows systems. Simagent was chosen for our work
since it allows a wide range of programming techniques,
and for the possibility of hybrid systems, for example in-
corporating neural networks.

Figure 5: For each ‘time-slice’, the simagent Scheduler
runs through processes for each agent. After this is com-
plete, the Scheduler executes any actions, such as moving
the agents to a new location, and updates the graphics ac-
cordingly.

Figure 5 shows the operation of the simagent toolkit.
Time is simulated in discrete ‘time-slices’, which effec-
tively act as a counter. This means that time is not truly
continuous, and that the agents all act in a synchronous
way. During each time slice, the agent does the follow-
ing:

• New sensory data is added to the agent’s personal
database.

• Next, its rulesystem runs, acting on the information
available in the agent’s database. Unless the agent
is going to do nothing during this time-slice, the
rulesystem will output one or more ‘do X’ items into
the agent’s database.

1Details available from: http://www.cs.bham.ac.uk/
˜axs/cog\_affect/sim\_agent.html

• The scheduler moves on to any other agents or ob-
jects that exist in the environment, and repeats the
procedure. When this is finished, it goes back and
‘picks up’ all the ‘do’ actions, and executes them.

4.2 Game Design

A simple game was designed to explore our approach
to programming artificial creatures for computer games.
This incorporates a set of ‘Rat’ agents, two sets of ‘Rat’
agents were designed, one with ‘emotional mechanisms’
involving fear and pleasure, and the other without. The
aim then is to ask participants to play two different ver-
sions of the game, taking objective measures of the Rat’s
performance and a subjective measure of which version
the participant thought was more believable.

Figure 6: Concept diagram showing typical graphics for
the game.

Rats will be implemented in simagent, and consist of
a ‘hunger level’, ‘thirst level’, ‘speed’, and a ‘heading’
(direction). The Rat also has a value expressing its current
emotional state (fear, pleasure or neutral), and a flag for
being in pain or not. ‘Food’, ‘water’ and ‘person’ are all
created as objects, of which the game player can move
only the food and person.

The idea of the game from the player’s point of view
is to score points by shocking Rat agents. It uses a turn-
based system, whereby the Rats all make an action choice
and move, then the player takes a turn.

The aim of the Rats is to basically stay alive, by keep-
ing their hunger and thirst levels relatively low. They have
a simple learning system whereby they can form associa-
tions between objects which occur together in space, and
events that occur together in time. They start off know-
ing nothing about the player. In other words they have
no ‘instinctive fear’. Also, the Rats do not immediately
understand that a received shock is related to the person -
this is something they should learn to associate over time.

Shocking a Rat puts it into a state of pain. In Rat agents
with emotions, it also puts them into a state of fear. Both



these affect the processing of the Rat during its subse-
quent turn.

Each turn, the player can move the person within a cer-
tain distance, then has the option to shock up to one Rat,
if that Rat is ‘in range’ of the shocking device which the
person carries. The Rat cannot discern the direction that
the shock came from; instead it decides which object is
the most likely ‘cause’ of the pain, based upon the asso-
ciations stored in its memory. Note that the range of the
shocking device is greater than the visual range of the Rat.
This means it is possible to shock the Rat without it seeing
the person at all. If the Rat cannot decide where the shock
came from it will react differently; perhaps running in a
random direction as opposed to freezing or actively avoid-
ing the object it links with causing pain. We hope that this
feature will make the Rat appear more believable.

The player also has the option of moving one piece of
food around, within a certain distance. This ensures not
only a more dynamic environment, but opens up a few
more strategies to the player, such as piling all the food
together in one place and standing the person next to it.

Rats that feel fear should learn more quickly that the
person is associated with pain. This is because being in a
state of fear enhances the memory updating and associa-
tions involved with pain and objects that might be causing
it. Secondly, it is possible for Rats to feel fear at certain
objects before they are actually in pain. This should help
them pre-empt the shock and hopefully avoid the feared
object before it causes pain.

The role of the pleasure emotion is slightly more sub-
tle. It occurs when the Rat starts eating or drinking; to
a greater extent the more hungry or thirsty it is. It pro-
vides a positive feedback mechanism, which will encour-
age the Rat to continue consuming until its hunger/thirst
level drops quite low. This aim here is to prevent the Rat
from ‘oscillating’ between food and water objects if its
hunger and thirst levels are at similar values.

Both emotions are continuous, occurring at certain lev-
els rather than being simply on or off. This allows
for some more complex possibilities, such as a situation
where the Rat feels a little bit fearful but very hungry; so
it approaches the food despite being slightly afraid of it.

While we have a complete design of the architecture for
the game, its implementation is incomplete. The system
currently does not incorporate interaction with a user, and
the memory and emotion systems are not yet functional.

5 Architecture Overview

5.1 Basic Framework

Figure 7 shows the architecture of the Rat agent. The cur-
rently implemented basic design is shaded grey. This in-
cludes the core decision-making aspect, and the motiva-
tion systems. Running from top to the bottom is roughly
equivalent to the order of the simagent rulesystem run by
each agent during the cycle.

Perceptual system This identifies what the object is,
along with other properties such as how far away it is,
how much there is, and in the case of food/drink a ‘he-
donic’ value representing how ‘tasty’ or desirable it is.
Any information about objects recognised as food will be
passed on to the feeding motivation system, and the de-
tails of drink objects filtered to the drinking motivation
system. At this stage any other objects, such as Rats or
perhaps the human player are not processed further.

Motivation systems Here a value for each object is cal-
culated. The value represents an overall ‘weight’ of im-
portance. It takes account of the properties of the individ-
ual item, and how far away it is, along with specific infor-
mation on the internal condition of the Rat. The Feeding
motivation system uses the Rat’s hunger value, while the
drinking systems uses the thirst value. (Hunger does not
affect the drinking motivation system.) An equation for
this is as follows:

Weight=
a× Hunger+ b× Amount

c× Distance
+ d× Hedonic Value

A weight value is computed for each object, along with an
appropriate action. If the weight value is positive, then the
action will be to approach the object; if it is negative then
the suggestion will be to move away from it (particularly
unpleasant food i.e. with a large negative hedonic value,
might be aversive). If the Rat is currently consuming the
object, the weight will represent how important it is to
carry on doing so.

Finally, if there are no food objects going into the
feeding system, it will output an ‘explore’ action, with
a weight evaluated using the Rat’s current hunger level as
the main variable.

Decision The decision mechanism simply chooses
whichever action has the highest ‘weight’ associated with
it. However, it could be more complex than this - taking
account of what other objects lie in the same direction. So
a good decision might be to go towards a mediocre item of
food if there also happens to be some water nearby. Con-
versely, if a great item of food is very close to a dangerous
object it might be better to avoid that direction.

Motor system The processes here figure out how far
the Rat can move in the chosen direction, and evaluates
the new co-ordinates to be put out as a movement action.

5.2 Full Version

The Full Architecture design shown in Figure 7 includes
two important additions to the basic version: memory and
emotion systems.

Memory This stores locations of objects which the Rat
encounters, and includes a simple learning mechanism



Figure 7: Rat Agent architecture design. The implemented base design is shaded grey.

which can develop conditional associations between ob-
jects and events which occur together in space or time, in
additional to unconditional ones arising from the uncon-
ditional stimulus of the object. It provides extra detail to
the motivation systems, so their evaluation equation can
also take account of any past experience with the object.

The object memory does not remember food items as
‘specific’ e.g ‘food item one’, but instead stores food by
location e.g ‘food at (x,y)’.

Emotion This does several things, but all the actions
essentially involve fear and pleasure. Firstly, it cross ref-
erences incoming visual information with details in the
memory to see if any objects should elicit a state of fear,
and if so then what level of fear. The level relates directly
to the strength of the association between that object and
being in pain.

In terms of pleasure, at the moment it only produces
this state if the Rat is actually consuming, however this
could be extended to an anticipative pleasure. The level
of pleasure is determined by how hungry the Rat is. So
if it is really hungry before it starts eating, the level of
pleasure will be high. In a sense ‘pleasure’ here can also
be thought of as ‘relief’.

The emotion system can adjust the weight values pro-
duced by the motivation systems to enhance or reduce
particular signals. As an example, if one of the food ob-
jects is associated with something nasty the feeding mo-
tivation system may output a negative ‘avoid’ signal for
that object. If it is particularly nasty - enough to cause
some degree of fear - the emotion system will enhance

the signal, making it particularly aversive, while decreas-
ing the strength of all the other signals.

It is important to note that in this situation the emo-
tion system does not necessarily get the last word - if the
rat is especially thirsty, one of the ‘approach water ob-
ject’ signals might still be greater than the avoidance one.
However, if recognising an object pushes fear above a cer-
tain threshold, an override happens; the rat will run from
that object despite how hungry or thirsty it might be. This
route is approximately similar to the ‘quick and dirty’ fear
reaction mechanism discussed by neuroscientists.

If the Rat is feeling pleasure at consuming an object,
the emotion system will also adjust the weights, increas-
ing the consume signal while decreasing the others. The
amount that the signals are altered will relate directly to
the level of emotion - a higher level resulting in a greater
signal adjustment.

Feeling either emotion to any level will also feed back
into the memory system, enhancing specific associations
formed or reinforced during that cycle. In particular
if the Rat was in a state of fear because it could see
the player, and then subsequently experienced a painful
shock, the association between the player and pain would
be strengthened to a greater level than if the Rat was in a
neutral emotional condition.

5.3 System Implementation Details

While it is often comparatively easy to specify the de-
sired features and behaviour of a system, actually encod-
ing these into a working agent is often much more diffi-



cult. In this section we discuss our current implementa-
tion of the systems within the Rat and how these might be
extended.

5.3.1 Hunger/Thirst Systems

After some consideration the following relationship was
used to calculate the hunger and thirst values in each cy-
cle.

Y =
2x− 1

(2x− 1)2 + 1
+ 0.5

whereY is the new Hunger or Thirst value andx repre-
sents a counter which increments each cycle. It is a fairly
arbitary choice, and could be replaced with an equation
(or indeed series of equations) which more accurately re-
flect how hunger changes in a real animal.

This function was chosen since it increases slowly, in-
dicating that the Rat’s hunger/thirst level rises slowly at
first, but then increases rapidly to a point where it is ‘very
hungry’, with the limiting valueY = 1.0 leading to death
of the Rat from starvation. This function is not taken from
any particular animal psychology literature, but is based
on intuition of the relationship between hunger/thirst and
time. During each run of the Rat agent the hunger and
thirst levels are updated.

It would be good if food of a higher ‘quality’ actually
reduced their hunger by more - in other words there would
be some real benefit in going for these type of objects.
This is one of the many ideas which could relatively easily
be added into the program in the future.

5.3.2 Motivation Systems

The feeding and drinking systems are identical, and we
describe only the feeding system here.

The purpose of the motivation system is to process the
relevant visual information and output a database entry
for each object determining the most appropriate action.

‘Food Weight’ FW is calculated using the following
equation,

Food Weight∝ H2

D
+ FQ

whereH is the hunger,D is the distance to the food, and
FQ the food quality. The hunger value is squared so that
the resulting weight is exponentially greater at high lev-
els of hunger.FW is proportional to1/D, resulting in
lower weights with greater distances between the Rat the
the food. Food quality is added to the end to provide a
final adjustment. If it is negative, it may push the result-
ing weight to negative values and a subsequent ‘avoid’
action. The constants in the equation were derived from
trial-and-error testing until the Rats behaved in a reason-
ably balanced way.

At the end of the day, the motivation equation is key
to the decisions made by the Rat, and behaviour may be

further improved by use of alternative functions. Another
option would be to use a genetic algorithm approach to
try to ‘evolve’ an optimal equation that produces the most
‘fit’ Rats. Fitness could be simply a survival rate, or relate
to how well the Rat maintains a balanced level of hunger
and thirst.

5.3.3 Explore System

If there is no visual data on food objects available, the
system outputs an explore action.

The ‘Explore Weight’EW is calculated using the fol-
lowing method,

EW ∝ need2

where need is the current hunger level of the Rat.
Again, this is another equation that could benefit from

being ‘evolved’ by genetic algorithms. At the moment it
is roughly balanced so as to become more urgent to find
food the hungrier the Rat becomes, but at lower levels
of hunger it’s still better to carry on drinking if drink is
available.

Again the exploratory mechanism is not based on psy-
chological literature, but in its current intuitive form
merely ensures that the Rat moves to locate sources of
food and drink. There is considerable existing work on
animal foraging patterns that could be applied here.

The following exploration method was developed using
trial and error experimentation. The explore action has the
potential to span up to 6 turns, during which the Rat does
the following:

Turn Action Count
1 Choose random direction X, move that way. 1
2 Continue to move in X direction 2
3 Continue to move in X direction 3
4 Reverse direction X, move that way 4
5 Continue to move in (reversed) X direction 5
6 Continue to move in (reversed) X direction 6
7 Back in starting position, choose direction Y 1

This means that the Rat spends 3 turns moving in one
direction, at which point it turns round and goes back to
the starting position. If in any of these turns it encoun-
ters food/drink then it reacts to those objects: in other
words it is not ‘committed’ to completing the exploration
sequence.

When it comes to step 6, a new angle for exploration
is chosen. Essentially the new angle cannot be anywhere
within the range of the old one, plus or minus 45 degrees.
This makes sure that after an unsuccessful exploration in
one direction, the Rat chooses a significantly different di-
rection to explore in next.

6 Results

Figure 8 shows a series of images showing the progress
of Rat agents. The frame number refers to the time-slice
at which the snapshot was taken. The rats are the square



Figure 8: Images showing an example of Rat agent progress.

boxes in the centre of frame (1). They all start off with
hunger and thirst at the same low level in all of the results
discussed. This is probably why r2 and r3 head towards
the same water object (the square boxes) at the beginning.

At cycle 3 R1 can be seen to be fairly close to both a
food item (the circles) and a water item. The water item
it heads towards has the highest ‘quality’ value of the ob-
jects in the environment, so this move makes sense. After
drinking for a bit, the food motivation system pushes him
to explore (about cycle 12/13). He finds food and con-
sumes this for about 5 cycles then makes his way to the
nearby water object. At this point though he hits a bug
whereby no matter how much he drinks the thirst does
not go down. By cycle 52 he is dead from hunger.

Rats R2 and R3 essentially oscillate between the food
and water objects on the far right.

While the motivation equations could do with some ad-
justing, it is still good to see that the agents make some

attempt to keep their hunger and thirst levels low. Also it
is good to see the inefficient oscillating behaviour occur-
ring as predicted. Including the ‘pleasure emotion’ may
really help to reduce this.

7 Discussion

Although the implementation of the Rat agent architec-
ture is not complete, some conclusions can be drawn at
this stage. The work completed so far is very promising,
and we are confident that developing it further would re-
sult in some very interesting results.

Firstly, there is a wealth of psychology literature which
makes for good source material and inspiration. The work
described here focuses on motivation and emotion sys-
tems. However, there is much more information and the-
ory available than has been incorporated in this design.



Many of the ideas described in this literature are not ones
that are typically explored when considering problems
purely from an AI point of view.

The biggest advantage of considering animal motiva-
tion studies is that the researchers spent a lot of time ob-
serving and testing the animals, and really getting to grips
with the basic systems that drive and affect behaviour. Re-
gardless of whether their findings accurately explain how
the animal mind really works, their descriptions still relate
strongly to real observable actions. The resulting models
and diagrams make it fairly simple to port the ideas over
to a computing environment.

It is encouraging to see that even the basic version re-
sulted in agents that made appropriate decisions to reduce
their hunger and thirst levels. Their behaviour was al-
ways slightly unpredictable (and hence, perhaps more be-
lievable?) since they never followed a ‘set path’ or ‘set
procedure’. It was not a case of ‘when hunger is X, find
food’.

The architecture-based approach lends itself well to the
approach taken in this work. Once the basic architec-
ture design was in place, other aspects could integrated
in quite a natural way. For example, once the base moti-
vation system was in place, it was fairly straightforward
to see how the fear emotion could be incorporated and
affect the decision making.

In the games industry, it is becoming more common to
use pre-designed ‘engines’ to cover whole aspects of the
coding. These engines tend to be specialised, for example
it is possible to get physics engines that deal specifically
with car crashes. Considering how complex just design-
ing the motivation, or learning, or perceptual system can
be it would seem a good idea to put them together as an
AI creature ‘engine’. This could be the basic all-purpose
agent which could then be tweaked and adapted by the
specific game designers to suit their needs. Using a sys-
tem like simagent would be perfect for this, since it is
easy to adjust old rulesets, add in new ones, or simply
change the base variables for the agent instance. The ar-
chitecture and design ideas presented here could form a
component of such an engine.

To really achieve this effectively, it may be necessary
to bring together a hybrid of AI techniques. In this in-
vestigation we saw how difficult it is to know what func-
tions to use to provide the most efficient and realistic be-
haviour. This is exactly the type of problem that genetic
algorithms could help with. Neural networks, or at least
a connectionist approach, seem like the best strategy for
implementing learning systems. However, without being
implemented in a way that makes them useable inside the
symbolic environment of game code they are not too prac-
tical. Both these areas would provide good grounds for
further study.

Overall, we are encouraged by our results. They
demonstrate that psychology literature is a very fruitful
resource. If a complete AI engine which has been inspired
by psychology in is developed, we feel that it would in-

deed create more believable agents and much more im-
mersive game play.
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Abstract 

What is mind? A straightforward answer is that which decides what to do next. How does a mind decide what 
to do next? A straightforward answer is by processing, acting and sensing. What does a mind sense? 
Everything? What is processed? Everything? How is everything processed? In every possible way? What 
actions are selected? Every action? Ten simple questions and two straightforward if rather mischievous 
answers. In this article differences in the nature and requirements of biological and synthetic minds is 
investigated in terms of control: control over what is sensed; control over how that is perceived; control over 
how those perceptions are processed; and control over how this epistemic flow leads to control over actions. 
No straightforward answers to any of the questions posed are presented. Rather, different perspectives on how 
investigations into these questions are used to present the thesis that some means of valencing the mind is 
necessary. In short this article considers how the economics of thought and action reside in the currency of 
affect.  

1 Introduction 

Control of behaviour is vital to animate biological 
systems. Mistakes in such systems lead to at best 
ineffective use of possibly scarce resources; at worst 
such mistakes lead to injury and death. Consider the 
scope of biological systems from solitary insects, 
insect communities through to vertebrates, mammals 
and primates. Many insects simply act out genetically 
determined behaviours, with the species surviving due 
to sheer number of individuals. The more sophisticated 
the biological system becomes, the more scope there is 
for adaptation, learning and error. The more 
sophisticated the biological system becomes the 
greater the range and diversity of type of drives that 
need to be fulfilled. Yet in every case the control 
mechanism within the biological system, whether 
cricket, ant, lizard, anteater, leopard or chimpanzee, 
needs, in some sense, to make a decision about what to 
do next. With increasing sophistication of biological 
system comes an increasing degree of autonomy. With 
the increasing degree of autonomy comes flexibility, 
the possibility of behaviour adaptation and learning. 
With the increased behavioural flexibility comes 
greater choice and a greater range of potential error. 
Without the increased behavioural flexibility, the 
range of behaviours triggered by any situation is more 
constrained, limited and sharply defined in terms of 

their effectiveness. The symbiotic nature of organism-
niche evolution has determined (and continues to 
determine) the environmental scope of any given 
organism. The effectiveness of the evolved control 
mechanism(s) is self-evident in the diversity of 
biological organisms across individual and the many 
different environments. An important question for the 
designer of synthetic systems is whether there are 
levels of abstraction across these biological control 
mechanisms useful in the design of artificial systems. 
A further question is what types of commonality are 
there across the control mechanisms in these different 
biological systems? Salient answers to these and 
related questions will do more than simply provide 
useful insight into the design of artificial systems. It is 
within such a framework that the recent growth in 
research giving artificial systems emotional 
capabilities or qualities is questioned (Davis and Lewis 
2004). This framework may provide the means by 
which we can advance our understanding of the 
phenomena that is affect (Sloman et al 2004).  

This article makes a case for developing this 
framework in terms of affect, motivation and other 
control states, plus an analysis of niche and design 
space in terms of complexity of information 
processing structures. It then places recent 
investigations into affect and affordance within 
ongoing research into the development of architectures 



 

for synthetic intelligence. In these developing 
computational systems, activity and behaviour at one 
level is represented and controlled at other layers. The 
primary conjecture is that the design and 
implementation of such architectures can proceed 
using a systematic control language that obliviates the 
need for ad hoc heuristics to direct the processing 
within an intelligent system. This control language is 
grounded in affect. The aim is to try and develop a 
control language that is consistent across different 
domains, tasks and levels of processing. If and where 
this attempt to achieve this objective fails, the result 
will be a deeper understanding of the nature of the 
control systems necessary for synthetic (and natural) 
mind. The computational work is being developed 
with no explicit requirement for emotion but rather a 
reliance on affect (a valencing of and within internal 
processes), affordance and motivational constructs that 
together can be used to guide both internal and 
external acts. 

2 Emotion, Affect and Theories of Mind 

The philosophical foundations of cognitive science 
rest on a number of assumptions. One very important 
one is that cognition is a natural kind (Fodor 1983, 
Pylyshyn 1984). It has been suggested that emotion 
too is natural kind (Charland 1995). In effect to 
understand how human (and similar) minds work, to 
develop theories about mind and to build 
computational systems capable of simulating (human) 
mind they should include both cognitive and affective 
mechanisms. Counter arguments to this latter claim do 
exist (Griffiths 2002). The argumentation for the 
counter claim bears similarities to that to be found in 
Sloman’s research (2001, 2004a, 2004b). 

There is a growing consensus among theorists and 
designers of complete intelligent systems (Minsky 
1987, Sloman 2001, Franklin 2001) that synthetic 
minds, to be complete and believable, require a 
computational equivalent to emotion to complement 
their behavioural and cognitive capabilities. This need 
not be a deep model as the thesis behind the work on 
the OZ project (broad and shallow) demonstrates 
(Bates et al 1991, Reilly and Bates 1993). This 
requirement has been highlighted by earlier prominent 
researchers (Simon 1967, Norman 1980) in their 
discussions on the nature of cognition in biological 
systems (typically humans). 

Over the history of psychology, emotion has attracted 
attention. Hebb (1946) for example could not provide 
an adequate explanation for observed primate 
behaviour without the incorporation of emotion. There 
is no theory of emotion that is consistent across the 
many competing theory types. Most pointedly with 

regard to the arguments presented here, it is not clear 
what level of neural sophistication is required to 
experience emotive qualities. So, while the need for 
emotion in theories of human (primate) mind is not 
disputed, what emotion actually is and the processes 
and mechanisms that give rise and support its function 
are still very much open to debate. 

Affective States

Moods
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PainPleasure

Attitudes
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ConcernsNeeds

Desires

GriefJoy
 

Figure 1. An incomplete taxonomy of affective states. 

The emotions are but one type of affect among the 
various classes of sometimes fuzzily differentiated 
control states associated with mind (Simon 1967, 
Sloman et al 2004). Previous research has attempted to 
organize motivational control states in an initial 
taxonomy as a starting point for future research (Davis 
2001b). A similar (fuzzy and very incomplete) 
taxonomy for affective states is shown in figure 1. The 
ones shown in figure 1 have been addressed, albeit in a 
relatively shallow manner, at a theoretical, design or 
computational level in earlier research (Davis 1996, 
2001a, 2001b, 2002, Davis and Lewis 2003, 2004). 
This taxonomy and the type of categorisations made 
through the rest of this article are wider in scope to the 
conceptual analysis of emotion made in for example 
(Ortony et al 1992), albeit at a relatively shallow level. 
Section 5 of this article provides further analysis of the 
affective categories associated with needs and desires 
in terms of motivational control states. 

Theories of emotion can be typified as belonging in 
one of several types, for example physiological (James 
1884; Plutchik 1994), evolutionary (Darwin 1892), 
expression (Ekman 1994), appraisal (Scherer 2001) or 
goal based (Oatley 1992). This is partially due to 
different programmatic objectives within, for example, 
neurophysiology, psychology, philosophy and 
cognitive science. If a software engineer were to use 
many of these theories of emotion as the starting point 
for a specification of emotion in a synthetic 
computational system, a number of very obvious 
comments would be expected. One there is no 
consistency across these theories. Two, some of the 
earlier but still prominent theories are internally 
inconsistent. Third, most of the theories are so loosely 
defined that they do not provide for a suitable 
specification for a computational mind. As Sloman 



 

(Sloman et al 2004) points out, this is to be expected 
with any developing scientific theory. 

Duffy (1962) considers the use of the fuzzy, 
ambiguous and misleading term “emotion” as 
fundamentally flawed. Such terms should be 
abandoned as confusing and new or clearly delineated 
terms used only where such concepts are clearly and 
unmistakably identified. There is such a volume of 
research in this area that a significant academic 
revolution would be required to pursue such a path 
with any success. While this may be true of disciplines 
that study human intelligence, the same does not hold 
for artificial systems. However there are many types of 
artificial system and there are quite legitimate and 
necessary reasons why a model of emotion (albeit 
shallow) may be required within these systems (see 
Sloman et al 2004). The research paradigms of 
artificial intelligence, cognitive science, computer 
science and psychology overlap and any purported 
boundaries are somewhat arbitrary. The question 
addressed here is not to dispute the importance of 
emotion for human mind, nor its study in psychology 
and cognitive science, but to dispute its necessity in 
the design (and implementation) of intelligent 
synthetic systems. 

Numerous prominent researchers into intelligent 
systems have suggested that affect-like mechanisms 
are necessary for intelligence (Simon 1967; Norman 
1980; Minsky 1987) or will arise out of the interaction 
of the processes necessary for intelligent behaviour 
(Sloman and Croucher 1987). More recently, Sloman 
(Sloman 2001) has suggested that while emotion is 
associated with intelligent behaviour, it may not be a 
prerequisite. If that is the case and that emotion is a 
side-effect of mechanisms in sophisticated and 
complex biological architectures, intelligence is now 
tightly bound to the control of these side-effects 
through evolution. The development of control 
mechanisms to harness and cope with the affective 
associations of the mechanisms necessary for 
intelligence, over the diachronic intervals associated 
with evolution, is such that in effect emotion and 
affect are now central to intelligence in biological 
systems.  

3 A Requirement for Affect? 

Norman’s pivotal paper (Norman 1980) suggested 
emotion-like processes are necessary for artificially 
intelligent systems. This section builds an argument 
that denies the need for emotion in many synthetic 
systems, while accepting that notable systems have 
been built based on models of emotion using a diverse 
range of computational mechanisms (Adamatzky 
2003; Elliot 1992, Frijda and Swagerman 1987, 

Ortony et al. 1988; Riley and Bates 1991, Scherer 
1993, Velasquez 1996, Wehrle, 1994). 

Griffiths (2002) suggest that there are different kinds 
of emotion or emotional process. This is different to 
the claim that there are basic emotions, for example 
(Ekman 1994), and more sophisticated emotions that 
combine the basic emotions with higher level 
(neocortical) processes. Broadening the scope to 
include other affective states highlights the diverse 
nature of these phenomena. There are many potential 
types (and labels) for the range of affective states. For 
example my office thesaurus lists twenty-seven 
synonyms for pleasure (and two antonyms). A trace 
through the thesaurus following up all antonyms and 
synonyms will quickly produce an extensive list of 
affective terms. It would take the remainder of this 
paper just to provide linguistic definitions. 
Highlighting the full extent of the possible relations 
between them (as in for example a plausible dimension 
of affect that includes pain, distress, sorrow, torment, 
grief etc.) is not possible here. These states differ 
broadly in their situational context, their duration and 
their possible effects. A complete theory of affect 
should be able to provide a coherent structure across 
these issues. It should also provide an account for 
these in terms of precursors, initiating events, 
supporting processes, individual and situational 
differences etc. 

There is also the question of what level of control 
structure sophistication is required for any of these 
states. It does not make (much or any) sense to discuss 
how an insect, for example an ant, can grieve over the 
loss of fellow ants. Why therefore should it make more 
sense to discuss how a synthetic intelligence, possibly 
of similar information processing complexity as an 
ant, can experience affective states qualitatively 
similar, in type, to grief? It is as yet unclear where it is 
even sensible to associate the concept of pain with 
such an organism. The folk psychology of affect is less 
strict in the application of such terms; for example, a 
mother may chide her son for “tormenting” the ant’s 
nest. Progress in understanding affect in terms of the 
information processing complexity of the behavioral 
control systems of the organism is required if any 
effort at modeling affective states in synthetic systems 
is to be something more than silicon folk psychology. 

There are many questions that research into the 
emotions and affect needs to address. Are all of the 
possible affective states appropriate to computational 
modeling? If not, which are plausible and why? For 
example how can a machine experience joy? Wright 
and colleagues (1996) used the CogAff architecture as 
the basis for an account of grief, but they do not imply 
that their computational designs would be capable of 



 

suffering so. Are there categories of affect that are 
needed if the theory of affect (and hence emotion) is to 
progress? For example, is joy is akin to pleasure, in the 
same way that grief is akin to pain? Cognitive systems 
that attempt to model human functioning and cognate 
theories need to explain how these are alike and the 
different levels of abstraction over the affective states. 
Such mind models are qualitatively different to the 
(insect or at best perhaps pigeon level) systems 
currently being developed by AI practitioners. Do the 
decision and arbitration functions and processes 
required in these latter systems really require the 
conflict resolution processes to validate their choices 
in terms of a shallow and sometimes arbitrary use of 
affect. Do emotive recognisers in sophisticated 
interfaces require any more than the coarsest 
granularity in their discrimination of the possible 
affective state of the user? 

4 Niches, Designs and Affect 

Using the running definition as mind as a control 
system that decides what to do next, we now visit 
some alternative designs. The framework used, even if 
at a relatively shallow level of analysis, is the idea of 
niche and design space (Sloman 1995, 2001; Sloman 
et al 2004). Figure 2 provides a simple exemplar of 
alternative environmental niches, defined in terms of 
altitude and aquaticity, and designs for life that inhabit 
them. 
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Figure 2. Environmental niche space and associated 
designs. 

A different type of niche can be specified in terms of 
the resource and task requirements for any organism. 
The suggestion is that different categories of affect are 
associated with different levels of complexity in the 
structures and processes that support different classes 
of mind. Animal psychology and comparative 
ethology can help here in identifying the broad 
categories of mind (Davey 1989, Gibson and Ingold 
1993, McFarland 1993, Toates 1998). Rolls (1999) 

provides four broad categories of brain complexity: 
mechanisms for taxes (for example reward and 
punishment); mechanisms capable of stimulus 
response learning via taxes; mechanisms capable of 
stimulus reinforcement association learning and two-
factor learning; and finally explicit systems that guide 
behaviour through syntactic operations on 
semantically grounded symbols. A similar continuum, 
in niche space, for conceptualising the increasing 
sophistication of mind is presented here. Along this 
continuum thresholds can be placed for stating the 
“mind” has: mechanisms of adaptation; mechanism 
capable of learning via the equivalent of classical 
conditioning; mechanism capable of learning via 
operant conditioning; mechanisms allowing tool use; 
mechanisms for tool manufacture; map formation; and 
the use symbols. Figure 3 shows these niche spaces 
and in the associated design space, examples of 
architectures from the animal kingdom. 

NICHE SPACE

 OPERANT CONDITIONING

 CLASSICAL CONDITIONING

 ADAPTATION
  TOOL USE

 TOOL MANUFACTURE

MAP FORMATION

 SYMBOL USE

DESIGN SPACE
 ANT COLONY

 PIGEON LIZARD  CROW  LEOPARD  PRIMATE

INCREASING SOPHISTICATION OF MIND MECHANISMS

MAYFLY

 

Figure 3. A tentative niche space of increasing 
sophistication with associated design examples. 

From an evolutionary and anatomical perspective, 
there is some commonality in the mechanisms running 
across the dimension of figure 3. For example the 
chemical (hormone) and amygdala routes to behaviour 
in the description of the dual routes to behaviour 
(Rolls 1999). However while the organisms to the 
right of figure 3 may share the use of hard-wired finite 
state automata-like mechanisms, for example compare 
the fly-tongue reflex of the frog with the knee-jerk 
reflex of humans, the capabilities of the organisms to 
the right of figure 3 far surpass those to the left 
(mayflies and grasshoppers do not perform behavior 
rehearsal for example!). 

Even a relatively trivial analysis of the opportunities 
offered by this perspective, shows how difficult this 
task is. The continuum of increasing sophistication of 
behaviour (and presumably mind mechanism) is 
neither discrete nor linear; perhaps dimension will be a 
better term than continuum. Consider the case of two 
very different organisms such as the crow and the 



 

leopard. At first it would be tempting to unequivocally 
suggest that the information processing requirements 
associated with the adaptive hunting strategies and 
rearing capabilities of the leopard far outstrip the 
information processing requirements of the crow. Yet 
as recent experimental evidence suggests (Weir et al 
2002), the crow is capable of innovative tool creation 
in feeding itself, yet the leopard uses no recognisable 
tool. Does this place to the crow to the right of the 
leopard in the design space of figure 3? No! - At least 
not wholly to the right. The crow’s behaviour while 
interesting is an adaptation of its natural tool making 
activity to support food foraging. The leopard however 
does use tools, for example sound, in the modifications 
that it can make to its hunting tactics. Typically, while 
stalking at night, a hunting leopard, close to a herd of 
prey, will typically move with retracted claws and with 
sometimes very slow and deliberated movement (for 
example fifteen metres over two hours). However it 
can modify this almost silent hunt, and deliberately 
create sound, with a pounding paw, to agitate and 
disorientate gazelle herds. In raising their offspring, 
the crow will not dwell over the loss of a brood. The 
leopard on the other does appear to dwell over the loss 
of her cubs. In short, in moving across the range of 
warm-blooded animals from for instance pigeons there 
is an information processing complexity change in 
moving to mammals. At that point up to the more 
advanced primates (for example the orang-utan) there 
are genera and species level partial advantages, related 
to fulfilling or taking advantage of specific niches and 
environments. The theory of affect would benefit if a 
similar conceptualisation as produced by ethologists 
were produced for affect. 

5 Needs, Desires and Motivations 

The previous section provided a tentative look at 
taxonomy of control mechanisms, the degree of task 
complexity and diversity of task repertoire. Here we 
look behind the behaviours to see the motivational 
mechanisms responsible for the behaviours. This 
builds on earlier work (Sloman 1990, Beaudoin 1994, 
Davis 2001b) on motivators. This differentiation 
between emotional (affective) and motivational control 
states is not new (Simon 1967). Here, however, 
previous analyses are revisited in terms of furthering 
the aims of the tentative analysis of affective states 
given in section 2. 

At a very coarse grain we can differentiate between 
primal needs required to maintain the life-force of an 
individual organisms, the requirements of the species 
and the requirements arising from social interaction. 
For example, Aubé (2004) in his analysis of needs in 
nurturing species, differentiates between primal needs, 
that are related to the resource requirements of an 

individual organism, and second order resource 
requirements, that are related to requirements arising 
and made available through activities such as social 
bonding and collaborative behaviours. Aubé suggests 
that the affective states associated with these 
requirements differ too; he terms these commitments. 

An alternative (and perhaps complementary) approach 
is to look to develop the taxonomy of primary 
reinforcers that Rolls (1998:table10.1) provides. That 
taxonomy is differentiated primarily in terms of five 
sensory modalities, reproduction and a collection of 
diverse reinforcers related to social and environmental 
interactions. The relevance is that these reinforcers, 
either positive or negative, are mapped onto drives and 
affective states. In the somatosensory modality for 
example pain is a negative reinforcer, while touch 
positive. Control over action is a positive reinforcer 

In accordance with earlier research (Davis 2003) needs 
are manifested in processing terms as drives. Drives 
are low-level, ecological, physiological and typically 
pre- or non-conscious. They provide the basis for an 
agent’s behaviour in the world, are periodic but short-
lived and are defined in terms of resources essential 
for an agent. Such activities for information agents 
include the need to gather resources and propagate 
information to associates in their society. In biological 
agents such drives include thirst, hunger, and 
reproduction. Nurturing sublimates some of these 
drives in the service of others. Thresholds for the onset 
and satiation of such drives are variable and dependent 
upon processes internal to an agent and external 
factors arising through the agent’s interaction with its 
environment. We can model such drives relatively 
easily in computational agents using intrinsic control 
structures. Prior work (Davis 2003) used fuzzy logic 
models to do just that. 

Motivators

DrivesImpulses Goals

Desires

Attitudes

NormsQualitativeQuantitativeNeeds

Figure 4. Taxonomy of Motivational States 

Having established a primal motivational category, we 
can now look further at the types of taxonomy 
produced for motivational control states (Davis 
2001b). Figure 4 provides four major types with, in 
each case, subcategories. In keeping with the theme of 
tentative dimensions for control states that is being 
used throughout this article, there is an implied 
ordering from left to right across figure 4. The 



 

processing requirements and representational qualities 
associated with these four broad categories become 
more sophisticated towards the right of the figure. 

Impulses are related to spontaneous behavior, for 
example suddenly leaving the cinema during the 
screening of a film or making a rash purchase. They 
are associated with the instantaneous formation of an 
idea, perhaps unrelated to current cognitive context, 
and can cause a temporary or more persistent re-focus 
of mind. Here Desires are only partly analogous to 
their use in BDI agent architectures (Georgeff and 
Lansky 1987), for example desires(agent, stateY).. 
Desires can underpin goals and other purposeful 
behavior. Desires and impulses are akin in that 
impulses may arise out of desires, and that neither 
need be realistic, achievable or rational. Drives and 
needs, as described above, do not require deliberative 
mechanisms and architectures capable of supporting 
adaptive state automata suffice to model these. 
Quantitative goals can encompass needs and drives but 
are differentiated to allow for more flexible 
representations and process models. These are the 
types of goals discussed in engineering control theory 
(Sontag 1998) and reinforcement learning, for example 
(Maes 1989, Toates 1998). Qualitative goals are the 
types of motivators discussed in most planning 
literature (Nilsson 1998). The remaining category 
identified here, attitudes, are pre-dispositions to 
respond to specific sensory or cognitive cues in 
specific ways. For example, an agent could generate 
pro-active goals to investigate a hapless agent based 
on an altruistic standard (an attitude) and a set of 
beliefs about the capabilities of that agent. The work 
on norms (Staller and Petta 2001) is relevant to this 
category. The following sections describe 
computational work in bringing together these 
analyses in terms of working models. For conceptual 
(and historical) reasons motivational control states are 
dealt with before the computational model of affect. 

6 Motivated Architectures  

Current work on architectures for motivated agents is 
based on experiments in the theory, design and 
implementation of affect and emotion based 
architectures (Davis 1996, 2001a, 2001b). It builds on 
the ecological perspectives offered by Gibson (1979), 
and on the work of Simon’s control state theory. 
Preliminary work (Davis 1996) centered on motivators 
and goals, how they come into being and how they are 
managed. This led to work on agents and control states 
(Davis 2001b), again focused on goal processing. It 
addressed how goals need to be valenced in a number 
of different ways, for example intensity, urgency, 
insistence (see table 1). Motivators in these 
architectures were representational structures 

generated at a reactive level. The generic 
representational schema made use of fifteen 
components that reflected the nature of the most 
expansive of motivational control states. In many 
instances, for example behaviours related to drives, 
many of these components were unused and the stack 
of motivators could be manipulated by mechanisms 
analogous to the reactive planners of Kaelbling (1989). 
Where required more extensive (and computationally 
expensive) deliberative processes are used. An 
instance of this is the motivator merging, given in 
(Davis 2003a), which made use of mechanisms 
analogous to those used in teleological planning 
(Nilsson 1994).  

 Valence Process and Dimension Category 
Belief Indicator Function over Truth values for Semantic Content 

and Motivator Attitude 
Commitment Status Fuzzy Model (ignored to first priority) 
Dynamic State Fuzzy Model (instantiated to complete) 
Importance Fuzzy Model (low to high) 
Insistence Fuzzy Model (low to high) 
Intensity Fuzzy Model (low to high) 
Urgency Fuzzy Model (low to high) or time cost function 
Decay Fuzzy Model (low to high) or time cost function  

Table 1. Valences within a motivational construct. 

The architectures developed in this work, and related 
research into a multi-level representational framework 
for emotion (Davis 2002), made use of variations of 
the three column, three level architecture developed 
with the Cognition and Affect project (Beaudoin 1994, 
Davis 1996, Sloman 1990, 1995, Sloman et al 2004, 
Wright et al 1996). 

We continue to use variations of a three-column, three 
layer architecture but are not unequivocally committed 
to such architectures, if the research requires other 
frameworks. Figure 5, for example, shows a four tier, 
five column instance. Some experimentation (Davis 
and Lewis 2003, 2004) makes use of an architecture 
based on cognitive models of reasoning in children 
(Bartsch and Wellman 1989, Wahl and Spada 2000). 
The approach taken is one merges the principles of  
architectural parsimony (Hayes-Roth 1993) and the 
conceptual ease through architectural expansion of 
Singh and Minsky (2003). 

In the three-layer model, there exist reflexes and 
reactive behaviours that allow a direct response to 
sensory events. These can provoke processes or being 
modified at a more abstract level. Other automatic 
processes necessitate the generation of deliberative 
control states to achieve their goals. The deliberative 
layer represents those (control state) processes 
typically studied in thinking, human problem solving 
etc., plus other processes related to the management of 
low level actions. The reflective processes serve to 



 

monitor cognitive behaviour or control it in some other 
way. The more extreme affective states 
(symptomatically categorised as a loss of control or 
perturbance) are effectively clamped by means of self-
regulatory processes within the architecture. This 
model is quite general. The effect of altering the 
relative size and importance of the layers is an open 
issue. High level and low level processes coexist and 
interact in a holistic manner through the use of 
motivation and affect. In effect, goal processing, 
planning, decision making and other cognitive 
processes are not purely abstract but exist in relation to 
other automatic, affective and motivational processes. 
They are, in effect, embodied within the context of 
their interactions with their underlying processes and 
the agent’s relationship(s) with its environment. 
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Figure 5. The Four Tier-Five Column Architecture 

The most recent design work sketched in figure 5 
shows a four tier five column architecture. The four 
tiers represent reflex, reactive, deliberative and 
reflective processes. The five columns separate 
perception, affect and affordance processes, the 
motivational blackboard, generic cognitive processes 
(planning, behaviours etc) and output to actions. This 
framework extends earlier work with the architectural 
global blackboard for the motivational constructs. 
Earlier research (Davis 2001b) did not separate these 
processes from generic cognitive functions. This 
architecture makes use of the extended motivational 
constructs as blackboards that provide the context for 
ongoing (and most other dynamics of) processing. The 
representational structure that is the architecture can 
use one or more motivational constructs concurrently. 
Both architecturally generic and motivational construct 
specific processes can access the blackboards and in 
turn be influenced by their content and processes. The 
emotion engine of earlier research (Davis 2001a) is 
now superceded by the affect processes column. The 
work on multi-level representations of emotions that 

run over semi-autonomous cellular automata models is 
being revisited in the light of current thoughts on the 
nature of affect (as outlined in this article) and the 
work of Adamatzky (2003) on computational 
chemistry models of affect. The latter in hand with the 
blackboard scheme for motivation provide a 
sophisticated interaction of very low level, reactive 
and deliberative processes in a multiply valenced 
framework. 

The affective valencing of processes and 
representational structures can be given or the agent 
can adapt or learn appropriate affordances according to 
its role and current environment. It forms the basis for 
perceptual valences that support the external 
environment affordances appropriate to the agent. As 
an agent monitors its interactions within itself and 
relates these to tasks in its external environment, the 
impetus for change within itself (i.e. a need to learn) is 
manifested as a motivational state. Such a control state 
can lead to the generation of internal processes 
requiring the agent to modify its behaviour, 
representations or processes in some way. The 
modification can be described in terms of a mapping 
between its internal and external environments. This 
influences the different categories of cognitive and 
animated behaviour. To paraphrase Mearleu-Ponty 
(1942), an agent is driven to learn, adapt and act in its 
environment by disequilibria between the self and the 
world. The valences used in the current motivational 
structure (table 1) provide the means to characterise 
the disequilibria. The multi-dimensional measures 
associated with the motivational construct, in effect, 
provide the fitness function for easing any such 
disequilibria. The problem remains how to generate 
these values and decide across the current stack of 
motivators in a manner that does not rely on ad hoc 
control heuristics. 

6.1 Affect, Affordance and Motivation 

Previous research (Davis 2001a) has used emotional 
models that include basic emotions. The current stance 
is that basic emotions are unnecessary in a theory of 
emotion. A number of emotion theories use the 
concept of basic emotions; Scherer (1994) instead 
allows for modal forms of emotive processing. Of the 
many modes that an emotion system can take, some 
are near identical or relatively similar to the states 
described as basic emotions. However the range of 
states in a modal model is far more diverse. A salient 
feature of many theories of emotion is that they are 
described in terms of goals and roles. Emotion in the 
goal-based theories, for example (Oatley 1992), can be 
described as “a state usually caused by an event of 
importance to the subject”. This involves mental states 
directed towards an external entity (attitudes, 



 

motivations, expectations etc.), physiological change 
(increased heart beat, hormone release etc), facial 
gestures and some form of expectation. Scherer (1994) 
defines emotion as “a sequence of interrelated, 
synchronised changes in the states of all organismic 
subsystems (information processing, cognition, 
support, ANS, execution, motivation, action, SNS, 
monitoring, subjective feeling) in response to the 
evaluation of an external or internal stimulus event 
that is relevant to central concerns of the organism”. 
These emotional processes involve five functionally 
defined systems involving information processing over 
perception, regulation of internal states, decision 
making over competing motives, the control of 
external behaviour and a feedback system across these 
four. This differentiation of processes can be easily 
mapped onto the architectural model of figure 5. While 
still accepting the validity of developing a 
computational theory of emotion, there is a very 
important adjunct. Emotions are considered 
unnecessary for most synthetic systems, and that the 
case for including emotion in a synthetic system 
should be based on an analysis of the demand for 
emotions in the developed system. Given the 
motivational framework outlined in the previous 
sections, the requirement is that some model of affect 
is required. This may not necessarily involve the 
emotions, and may be simpler in its requirements than 
the mechanism necessary for a fully developed 
implementation of the emotions. 
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Figure 6. Affect Model (in second column of figure 5) 

We are developing a theory of affect that draws on 
themes such as control states and motivators (Simon 
1967; Sloman 1990; Davis 2001b) and affordances 
(Gibson 1979; Davis 2001a). The overlap between the 
goal-based and modal response theories provides for a 

coherent hybridization and defines the bare bones of 
the affect model used here. We define affect in terms 
of reinforcers over processes and representational 
structures. It is qualitatively defined over negative, 
neutral or positive values, as in the work of Rolls 
(1999), or numerically over the interval (-1.0,1.0). 
Future work will look to develop the fine details of a 
fuzzy (and/or neural) valued processing model that 
maps across these measures at different levels of the 
architecture (Figure 6). This will build on the research 
on the emotion engine and also relate to the eight 
valences for the currently developed motivational 
construct (Table 1). Hence, affect forms a basis for a 
control language for agent architectures. It allows 
external events and objects to take valenced 
affordances, and allows the results of internal 
mechanisms to be prioritised and compared via 
valenced processes. At the deliberative level, affective 
values can be associated with processes and control 
signals to instantiate and modify aspects of motivators 
and their associated representations. Furthermore, if an 
agent is to recognize and manage emergent 
behaviours, and particularly extreme and disruptive 
control states, this multi-layer model of affect provides 
the means for reflective processes to do this. This 
model of affect addresses the need to integrate 
reflective, deliberative, reactive and reflexive level 
agencies in a synergistic fashion. 

7 Discussion 

This paper has confronted the now widely held 
requirement for emotion in intelligent systems on a 
number of grounds. The starting thesis is that overall 
the theory of emotion is currently too disorganised to 
be of much use in the design of synthetic intelligence. 
More pointedly, emotion is not really a requirement 
for many forms of synthetic intelligence, and that more 
straightforward affective means, based on something 
as straightforward as the concept of affective taxes or 
reinforcers, can be used to enable effective decision-
making. Elsewhere, it has been suggested (Davis and 
Lewis 2004) that a direction given by the less 
semantically overloaded term affect is more 
appropriate for synthetic intelligence. The problem is 
however that the phenomena covered by affect are 
even more diverse and currently less well specified 
than emotions! Future research will determine how 
complex are the states arising from the adoption of the 
simple model outlined here. 

If our research agenda is slightly different and pursues 
the theory, design and building of artificial systems 
that sometimes work analogously to human mind does 
this requirement for emotions still hold? In negating 
the use of emotion some alternative is required, not 
just to simply mirror the fact that natural minds use 



 

emotion but because some form of motivational 
control language is required to do anything associated 
with mind. Consider activities such as sensory 
attention, behaviour selection, goal maintenance and 
the learning of new skills. There needs to be some 
valence or fitness function associated with these, 
whether explicit or implicit. Some means of conflict 
resolution is required. For example given two 
contrasting percepts, both of which are equally viable 
for an agent to act on, but which require mutually 
exclusive processing, how does the agent determine 
which to attend? Without the appropriate criteria to 
choose between two equally plausible activities, the 
agent in effect will have to choose at random. Many 
artificial systems in the past have used ad hoc control 
heuristics to solve prioritization of activity or 
heuristically defined domain parameters (see for 
example Englemore and Morgan 1988). Here we 
suggest that at a theoretical, design, architectural and 
implementation level a consistent valencing and 
control language based may offer more to the pursuit 
of synthetic intelligent systems. That this language at 
times bears similarities to the language used to 
describe emotion and affect should not be surprising. 

Consider a highly modular architecture for a synthetic 
mind. Within this framework exist many vertical and 
horizontal modules, some highly specialized and 
responsible for specific activities and processing, some 
generic, some very localised and others more global. 
There should exist some global mechanisms that at 
least provide for context and integration of modules. It 
matters not for the time being whether the global 
mechanisms for context are based on ideas such as 
computational chemistry (Adamatzky 2003), or global 
workspaces (Baars 1997, Franklin 2001) or 
blackboards (Hayes-Roth 1993) or some combination 
or neither. Should and how can the control architecture 
make consistent decisions across these different 
modules and mechanisms? We suggest the use of 
multiple-level representation based on the idea of 
affective taxes. This will bear some similarity to 
aspects of a number of theories of emotion where they 
serve useful satisfaction for system requirements. For 
example in integrating behaviours (whether innate, 
adapted or acquired) into a skill sequence for a 
particular context, affective dissonance provides a 
fitness function to be minimized. At the individual 
module level, we require a fitness function mapping 
input to output (for example as an affordance and 
accordance over the requisite sensori-motor mapping). 
At a more abstract level, we are using a 
representational schema (Davis 2001b) as local 
blackboards for reasoning about motivations, goals 
and other forms of control states. Again we look to 
provide a consistent valencing mechanism across 
control states, behaviours and architecture levels. 

The theory of synthetic intelligent systems can 
therefore progress without the need for emotion per se 
but with a requirement for affective control states that 
can draw on theories of emotion and cognition in 
biological intelligent systems. This would mean for 
example that a synthetic system need not model or 
recognise the emotive state termed fear but recognise 
highly valenced negative internal states and 
environmental affordances that (potentially) jeopardise 
its role and tasks in its current environment. Put 
simply, theories of emotion from the cognate 
disciplines such as neurophysiology, philosophy and 
psychology can afford functional models of affect for 
synthetic systems without the need for the theorist or 
designer of synthetic systems to be concerned with the 
semantic overloading associated with specific 
emotions. Furthermore most theories of emotion 
involve body attitude or facial expression changes that 
are typically inappropriate for machines. As yet, there 
are no machines that rely on body posture or facial 
expression for inter-communication other those 
affective systems that attempt model the emotive state 
of their user (Picard 1997). Even there the interactive 
system needs only to model the emotive or affective 
state of its user, and not function in terms of emotion. 

8 Conclusion 

Recent experimental work (Nunes 2001, Bourgne 
2003) has revisited the representational structure and 
processes associated with motivators (Beaudoin 1994, 
Davis 1996), but made use of affect and affordances to 
valence the motivational constructs. Associated with 
motivational structures are attitudes to classes of 
events and entities relevant to that motivator. These 
are valenced in the same way that affordances and 
affect are valenced. The association of perception, 
behaviour and abstract representations about plans of 
actions and the relevance of actions and entities in the 
environment with agent internal worlds can now be 
defined and compared in terms of a common criteria. 
Affect and affordance become the means by which an 
agent architecture can weigh and control the 
economics of its processing. It provides a means 
whereby attention can be directed to the most relevant 
and/or pressing aspects of the interactions of the agent 
with the environment, its needs and its goals. Related 
work (Davis and Lewis 2003, 2004) suggests that 
adding a simple model affect to cognitive desire and 
intention models such as CRIBB (Bartsch and 
Wellman 1989), result in more effective processing 
and task management in resource competitive 
environments. 

Returning to the theme of the introductory paragraph, 
as the designer of artificial intelligent systems one 
could ask what is the biological analogue to the 



 

information processing complexity of the system being 
designed and developed? If it is insect, does it need 
affect or emotion and would not some other criteria be 
more appropriate? In short is there a need for emotion 
in the system. The developer of multi-media interfaces 
(Kort et al 2002) may require some form of affective 
processing in generating hypotheses about the emotive 
state of the user sat outside the video-camera within 
the interface. But does the designer of the 
computational equivalent to a grasshopper? Albeit a 
grasshopper that can manipulate text? 

The reason these questions is raised is the ongoing 
efforts of cognitive scientists across many disciplines, 
philosophers, psychologists, computer scientists, 
neurophysiologists etc., to move the theory of affect 
(and emotions) forward. The roots of current theories 
reside in folk psychology and historical theories of 
affect. Are the efforts of the practitioners in giving 
their artificial systems emotion helping this progress? 
It is suggested here that in order to make more 
substantial progress, efforts are required to provide the 
means by which we can categorise the types of 
information processing systems in existence and being 
developed, whether natural or synthetic. A means of 
providing the discriminatory criteria necessary to 
perform such conceptual analysis, built from the work 
of Sloman and others (2004) has been given here.  
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Abstract

This paper considers Damasio’s concept of thesomatic markerfrom two new perspectives. The first of these
considers them from the point of view of Dawkins’s concept of theextended phenotype. This is used to
develop the idea of theextended somatic marker, viz. a marker which uses some non-somatic feature of the
external world in a similar fashion to the somatic marker. Secondly an analogy is developed with the concept
of hardware interlocksin safety-critical systems. This is used to suggest why it is important that somatic
markers are bodily states and not just mental markers.

1 Somatic Markers

Damasio Damasio (1994) has introduced the notion of
thesomatic marker—a bodily state which plays a role in
cognition, in particular the direction of attention. More
specifically, a somatic marker is some bodily state which
is generated as the consequence of some mental process.
This state is thenreperceivedby the mind, and as a con-
sequence the mental state changed. An example of such a
marker is the rapid onset of nausea upon witnessing an act
of violence. This bodily state does not have any immedi-
ate relevance to the mental state which has generated it, in
contrast, say, to a feeling of nausea generated by viewing
a plate of rotting food. Some such states might be ex-
plained away as side-effects. For example a rapid change
of hormone levels upon witnessing violence in prepara-
tion for running from the danger might also trigger nau-
sea.

However the somatic marker hypothesis suggests that
such reactions are not mere side-effects. Instead they are
a way of generating a rapid shift of attention, using the
body state in an arbitrary fashion to draw mental atten-
tion to the current situation. The presence of the marker
in the body draws the mind’s attention towards it, and as
a consequence the mind if focused on the meaning of that
marker. It is plausible that such phenomena are exapta-
tions Gould and Lewontin (1979) from unwanted physical
reactions to change in body state as discussed above.

This can be seen as an aspect of mind which is realised
away from the usual mental substrate. The somatic re-
sponse is being used as a way of carrying out a process
(bringing the attention of many mental processes together
to focus on a single danger point) which cannot be carried
out within the computational model implemented on the

substrate.
The aim of this paper is to consider why the markers

in question need to besomaticas such. Two aspects of
this question are considered. Firstly, would it be possible
for markers to extend beyond the body? This is explored
with reference to Dawkins’s concept of theextended phe-
notype. Secondly, why is it important that such markers
be in the body, instead of being more simply realised by
mental markers? This is explored with regard to the idea
of hardware interlocksin engineering design.

2 Could “somatic” markers extend
beyond the body?

Why do markers need to beinternal body states. Is there
anything which is special to the body which means that
the markers could not instead be realised elsewhere in the
world, external to the body? Might some of our actions
in the world act as triggers to affect, perceived directly
through the usual perceptive system rather than by bodily
self-awareness?

One approach to this draws on ideas from Dawkins’s
bookThe Extended PhenotypeDawkins (1982). In biol-
ogy, thephenotypeis the expression of a gene or set of
genes in the world. This encompasses both the aspects
concerned with the physical structure of the creature and
through the ways in which genes have influences on be-
haviour. For example we can talk about the “blue-eyed”
phenotype versus the “brown-eyed phenotype” of some
animal. This is distinguished from the “genotype”, i.e.
the set of genes of interest. Sometimes more than one
genotype can give rise to the same phenotype (e.g. where
there are regressive traits).



The difficulty starts when we want to say where the
boundary of the phenotype lies. Clearly certain things are
in the phenotype for certain. A clear example of this is
the sequence of proteins associated with a particular ex-
pression of a particular gene. A standard definition would
extend this to the whole body; genes influence the growth,
development, and activity of the body (alongside other in-
fluences).

Dawkins’s argument is that it is naive to simply say
that everything inside the body should be considered to
be phenotype, whereas everything outside should not. For
example consider an imaginary species of bird in which
the male has a gene which predisposes itself to mate with
females which have blue feathers. It could be argued that
this gene is also a gene for blue feathers in the female, as
as a result of the presence of the gene blue feathers will
spread through the female population. To abstract this, the
genotype in the male bird is having a phenotypic effect in
the female bird. Why should we regard the gene’s effect
on the feathers of the female bird in any different way to
another gene which causes the male bird to have red eyes?

A similar kind of argument can be made about the so-
matic marker hypothesis. Damasio argues for a body-
minded brain in which we create emotions via “somatic
markers”. These work by parts of the brain recognizing an
emotionally charged stimulus, and then rather than creat-
ing a direct link to an action on that stimulus, the “marker”
consisting of a bodily reaction is created. This is then re-
perceived by the brain as is the basis for action or for rapid
alteration of emotional state.

Why do these markers have to be physically internal to
the body? It would seem that the same reasoning could
be applied to markers which I leave in the external world
when I have an emotion. For example if I am anxious then
I might scribble on the pad of paper in front of me, with-
out attending to this scribbling. This could then become
a marker, in this case perceived via the eyes rather than
through internal perception of bodily state. Why should it
matter whether I use a bodily state or an external state as
the substrate for the marker?

It may be that there are reasons why somatic markers
need be somatic. One could be that the speed of reac-
tion required is just too quick to be capable of being car-
ried out by the external perceptive system. Another more
convincing explanation is that the reason we use somatic
markers is to communicate with multiple brain regions in
a simultaneous and co-ordinated way, and therefore we
need something which can be perceived in a direct way
by different parts of the brain.

This might be a continuum effect. An example of a
thing which might be seen as either an external or so-
matic marker is biting nails when anxious. This is in
many ways an external physical process, nonetheless we
can perceive the nail state internally via soreness of fin-
gers. There must be other similar examples. Perhaps
nail-chewing is “causing” the anxiety (in the sense of be-
ing part of the causal chain between subconscious per-

ception of an anxiety-producing stimulus and the affec-
tive response) rather than being an epiphenomenon of the
emotional state.

3 Why do markers need to be con-
fined to the body?

So far we have considered why it is that the somatic
marker need be constrained to the body, and is it impor-
tant to make a body/non-body distinction. Now we ad-
dress the opposite question: why is it not sufficient for
the marker to be a mental marker? Why not just make
a “mental note”? Whilst there are circumstances where
a truly somatic marker can get transformed into a men-
tal process in the limbic system Damasio (1994), this is
not always the case; markers are not always transferred
in this fashion. It is interesting to consider whether there
might be reasons why the evolution of the mind might
have led to the markers being body-centred rather than
mind-centered.

One reason may be for safety. In the design of com-
plex systems involving computer-controlled mechanical
and electrical devices it is common for there to be con-
servative safety devices included in the system known as
hardware interlocksLeveson and Turner (1993); Leve-
son (1995). A hardware interlock is a device which is
independent of the main control system, and which is de-
signed to monitor just on small aspect of the system, typi-
cally by using its own sensor system. So for example in a
radiotherapy device, an interlock might exist which mon-
itors the output of radiation, and if more than a certain
amount is let out in one minute, the interlock shuts down
the device completely.

Hardware interlocks are designed to be parts of the
overall system which do not depend on the abstraction of-
fered by the overall control system. For example they do
not take information from the main system sensors, nor do
they use the main control system e.g. for timing, and they
do not sit upon the operating system abstraction used by
the controlling structure. To do this would compromise
their role as a safety-critical component; they provide a
reassurance of safety because they are separate, they are
independent from the main abstraction. If the main sen-
sors go wrong, or the builder of the controller has misun-
derstood the relationship between the abstraction offered
by the operating system and the real hardware and soft-
ware, it does not matter.

One important role in the body-mind system is to re-
act quickly and reliably to dangerous phenomena. There
would seem to be aprima faciecase for thinking that if
engineers consider the use of such hardware interlocks as
an important way of responding to danger in computer-
controlled systems, evolution may have created such in-
terlock systems for dangers to animals.

It may be that our body-grounded response to danger
is a response of this kind. Instead of making a mind-



centered judgement about the danger of a situation, we
instead make a rapid decision based on a few simple
cues. One characteristic of hardware interlocks is that
they typically work on a small number of basic sensors
which facilitate a conservative approximation to safety.
The same may be true of interlocks in the mind-body sys-
tem: our sensory system perceives a small number of sim-
ple “danger signals” (such as a rapid movement) and trig-
gers an action within the body immediately. This “mas-
sive synchronization” acts as a counterpart to the more
commonly-discussed “massive parallelism” of the neural-
network-based mind.

Typically the fact that the brain is a unified system with
all aspects connected and mutually-accessible is seen to
be to its advantage. Similarly the unity found in a com-
plex software system is often seen as being to its advan-
tage; instead of having to connect individual components
together as needed (as might be the case in an electronic
system) all information is passed to a central repository
and accessed as needed. However in some situations it
is necessary both with computers and with minds for the
complete attention of the system to be directed towards
one thing. Hardware interlocks provide a way for such
responses to “leap out” of the complexity of the con-
trol software for certain emergency situations. This non-
decomposability, and the consequent need for a power-
ful way of leaping out of the complex interactions, would
seem to be particularly strong for neural-network-based
systems where the system is highly non-decomposable.
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Abstract 

 
This paper describes an emotional-based planner that combines the technique of decision-theoretic planning with the 
methology of HTN planning in order to deal with uncertain, dynamic large-scale real-world domains. We explain how 
plans are represented, generated and executed. Unlike in regular HTN planning, this planner can generate plans in do-
mains where there is no complete domain theory by using cases instead of methods for task decomposition. The planner 
generates a variant of a HTN - a kind of AND/OR tree of probabilistic conditional tasks - that expresses all the possible 
ways to decompose an initial task network. The expected utility of alternative plans is computed beforehand at the time of 
building the HTN. Two approaches are proposed for this computation: based on motivational information collected from 
past executions of tasks (a kind of somatic-markers) or given by mathematical functions. The planner is used by agents 
inhabiting unknown, dynamic environments. 

 
 
1   Introduction 
 
Hierarchical Task Network (HTN) planning is a plan-
ning methology that is more expressive than STRIPS-
style planning (Erol, Hendler, & Nau, 1994). Given a 
set of tasks that need to be performed (the planning 
problem), the planning process decomposes them into 
simpler subtasks until primitive tasks or actions that 
can be directly executed are reached. Methods provided 
by the domain theory indicate how tasks are decom-
posed into subtasks. However, for many real-world 
domains, sometimes it is hard to collect methods to 
completely model the generation of plans. For this rea-
son an alternative approach that is based on cases of 
methods has been taken in combination with methods 
(Muñoz-Avila et al., 2001). 

Real-world domains are usually dynamic and uncer-
tain. In these domains actions may have several out-
comes, some of which may be more valuable than oth-
ers. Planning in these domains require special tech-
niques for dealing with uncertainty. Actually, this has 
been one of the main concerns of the planning research 
in the last years, and several decision-theoretic plan-
ning approaches have been proposed and used success-
fully, some based on the extension of classical plan-
ning and others on Markov-Decision Processes (see 
(Blythe, 1999; Littman & Majercik, 1997) for a sur-
vey). In these decision-theoretic planning frameworks 
actions are usually probabilistic conditional actions, 
preferences over the outcomes of the actions is ex-
pressed in terms of an utility function, and plans are 
evaluated in terms of their Expected Utility (EU) 
(Russel & Norvig, 1995). The main goal is to find the 
plan or set of plans that maximizes an EU function, i.e, 

to find the optimal plan. However, this might be a 
computationally complex task. 

Considered by many authors as the principal motiva-
tional system, emotion is one of the sub-systems that 
compose personality (Izard, 1991). Another important 
sub-system is the drive system (also an important kind 
of the motivational system). Psychological and neuro-
science research over the past decades suggests that 
emotions play a critical role in decision-making, action 
and performance, by influencing a variety of cognitive 
processes (e.g., attention (Izard, 1991; Meyer, Reisen-
zein, & Schützwohl, 1997; Ortony & Partridge, 1987; 
Reisenzein, 2000), planning (Gratch, 1999), etc.). Ac-
tually, on the one hand, recent research in neuroscience 
(Damásio, 1994; LeDoux, 1996) supports the impor-
tance of emotions on reasoning and decision-making. 
For instance, results from recent studies of patients 
with lesions of the prefrontal cortex suggest an impor-
tant role of emotions in decision-making. On the other 
hand, there are a few theories in psychology relating 
motivations (including drives and emotions) to action 
(Izard, 1991). For instance, in the specific case of emo-
tions, as outlined by (Reisenzein, 1996), within the 
context of the belief-desire theories of action (the 
dominant class of theories in today’s motivation psy-
chology) there have been proposals such as that emo-
tions are action goals, that emotions are or include ac-
tion tendencies, that emotions are or include goal-
desires, and that emotions are mental states that gener-
ate goal-desires. 

In this paper we propose an emotional-based ap-
proach for decision-theoretic planning, HTN planning. 
In this approach, actions have several outcomes, each 
one eliciting different emotions, drives and other moti-



vations (elicited by the objects perceived). This 
motivational information is collected from past 
executions of tasks (a kind of somatic-markers) or 
given by mathematical functions. The selection of 
actions is based on their EU, which is measured in 
terms of this motivational information, i.e., based on 
the intensity of the emotions, drives and other 
motivations it may elicit. The planner combines the 
technique of decision-theoretic planning with the 
methology of HTN planning in order to deal with un-
certain, dynamic large-scale real-world domains. 
Unlike in regular HTN planning, we don’t use methods 
for task decomposition, but instead cases of plans. The 
planner generates a variant of a HTN - a kind of 
AND/OR tree of probabilistic conditional tasks - that 
expresses all the possible ways to decompose an initial 
task network. The EU of tasks and consequently of the 
alternative plans is computed beforehand at the time of 
building the HTN.  

The next section describes the features of the planner 
related with plan representation. Section 3 presents the 
plan generation process and section 4 the plan execu-
tion and replanning process. Finally, we present the 
related work, and present conclusions and future work. 
 
2   Plan Representation 
 
Within our approach we may distinguish two main 
kinds of plans: concrete plans, i.e., cases of plans 
(Kolodner, 1993), and abstract plans. Concrete plans 
and abstract plans are interrelated since concrete plans 
are instances of abstract plans and these are built from 
concrete plans. Since the concept of abstract plan sub-
sumes the concept of concrete plan, let us first describe 
the representation issues related with abstract plans and 
then present the main differences between concrete 
plans and abstract plans. 
We represent abstract plans as a hierarchy of tasks (a 
variant of HTNs (e.g., (Erol et al., 1994; Nau, Muñoz-
Avila, Cao, Lotem, & Mitchell, 2001)) (see Figure 1). 
Formally, an abstract plan is a tuple AP = <T, L>, 
where T is the set of tasks and L is the set of links. 
More precisely, we represent an abstract plan by a hi-
erarchical graph-structured representation comprising 
tasks (represented by the nodes) and links (represented 
by the edges). We adopted the adjacency matrix ap-
proach to represent these graphs (Macedo & Cardoso, 
1998). The links may be of hierarchical (abstraction or 
decomposition), temporal, utility-ranking or adaptation 
kind. This structure has the form of a planning tree 

(Lotem & Nau, 2000), i.e., it is a kind of AND/OR tree 
that expresses all the possible ways to decompose an 
initial task network. Like in regular HTNs, this hierar-
chical structure of a plan comprises primitive tasks or 
actions (non-decomposable tasks) and non-primitive 
tasks (decomposable or compound tasks). Primitive 
tasks correspond to the leaves of the tree and are di-
rectly executed by the agent, while compound tasks 
denote desired changes that involve several subtasks to 
accomplish it. For instance, the leaf node driveTruck of 
Figure 1 is a primitive task, while inCityDel is a com-
pound task. The decomposition of a compound task 
into a sequence of subtasks is represented by linking 
the compound task to each subtask by a hierarchical 
link of type decomposition (denoted by dcmp). This 
corresponds to an AND structure. In addition, a hierar-
chical plan may also include special tasks in order to 
express situations when a decomposable task has at 
least two alternative decompositions. Thus, these spe-
cial tasks are tasks whose subtasks are heads of those 
alternative decompositions. We called abstract tasks to 
those special decomposable tasks because they may be 
instantiated by one of their alternative subtasks. Thus, 
they are a kind of abstractions of their alternative in-
stances. Notice that the subtasks of an abstract task 
may themselves be abstract tasks. This decomposition 
of abstract tasks into several alternative instances is 
expressed by linking the abstract task to each subtask 
by a hierarchical link of type abstract (denoted by 
abst). This corresponds to an OR structure. As we said, 
in addition to hierarchical links that express AND or 
OR decomposition (dcmp and abst), there are also tem-
poral, utility-ranking and adaptation links between 
tasks. Temporal links are just like in regular HTNs. We 
followed the temporal model introduced by (Allen, 
1983). Thus, links such as after, before, during, over-
lap, etc., may be found between tasks of an abstract 
plan. Utility-ranking links (denoted by more_useful) 
are used between subtasks of abstract tasks in order to 
express a relation of order with respect to their EU, i.e., 
the head tasks of the alternative decompositions of a 
given abstract task are ranked according to the EU of 
their decompositions. Adaptation links (Kolodner, 
1993) are useful to generate an abstract plan from sev-
eral plan cases. They explain how tasks and their com-
ponents are related in a plan and therefore they explain 
how to adapt portions of cases of plans when they are 
reused to construct an abstract plan. 
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Figure 1 - Example of an abstract plan. Primitive tasks are represented by thick ellipses while non-primitive tasks are 
represented by thin ellipses. Dashed, thick arrows represent abst links, while thin arrows represent dcmp links. 
 
 

A task T is both conditional and probabilistic (e.g.: 
(Blythe, 1999; Haddawy & Doan, 1994; Younes, 
2003)). This means each primitive task has a set of 
conditions C={ c1, c2, ..., cm} and for each one of these 
mutually exclusive and exhaustive conditions, ci, there 
is a set of alternative effects εi={< ip1 , iE1 >, < ip2 , iE2 >, 
..., < i

ni
p , i

ni
E >}, where i

jE  is the jth effect triggered with 
probability i

jp  ∈ [0,1] by condition ci (i.e., 

i
ji

i
j pcEP =)|( ), and such that ∑

=

=
in

j

i
jp

1

1 . Figure 2 pre-

sents the structure of a task. The probabilities of condi-
tions are represented in that structure although we as-
sume that conditions are independent of tasks. Thus, 
P(ci|T)=P(ci). The main reason for this is to emphasize 
that the EU of a task, in addition to the probability of 
effects, depends on the probability of conditions too. In 
addition to conditions and effects, a task has other in-
formation components. Formally, a task (primitive or 
not) may be defined as follows. 

Definition. A task is a tuple <PS, ID, TT, AID, DO, 
IO, ST, ET, SL, EL, PR, A, EP, EU, P>, where: PS is 
the set of preconditions that should be satisfied so that 
the task can be executed; ID is the task’s identifier, i.e., 
an integer that uniquely identifies the task in a plan; TT 
is the task category (e.g.: driveTruck, transport); AID 
is the identifier of the agent that is responsible for the 
execution of the task; DO is the direct object of the 
task, i.e., the identifier of the entity that was subjected 
to the task directly (e.g.: for a task of type driveTruck, 
the direct object is the object - its id - to be driven; for 
a task of type transport, the direct object is the entity 
that is transported – for instance, a package); IO is the 
indirect object of the task, i.e., the answer to the ques-
tion “To whom?” (e.g.: for a task of type give, the indi-
rect object is the entity that receives the entity (the di-
rect object) that is given – for instance, the person who 

receives money); ST is the scheduled start time of the 
task; ET is the scheduled end time of the task; SL is the 
start location of the agent that is responsible for execut-
ing the task; EL is the end location of the agent that is 
responsible for the execution of the task; PR is a boo-
lean value that is true when the task is primitive; A is a 
boolean value that is true when the task is abstract (for 
primitive tasks it is always false); EP is the set of alter-
native probabilistic conditional effects of the task, i.e., 
EP = {<ci,εi>: 1=< i <=m}; EU is the Expected Utility 
of the task; P is the probability of the task (this is al-
ways 1.0 for every task except the heads of alternative 
decompositions of an abstract task as we’ll explain 
below). 

Although non-primitive tasks are not directly 
executable by an agent, they are represented like 
primitive tasks. Therefore, some of the components are 
meaningful only for primitive tasks. However, others 
such as the set of alternative probabilistic conditional 
effects are essential for the ranking of the alternative 
decompositions of the abstract tasks in terms of the 
EU. That is why the set of conditional probabilistic 
effects and other meaningful properties are propagated 
upward through the hierarchy from the primitive tasks 
to the non-primitive tasks (this propagation will be 
explained in detail below). 

Each effect (see Figure 2) comprises itself a few 
components of several kinds such as temporal, emo-
tional, etc. These components may be of two kinds: 
non-procedural and procedural. The non-procedural 
(factual) component refers to the data collected from 
previous occurrences of the effect (contains the dura-
tion of the task, the emotions and respective intensities 
felt by the agent, the fuel consumed, etc., in previous 
executions of the task as stored in cases of plans). The 
procedural component refers to the process through 
which the temporal, emotional and other kinds of data 
may be computed (contains descriptions or rules of 
how to compute the components). Since the non-



procedural component of an effect may differ in differ-
ent occurrences of a task (the duration of the task may 
be different, the emotions may be different, etc.), ef-
fects of tasks belonging to abstract plans may store the 
probability distributions for each variable (see Figure 
2). 
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PS:truckAt(SL)
ID:1
TT:driveTruck
AID:1
DO:truck1
IC:
ST:0
ET:20
SL:0,0,1
EL:0,0,7
P:true
A:false
EU:0.7
P:1.0

NPC:∆time={<20,0.55>,<19,0.45>};
∆fuel={-10,0.55>,<-11,0.45>};
truckAt(EL),
aver_vel=90Km/h;
happiness=0.5,surprise=0;
----------------------------
dist=EL-SL
∆time=vel x dist
∆fuel=startFuel-(c x dist)
Fuel=startFuel-∆fuel
truckAt(EL)

NPC:∆time={<30,1.0>};
∆fuel={<-20,1.0>}
truckAt(0,0,5),
aver_vel=60Km/h;
happiness=0,surprise=0.7;
anger=0.7;
----------------------------
dist=(OL)-SL
∆time=vel x dist
∆fuel=startFuel-(c x dist)
fuel=startFuel-∆fuel
truckAt(OL), truckCrashed

wetRoad
0.18

dryRoad
0.82

0.75

0.25

NPC:∆time={<15,0.55>,<16,0.45>};
∆fuel={-7,0.55>,<-8,0.45>};
truckAt(EL),
aver_vel=90Km/h;
EC:happiness=0.8,surprise=0;
----------------------------
dist=EL-SL
∆time=vel x dist
∆fuel=startFuel-(c x dist)
Fuel=startFuel-∆fuel
truckAt(EL)

1.0

 
Figure 2 - Schematic representation of a task in abstract 
plan: general form and example. 

 
Formally, an effect may be defined as follows. 
Definition. An effect is a tuple <ID, EC, EU, P, 

NPC, PC>, where: ID is the identifier of the effect, i.e., 
an integer value that uniquely identifies the effect in 
the list of effects of the task; EC is the effect category 
to which it belongs (like tasks, effects are classified 
into categories); EU is the utility value (expected utility 
value for the case of tasks in abstract plans) of the ef-
fect; P is the probability value of the effect, i.e., the 
relative frequency of the effect (this gives us the num-
ber of times the effect occurred given that the task and 
the condition that triggers it occurred); NPC is the non-
procedural component; PC is the procedural compo-
nent. 
 

Cases of plans share most of the features of abstract 
plans being also of hierarchical nature. The major dif-
ferences are: unlike abstract plans, cases of plans don’t 
have OR structures and consequently don’t have ab-
stract tasks; the primitive tasks have a probability of 
1.0 (otherwise they won’t belong to the case) and can 
only have a conditional effect since the conditions are 
mutually exclusive and exhaustive. Notice that, al-
though a non-primitive task of a case of a plan may 
exhibit an effect, this is not relevant, since in real world 
only the primitive tasks are executable. However, the 
way a non-primitive task was decomposed is of pri-
mary importance for the generation of abstract plans as 
we will explain in the following section. Figure 3 
shows an example of two cases of plans which are in-
stances of the abstract plan presented in Figure 1, while 
Figure 4 presents an example of a primitive task which 
is an instance of the primitive task of an abstract plan 
presented in Figure 2. 
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Figure 3 - Example of a case-base with two concrete plans (instances of the abstract plan of Figure 1). 

 
 
 

task ci1.0 i
kE

wetRoad

PS:truckAt(SL)
ID:1
TC:driveTruck
AID:1
DO:truck1
IC:
ST:0
ET:20
SL:0,0,1
EL:0,0,7
PR:true
A:false
EU:0.7
P:1.0

NPC:∆time=20;
∆fuel=-10;
 truckAt(EL),
aver_vel=90Km/h;
happiness=0.5,
surprise=0;
----------------------------
dist=EL-SL
∆time=vel x dist
∆fuel=startFuel-(c x dist)
Fuel=startFuel-∆fuel;
truckAt(EL)

1.0

 
Figure 4 - Schematic representation of a task in an in-
stance plan: general form and example. 

 
3   Plan Generation 
 
Since the planner is used by an agent that is part of a 
multi-agent environment, in order to solve a planning 
problem, the agent should have in memory the 
information of the initial state of the environment. This 
comprises a three-dimensional metric map of the envi-
ronment (Thrun, 2002) in which inanimate and other 
animate agents are spatially represented. Figure 5 pre-
sents an example of a metric map that represents an 
initial state of world. 
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Figure 5 – Example of the metric map of an initial state 
of the environment in the logistics domain. It com-
prises: one truck (truck1) located at coordinates 
(11,0,0); three packages, pk1, pk2 and pk3, located at, 
respectively, (8,0,0), (10,3,0) and (4,3,0); and, one 
plane located at the airport with coordinates (2,1,0). 

 
A problem is an initial and incomplete HTN, i.e., a 

set of goal tasks. Planning is a process by which that 
initial HTN is completed resulting an abstract plan 
ready to be executed and incorporating alternative 
courses of action, i.e., it includes replanning proce-
dures. Roughly speaking, this involves the following 
steps: first, the structure of the abstract plan (HTN) is 
built based on cases of past plans (this is closely related 
to the regular HTN planning procedure); then the con-
ditional effects, probabilities are computed based on 
the primitive tasks of cases of past plans; the EU is 
computed for the primitive tasks of this abstract plan 
based on the procedural or non-procedural components 
of their effects; finally, these properties (conditional 
effects and respective probabilities, and EU) are propa-
gated upward in the HTN, from the primitive tasks to 
the main task of the HTN. Figure 6 presents this algo-
rithm. 
 



Algorithm CONSTRUCT-ABSTRACT-PLAN(abstPlan) 
 abstPlan ← BUILD-STRUCTURE(abstPlan) 
 primTasks ← getPrimTasks(abstPlan) 
 primTasksAllPlanCases← getPrimTasksAllPlanCases() 
 COMPUT-PRIMTASKS-
PROPS(primTasks,primTasksAllPlanCases) 
 abstPlan←PROPAGAT-PROPS-UPWARD(primTasks,abstPlan) 
 return abstPlan 
end 

Figure 6 - Algorithm for the construction of an abstract 
plan. 

 
3.1   Building the Structure of the Abstract 
Plan 
 
Much like regular HTN planning, building the abstract 
plan is a process by which the initial HTN is completed 
through the recursively decomposition of its compound 
tasks. Unlike regular HTN planning, within our ap-
proach the domain theory (methods and operators in 
regular HTN planning) is confined to a finite set of 
actions/operators. Thus there are no explicit methods to 
describe how to decompose a task into a set of sub-
tasks. Actually, methods are implicitly present in cases 

of past plans (see (Muñoz-Avila et al., 2001) for a 
similar approach). This is particularly useful in do-
mains where there is no theory available. Therefore, 
the process of decomposing a task into subtasks is 
case-based and is performed as follows. Given a task, 
the possible alternative decompositions (task and its 
subtasks, as well as the links between them) are re-
trieved from cases of past plans. Two situations might 
happen. If there are more than one alternative decom-
position, the given task is set as abstract and the set of 
decompositions are added to the HTN, linking each 
head task to the abstract task through a hierarchical link 
of type abst. Thus these head tasks are now the sub-
tasks of the abstract task (see Figure 7 for an illustra-
tion of this process). On the other hand, if only one 
decomposition is retrieved, its subtasks are added as 
subtasks of the given task, linked by a hierarchical link 
of type dcmp (see Figure 8 for an illustration of this 
process). Whether a single decomposition or multiple 
decompositions are retrieved, the addition of it/them 
comprises an adaptation process (Kolodner, 1993), i.e., 
the retrieved decomposition(s) is/are changed if neces-
sary so that it/they is/are consistent with the rest of the 
HTN. 
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transport
transport
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decomposition:

transport

transport

inCityDel airDe inCityDel

transport
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Figure 7 - Illustrative example of an OR-decomposition of an abstract task. 

 



Retrieved decompositions for
task airDel:

Current abstract plan
(incomplete):

Abstract plan (incomplete)
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Figure 8 - Illustrative example of an AND-decomposition of a regular compound task.

 

 
 

The process of building the HTN ends when there is 
no more compound tasks to decompose, i.e., when the 
leaves of the tree are primitive tasks, or when there is 
no available decompositions in the case-base for at 
least one compound task. 

Within our approach, a task belonging to an HTN 
has a probability value associated to it. This value ex-
presses the probability of being executed given that its 
ancestor is executed. Thus, this probability is actually a 
conditional probability. Obviously, the probability of a 
task belonging to a case of a past plan is always 1.0 
because it was executed (otherwise it won’t belong to 
the case). The probability of the tasks belonging to an 
abstract plan is computed during the process of build-
ing the HTN as follows. Given the ith subtask, STi, of a 
task T both belonging to an abstract plan, the probabil-
ity of STi be executed given that T is executed is given 
by the conditional probability for-
mula

)(
)(

)/(
TP

TSTPTSTP i
i

∩
= . Since within our approach 

there is no probabilistic model available, these prob-
abilities have to be computed from data, i.e., from past 
occurrences of the tasks in cases of past plans, in the 
following manner. According to the frequency interpre-

tation of probability, in r repetitions of an experiment, 
the value P(X) is given by the number of times X oc-
curred in the possible r times. This value is given by 
Sr(X)/r, where Sr(X) denotes the absolute frequency of 
X (i.e., the number of times X occurred in the r repeti-
tions of the experiment). As r increases, Sr(X)/r con-
verges to P(X). In the context of HTN planning, the 
experiment should be understood as the decomposition 
of a task into subtasks. According to this frequentist 
approach of probability it can be shown that, 

)(
)(

)(
)()/(
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TSTS

TP
TSTPTSTP

r
iri

i
∩=∩= , when r is big. Thus, 

this expresses the number of times STi and T occurred 
together in the total amount of times T occurred, or in 
the context of HTN planning, this expresses the num-
ber of times STi was subtask of T in the total amount of 
times T was the task decomposed in past HTN plans. 
When STi is not a head of an alternative decomposition 
in the new plan (i.e., when T is not an abstract task), it 
means that T was always decomposed in the same way 
in past plans, i.e., into the same subtasks, which means 
STi occurred always when T occurred, otherwise STi 
won’t be subtask of T. Thus, in this situation, the nu-
merator and denominator of the above equation are 
equal and therefore P(STi/T)=1.0. However, when STi 
is a head of an alternative decomposition, it means 



there were more than one way to decompose T in past 
plans, one of them being the decomposition headed by 
STi. Thus, counting the number of times the decompo-
sition headed by STi was taken to decompose T, i.e., the 
number of times STi instantiated T, )( TSTS ir ∩ , in all 
past plans and dividing this number by the number of 
times T was decomposed, i.e., )(TSr , yields the value 
for P(STi/T) for this situation. 

After the abstract HTN is built, the conditional ef-
fects (and respective probabilities) and the EU are 
computed for the primitive tasks. 
 
3.2   Motivation and Emotion-based Com-
putation of the EU 

 
As said above, a task T is both conditional and prob-
abilistic (e.g.: (Blythe, 1999)). Thus, the execution of a 
goal task under a given condition may be seen accord-
ing to Utility Theory as a lottery (Russel & Norvig, 
1995): 
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, where ip  is the probability of the condition ci, i
jp  

is the probability of the jth effect, i
jE , of condition ci. 

The EU of T may be then computed as follows: 

∑ ××=
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k
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k
j

k EEUppTEU
,
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The computation of )( k
jEEU  is performed predicting 

the motivations that could be elicited by achiev-
ing/executing the goal task (Castelfranchi, Conte, Mi-
celi, & Poggi, 1996; Reisenzein, 1996). We confined 
the set of motivations to surprise, curiosity and hun-
ger1. As said above, two methods may be used for pre-
dicting the intensities of those motivations: based on 
the non-procedural component of the effects, or based 
on the procedural component. 

If we take into account the procedural component of 
the effects, the intensities of surprise, curiosity and 
hunger felt by the agent when the effect takes place are 
estimated based on the information available in the 
effect about the changes produced in the world. 

Surprise is given by (Macedo & Cardoso, 2001a): 

)(1
))(,(),(

k
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MemAgtObjNESSUNEXPECTEDObjAgtSURPRISE
−=

==

 
, where Objk is the direct object of task T when k

jE  
takes place, i.e., the entity that is visited (for the case of 
exploratory behaviour). 

 
Curiosity is computed as follows (Macedo & Car-

doso, 2001b): 
))(,(),( MemAgtObjDIFFERENCEObjAgtCURIOSITY kk =  

                                                 
1 The agents that make use of the planning approach de-
scribed in this paper have been used to explore unknown 
environments, and to create things. Among motivations, sur-
prise, curiosity and hunger have been closely related with this 
exploratory and creative behaviour (Berlyne, 1950; Boden, 
1995; Izard, 1991). 

 
The measure of difference relies heavily on error 

correcting code theory (Hamming, 1950): the function 
computes the distance between two objects represented 
by graphs, counting the minimal number of changes 
(insertions and deletions of nodes and edges) required 
to transform one graph into another. 

The drive hunger is defined as the need of a source 
of energy. Given the capacity C of the storage of that 
source, and L the amount of energy left (L ≤ C), the 
hunger elicited in an agent is computed as follows: 

HUNGER(Agt)=C-L 
 
The following function is used to compute )( k

jEEU : 
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, where, α2 = -1 and αi (i≠2) may be defined as fol-
lows: 
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, where D is the amount of energy necessary to go 

from the end location of goal task T to the closer place 
where energy could be recharged, and C is the maxi-
mum amount of energy that could be stored by the 
agent. 

If we take into account the non-procedural compo-
nent of the effects, we avoid the computations of the 
intensities of the motivations. In fact, doing so, we are 
taking into account the intensities of the emotions, 
drives and other motivations in previous occurrences of 
the tasks and respective effects. This emo-
tional/motivational information collected from previ-
ous occurrences of a task is a kind of Damásio’s so-
matic marker. For this reason, tasks are called somati-
cly-marked tasks. When a task is about to occur again, 
the planning agent may compute its EU based on this 
data. In fact, this seems to be faster than the alternative 
approach of estimating the emotions that a task may 
elicit based on the values of the variables of the state of 
the world such as the time duration, fuel consumed, 
etc. Anyway, the same formula (present above) is used 
to compute )( k

jEEU . 
 
3.3   Propagation of the Properties Upward 
 
After the primitive tasks have the conditional effects 
and respective probabilities, the probability and EU 
computed, these properties are propagated bottom-up 
(from primitive to non-primitive tasks), from the sub-



tasks to the task of a decomposition and from the sub-
tasks (heads of alternative decompositions) to the ab-
stract task of an abstract decomposition). Notice how-
ever that the goal of this propagation is twofold: to 
complete the non-primitive tasks so that they can be 
ranked according to their EU when they are heads of 
alternative decompositions, and to know the overall EU 
of the abstract plan which is given by the EU of the 
main task of the plan. 
 
4   Plan Execution and Replanning 
 
Finding the optimal plan consists simply of traversing 
the abstract plan, selecting the most EU subtask of an 
abstract task. Backtracking occurs when an alternative 
decomposition fails execution. In this case, the next 
alternative decomposition that follows the previous in 
the EU ranking is selected for execution. 
 
5   Related Work 
 
Our work is closely related to HTN planning. This 
methology has been extensively used in planning sys-
tems such as UMCP (Erol et al., 1994), SHOP and 
SHOP2 (Nau et al., 2001). Unlike these planners, the 
planner presented in this paper don’t use methods as 
part of the domain theory for task decomposition, but 
instead methods that are implicitly included in cases 
that describe previous planning problem solving ex-
periences. SiN (Muñoz-Avila et al., 2001) also uses a 
case-based HTN planning algorithm, in which cases 
are instances of methods. 

Among decision-theoretic planners, DRIPS 
(Haddawy & Doan, 1994) is probably the most closely 
related to the planner presented here. Actually, DRIPS 
shares a similar representation approach for abstract 
plans (an abstraction/decomposition hierarchy) and for 
actions. Besides, it also returns the optimal plan ac-
cording to a given utility function. However, in con-
trast to DRIPS, in our planner the variant of a HTN that 
represents abstract plans is automatically built from 
cases and not given as input for the planning problem. 
Besides, it includes temporal, utility ranking and adap-
tation links in addition to decomposition links. Another 
major difference is that, in our planner, the EU of tasks 
and of alternative plans are computed when the abstract 
plan is built, while in DRIPS this occurs when the op-
timal plan is searched. Besides, in our planner, there is 
the possibility of computing the EU of tasks based on 
the non-procedural component of their effects, which 
avoids some additional computations at the cost of be-
ing less accurate. Moreover, finding the optimal plan in 
our planner consists simply of traversing the HTN with 
backtracking (or replanning) points located at the sub-
tasks of an abstract task. In our planner the propagation 
of properties upward in the hierarchy is closely related 
with the approach taken in DRIPS for abstracting ac-
tions (Haddawy & Doan, 1994). A propagation of 
properties in the planning tree, bottom-up and left-to-
right, is also used in GraphHTN (Lotem & Nau, 2000) 
in order to improve the search algorithm. 

Another important work that addressed planning in 
agents inhabiting dynamic, uncertain environments is 
that of (Wilkins, Myers, & Wesley, 1994). 

The relationship between emotions and plans has 
been considered previously by several authors (e.g.: 
(Bates, 1994; Gratch, 1999; Oatley & Johnson-Laird, 
1987; Simon, 1967; Sloman, 1987)). Our main addi-
tional contribution to this works is considering somati-
cly-marked tasks (Damásio, 1994). 
 
6   Conclusions and Future Work 
 
We have presented an approach for decision-theoretic, 
HTN planning. In this approach emotions and motiva-
tions play a central role in that the EU of the tasks is 
based on the intensity of the emotions and other moti-
vations they elicit. Two approaches have been pro-
posed to compute the EU of tasks based on motiva-
tions: based on the procedural or non-procedural (fac-
tual) component of the effects of the tasks. The latter 
approach seems to be faster and is deeply related with 
Damásio’s somatic-marker hypothesis. However, addi-
tional experiments are required to assess these ideas. In 
the future, we plan to perform such experiments. 
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