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The AISB’08 Convention: Communication, Interaction and Social Intelligence

As the field of Artificial Intelligence matures, AI systems begin to take their place in human society as our helpers. Thus it

becomes essential for AI systems to have sophisticated social abilities, to communicate and interact. Some systems support

us in our activities, while others take on tasks on our behalf. For those systems directly supporting human activities,

advances in human-computer interaction become crucial. The bottleneck in such systems is often not the ability to find

and process information; the bottleneck is often the inability to have natural (human) communication between computer

and user. Clearly such AI research can benefit greatly from interaction with other disciplines such as linguistics and

psychology. For those systems to which we delegate tasks: they become our electronic counterparts, or agents, and they

need to communicate with the delegates of other humans (or organisations) to complete their tasks. Thus research on

the social abilities of agents becomes central, and to this end multi-agent systems have had to borrow concepts from

human societies. This interdisciplinary work borrows results from areas such as sociology and legal systems. An exciting

recent development is the use of AI techniques to support and shed new light on interactions in human social networks,

thus supporting effective collaboration in human societies. The research then has come full circle: techniques which

were inspired by human abilities, with the original aim of enhancing AI, are now being applied to enhance those human

abilities themselves. All of this underscores the importance of communication, interaction and social intelligence in current

Artificial Intelligence and Cognitive Science research.

In addition to providing a home for state-of-the-art research in specialist areas, the convention also aimed to provide

a fertile ground for new collaborations to be forged between complementary areas. Furthermore the 2008 Convention

encouraged contributions that were not directly related to the theme, notable examples being the symposia on “Swarm

Intelligence” and “Computing and Philosophy”.

The invited speakers were chosen to fit with the major themes being represented in the symposia, and also to give a

cross-disciplinary flavour to the event; thus speakers with Cognitive Science interests were chosen, rather than those with

purely Computer Science interests. Prof. Jon Oberlander represented the themes of affective language, and multimodal

communication; Prof. Rosaria Conte represented the themes of social interaction in agent systems, including behaviour

regulation and emergence; Prof. Justine Cassell represented the themes of multimodal communication and embodied

agents; Prof. Luciano Floridi represented the philosophical themes, in particular the impact on society. In addition there

were many renowned international speakers invited to the individual symposia and workshops. Finally the public lecture

was chosen to fit the broad theme of the convention – addressing the challenges of developing AI systems that could take

their place in human society (Prof. Aaron Sloman) and the possible implications for humanity (Prof. Luciano Floridi).

The organisers would like to thank the University of Aberdeen for supporting the event. Special thanks are also due to

the volunteers from Aberdeen University who did substantial additional local organising: Graeme Ritchie, Judith Masthoff,

Joey Lam, and the student volunteers. Our sincerest thanks also go out to the symposium chairs and committees, without

whose hard work and careful cooperation there could have been no Convention. Finally, and by no means least, we would

like to thank the authors of the contributed papers – we sincerely hope they get value from the event.

Frank Guerin & Wamberto Vasconcelos
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Logic and the Simulation of Interaction and
Reasoning: Introductory Remarks.

Benedikt Löwe 1

Abstract. This introductory note provides the background
for the symposium “Logic and the Simulation of Interaction
and Reasoning”, its motivations and the 15 papers presented
at the symposium.

1 INTRODUCTION

In the past years, logicians have become more and more in-
terested in the phenomenon of interaction. The area “Logic
and Games” deals with the transition from the static logi-
cal paradigm of formal proof and derivation to the dynamic
world of intelligent interaction and its logical models. A num-
ber of conferences and workshops such as the LOFT (“Logic
and the Foundations of Game and Decision Theory”) series,
the 7th Augustus de Morgan Workshop in London [November
2005; [1]], the Royal Academy Colloquium ‘New perspectives
on Games and Interaction’ in Amsterdam [February 2007])
have been dealing with logic in game and decision theory
and dynamic logics with announcement and action opera-
tions. Fruitful technical advances have led to deep insights
into the nature of communicative interaction by logicians.

This new direction of logic has quickly gained momentum
and support. In 2006, a Marie Curie Research Training Site
GLoRiClass (“Games in Logic Reaching Out for Classical
Game Theory”) was opened in Amsterdam, providing gradu-
ate student training for a large number of PhD students. In
2007, the European Science Foundation has recognized this
direction as one of the foremost research developments for
the European science community and created a collaborative
research platform called “LogICCC – Modelling intelligent in-
teraction”. Later in 2007, a new book series entitled “Texts
in Logic and Games” was launched by Amsterdam University
Press.

While these interactive aspects are relatively new to logi-
cians, on a rather different level, modelling intelligent inter-
action has been an aspect of the practical work of computer
game designers for a long time. Pragmatic questions such as
‘What makes a game/storyline interesting’, ‘What makes an
reaction natural’, and ‘What role do emotions play in game
decisions’ have been tackled by practicing game programmers.
The practical aspects of computer gaming reach out to a wide

1 Institute for Logic, Language and Computation, Universiteit van
Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam,
The Netherlands; bloewe@science.uva.nl; Department Math-
ematik, Universität Hamburg, Bundesstrasse 55, 20146 Ham-
burg, Germany; Mathematisches Institut, Rheinische Friedrich-
Wilhelms-Universität Bonn, Beringstraße 1, 53115 Bonn, Ger-
many.

interdisciplinary field including psychology and cognitive sci-
ence.

So far, there are only a few cross-links between these
two communities. A number of logicians have applied logical
methods for concrete games, such as van Ditmarsch’s analy-
sis of Cluedo [2], Sevenster’s analysis of Scotland Yard [6, 7],
and the new TACTICS project of van Benthem and van den
Herik (represented at this symposium by the joint paper by
Schadd, Winands, van den Herik, and Aldewereld).

Our symposium will explore the possibilities of joining the
theoretical approach to interaction and communication with
the practical approach to simulating behaviour. We would like
to include purely logical aspects, cognitive and psychological
aspects (including empirical testing of formal models), and
pragmatic aspects.

2 A CASE FOR LOGIC

In § 1, we mentioned that questions such as ‘What makes a
game/storyline interesting’, ‘What makes an reaction natu-
ral’, and ‘What role do emotions play in game decisions’ are
relevant for game programmers and designers.

For more combinatorial games, such as strategic board
games, the first question can be phrased as ‘What techni-
cal properties of a game make it fun to play?’. In order to be
enjoyable, a board game should neither be too complicated
(as it would become frustrating) nor to simple (as it would
become boring). A number of games that are played in prac-
tice have been found to be NP-complete2. Could it be that
this technical notion from theoretical computer science is a
good indicator for when a game is interesting?3

A different type of modelling can be found in interactive
games, for instance the computer role playing games, in which
the human player plays the role of some fictitious personal-
ity interacting with artificial agents, the so-called “non-player
characters” (NPCs).

In these games, modelling interaction and behaviour be-
comes central and it is here that modern logic techniques such
as dynamic logic, epistemic logic and variuous approaches to
multi-agents systems could become useful.

2 For instance, Minesweeper [3], Sudoku [8], Battleships [5], and
Scotland Yard [6, 7]

3 Personally, I think that this is rather unlikely, as NP-
completeness is a property of a family of games parametrized
by some number, typically the size of the game board, whereas
the games that are actually played are always of one fixed pa-
rameter and thus oblivious to the fact that the family itself is
NP-complete.
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Logicians have developed logics in which we can formally
reason about states of knowledge, states of belief, intentions,
actions, consequences of our actions and combinations of all
these. As an example consider the paper [4] by Eric Pacuit and
the present author in which backwards induction techniques
are used to analyse a typical TV soap opera storyline of a love
triangle, deceit, false assumptions about other people, and
disappointment in terms of a “game of changing and mistaken
beliefs”.

Typical applications of a logic of knowledge, belief, inten-
tion and action could be as follows, and we would very much
like to see models for this being developed as a consequence
of this symposium:

Scenario 1.

In a strategic computer game, the human player plays a de-
veloping population. Certain skills (including battle skills) are
developed according to a skill tree (for instance, building a
cannon can only be done after one of the artificial agents be-
came a smith).

Modelling the intentions and actions of the opposing
(computer-played) populations could be done by reasoning
in some modal system that assesses the battle strength of the
human-played population based on knowledge of their devel-
opment stage. News of the sighting of a smith brought to the
leader of the opposing population could be read as an increase
in the likelihood that the human-played population has devel-
oped a cannon (and thus figure prominently in the reasoning
of whether the computer-played population should attack or
not).

Scenario 2.

In a computer role playing game, one could implement situ-
ations in which NPCs try to outmaneuver the human player.
For instance, an NPC X might intend to kill NPC Y and gain
some valuable object currently in the possession of Y .

Meeting the human-played agent, X wishes to find out how
much the human-played agent knows about Y and what their
relationship is. Based on this information, X would now try
to trick the human-played agent into going and killing Y .
This would require subtle communication skills of X, keeping
in mind his own preferences and goals without giving them
away. Such a communication could be modelled in a logic of
knowledge, belief, agency and intention.

The scope of our symposium is wider than the two classes
of games presented in this section (strategic board games and
interactive computer games). Logic can play a role in all sit-
uations where interaction and behaviour are simulated, such
as artificial pets (as in the paper Theory and Practice of So-
cial Reasoning: Experiences with the iCat by Frank Dignum),
analysis of human behaviour in game situations (as in the pre-
sentation An experimental study of information mechanisms
in the trust game: effects of observation and cheap talk by
Jürgen Bracht or the paper Private Information and Inference
about Inference by Sobei Hidenori Oda, Gen Masumoto, and
Hiroyasu Yoneda), automatised reasoning about diagrams (as
in the paper How can machines reason with diagrams? by
Mateja Jamnik) and others. The most accurate description

of the scope of the symposium is the collection of presented
papers that the reader can find in this volume.

3 THE SYMPOSIUM AND ITS
STRUCTURE

Our symposium has a largely exploratory character: re-
searchers from many different areas should get together to
share the fundamental ideas and approaches of their respec-
tive fields. In order to get a proper representation of the fields
involved, we decided to invite a number of speakers, gener-
ously funded by the Marie Curie Research Training Site GLo-
RiClass. Our invited speakers are Thomas Ågotnes (Bergen,
Norway), Rafael Bordini (Durham, England), Frank Dignum
(Utrecht, The Netherlands), Mateja Jamnik (Cambridge, Eng-
land), and David Ethan Kennerly (Los Angeles CA, United
States of America). We had invited two more speakers (Stef-
fen Huck and Eric Pacuit) who had to cancel their trip for per-
sonal reasons. The registration fees, travel and accommoda-
tion expenses of the invited speakers were generously funded
by the Marie Curie Research Training Site GLoRiClass.

Figure 1. Marie Curie Research Training Site GLoRiClass
“Games in Logic Reaching Out To Classical Game Theory”

In addition to the invited speakers, the symposium at-
tracted a large number of submissions from various commu-
nities (multi-agent systems, applied logic, experimental game
theory, and others). All submissions (including the submis-
sions of the invited speakers) were lightly refereed by the
members of the programme committee and some external ref-
erees, keeping in mind the exploratory character of the sym-
posium. We did not expect new research contributions, but
interesting ideas for collaboration, and this is how the papers
of the symposium have to be understood.

Programme Committee.

• Stefania Bandini, Milan
• Johan van Benthem, Amsterdam & Stanford CA
• Cristiano Castelfranchi, Rome
• Bruce Edmonds, Manchester
• Jaap van den Herik, Maastricht
• Wiebe van der Hoek, Liverpool
• Benedikt Löwe, Amsterdam
• Yoav Shoham, Stanford CA
• Keith Stenning, Edinburgh
• Rineke Verbrugge, Groningen

iv



List of all presentations in alphabetic order.
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Invited talk
Logics of Interaction, Coalitions and Social Choice

(extended abstract)
Thomas Ågotnes1 2 and Wiebe van der Hoek3 and Michael Wooldridge4

Abstract. While different forms of social interaction have been ex-

tensively studied in several fields, the development of formal logics

makes precise knowledge representation and mechanical reasoning

about situations involving social interaction possible. In particular,

such logics make it possible to formally specify and verify software

implementing social mechanisms. In my talk I will give an overview

of some of our recent work on logics for social interaction, in par-

ticular applied to reasoning about social choice mechanisms such as

voting and preference aggregation as well as reasoning about coali-

tion formation and coalitional stability. We use benchmark examples

from game theory and social choice theory to illustrate the expres-

siveness of the logics.

1 Introduction

Logics for reasoning about social interaction take into account the

facts that individual agents are autonomous, self interested, and act

strategically in order to obtain their goals. Such logics often try to

give an account of what happens when agents choose to cooperate or

otherwise act together [7, 17]. Of course, concepts such as strategic

interaction, preferences, and cooperation have been extensively stud-

ied in fields such as game theory and social choice theory. However,

the study of their logical and computational properties is relatively

new.

Logics for social interaction are useful for, e.g., knowledge repre-

sentation and reasoning in multi-agent systems [21] and for the for-

mal specification and automated verification of computational mech-
anisms [19, 20, 13]. Given a specification of a mechanism in the form

of a logical formula, we can use logical tools to verify (model check-

ing) and/or synthesise (constructive proof of satisfiability) mecha-

nisms [18, 23].

In this note we briefly discuss some new logics for social interac-

tion. Many such logics have been suggested, and they differ, first and

foremost, in their expressiveness. In order for a logic to be useful it

must be sufficiently expressive, and we take concepts, properties and

results from fields such as game theory and social choice theory as

benchmark tests of expressiveness.

In this note we shall be particularly concerned with two aspects

of interaction. The first is social choice mechanisms; a very general

class of economic mechanisms [9] concerned with selecting some

1 In my talk I will present joint work with Wiebe van der Hoek and Michael
Wooldridge. In this extended abstract we give a brief outline.

2 Bergen University College, Norway, email: tag@hib.no
3 University of Liverpool, UK, email: wiebe@csc.liv.ac.uk
4 University of Liverpool, UK, email: mjw@csc.liv.ac.uk

particular outcome from a range of alternatives on behalf of a collec-

tion of agents, such as voting, preference aggregation and judgment
aggregation. The second is coalition formation in general and coali-
tional stability in particular. While it is clear that these are two dis-

tinct notions and problems, they are closely connected at least on one

level of abstraction: they are both intimately related to the concept of

coalitional power – what coalitions of agents can make come about.

In the remainder of this note we very briefly and informally introduce

some new logics for reasoning about these concepts, illustrated with

example formulae (see the references for details). As a starting point

we first mention Marc Pauly’s seminal logic of coalitional power:

Coalition Logic.

2 Coalition Logic
Two popular logics for social interaction are Alur, Henzinger and

Kupferman’s Alternating-time Temporal Logic (atl) [7] and Pauly’s

Coalition Logic (cl) [17]. These logics let us express properties about

the abilities, or powers, of single agents and of groups of agents act-

ing together. The main syntactic construct of Coalition Logic is of

the form5

〈C〉ϕ,
where C is a set of agents, or a coalition, and ϕ is a formula. The

intended meaning of 〈C〉ϕ is that the agents C can choose to make ϕ

come about, by performing some joint action. If 〈C〉ϕ is true, then ϕ

will not necessarily come about (C might choose to not make ϕ come

about), but if 〈C〉ϕ is true then C can guarantee that, no matter what

the other agents do, ϕ will come about. atl adds temporal operators

such as “sometime in the future” to the language as well (cl can be

seen as the next-time fragment of atl).

Formally, formulae of Coalition Logic are interpreted on state-

based structures where the agents play a strategic game, in the sense

of non-cooperative game theory6, in each state.

Pauly also observed [16] that the Coalition Logic construct can be

used to express properties of social choice mechanisms. Consider the

following example of a simple social choice mechanism [16]:

Two individuals, A and B, must choose between two outcomes,
p and q. We want a mechanism that will allow them to choose
which will satisfy the following requirements: We want an out-
come to be possible – that is, we want the two agents to choose,
collectively, either p or q. We do not want them to be able to

5 Pauly [17] uses [C] where we use 〈C〉.
6 Strictly speaking, the structures of Coalition Logic associates a strategic

game form to each state; a strategic game without preferences.

1



bring about both outcomes simultaneously. Finally, we do not
want either agent to be able to unilaterally dictate an outcome
– we want them both to have “equal power”.

These requirements may be formally and naturally represented using

cl, as follows:

〈A,B〉p (1)

〈A,B〉q (2)

¬〈A,B〉(p ∧ q) (3)

¬〈A〉p (4)

¬〈B〉p (5)

¬〈A〉q (6)

¬〈B〉q (7)

Property (1) states that A and B can collectively choose p, while (2)

states that they can choose q; (3) states that they cannot choose p and

q simultaneously; and properties (4)–(7) state that neither agent can

dictate an outcome.

3 Quantification
3.1 Quantified Coalition Logic
Expressing many interaction properties requires quantification over
agents and/or coalitions. For example, consider the following weak
veto player property [22]: “no coalition which does not have agent i
as a member can make ϕ come about”. This property can indeed be

expressed in Coalition Logic as follows:
∧

C⊆(Ag\{i})
¬〈C〉ϕ

where Ag is the set of all agents in the system (the grand coalition).

We thus use conjunction as a universal quantifier. The problem with

this formulation is that it results in a formula that is exponentially

long in the number of agents in the system. An obvious solution

would be to extend cl with a first-order-style apparatus for quanti-

fying over coalitions. In such a quantified cl, one might express the

above by the following formula:

∀C : ((C ⊆ Ag \ {i})→ ¬〈C〉ϕ)

However, adding quantification in such a naive way leads to undecid-

ability over infinite domains (using basic quantificational set theory

we can define arithmetic), and very high computational complexity

even over finite domains. The question therefore arises whether we

can add quantification to cooperation logics in such a way that we

can express useful properties of cooperation in games without mak-

ing the resulting logic too computationally complex to be of practical

interest. In [2], we answered this question in the affirmative. We in-

troduced Quantified Coalition Logic (qcl), which allows a useful but

restricted form of quantification over coalitions. In qcl, we replace

cooperation modalities 〈C〉 with expressions 〈P〉φ and [P]φ; here,

P is a predicate over coalitions, and the two sentences express the

facts that there exists a coalition C satisfying property P such that
C can achieve φ and all coalitions satisfying property P can achieve
φ, respectively. Examples of coalition predicates are, when C′ is a

coalition and n is a natural number:

• supseteq(C′): satisfied by a coalition C iff C is a superset of C′

• geq(n): satisfied by a coalition C iff C contains more than or equal

to n agents

• gt(n): satisfied by a coalition C iff C contains more than n agents

• maj(n): satisfied by a coalition C iff C contains more than n/2
agents

For example, the property that agent i is a weak veto player for ϕ

can be expressed as ¬〈¬supseteq{i}〉ϕ. Here the expression does not

depend on the number of agents in the system. Thus we add a limited

form of quantification without the apparatus of quantificational set

theory. The resulting logic, qcl, is exponentially more succinct than

the corresponding fragment of cl, while being computationally no

worse with respect to the key problem of model checking.

To see how qcl makes it easier to express properties related to

voting, consider the specification of majority voting:

An electorate of n voters wishes to select one of two outcomes
ω1 and ω2. They want to use a simple majority voting protocol,
so that outcome ωi will be selected iff a majority of the n voters
state a preference for it. No coalition of less than majority size
should be able to select an outcome, and any majority should
be able to choose the outcome (i.e., the selection procedure is
not influenced by the “names” of the agents in a coalition).

Let maj(n) be a predicate over coalitions that is satisfied if the coali-

tion against which it is evaluated contains a majority of n agents. For

example, if n = 3, then coalition {1, 3} would satisfy the predicate,

as would coalitions {2, 3} and {1, 2}, but coalitions {1}, {2}, and {3}
would not. We can express the majority voting requirements above

as follows. First: every majority should be able to select an outcome.

([maj(n)]ω1) ∧ ([maj(n)]ω2)

Second: no coalition that is not a majority can select an outcome.

(¬〈¬maj(n)〉ω1) ∧ (¬〈¬maj(n)〉ω2)

Simple though this example is, it is worth bearing in mind that its

expression in cl is exponentially long in n.

3.2 Quantified Epistemic Logic
Epistemic logics [11, 14] give an account of agents’ knowledge or

beliefs. Operators Ki, CG, EG and DG where i is an agent and G is a

coalition are often used; Kiφ, CGφ, EGφ and DGφ mean that i knows

φ, that φ is common knowledge in the group G, that every member

of G knows φ, and that φ is distributed knowledge in G, respectively.

The CG, EG and DG operators let us express properties about group

knowledge, but certain properties require quantification over agents

and/or coalitions. Consider, for example, the following property:

At least two agents know that at most three agents know φ, from

an overall set of agents {1, 2, 3, 4}.
A way to express this fact in conventional epistemic logic is as fol-

lows:
E{1,2}ψ ∨ E{1,3}ψ ∨ E{1,4}ψ ∨
E{2,3}ψ ∨ E{2,4}ψ ∨ E{3,4}ψ ∨
E{1,2,3}ψ ∨ E{1,2,4}ψ ∨ E{1,3,4}ψ ∨
E{2,3,4}ψ ∨ E{1,2,3,4}ψ

where ψ is:

(¬K1ϕ ∨ ¬K2ϕ ∨ ¬K3ϕ ∨ ¬K4ϕ)

The problem with this expression is similar to the problem with quan-

tifying over coalitions in (standard) coalition logic discussed above:

it is not very succinct, exponentially long in the number of agents in
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the system, and unrealistic for practical purposes. Again, we could

add first-order style quantifiers, making it possible to express the

property above as

∃G : (|G| ≥ 2) ∧ EGψ,

but this approach has the same disadvantages as discussed in the

coalition logic case above.

But now we have a tool for limited quantification: coalition predi-

cates. In [1] we introduce an epistemic logic with quantification over

coalitions (elqc), where the CG, EG and DG operators are replaced by

operators 〈P〉C and [P]C, 〈P〉E and [P]E, and 〈P〉D and [P]D, respec-

tively, where P is a coalition predicate. Now, 〈P〉Cφ means that there
exists a coalition G satisfying property P such that G have common
knowledge of φ, [P]Cφ means that all coalitions G satisfying prop-
erty P have common knowledge of φ, and similarly for the two other

kinds of group knowledge. The property discussed above can now be

expressed as:

〈geq(2)〉E¬〈gt(3)〉Eφ.
Possibly interesting properties of voting protocols include their

knowledge dynamics. For example, when the winner of a voting pro-

tocol is announced, what does that tell an agent or a group of agents

about the votes of other agents? elqc can be used to reason about

such properties. As an example, consider the following situation.

A committee consisting of Ann, Bill, Cath and Dave, vote for

who should be the leader of the committee (it is possible to vote

for oneself). The winner is decided by majority voting (majority

means at least three votes, if there is no majority there is no

winner).

Consider first the situation before the winner is announced. Let

proposition a mean that Ann wins, and unaa that Ann wins unani-

mously, and similarly for the other three agents. The following elqc

formula holds (no matter what the actual votes are):

¬a→ 〈geq(2)〉D¬〈geq(3)〉E(¬unab ∧ ¬unac ∧ ¬unad).

The formula says that if Ann does not win, there is a group of at least

two agents who distributively know that at most two agents know

that neither Bill nor Cath nor Dave wins unanimously.

Consider next the situation when, after the secret voting, the win-

ner is announced to be Ann. Let Vote be a set of atomic formulae,

each denoting a complete vote (e.g., “Ann, Bill and Cath voted for

Ann, Dave voted for himself”). The elqc formula

∧

vote∈Votes

(vote→ [supseteq(∅)]C〈gt(1)〉Evote)

denotes the fact that no matter what the actual vote is, in any coalition

it is common knowledge that at most one agent knows the actual

(complete) vote. This formula is true after the winner is announced

to be Ann.

4 Logics for Coalitional Games
As mentioned in Section 2, there is a strong connection between

Coalition Logic and non-cooperative games. As a result of the in-

herent differences between the class of non-cooperative on the one

hand and the class of coalitional, or cooperative, games (as studied

in coalitional game theory [15, Part IV]), on the other, the useful-

ness of standard Coalition Logic in reasoning about the latter type

of games is limited. One of the main questions related to coalitional

games is: “Which coalitions will form?”, or “Which coalitions are

stable?”. Solution concepts such as the core have been proposed in

coalitional game theory in order to capture the idea of rational par-

ticipation in a coalition. In [4, 3], we develop two logics, Coalitional
Game Logic and Modal Coalitional Game Logic, for reasoning about

such games. Both logics keep the main syntactic construct of Coali-

tion Logic, but the formulae are now interpreted in the context of a

(single) coalitional game.

A coalitional game (without transferable payoff) is an (m + 3)-

tuple [15, p.268]: Γ = 〈Ag,Ω,�1, . . . ,�m,V〉 where , �i⊆ Ω × Ω is a

complete, reflexive, and transitive preference relation, for each agent

i ∈ Ag.

In [4, 3] we discuss these logics in detail, including axiomatisa-

tion, expressiveness and computational complexity.

4.1 Coalitional Game Logic
The main construct of Coalitional Game Logic (cgl) [4] is the cl

construct 〈C〉ϕ, again with the intended meaning that C can make ϕ

come about. In addition, cgl has symbols for referring to particular

outcomes, as well as formulae of the form ω �i ω
′, where ω and ω′

are outcomes, meaning that agent i weakly prefers ω over ω′.
As an example of a coalitional game property expressed in cgl,

take the following: “outcome ω is in the core”. The core of a coali-

tional game is the set of outcomes which can be chosen by the grand

coalition such that no coalition can choose a different outcome which

is strictly better for all the agents in the coalition:

CM(ω) ≡ 〈Ag〉ω ∧ ¬
⎡⎢⎢⎢⎢⎢⎢⎣
∨

C⊆Ag

∨

ω′∈Ω
(〈C〉ω′) ∧

∧

i∈C
(ω′ �i ω)

⎤⎥⎥⎥⎥⎥⎥⎦

expresses the fact thatω is a member of the core. The formula CNE ≡∨
ω∈Ω CM(ω) will then mean that the core is non-empty.

4.2 Modal Coalitional Game Logic
While the main construct of Modal Coalitional Game Logic (mcgl)

[3] still is the familiar 〈C〉ϕ; its interpretation is here radically dif-

ferent: the intended meaning is that coalition C prefers ϕ. The for-

mulae are now interpreted in the context of an outcome in a coali-

tional game, and 〈C〉ϕ is true if there is some other outcome which

is (weakly) preferred by every agent in C where ϕ is true. Simi-

lar modalities were used by Harrenstein [12] in the context of non-

cooperative games. The operator 〈Cs〉 is used to denote strict pref-

erence in the same way, and the duals [C] and [Cs] denote that the

formula is true in all outcomes preferred over the current outcome

by all agents in C. In addition, the language has an atomic symbol pC

for each coalition C, meaning that the current outcome can be chosen

by C.

The fact that the current outcome is in the core can now be ex-

pressed as:

MCM ≡ pAg ∧
∧

C⊆Ag

[Cs]¬pC

Comparing cgl and mcgl, interpreted over games with a finite set

of outcomes the former is more expressive than the latter. However,

observe that the expression CM(ω) quantifies by taking a disjunction

over all outcomes. When the set of outcomes are infinite, this prop-

erty cannot be expressed in cgl. In contrast, mcgl can express solu-

tion concepts such as core membership (expressed by the property

MCM) and non-emptiness of the core also for games with infinitely

many outcomes. Furthermore, mcgl can express many properties

more succinctly than cgl: observe the difference between CM(ω) and

MCM.
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5 Logics for Aggregation of Preferences and
Judgments

Preference aggregation – the combination of individuals’ preference

relations over some set of alternatives into a single social preference

relation – has been studied in social choice theory for quite a while.

The following is an example of three individuals’ preferences over

three alternatives a, b, c:

1 a > b b > c a > c
2 a > b c > b c > a
3 b > a b > c c > a

PaMV a > b b > c c > a

The example also shows the result of pair-wise majority voting

(PaMV), and serves as an illustration of Condorcet’s voting para-

dox: the result of PaMV is not always a proper preference relation

(in the example it is cyclic). Arguably the most well known result

in social choice theory is Arrow’s theorem [8], saying that if there

are more then two alternatives then no aggregation function can have

all of a certain collection of reasonable properties (non-dictatorship,

independence of irrelevant alternatives, Pareto optimality).

We argued above that cl can be used to express properties of so-

cial choice mechanisms. However, neither cl nor any of the other

logics we have mentioned so far are expressive enough to be used for

reasoning about certain important properties related to aggregation.

A logic which can express such properties would be useful for, e.g.,

specifying and verifying electronic voting mechanisms.

Another link between aggregation and logic is the emerging field

of judgment aggregation within social choice. Judgment aggregation

is concerned with combining individuals’ judgments on a set of log-

ically interconnected propositions into a set of collective judgments

on the same propositions. An example, illustrating voting in a com-

mittee on propositions “the candidate is qualified” (p), “if the candi-

date is qualified he will get an offer” (p→ q) and “the candidate will

get an offer” (q) (Y[es]/N[o]):

p p→ q q
1 Y Y Y
2 Y N N
3 N Y N

PrMV Y Y N

The example also shows the result of proposition-wise majority vot-

ing (PrMV), and serves as an illustration of the so-called discursive
dilemma: although positions of the individual voters all are logically

consistent, the result of PrMV is not. The similarity between Con-

dorcet’s paradox and the discursive dilemma suggests a relationship

between classical Arrowian preference aggregation and judgment ag-

gregation – and, indeed, recent research [10] shows that the former

is a special case of the latter.

Judgment Aggregation Logic (jal) [5, 6] was developed specifi-

cally for expressing properties about judgment aggregation mecha-

nisms. In consequence, it can also be used for classical preference

aggregation. We use the logic to study the relationship between pref-

erence aggregation and judgment aggregation. Being tailor made for

the purpose, it is much more expressive than cl when it comes to

aggregation. The logic can express, e.g.:

• aggregation rules such as pair-wise and proposition-wise majority

voting;

• properties of aggregation mechanisms such as non-dictatorship,

independence of irrelevant alternatives and Pareto optimality; and

• important results such as the discursive paradox, Arrow’s theorem

and Condorcet’s paradox.

A sound and complete axiomatisation is provided. This effectively

gives us a proof theory for social choice and judgment aggregation.

For example, that we can express Arrow’s theorem in the logic on

the one hand, and that we have a sound and complete proof system

on the other, mean that we have a formal way to prove Arrow’s the-

orem. Thus, the logic might be useful not only as a tool for specify-

ing and verifying computational mechanisms, but also as a computa-

tional tool for social choice.

We give a taste of jal in the context of preference aggregation. The

language has to pairs of dual modalities.� (�) quantifies over prefer-

ence profiles (one preference relation for each agent), and � (�) over

pairs of alternatives; the diamonds denoting existential and the boxes

universal quantification. In addition, there is an atomic formula i for

each agent i, which is interpreted in the context of a preference pro-

file and a pair 〈a, b〉 of alternatives, meaning that agent i prefers the

first alternative (a) over the second (b). Finally, there is an atomic

formula σ, interpreted in the context of an aggregation function, a

preference profile and a pair of alternatives 〈a, b〉, meaning that in

the result of aggregating the preferences the element a is preferred

over b. Formulae can be seen as properties of aggregation functions.

For example, the formula

ND =
∧

i∈Σ
��¬(σ↔ i) (8)

is the non-dictatorship property: for every agent i there is a preference

profile and a pair of alternatives 〈a, b〉 such that it is not the case

that both i and the aggregation prefers a over b. Another example is

Pareto-optimality:

UNA = ��((1 ∧ · · · ∧ n)→ σ) (9)
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Simulating Rational Goal-Directed Behaviour Using a
Logic-Based Programming Language for

Multi-Agent Systems
Rafael H. Bordini1

Extended Abstract

An essential aspect of autonomous agents is that they must display

proactive behaviour. Designing such software then requires explicit

consideration of the goals the agent ought to achieve, and similarly

its implementation also needs to be based on explicit representations

of such goals. This is part of the reason why the BDI (Belief-Desire-

Intention) agent architecture [16, 17] has since the early 90’s been

the best known architecture for developing software agents. As the

BDI notions are also used in “folk psychology” (i.e., how people

ordinarily refer to other people’s behaviour) it also makes it useful

for modelling goal-directed human behaviour [12].

As well as work on an agent architecture based on the BDI no-

tions, much work was done to formalise these notions using modal

logic [18]. Based on that work and also on practical implementa-

tion (as reactive planning systems) of the BDI architecture such as

PRS [8], Rao created a simple, abstract agent programming language

called AgentSpeak(L) [15]. Building on the basic constructs of logic

programming, it provides an elegant language for the essential fea-

tures of a BDI-based reactive planning system.

Starting from the initial definition of AgentSpeak, we have worked

on various extensions of the language, for example to allow agents

programmed in that language to communication using a speech-act

based agent communication language [21]. We also did work to re-

late back the programming language constructs and the interpreter

data structures to the modalities of BDI logic using the operational

semantics of the language [5]. This is important for ongoing work on

formal verification (more on this below).

While that work was mainly theoretical, it served as a basis for

the development of a very elaborate, highly customisable platform

for developing multi-agent systems called Jason, which was done

in joint work with Jomi Hübner, and made available open source
at http://jason.sf.net. That work culminated in the recent

publication of a textbook to make the ideas of agent programming

using Jason accessible to wider audiences [4].

Various features of the Jason platform make it useful for mod-

elling and simulation of social phenomena. Since the initial ideas

of using agent-based techniques for modelling and simulating hu-

man societies [9] in the early 90’s, this area has grown at incredible

pace, with social scientists all over the world increasingly having

interest in using computer simulation as a research method. How-

ever, most of the available tools for social simulation allow only very

simple agents (with no cognition) to be used. Prominent researchers

in that area have advocated the need for cognitive agents in certain

1 University of Durham, UK, email: r.bordini@durham.ac.uk

advanced types of social simulation [6]. We are, therefore, in ongo-

ing work [3, 1], incorporating features in Jason which will make it

an even more powerful platform for developing software based on

multi-agent systems techniques, but also facilitate its use as a tool

for social simulation, in particular for modelling human goal-directed

behaviour. Two examples are as follows:

Environments: In Jason, environment models have to be pro-

grammed in Java. Needless to say, a more declarative, high-level

language would be very useful for social simulation, where mod-

els of the environment are typically very important. This was the

motivation that led to the development of the ELMS language,

described in [13]. That work has recently been extended [14] to

allow environment descriptions to have objects containing social

norms that are to be observed only within the confines of an en-

vironment location, possible where an institution or organisation

is situated (similarly to ‘please refrain from smoking’ or ‘keep si-

lence’ signs). Another recent development [19] is the integration

of Jason with a well-known approach for developing multi-agent

environment based on the “artifact” abstraction [20], which could

help in the development of very elaborate (distributed) environ-

ments.

Organisations: An important part of agent-oriented software en-

gineering is related to agent organisations, which has received

much research attention in the last few years. We are currently

working on allowing specifications of agent organisations (with

the related notions of roles, groups, relationships between groups,

social norms, etc.) to be used in combination with Jason for

the programming of individual agents. The particular organisa-

tional model we use is called MOISE
+ [10]; an initial integra-

tion with Jason is discussed in [11], and available from http:
//moise.sf.net. One of the advantages of the approach is

that the organisation specification is available for the agents to ac-

cess and possibly change at run time.

An important use of logic-based techniques in the context of soft-

ware development in multi-agent systems (in particular, with many

of its application being “dependable systems”) is for formal verifi-

cation. In previous work, we devised model checking techniques for

multi-agent systems programmed in AgentSpeak [2]. While in that

work we were specifically interested in model checking multi-agent

systems programmed in AgentSpeak, in a recent ongoing project,

joint with Michael Fisher (see acknowledgements below) we are in-

terested in developing techniques that would allow model checking

for a variety of agent-oriented programming langauges [7].
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Interpreting Product Update as Reasoning about
Observations and Meta-Observations

Jan Broersen1

Abstract. In this brief note, I would like to suggest that it makes
sense to reinterpret product update, as introduced by Baltag, Moss
and Solecki, as a system to account for observations and meta-
observations, where a meta-observation is an observation of an ob-
servation. Under this interpretation we also take products of action
models with meta-action models. I deliberate on some possible con-
sequences of this extension to the interpretation of product update.

1 Introduction
Product update, as defined by Baltag, Moss and Solecki [1, 2], is
about updating multi-agent epistemic models by modeling the as-
similation of new information as a (restricted) modal product with
a multi-agent epistemic action model. This paper reports two obser-
vations2 concerning this framework. The first observation is that the
mechanism defined by taking products only fits with an interpreta-
tion of the actions in action models as observations. The second, re-
lated observation is that action models themselves might be viewed
as resulting from products of meta-action models representing meta-
observations. These (admittedly preliminary) ideas may give rise to
new action languages for talking about epistemic action models.

2 Product updates model observations
That the possible worlds resulting from a product update are a Carte-
sian product of the original worlds and the actions, is intuitively ex-
plained by the observation that in principle any of the epistemic ac-
tions in the action model can be performed from any state in the
static epistemic model. We get a restricted product by considering
the preconditions of the actions that prevent some actions to be per-
formed from certain states. For the uncertainty relation in the product
models the intersection of the uncertainty relations of the epistemic
model and the action model is taken.

Surprisingly, in the literature not much effort is spend on explain-
ing why it is that we have to take the intersection of the uncertainty
relations originating from the static epistemic model and the epis-
temic action model. Baltag and Moss [2], in their most recent account
of product update, say the following:

”We model the update of a state by an action as a partial update
operation, given by a restricted product of the two structures:
the uncertainties present in the given state and the given ac-
tion are multiplied, while the impossible combinations of states
and actions are eliminated (by testing the actions preconditions
on the state). The underlying intuition is that, since the agents

1 University of Utrecht, The Netherlands, email: broersen@cs.uu.nl
2 As far as I know, these observations have not been reported before.

uncertainties concerning the state and the ones concerning the
simple action are mutually independent, the two uncertainties
must be multiplied, except that we insist on applying an action
only to those states which satisfy its precondition.”

The quote explains that the intersection reflects multiplication of
independent uncertainties. But the quote does not explain why we
can assume this independency, nor does it explain what kind of ac-
tions actually ensure independency under the constraints imposed by
the preconditions.

I will approach the question concerning the reason for taking an
intersection from a slightly different angle. Prima facie, one might
consider taking an intersection surprising: if an agent performs the
same action from states he cannot distinguish, it will also not be able
to distinguish the result states. And if an agent does not distinguish
two actions from a state it does distinguish, again two or more indis-
tinguishable effect states will result. This would then rather suggest
that we should take the union instead of the intersection. So why is it
that the intersection is the right choice? The rough answer is: because
the actions of action models are ‘testing’ or ‘observation’ actions.
Such actions always aim at reducing uncertainty. Furthermore, what
these actions observe, must be true in the state where their precondi-
tion holds. So there is just exactly only one way in which observation
actions can result in uncertainty: from an uncertain state it must be
uncertain whether the observation has taken place. That explains the
intersection.

This also sheds light on the question above, concerning the rea-
son for the independence of the uncertainties involved. The indepen-
dence is explained by the reasonable assumption that observations
themselves do not interact with the conditions observed3.

The term ‘observation’ should not be taken too literally here. Ac-
tually, from the level of abstraction we are looking at information
transfer, ‘observation’, ‘testing’, ‘learning’ and ‘announcing’ are all
alike. The difference between these concepts can only become more
clear if we can differentiate between sending and receiving agents,
their motivations for transferring information, and their strategies for
dealing with new information. The present setting, without notions
like ‘agency’ or ‘intention’ is simply too abstract for that.

3 Product update and meta-observation
Many standard examples are explicitly about observations. A well-
known one is the following [3, p.130]:

Example 1 In a situation with three colored cards and three agents

3 Note that this assumption conflicts with the uncertainty principle from quan-
tum physics.
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knowing their own card, agent 1 publicly observes a card of agent 3
(for instance, because 3 shows it to him).

The action model distinguishes three different observations: ‘1 ob-
serves 3 has red’ (1 : r@3), ‘1 observes 3 has white’ (1 : w@3) and
‘1 observes 3 has blue’ (1 : b@3). Agent 1 and 3 distinguish these
actions, agent 2 does not. Below are the pictures for the static initial
epistemic model, the action model, and the product model.
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Figure 1. Agent 1 publicly observes agent 3’s card

Now note that the description of example 1 also says that the ob-
servation itself is publicly observed. This is the first sign that some-
thing like ‘meta’-observations are relevant for the example. In the
following we will suggest that these meta-observations can be mod-
eled as action models themselves. We will refer to these models as
‘meta-action models’.

But now let us first extend the above example in order to make
more clear what we mean.

Example 2 Agent 3 has left the table, leaving his card on the table.
After coming back he suspects that 1 has taken a look at his card,
which, in fact is indeed what happened, and it happened publicly.
Agent 3 publicly announces his suspicion.

Figure 2 gives the right product model resulting from taking the
product with the appropriate action model for this example. The
model contains both the epistemic model of the initial situation and
the epistemic model resulting from the previous example, and agent
3 hesitates between these two models. But what is the action model
that produces this product model? Of course, it is not too difficult to
find the right action model. However, below we show we can decom-
pose this problem into two problems: finding the appropriate action
model and finding the appropriate meta-action model.

It is rather clear that in this example there are at least two levels
of observation. First there is the level where individual agents get
to know the results of the card showing action. This level is exactly
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Figure 2. Agent 3 suspects agent 1 has seen his card

the same as in the first example. Therefore, in figure 3, that gives
the action models for the observation and the meta-observation lev-
els, the observation level action model is the same as the one in fig-
ure 1 for the first example (with the exception of the non-connected
‘skip’ world, which we discuss later). Indeed, we might say that the
only difference between the two examples is on the level of meta-
observations: in the first the meta-observation is like a public an-
nouncement, and in the second the meta-observation action model
contains at least two meta-observation actions ‘3 observes that 1
takes a look at 3’s cards’ and ‘3 observes that 1 observes nothing’.
Agent 3 does not distinguish between these actions (because he does
not know whether the looking action actually took place). But agents
1 and 2 can distinguish between the two. Note that this meta-level
action model models the suspicion of agent 3 as the hesitation about
whether or not some observation has taken place on the observation
level. Maybe the hesitation and suspicion originates from agent 3
not being sure whether or not he saw that agent 1 was taking a look
at his card. Also note that the meta-level contains a third action: the
meta-action of agent 3 not meta-observing anything at all (‘skip’). To
make the view using meta-levels of observation work, for all agents
in the system we have to add such ‘non-observation/skip’ actions at
any level and meta-level. Note that in the meta-level action model
of figure 3, I only give the non-action for agent 3. Actually, to pre-
vent the picture from being flooded by states that are inessential for
explaining the idea I do not give any of the meta-level observation
actions of agents other than agent 3. This is why the figure says ‘etc.’
in the meta-level action model. In particular, as long as at the di-
rect meta-level there is no uncertainty about inaction, the non-actions
can be neglected. For instance, note that using the observation action
model of figure 3 in stead of the one in figure 1 to solve the first ex-
ample, does not make a difference. In particular, if we stick to the
original set-up, with only one level of action models, adding a non-
observation action to the action model does not make a difference as
long as there are no uncertainty relations linking it to other actions.
Finally, note that the product model resulting from the product of the
observation model and the meta-observation model, when multiplied
with the static epistemic model, yields the product model of figure 2,
as required.

Now, what are the preconditions for the actions in this meta-
observation action model? And how exactly do we define the prod-
uct of the meta-observation model and the observation model? The
preconditions for the meta-observations are straightforward. Just like
for the observation action models they just say that we can only ob-
serve what is actually true. For the action ‘observing nothing’ this
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Figure 3. The meta-observation as a meta-product

means we get � as a precondition, because it is an action that can
always be done. And as expected, since this is all about observa-
tion, for the product of an action model and a meta-action model we
also take the intersection of uncertainty relations. Finally, we get the
‘restricted’ product by checking the preconditions of the meta-action
model on the action model. In the specific example we deal with here,
we have three meta-observations. The meta-observations 3: (1−obs),
3: (1−skip) and 3−skip. The first meta-action has a precondition that
is true on all actions of the observation model where agent 1 observes
something. The second has a precondition that is true only on the ac-
tion in the action model where agent 1 observes nothing. Finally, the
precondition of 3−skip is true on all actions in the actions model. But
this part of the meta-product only yields an unconnected copy of the
action model.

In example 2 above, there is also a third meta-level of observa-
tion. Because of the involvement of this level, we say that agent 3
announces its suspicion. This ensures that the third meta-level is a
public announcement. Actually, for any example we come up with,
in principle infinitely many layers of observation play a role. Any
observation is itself an action for which we can ask whether it is ob-
served. So, for any observation potentially infinitely many actions
are performed at the same time: every observation possibly has a
meta-observation. In the examples above, this infinite hierarchy is
broken down by the first meta-level of observation that is a public
announcement. Actually, for any well-specified example, the highest
relevant meta-level of observation is always a public announcement.
If not, the example is under-specified, and leaves room for a non-
deterministic interpretation of the update. Actually, in most examples
in the literature, implicitly a closure assumption is applied: if nothing
is said about the meta-levels of observation, it is assumed that they

are public observations closed under meta-observations.

4 Future Research
The setting raises several questions. I briefly mention a few of them.
The first is that products and meta-products are not associative. This
is quite easy to see from the example above. The meta-products
should always be taken first. In particular, if we first take the prod-
uct of the static model and the observation level action model, it is
not clear how to take the product of the resulting product model with
the meta-level action model. Performing products in this order is not
even well-defined. But also it is clear that we throw away informa-
tion by first taking the product with the action model instead of the
product with the meta-action model. We cannot recover this infor-
mation. A possible problem is that associativity might be important
for certain examples. For instance, what if only at a later moment an
agent learns that his looking at the cards was observed or suspected
by another agent. Since we do note have associativity, this can only
be modeled by keeping track of all action and meta-action models
over time.

Another interesting question is how we can add agency to the pic-
ture. Actually, viewing the actions as observations of specific agents,
as we did in the above examples, is a first step in this direction. For
every observation action it is important to describe whose observa-
tion it is, since on the meta-observation level this information is used.
And for each observation action it is important to describe whose ac-
tion is observed. Above we used an ad-hoc notation to describe ac-
tions. An obvious route for investigation is to try to turn this notation
into an action language for observations and meta-observations.

One of the principles that suggest themselves is that agents always
observe their own observations. Note that the setting we sketched
actually does enable us to model situations where this is not the case.
However, methodologically it would be strange to allow this. We do
not want to get into the territory where agents make ‘sub-conscious’
observations.

The current set-up also enables us to speculate about a view where
all knowledge is viewed as observation4, even at the ‘lowest’ level.
It is not too difficult to translate a standard static epistemic model
into an action model containing the same information. This is ac-
complished by also seeing the knowledge of each agent at the lowest
level as an observation. For instance, in the cards example, the static
model is equivalent to the action model where each agent observes
his own card.

I want to finish with a comment. It seems not right to claim that
the setting we sketched adds nothing new only because the meta-
products will simply return an action model of the form already avail-
able in the original setting of Baltag, Moss and Solecki. If that would
be a good argument against the present proposal, the original pro-
posal could be attacked with the same argument: product update adds
nothing new, because it can be seen as a system that only specifies a
complicated way to describe standard epistemic models.
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4 Like in logical positivism.
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Coupled MMASS: A Formal Model for
Non-deterministic Multi-agent Simulations

Flavio Soares Correa da Silva1 and Giuseppe Vizzari and Alessandro Mosca2

Abstract. The Multilayered Multi-agent Situated System

(MMASS) has been proposed as a general framework to build multi-

agent systems in which agents are situated in an environment whose

characterization can be multifaceted (each facet of the environment

is named a layer, hence the name of this framework). Agents in the

MMASS can be purely reactive and computationally lightweight, or

deliberative and employ highly sophisticated reasoning mechanisms.

As a consequence, the MMASS has proven to be useful to build mas-

sively multi-agent systems (in which typically each agent is compu-

tationally simple) as well as systems comprised by complex agents

(in which typically we have few agents interacting with each other

and with the environment). In the present article we combine a sim-

plified version of MMASS with a specific logical system, which we

suggest that can be particularly suitable to solve problems based on

simulations. The proposed logical system is a variation of classical

FOPL, in which logical statements are tagged with probability values

so that one can reason probabilistically as opposed of reasoning with
probabilities or reasoning about probabilities.

1 INTRODUCTION

The Multilayered Multi-agent Situated System (MMASS) has been

proposed as a general framework to build multi-agent systems in

which agents are situated in an environment whose characterization

can be multifaceted (or, using the MMASS parlance, multilayered).

In this system, agents interact with each other and with the environ-

ment by:

• sensing and emitting fields across the different layers of the envi-

ronment;

• communicating directly with each other;

• acting on the environment e.g. by picking and dropping objects;

and

• moving about [11].

A distinguishing feature of the MMASS framework is that it ac-

commodates a wide range of agent architectures, from computation-

ally lightweight, purely reactive agents to highly demanding, sophis-

ticated deliberative agents. The flexibility of the MMASS framework

makes it useful to build multi-agent systems comprised by hetero-

geneous agents ranging from complex deliberative architectures to

simplified and computationally tractable ones.

The MMASS framework has proven to be particularly useful to

model massively multi-agent systems, which can be used to analyze

1 University of Sao Paulo, BRAZIL, email: fcs@ime.usp.br
2 University of Milano-Bicocca, ITALY, email: { giuseppe.vizzari, alessan-

dro.mosca }@disco.unimib.it

system configurations based on empirical simulations (see, e.g., [3,

2]).

The flexibility of the MMASS framework stems from its agent

architecture agnosticism: the MMASS framework is not related to

any particular agent architecture, and this is how it can accommo-

date a wide range of different agent architectures. The down side of

it is that, in order to employ the MMASS framework for practical

problem solving, one needs to complement it with suitable agent ar-

chitectures.

In the present work we introduce a specific architecture for agents

to be integrated with the MMASS framework, which is quite general

and seems of particular interest to model complex systems whose

analysis must be based on simulations.

Our proposed architecture is paired with a slightly simplified ver-

sion of the original MMASS framework. It is a variation of classical

FOPL in which logical statements are tagged with probability val-

ues. As a motivating example, if we have that α → β and that α is

tagged with a probability value of 0.2, then we will be able to infer β
whenever α is observed, i.e. our logical system will sometimes infer

β (when α is true) and will some other times not infer β (when α is

false), since α is a premise to infer β and it is sometimes true (with

probability 0.2) and sometimes false (with probability 0.8). In the

long run, and assuming that no other proof path can infer β or influ-

ence on the probability of α, β will be inferred as true about twenty

percent of the times we attempt to infer it.

Notice that our proposed non-deterministic logical system is ap-

propriate for, literally speaking, uncertain reasoning, as opposed to

reasoning with uncertainty or reasoning about uncertainty, i.e. we

are not designing a system to reason about probability values, nor

we are designing a system whose inferences are subject to proba-

bilistic truth valuations [5]. Rather, we are building a class of logical

theories, from which a specific theory is built dynamically based on

probabilistic selections. In other words, we build a collection of log-

ical statements and attach to each of them a probability value, and

then we pick a collection of statements, which are drawn according

to their probability values, and assemble a logical theory that is used

to perform an inference. If the same inference is tried again, a new

set of statements is drawn, and therefore the result of this inference

may change.

Systems for uncertain reasoning can be more useful for simula-

tion based analysis of problem solving mechanisms (and random-

ness is also a recognized element in dealing with the variability of

human behaviours in simulation [4]), contrasting with systems to rea-

son about uncertainty that can be more useful for theoretical analysis

of problem solving mechanisms and systems.

This paper is organized as follows: in section 2 we briefly in-

troduce the MMASS framework and compare it with other similar

11



work found in the literature. In section 3 we simplify the original

MMASS model and put this simplified version together with our pro-

posed non-deterministic system for deliberative agents. In section 4

we build a simple illustration, to show our proposed model in action.

Finally, in section 5 we present some discussion, conclusions and

proposed future work.

2 THE MMASS FRAMEWORK
The MMASS framework was fully introduced in [11], although some

partial renditions of this framework had been published before that.

It has been employed successfully in a variety of problems, such as

the modeling of human interactions in Computer Supported Coop-

erative Work [8], simulation of crowd behavior [1] and ubiquitous

computing [7].

Very briefly, a MMASS is a collection of layers. Each layer is

comprised by an undirected graph, in which nodes represent loca-

tions in which agents can be placed (each node admits at most one

agent) and edges represent accessibility between nodes. Agents can

move across nodes following their accessibility relations, and in the

original MMASS model agents can only exchange messages with

other agents located in neighboring nodes.

In the original MMASS model, there exist interfaces connecting

different layers. Essentially, an interface is an edge connecting nodes

from two different graphs.

An agent, when located in a node, can sense the environment and

perceive fields that are reaching that node, receive messages from

neighboring agents, and then, based on internal states and deliber-

ative capabilities, decide to move to a different node, act upon the

environment, emit fields and send messages to agents.

A field is characterized by its source, initial intensity, diffusion

and dispersion. A field source is the node from which it is being emit-

ted; the initial intensity is typically represented as a non-negative real

number; diffusion determines the intensity of the field as a function

of the topological distance between any node and the field source;

and dispersion determines the intensity of the field at the source node

as a function of the time since the field was emitted.

The power of the MMASS framework stems from its flexibility,

which is a direct consequence of its simplicity. In order to be ap-

plied in concrete situations, it must be complemented by specific

agent models that determine agent behaviors based on sensed fields

and received messages. Frequently, the specification of agent behav-

iors comes together with some sort of specialization of the generic

MMASS framework, to build special cases of interest to particular

applications.

In the present work we propose a partial specialization of the

MMASS framework, thus building a special case of the generic

framework that can be particularly well suited to model complex

multi-agent systems whose dynamics must be analyzed based on em-

pirical discrete-event simulations.

Our proposed partial specialization of the generic MMASS frame-

work is built in order to couple it with a particular non-deterministic

inference system, as detailed in the following section.

3 COUPLING MMASS WITH A
NON-DETERMINISTIC LOGICAL SYSTEM

Our goal is to put the MMASS framework together with a specific

agent model, to build a specialized framework for simulation of com-

plex multi-agent systems. Essentially, we have built a normative the-

ory based on which agents can infer obligations and permissions, i.e.

logical statements representing actions that they are either required

to perform (obligations) or allowed to perform (permissions). We in-

tend this normative theory to work as a foundation upon which con-

crete theories of action for agents can be built. We also intend that the

normative theory, heretofore referred to as Coupled MMASS, can be

implemented to support runs of an agent system, i.e. concrete simula-

tions that can be used to analyze empirically the behavior of complex

systems.

Permissions and obligations connect naturally to deontic logics
[9], a particular class of multimodal logics that have been historically

used to model legal systems, and more recently have been employed

to model interactions in multi-agent systems [10]. We have explored

deontic logics as a formalism to model multi-agent systems for digi-

tal entertainment, and obtained rather appealing results [6].

For the purpose of the simulation of the dynamics of interactions

among agents in a multi-agent system, however, deontic logics may

not be the most appropriate formalism, as proof systems for even

relatively simple deontic logical systems can become computation-

ally intractable. For this reason, we have preserved the notion of per-

missions and obligations and explored simpler logical systems, that

can be less computationally demanding and therefore more useful for

simulations of practical systems.

We have extended the language of classical FOPL with deontic
tags as follows. We have added to the alphabet of FOPL the tags O
(standing for obligation) and P:ϕ (standing for permission), in which

ϕ is a real number in the interval [0, 1].
Classical FOPL sentences can be tagged with zero or one deontic

tags. Operationally, when an O tag is found, the corresponding sen-

tence is forcefully true, i.e. O tags can be ignored in the course of a

proof. When a P tag is found, a random number generator is trigged

to generate a random value in the interval [0, 1] based on a uniform

probability distribution. If the generated value is larger than ϕ, the

tagged sentence is evaluated as false, otherwise it is true.

Intuitively, obligations are necessarily true, and permissions can

be either true or false, according to a probability estimate.

Using this logical system, well formed sentences are sometimes

labeled as theorems and some other times labeled as non-theorems

for the same logical theory. Logical proofs are non-deterministic, de-

pending on the interdependence of well formed sentences and the

behavior of permitted sentences, which is determined by the values

ϕ.

We have envisaged this non-deterministic formal system to model

the actions of and interactions among agents in multi-agent systems.

We now couple this system with MMASS.

Before putting the non-deterministic FOPL extended with per-

missions and obligations and MMASS, we simplify the original

MMASS in three ways, to make it more specifically applicable for

simulation models.

1. We add an explicit and fixed notion of time, based on the simplest

possible model of time, namely discrete linear time with one start-

ing point. Since we aim at simulations and animations, we add a

uniform and very simple representation of time in the model. Time

is represented as clock ticks, which are synchronized for all enti-

ties and layers, i.e. we have a universal clock accessible to any el-

ement of the model. A clock tick is a natural number. The original

MMASS accommodates more complex representations of time,

hence by reducing the set of possible representations to this sin-

gle possibility we do not need to consider other alternatives, and

Coupled MMASS is significantly simplified.

2. We enforce that all layers have the same topological structure. In
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other words, we have a single layer structure i.e. an undirected

graph - that is applied to all layers in an MMASS model. The

edges of the layer structure are tagged with real, non-negative val-

ues, with the addition of the symbol ⊥ that are representations of

costs to move between nodes and for fields to propagate. The tags

can vary across layers.

Edge tags are abstractions of some appropriate notion of distance.

For example, one of the layers can represent geometrical distances

between nodes, and tags can represent these distances using some

uniform distance unit measure. This is the reason why we assume

that the tags are non-negative real numbers. Notice that we leave

on purpose the possibility of having zero as a legal tag. This can

be used to collapse nodes in a layer without having to change the

layer topology. The symbol ⊥ represents instead an infinite dis-

tance, meaning that agents cannot move from one of the connected

sites to the other, and also fields do not diffuse across the edge.

3. We assume that one layer represents the physical layer, on which

agents can move, and that the movements of an agent imply

on travel costs that are calculated independently for each layer.

Agents move across the layer topology, and therefore

(a) When an agent moves from one node to another, it does so in

all layers; and

(b) It makes no sense for an agent to migrate between layers, since

agents do not move from the physical layer. Therefore, we do

not need to have explicit interfaces between layers.

This basic structure for agents’ environment supports the repre-

sentation of composite situations, characterized by different aspects

that may influence agents’ behaviours. In particular, Figure 1 de-

picts a three–layered environment comprising (i) a basic grid whose

edges represent airline costs of movement between sites, (ii) an ad-

ditional layer in which edges represent the actual possibility to move

from a site to another (e.g. a map of a building including walkable

space, passages and walls) that could be used to effectively constraint

agents’ movements, but also (iii) a layer connecting “homogeneous”

sites (e.g. indoor or outdoor sites) with edges of null cost, creating ar-

eas in which fields diffuse uniformly, for instance to support agents

in distinguishing the different areas.

For each layer we also have the definition of a finite collection of

fields. A field is determined by four elements:

1. A source node p0, i.e. the identification of a node in the layer

topology;

2. A starting moment t0, i.e. a natural number;

3. An initial intensity f0, i.e. a real, non-negative number;

4. A field equation, i.e. any mathematical relation that univocally de-

termines the intensity f of the field at any node p and at any mo-

ment t ≥ t0, based on the topological distance between p and p0.

As a simplifying assumption for Coupled MMASS, we assume

that fields are represented as real non-negative values that depend

primarily on time interval and topological distance between nodes.

Fields and edge tags are the available resources in this framework

to model context.
We now add entities to our model. Entities can be of two basic

sorts:

1. Objects: an object is any inanimate entity, i.e. an entity that does

not perform actions, does not emit fields and does not move by

itself. We can have an arbitrary number of objects sitting on any

node.

Figure 1. A sample multilayered structure of a coupled MMASS
environment.

2. Agents: an agent is an entity that performs actions including ac-

tions that interact with objects emits fields and moves across the

edges of the layer topology. We can have at most one agent on a

node at any given moment.

An agent can tune to a layer and sense the fields that are hitting it at

the node where it is. Fields are composed based on specified compo-

sition laws. Fields interact only with other fields at the same layer. An

agent can also communicate with other agents. We simplify and re-

lax a little the conditions imposed in the original MMASS, and allow

that agents communicate independently of location (in the original

MMASS, agents could only interact including communicate with

other agents at neighboring nodes). An agent can interact with ob-

jects which are at the same node where it is, performing operations
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allowed for each object (open a box, kick a ball, pick an object, drop

an object, etc.). An agent can emit fields the source node is necessar-

ily the node where the agent is, the starting moment is the moment in

which the agent decides to start emitting the field, the initial intensity

can be arbitrarily selected by the agent, and of course the field type

must be defined in the layer in which the agent is emitting the field.

Finally, an agent can move to a neighboring node following the layer

topology.

At a time t an agent can sense the fields that are hitting it and

receive messages from other agents, trigger the appropriate internal

mechanisms to reason about its state, goals, history, etc. and decide

a course of actions, which can include messages sent to other agents,

interactions with inanimate objects, emission of fields and displace-

ment. As a consequence, at time t + 1 the world must be updated:

fields are updated, the internal states of agents are updated, messages

reach their recipients, the effects of interactions with objects are reg-

istered, and displacements occur. If some sort of conflict occurs re-

garding displacements, e.g. if two agents decide to go to the same

node at time t, some sort of conflict resolution is triggered. A very

simple form of conflict resolution can be as follows: one layer is

elected to be the referee (e.g. the one representing geometrical rela-

tions), and in case of conflict the agent with shortest label (i.e. the one

that is closer to the target node) wins the race, and the other agent(s)

stay where it(they) is(are). If there is a draw (e.g. if two agents are

equally distant from the target node) then one agent is arbitrarily cho-

sen to win the race.

In very few words, it is a dynamic model of agent interactions

together with the structuring of space provided by the layer topology

and contextual information provided by the fields emitted in each

layer. Some standard tricks can be used to provide agents with useful

information, e.g. we can build lamp posts, which are agents that never

move and continually emit a special sort of field. Based on lamp

posts, the other agents can locate themselves geographically.

Operationally, we have a new FOPL theory built for each time

t. Based on this theory, the agents reason and decide what actions

they shall be obliged and permitted to take. Permitted actions are

followed by their corresponding probabilities. Once these actions are

determined, they actually take place, thus changing the environment

and updating the status of every agent for time t + 1 - formally, this

is accomplished by updating the FOPL theory of time t so that it

becomes the correct theory for time t + 1.

We believe that the Coupled MMASS has great potential for ap-

plications related to digital entertainment (games, feature movies),

ubiquitous computing, and simulations in general.

In the next section we illustrate through a simple example the Cou-

pled MMASS in action.

4 THE COUPLED MMASS IN ACTION
In this section we briefly illustrate the operations of the Coupled

MMASS, through a simple example. The example is a simple com-

puter game, in which the computer plays against itself and we can

watch the evolution of a match.

We have a five-by-five board, and two teams of two agents each,

depicted as x and o as presented in Figure 2.

The goal of the x team is to reach the rightmost column of the

board before any agent from the o team reaches the leftmost column

of the board, and vice-versa. The movements of each agent, however,

are constrained by the following rules:

1. Any agent is permitted to emit a field at any moment. An emitted

field lasts for one clock tick and reaches the whole board. Given

Figure 2. Initial configuration of five-by-five board.

that each agent is permitted to emit a field, we must also define

the probability that each agent actually does so. In our example,

we fix it as a probability of 0.2.

2. If an agent of the opposite team is emitting a field, then an agent

is obliged to stay at the same position for one clock tick.

3. If no agent from the opposite team is emitting a field and the po-

sition immediately ahead of an agent is vacant, then the agent is

permitted (with probability 0.5) to move to that position.

4. If no agent from the opposite team is emitting a field and the po-

sition immediately ahead of an agent is occupied, then the agent

is permitted (with probability 0.5) to move one position sideways,

always to its right, and only if the position at its right is vacant.

The right of an x agent is one position below it, and the right of an

o agent is one position above it.

The layer topology for the corresponding Coupled MMASS model

for this simple board game coincides with the board itself, i.e. each

position is a node, and we have edges connecting each node with its

neighbors above, below, to the right and to the left.

We have one physical layer, which corresponds to where the

agents are, and one field layer, which is used to represent the existing

fields at any clock tick.

We have built a simple (and rather roughly finished) PROLOG
program to run simulations of this game. The game depicts a radi-

cally simple world in which agents behave according to a few gen-

eral laws and regulations. Despite its simplicity, it can be surprisingly

entertaining to watch the non-deterministic simulations.

Our goal with this simple example is to show the potential of the

Coupled MMASS framework to build models for the applications

referred to in the previous sections.

5 DISCUSSION AND FUTURE WORK

In this article we have introduced a variation of the MMASS frame-

work, coined the Coupled MMASS, in which a simplified version

of the original MMASS framework is integrated with a variation of

FOPL with non-deterministic proof rules characterizing permissions
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and obligations of agents to behave according to laws and regula-

tions.

We envisage that the Coupled MMASS framework can be use-

ful to model massively multi-agent systems in which the behavior of

agents is governed by complex rules, thus producing complex system

behavior that can be best analyzed through computer-based simula-

tions.

Our future work concerning the Coupled MMASS shall focus on

three issues:

1. We shall adjust some fine grained details about the framework

(e.g. the detailed characterization of proof rules for this frame-

work) and study more carefully some remaining formal issues

(e.g. a model theoretic semantics for the framework).

2. We shall work out efficient implementations for the Coupled

MMASS, so that it can be effectively employed on practical ap-

plications.

3. We shall implement solutions for practical applications, e.g. re-

lated to the fields referred to throughout the present article.
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Gwendolen: A BDI Language for Verifiable
Agents

Louise A. Dennis 1 2 and Berndt Farwer 3 4

Abstract. We describe the Gwendolen BDI (Belief, Desires
and Intentions) agent programming language. Gwendolen is
implemented in the Agent Infrastructure Layer (AIL), a col-
lection of Java classes intended for use in model checking
agent programs in a variety of languages. The Gwendolen lan-
guage was developed to test key features of the AIL and its
integration with the model checker, JPF, and also to provide
a default semantics for the AIL classes.

1 Introduction

The AIL (Agent Infrastructure Layer) [Dennis et al., 2008] is
a toolkit of Java classes designed to support the implementa-
tion of BDI (Belief, Desire and Intention) programming lan-
guages [Rao and Georgeff, 1995, Wooldridge and Rao, 1999]
and the model checking of programs implemented in these
languages. Previous approaches to model checking agent
programs (e.g., [Bordini et al., 2006]) showed that encoding
agent concepts, such as goal and belief, into the state machine
of the model checker was a complex and time-consuming task.
Similarly it was necessary to adapt the property specification
language of a model checker in order to express properties in
terms of belief and goals; the natural terminology for reason-
ing about an agent-based program. Our approach is to encode
the relevant concepts from the AIL into the model checker
just once and then allow multiple languages to benefit from
the encoding by utilising the AIL classes for belief, goal etc.,
in their implementation. The AIL therefore consists of data
structures for representing agents, beliefs, plans, goals and in-
tentions which can be adapted to the operational semantics of
individual languages. It has a common agent class intended to
function as the base for agent classes in individual languages.

This paper documents the Gwendolen language used during
the development of the AIL. It also reports on a simple logic
for reasoning about Gwendolen programs using JPF (Java
PathFinder) [Visser et al., 2003]. Gwendolen is designed to
exhibit many typical features of BDI languages. Programs
are presented as a library of plans. Plans are enabled when
an agent has certain beliefs and goals and suggest a sequence
of deeds to be performed in order to attain a goal. Plans
may also be triggered by events, such as changes in belief

1 Dept. of Computer Science, University of Liverpool, Liverpool,
UK, L.A.Dennis@liverpool.ac.uk

2 Work supported by EPSRC grant EP/D052548.
3 Dept. of Computer Science, Durham University, Durham, UK,

berndt.farwer@durham.ac.uk
4 Work supported by EPSRC grant EP/D054788.

following perception or the commitment to goals. We term
such plans triggered plans whereas plans which depend on an
agent’s internal state alone are untriggered plans. Gwendolen
agents also distinguish two sorts of goals. Achievement goals
make statements about beliefs the agent wishes to hold. They
remain goals until the agent gains an appropriate belief. Per-
form goals simply state a sequence of deeds to be performed
and cease to be a goal as soon as that sequence is complete.

Gwendolen is not intended for use as an actual pro-
gramming language. The point of the AIL is for many
languages to be implemented using it. Of particular in-
terest are the Jason [Bordini et al., 2007] implementation
of AgentSpeak [Rao, 1996] and 3APL [Dastani et al., 2005],
and work is underway to implement these within the
AIL. Two existing languages, SAAPL [Winikoff, 2007] and
GOAL [de Boer et al., 2007], have already been implemented.
Gwendolen does however serve two purposes. Firstly it pro-
vides a default semantics for the AIL data structures. Any
language implemented using the AIL classes will have its own
operational semantics and so could, in principle, use the AIL’s
data structure for perform goals as achievement goals and
vice versa. Our intention is that such languages, where possi-
ble, should use the rules provided for Gwendolen (the default
AIL semantics) only altering these where necessary. Further-
more, where languages change the default semantics it be-
comes possible to reason about the effects of the changes on
model checking. Secondly Gwendolen served a practical pur-
pose as part of the development and debugging of the AIL and
has been used in some simple case studies – such as reported
in [Dennis and Fisher, 2008].

Gwendolen’s agent data structure and the workings of some
of the transition rules contain elements which are there purely
to assist reasoning about the programs. We will highlight
these elements as we encounter them. These suggest adap-
tations to the semantics of existing agent languages that may
be useful to enable reasoning about multi-agent systems.
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2 Syntax

var → string beginning with an upper-case letter

const → string beginning with a lower-case letter

term → var

| const

| const(term∗)
literal → term

| ¬term

source → const

| var

belief → literal

belief s → belief {source}
τg → a

| p

goalexp → literal

action → term

| null

message → (const , term)sourceconst,const

Messages consist of a pair of a constant and a term (an illocu-
tionary force, and the message content), a source representing
the sender of the message, and then two constants for a mes-
sage id and a thread id.

sbelief → belief s

| !τg goalexp

| message

An sbelief (State Belief) is a statement about the agent’s in-
ternal state. This includes whether the agent has a particular
belief, a particular goal, or has sent a particular message.

guard → var

| sbelief

| ∼ sbelief

| guard ∧ guard

A guard is a formulae that must be believed by an agent before
a plan is applicable. NB. We are using ¬ here to represent
“believes not” and ∼ to represent “doesn’t believe”.

deed → action

| +belief

| −belief

| +!τg goalexp

| −!τg goalexp

| ε

Deeds represent the statements that may appear in the bodies
of plan. So an agent may execute an action, add or remove
beliefs and add or remove goals. ε is a distinguished symbol

that is taken to mean “no plan yet”.

event → var

| +belief

| −belief

| +!τg goalexp

| ×!τg goalexp

| start

events → event{source}

Events are statements that may trigger a plan. So again this
includes changes in belief, commitment to goals, and discover-
ing there is a problem with achieving some goal (×!τg goalexp).

The only point where a programmer may directly refer to
the source of a belief or goal is as part of an event or a guard in
a plan. This is for matching plans to intentions. A programmer
has no control over the assignment of sources to events, beliefs,
and so forth.

plan → (event , deed∗) : guard <- deed∗
plans → plan{source}

Plans consist of an event and deed stack which are matched
against the current intention when determining applicability.
There is a guard which must succeed for the plan to be ap-
plicable and another deed stack, the body of the plan, repre-
senting the course of action to be taken.

The initial state of a Gwendolen agent, as specified by a
programmer is:

Name: const Environment: const

Beliefs: belief ∗
Goals: goalexp∗
Plans: plan∗

2.1 Notation

In what follows we generally refer to individual beliefs, goals,
actions, events, etc. with lower-case letters and sets or stacks
of beliefs, goals, actions, etc. with upper-case letters (mostly
we presume these are stacks but sometimes we generalise to
sets). In general the following letters will be associated with
each concept: beliefs (b), goals (g), actions (a), events (e),
plans (p), deeds (d) and guards (gu).

3 Functions and Data Structures

3.1 Sets and Stacks

We have generic stack and set data-types with the following
constructors, destructors, and operations:
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Stack

[] an empty stack

x;s stack s, with a new top element x

hd(s) top element of stack s

drop(n, s) remove the top n elements from
stack s

prefix(n, s) the top n elements of the stack s

s[n] the n-th element of the stack s

s1 @ s2 s1 appended to the front of s2

#s the number of elements in the stack
s.

empty(s) true if s is empty

Set

x ∈ S x is in the set S

S1 ∪ S2 the union of sets S1 and S2

S1 \ S2 the set S1 less the set S2

in1(S1 × S2) S1

3.2 Intentions

Definition 1 An intention (i) is an abstract data structure
which relates a deed stack to a set of triggering events, uni-
fiers, and a source. The idea is that an intention has a source
(for whom the intention is being performed) and that any deed
on the stack can be traced to its triggering event. Individual
deeds are also associated with unifiers for its free variables.

We do not go into the details of the data structure here but
note that it supports the following operations.

Intention

Δi the deed stack of intention i.

Ei the event stack of intention i.

tr(n, i) returns the event that triggered the
placement of the n-th deed on i

θ(n, i) returns the unifier associated with
the n-th deed in the deed stack

(e, ds, θ)@pi , joins a stack of deeds ds, to an inten-
tion’s deed stack such that all deeds
in ds are associated with the event
e and the unifier θ.

dropp(n, i) removes the top n deeds from the
stack and also performs appropriate
garbage collection on events so that
Ei will only list events still relevant
to the truncated deed stack

drope(n, i) removes the top n events from the
intention and also performs appro-
priate garbage collection on deeds so
that Δi will only list deeds still rel-
evant to the truncated event list

[(e, ds, θ)]{s} A new intention with deed stack, ds,
associated with the event e, the uni-
fier θ and source, s

On top of these can be defined the following.

hddeed(i) hd(Δi)

hdev(i) hd(Ei)

θhd(i) θ(1, i)

tlint(i) dropp(1, i)

(e, d , θ);pi (e, [d ], θ)@pi

iUθθ (hdev(i), hddeed(i), θ ∪ θhd(i));ptlint(i),

i [θhd(i)/θ] (hdev(i), hddeed(i), θ);ptlint(i)

[(e)]{s}

8<
:

[(e, [ε], ∅)]{s} if e is a belief update

[(e, e, ∅)]{s} otherwise

emptyint(i) Δi = []

All aspects of an agent’s internal state are annotated with
sources:

src(c) returns the source of component c

3.3 Agent State

Definition 2 An agent state is a tuple 〈ag , ξ, i , I ,Pl ,A,B ,
P , In,Out ,RC 〉 where ag is a unique identifier for the agent,
ξ an environment, i is the current intention, I denotes all
extant intentions, Pl are the currently applicable plans (only
used in one phase of the cycle), A are actions executed, B
denotes the agent’s beliefs, P are the agent’s plans, In is the
agent’s inbox, Out is the agent’s outbox, and RC is the current
stage in the agent’s reasoning cycle. All components of the
state are labelled with a source.

Definition 3 The initial state of an agent defined by

Name: ag Environment: ξ

Beliefs: bs

Goals: gs

Plans: ps

is a state

〈ag , ξ, hd(I ), tl(I ), ∅, ∅,B ,P , ∅, ∅,A〉

where

I = map(λg . ([(start, +!τg g , ∅)]{self}), gs)

B = map(λb. b{self}bs)
P = map(λp. p{self}ps)

These pair the aspects of the initial state as specified by the
programmer with the source self.

For notational convenience we will sometimes use the agent
identifier, ag , in an agent state 〈ag , ξ, i , I , appPlans,A,B ,P ,
In,Out ,RC 〉 to refer to the whole agent and will refer to
individual components as agB for the belief base B ; agOut

for the outbox Out ; agA for the actions A; and agIs for the
combined set of all intentions i ;I . The action stack A is one
of the data structures included in a Gwendolen agent entirely
to assist in reasoning about agents. It represents actions the
agent has performed and can be used to verify that, at the
least, an agent believes it has done something.
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4 Application and Environment

We assume some functions that applications may override

Overridable functions

Description Syntax

select intention Sint(I ) = 〈i , I ′〉
select plan Splan(P , i) = p

relevance of sources relevant(s1, s2)

Sint and Splan default to selecting the first intention/plan in
the list (I or P , respectively). The function relevant defaults
to true.

We also assume that the environment in which the agents
run supports several functions:

Environment functions

Description Syntax

perform action do(a) =

8<
:

θ if action a succeeds

⊥ if action a fails

get new percepts newpercepts(ag)

percepts to remove oldpercepts(ag)

get messages getmessages(ag)

Where do performs an action, newpercepts returns any new
perceptions since the agent last checked, oldpercepts returns
anything the agent can no longer perceive and getmessages
returns any new messages for the agent.

5 State Checking

Gwendolen implements a logical consequence relation |= on
guards. This relation relates an agent ag with a pair of a
guard and a unifier (if the guard is not ground, the unifier
returned by |= is a unifier that makes the statement true).
This is the default logical consequence relation provided by
the AIL and it is a key component in model checking systems
using the AIL. In general the model checking process verifies
that an agent satisfies a particular property (such as having a
belief, or a goal) if the logical consequence relation succeeds.

The semantics of |= is based on an underlying transition
system →bc . This is more elaborate than required at present
but we intend to extend |= with Prolog style reasoning.

ag |= sbelief , θ ≡ 〈sbelief , ∅, ag〉→bc
∗〈[], θ, ag〉 (1)

ag |=∼ gu ≡ ¬(ag |= gu, ) (2)

ag |= gu1∧gu2, θ1∪θ2 ≡ ag |= gu1, θ1∧ag |= gu2θ1, θ2 (3)

NB. we are using the notation tθ to represent the application
of a unifier θ to a term t.

Checking Beliefs:

b′ ∈ agB unify(b′, b1θ1) = θ

〈b1;bs1, θ1, ag〉→bc〈bs1, θ ∪ θ1, ag〉
(4)

Checking for Goals:

i ∈ agIs !τg g
′ ∈ Ei unify(g ′, gθ1) = θ

〈!τg g ;bs1, θ1, ag〉→bc〈bs1, θ ∪ θ1, ag〉
(5)

Checking the outbox:

m ∈ agOut unify(m,m1θ1) = θ

〈m1;bs1, θ1, ag〉→bc〈bs1, θ ∪ θ1, ag〉
(6)

6 Planning

Gwendolen has two options during the planning phase of a
reasoning cycle. Either the current intention continues to be
processed, or it needs new planning. This is represented by the
function appPlans, yielding the currently applicable plans:

appPlans(ag , i) = continue(ag , i) ∪ match plans(ag , i) (7)

The applicable plans are a set of tuples, each repre-
senting an alteration to be made to the intention i, of
the form 〈trigger, newplan, guard, length, unifier〉. To bor-
row some terminology from 3APL [Hindricks et al., 1999,
Dastani et al., 2005], plan revision plans specify that a prefix
of the current plan should be dropped and replaced by an-
other while goal planning plans specify how the current plan
should be extended to plan a sub-goal. We have unified this
idea with the use of events (which allow an agent to pursue
multiple intentions at once). So the above tuple specifies a
triggering event for the new deed stack section, the new deed
stack (that replaces the old prefix), the guard for the plan (we
want to keep a record of this when using untriggered plans),
the length of the prefix to be dropped, and a unifier.

6.1 continue
continue processes intentions with pre-existing deed stacks,
i.e., where there is no need to start off new sub-goals. However
such intentions may also be altered by plan revision plans.

continue(ag , i) = {〈hdev(i), hddeed(i),�, 1, θhd(i)〉|
hddeed(i)θhd(i) �= ε} (8)

6.2 match plans

match plans(ag , i) =

match plans1(ag , i) ∪ match plans2(ag , i) (9)

The two sets that make up match plans consist of those
generated from all the triggered plans in the agent’s plan li-
brary:

match plans1(ag , i) = {〈pe , pd , pgu , #pp , θ〉|
(pe , pp) : pgu <- pd{ps} ∈ agP ∧ #pp > 0

∧ unify(tr(#pp , i) : prefix(#pp , Δi)θ
hd(i), pe : pp) = θe

∧ ag |= pguθe, θb ∧ θ = θhd(i) ∪ θe ∪ θb} (10)

and all the untriggered plans in the plan library.

match plans1(ag , i) = {〈pe , pd , pgu , #Δi + 1, θ〉|
(pe , pp) : pgu <- pd{ps} ∈ agP ∧ #pp = 0∧

∧ ag |= pgu , θb ∧ θ = θhd(i) ∪ θb} (11)
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Although this looks complex, it is the standard BDI planning
mechanism for matching triggers and/or guards. There is a
fair amount of book-keeping to keep track of unifiers and the
added requirement. Because of the variety of different plan
types Gwendolen allows to generate a number for the lines to
be removed from the current intention.

7 Gwendolen Operational Semantics

Gwendolen has a reasoning cycle based on 6 stages: A, B, C,
D, E, and F. In what follows, we omit all parts of the state
not affected by a transition for the sake of readability.

Definition 4 A multi-agent system is a tuple of n agents
Ai(1 ≤ i ≤ n) and an environment ξ.

Ai → A′
i

{A1, ...,Ai, ...,An, ξ} → {A1, ...,A′
i, ...,An, ξ} (12)

7.1 Stage A: Intention Selection

Rule (13) is the standard rule for selecting a new intention.
This covers all intentions except empty intentions:

¬emptyint(i) Sint(I ∪ {i}) = (i ′, I ′)
〈ag , i , I ,A〉 → 〈ag , i ′, I ′,B〉 (13)

Rule (14) tidies away completed intentions – we stay in
stage A because it is possible the selected intention is also
empty.

emptyint(i) Sint(I ) = (i ′, I ′)
〈ag , i , I ,A〉 → 〈ag , i ′, I ′,A〉 (14)

7.2 Stage B: Generate applicable plans

Rule (15) uses appP lans defined in equation (7) to generate
a set of plans deemed applicable by Gwendolen.

appPlans(ag , i) �= ∅
〈ag ,Pl ,B〉 → 〈ag ,Pl ′,C〉 (15)

where Pl ′ = appPlans(ag , i)

Rule (16) applies when there are no applicable plans but
the triggering event isn’t a goal. The new applicable plan is
an empty plan.

appPlans(ag , i) = ∅ hdev(i) �= +!τg g

〈ag , i ,Pl ,B〉 → 〈ag , i , {〈hdev(i), [], 1, ∅〉},C〉 (16)

Rule (17) applies if there is no applicable plan for some
sub-goal. In this case a problem goal event is posted. NB.
This does not immediately cause the goal to be dropped.
A response to a problem goal has to be handled by a plan.
An obvious default plan is (×!τg g , ε) : � <- −!τg g which will
cause problem goals to be dropped (see (24) and (25)) but
this mechanism allows for other responses to problem goals.

appPlans(ag , i) = ∅ hdev(i) = +!τg g

〈ag , i , I ,Pl ,B〉 → 〈ag , i , I , {〈×!τg g , [], 0, θhd(i)〉},C〉 (17)

7.3 Stage C: Select a plan

Plan revision rules may wish to alter the prefix of the deeds
on a deed stack. For this reason our applicable plan stage has
generated a tuple of a triggering event e, a deed stack, ds, a
guard, gu, the length of prefix to be dropped, n, and a unifier,
θ. In goal planning the prefix length is just 1 (i.e. it will drop
the ε (no plan yet) marker from the top of the plan and insert
the new plan from the rule) but this allows longer prefixes to
be dropped in plan revision.

Splan(Pl , i) = (〈e, ds, gu, n, θ〉) n > 0

〈ag , i ,Pl ,C〉 → 〈ag , (e, ds, θ)@pdrop(n, i)[θhd(i)/θ], [],D〉
(18)

Rule (19) handles untriggered plans. These are plans that
are triggered by the agent’s state alone, not by any particular
triggering event or deed stack. We do not want these appended
to the current intention. We treat them as a new intention
associated with that agent state coming about.

Splan(Pl , i) = (〈e, ds, gu, 0, θ〉)
〈ag , i , I ,Pl ,C〉 → 〈ag , [(+st(gu), ds, θ)]{self}, i ;I , [],D〉

(19)

7.4 Stage D: Handle top of the Deed Stack

We start with a rule for handling an empty deed stack. This
simply proceeds to the next stage:

Δi = []

〈ag , i ,D〉 → 〈ag , i ,E〉 (20)

7.4.1 Achievement Goals

Rule (21) handles situations where a goal has already been
achieved. When we achieve a goal the top unifier is transferred
to the next goal down in order to preserve instantiations (us-
ing the Uθ function we defined earlier).

hddeed(i)θhd(i) = +!ag ag |= g , θg

〈ag , i ,D〉 → 〈ag , tlint(i)Uθ(θhd(i) ∪ θg),E〉 (21)

Rule (22) sets up a new achieve sub-goal for planning. It
does this by making the sub-goal a new triggering event as-
sociated with the “no plan yet” symbol. It leaves +!ag on the
deed stack under ε. The idea is that ε will be replaced by the
deed stack to achieve g and then we test that g has indeed
been achieved.

hddeed(i)θhd(i) = +!ag ag |=∼ g

〈ag , i ,D〉 → 〈ag , (+!τg g , ε, θhd(i));pi ,E〉
(22)

7.4.2 Perform Goals

Rule (23) sets up a new perform sub-goal for planning, as for
(22).

hddeed(i)θhd(i) = +!pg

〈ag , i ,D〉 →
〈ag , (+!pg , ε, θhd(i));p(hdev(i),null , θhd(i));ptlint(i),E〉

(23)

20



The null action (equivalent to “do nothing”), represented by
the placeholder null , is required to ensure that we do not lose
the record of the event that placed the perform goal on the
event stack. This is an example of an operational rule gov-
erned by the need to reason about the agent’s state. Since we
use the event stack to, for instance, reason about the goals of
the system we do not want to lose a record of these goals. We
remove the perform goal deed from the deed stack, tlint(i),
but we do not want to lose the the event hdev(i) from the
event stack. Since if it only occurs once we lose the record
that the agent committed to it (if it was a goal).

7.4.3 Dropping Goals

When dropping a goal we remove all the events on the event
stack after we committed to the goal:

hddeed(i)θhd(i) = −!τg g unify(+!τg g , Ei [n]θe(n, i)) = θe

∀m < n. Ei [m]θe(m, i) �= +!τg g

〈ag , i ,D〉 → 〈ag , drope(n, i),E〉
(24)

hddeed(i)θhd(i) = −!τg g ¬unify(+!τg g , Ei [n]θe(n, i))

〈ag , i ,D〉 → 〈ag , tlint(i),E〉
(25)

7.4.4 Updating Beliefs

Rule (26) adds beliefs. It also starts a new intention triggered
by the “new belief” event. This allows for any belief inference
that follows from the change.

hddeed(i)θhd(i) = +b

〈ag , i , I ,B ,D〉 →
〈ag , tlint(i)Uθθhd(i), [(+b)]{src(i)});I ,B ∪ {b},E〉

(26)

Rule (27) is for removing beliefs:

hddeed(i)θhd(i) = −b

∃b′ ∈ B .unify(b′, b) = θ relevant(src(b′), src(b))

〈ag , i , I ,B ,D〉 →
〈ag , tlint(i)Uθ(θ

hd(i) ∪ θ), [(−b)]{src(i)};I ,B \ {b′},E〉
(27)

7.4.5 Actions

Rule (28) covers generic actions. We use ↑ag m for the action
of sending a message m to an agent ag . For presentational

reasons a �=↑ means a �=↑ag (ilf , m)ag
′

mid,thid

hddeed(i)θhd(i) = a a �=↑ a �= null do(a) = θa

〈ag , i ,A,D〉 → 〈ag , tlint(i)Uθ(θhd(i) ∪ θa), a;A,E〉 (28)

Note how we place the action a on the action stack A to record
its execution for reasoning purposes.

Sending involves generating a new message id. It is possible
the send refers to an old message id (thid for thread id) if it
is a reply.

hddeed(i)θhd(i) =↑ag (ilf , φ)ag
′

,thid
′ mid = Mid(ag , ag ′)

(th id
′ = null ∧ th id = T Hid(ag , ag ′)) ∨ th id = th id

′

ξ.do(↑ag′
(ilf , φ)agmid,thid

) = θa

〈ag , ξ, i , I ,A,Out ,D〉 →
〈ag , ξ, tlint(i)Uθ(θ

hd(i) ∪ θa),

[(↑ag′
(ilf , φ)agmid,thid

, ε, θhd(i) ∪ θa)]{self};I ,

↑ag′
(ilf , φ)agmid,thid

;A,Out ∪ {↑ag′
(ilf , φ)agmid,thid

},E〉
(29)

where Mid and T Hid are functions that generate fresh id
numbers for messages and threads respectively.

There is a rule for null actions:

hddeed(i)θhd(i) = null ,

〈ag , i ,D〉 → 〈ag , tlint(i)Uθθhd(i),E〉 (30)

Lastly we have two rules for unsuccessful actions:

hddeed(i)θhd(i) = a, hdev(i) = +!τg g ¬ξ.do(a)

〈ag , ξ, i , I ,D〉 → 〈ag , ξ, (×!τg g , ε, θhd(i));pi , I ,E〉
(31)

hddeed(i)θhd(i) = a, hdev(i) �= +!τg g ¬ξ.do(a)

〈ag , ξ, i , I ,D〉 → 〈ag , ξ, i , I ,E〉
(32)

7.5 Stage E: Perception

〈ag , ξ, i , I , [],E〉 → 〈ag , ξ, i , I ′ @ I ′′ @ I , In,F〉 (33)

where In = ξ.getmessages(ag),

I ′ = {[((+b, +b, ∅))]{percept} | b ∈ ξ.newpercepts(ag)},
and I ′′ = {[((−b,−b, ∅)]{percept} | b ∈ ξ.oldpercepts(ag)}

Perception does not directly act on the belief base, instead
it sets up intentions to alter the belief base – this allows for
planning based on, for instance, the reliability of the informa-
tion.

7.6 Stage F: Message Handling

〈ag , i , In,F〉 → 〈ag , I ′ @ I , [],A〉 (34)

where I ′ = {[(+ ↓ag (ilf , φ)ag
′

mid,thid
)]{ag ′}|(ilf , φ)ag

′
mid,thid

∈ In}

We use ↓ag m to represent the fact that agent, ag has received
message, m. Again the receipt of messages doesn’t directly
act on the belief base, but causes new intentions to be set up
noting the receipt of the message.

8 Communication Semantics

Gwendolen has no fixed semantics for communication instead
both receiving and sending messages are treated as belief up-
date events and start new intentions. This allows a seman-
tics of communication for any particular program to be es-
tablished using plans. For instance a semantics for perform
messages can be established with the following plan:

(+ ↓A1 (perform, Goal)A2
Mid,Thid

, ε) : � <- +!pGoal
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This specifies that the content of a message with a perform
illocutionary force should be established as a perform goal.

We also intend to extend the AIL and Gwen-
dolen with grouping mechanisms such as described
in [Dennis et al., 2007] with the intention that these
can be used to program a range of multi-agent coordination
models such as organisations and roles [Ferber et al., 2003],
joint intentions [Cohen and Levesque, 1991] and institu-
tions [Esteva et al., 2001].

9 Model Checking

The AIL includes a set of interfaces which allow a dedicated
set of classes, referred to as the MCAPL (Model Checking
Agent Programming Languages) interface to model check pro-
grams. The MCAPL interface allows a user to specify simple
properties in a temporal and modal logic and then check that
these properties hold using the JPF (Java PathFinder) model
checker. At present we can verify properties of simple pro-
grams written in Gwendolen using properties expressed in the
following MCAPL property specification language:

a ::= constant

f ::= ground first order formula

φ ::= B(ag , f) | G(ag , f) | A(ag , f) | φ ∧ φ | φ ∨ φ | ¬φ

| φUφ | φRφ
(35)

Some of these formulas have a semantics determined by the
implementation of the MCAPL interface. The AIL imple-
ments the formulas B(ag , f) and G(ag , f) as sbelief s. Con-
sider a program P for a multi-agent system and let MAS be
the state of the multi-agent system at one point in the run
of the program. Consider an agent, ag ∈ MAS, at this point
in the program execution, MAS |=MC B(ag , f) iff ag |= f, θ
(for some θ). Similarly AIL interprets G(ag , f) to mean that
MAS |=MC G(ag , f) iff ag |=!af, θ (for some θ). We use the
syntax f : belief and f : action here to show how the logi-
cal consequence relation distinguishes between the formulae
based on their type. By contrast reasoning about executed
actions inspects the action stack so MAS |=MC A(ag , f) iff
f ∈ agA.

The other formulas in the MCAPL property specification
language have an LTL (Linear Temporal Logic)-based seman-
tics defined by the MCAPL interface and including the oper-
ators until (U) and release (R).

MAS |=MC φ1 ∧ φ2 iff MAS |=MC φ1 and MAS |=MC φ2

MAS |=MC φ1 ∨ φ2 iff MAS |=MC φ1 or MAS |=MC φ2

MAS |=MC ¬φ iff MAS �|=MC φ.

The temporal formulas hold true of runs of the programs in
the JPF model checker. A run consists of a sequence of pro-
gram states MASi, 0 ≤ i ≤ n where MAS0 is the initial state
of the program and MASn is the final state in the run. Let
P be a multi-agent program P |=MC φ1Uφ2 iff in all runs
of the program there exists a program state MASj such that
MASi |=MC φ1 for all 0 ≤ i < j and MASj |=MC φ2. Sim-
ilarly P |=MC φ1 Rφ2 iff either MASi |=MC φ1 for all, i or
exists MASj such that MASi |=MC φ1 for all, 0 ≤ i ≤ j and
MASj |=MC φ1 ∧ φ2. The more commonly recognised tempo-
ral operators ♦ (eventually) and � (always) are special cases
of U and R.

10 Current Status

We have written a number of simple programs based on
“Blocks World”-type examples where agents form goals to
pick up blocks, or to get other agents to pick up blocks. Two
such programs are shown below:

10.1 Program 1

This is a single agent program. The agent believes a block to
be available and that its hands are empty. The has a single
achievement goal – to pick something up. It has a single plan,
triggered by the desire to pick something up and guarded by
something being available to pick up. It then adds a belief
that it has picked up the object and removes the belief that
its hands are empty.

Name :ag1

Beliefs :empty

available(block)

Goals :!apickup(X)

Plans :(+!apickup(Y ), ε) : empty ∧ available(Y )

<- + pickup(Y );

−empty

We can verify properties of this such as
♦(B(ag1, pickup(block))). It is also possible to establish the
falsity of expressions such as �(¬(B(ag1, pickup(block)) ∧
B(ag1, empty))). This property is violated because the agent
first adds the belief it has picked up the block before it
removes the belief that its hands are empty.

10.2 Program 2

This program consists of two agents, a master and a slave.
The master has a goal, to pick something up. To achieve this
it sends a message to the slave with the illocutionary force,
achieve, telling the slave to pick something up.

The slave has two plans. The first of these performs a pick
up action if it wants to pick something up, while the second
establishes the semantics for achieve, namely that the slave
establishes an achievement goal when asked to achieve some-
thing.

Name :master

Beliefs :check

Goals :!apickup

Plans :(+!apickup, ε) : �
<- ↑slave (achieve, pickup)master

Mid,Thid ;

wait;

+!acheck

Name :slave

Plans :(+!apickup, ε) : � <- pickup

(+ ↓slave (achieve, Goal)master
Mid,Thid , ε) : � <- +!aGoal

We can verify some properties of this program, such as
♦(B(master, check)). But, because JPF does not assume
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a fair scheduler, it is impossible to verify, for instance,
♦(B(master, pickup)) because there is a run where the slave
agent never gets an opportunity to do anything. We are cur-
rently working to overcome these limitations and to customise
JPF to both improve its efficiency in an agent setting and pro-
vide a flexible set of appropriate configurations for checking
agent programs under a range of assumptions.

11 Conclusions

We have presented here a prototype language, Gwendolen,
used in developing the AIL, which is a collection of classes
intended to assist in model checking agent programs written
in a variety of languages. We have discussed how the MCAPL
interface allows us to inspect a Gwendolen agent in order to
deduce properties of that agent for use in model checking.

Gwendolen provides a default semantics for the AIL classes.
This allows an implementation of an existing language using
the AIL to (potentially) prove that it has preserved the se-
mantics of the AIL data structures sufficiently to generate
sound results from the model checking process.

The construction of the Gwendolen language has also re-
vealed places where language semantics need to be specialised
if we intend to reason about agents written in that language.

12 Further Work

In future we intend to add basic constructs for form-
ing groups to Gwendolen based on a framework outlined
in [Dennis et al., 2007] and at the same time to extend the
MCAPL property specification language with appropriate
primitives for discussing groups of agents.

We also hope to customise JPF for model-checking with
agent languages. For instance, if we assume that the program
states of interest in the model-checking process are those that
occur after every rule application (for instance) rather than
every Java state executed then we can increase the complexity
of programs that can be verified within a reasonable time.

Lastly we intend to implement a number of exist-
ing BDI languages in the AIL (two implementations,
SAAPL [Winikoff, 2007] and GOAL [de Boer et al., 2007]
are already complete with others, in particular AgentS-
peak [Bordini et al., 2007] underway) and investigate correct-
ness issues.
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Theory and Practice of Social Reasoning 

Experiences with the iCat
Frank Dignum, Bas Steunebrink, Nieske Vergunst, Christian Mol, John-Jules Meyer1

Abstract.  In this paper we discuss how a social companion 
robot can be programmed using agent technology. An important 
challenge is to combine the physical and conceptual elements of 
social relationships.1 2

1 INTRODUCTION 
The term “social reasoning” can be used in many different ways 
and in many different settings. One can argue that if one is 
planning a holiday with the family, social reasoning is needed to 
find a destination that is, in some sense, socially optimal. For 
this kind of reasoning one could use game theory or something 
related. Our setting, however, is of a different nature. We aim to 
program a sociable robot on the iCat, developed by Philips. The 
iCat is a static robot (no legs or wheels) that can only move his 
head and create facial expressions. Some pictures of the 
expressions can be seen in figure 1. 

Figure 1. iCat showing emotions 
The iCat can see through a camera in its nose and hear 

through microphones in its paws. It also has a proximity sensor 
in his left paw and touch sensors in its paws and ears. Besides 
the facial expressions the iCat can also talk or send information 
through a network link to other devices (in this way it can e.g. 
switch on a tv or a lamp). 

 The iCat platform comes with OPPR which allows you to 
create animations in a simple way using timelines and/or LUA 
scripts. OPPR also takes care of lip sync for speech output and of 
the blending of different outputs such as when the iCat has to 
simultaneously smile and talk. 

In our project we are using the iCat as a kitchen companion 
that can assist persons in the kitchen with cooking, making 

1 Dept. of Information and Computing Science, Utrecht University, The 
Netherlands. Email: {dignum,bass,nieske,Christian,jj}@cs.uu.nl.

shopping lists, etc. In this setting we need social reasoning in 
order to find e.g. a recipe that suits the whole family, but we also 
need social reasoning over the physical, real-time interaction. 
For instance, the iCat can give a complete recipe in one time, but 
probably the person needs to have instructions spread out during 
the cooking period (at the time they are needed for the next step 
in the preparation). And even on a lower level the iCat should 
check whether the person pays attention or is getting bored (by 
means of e.g. gaze tracking) with a conversation in order to 
switch to another mode. 

We assume that for a high level of social behaviour the robot 
should be conscious of goals, desires, values, preferences, etc. of 
itself and the person and also how these relate (e.g. common 
goals, common beliefs, contradictory goals and beliefs). This led 
us to the use of the agent paradigm as a means to model and 
implement the reasoning on the iCat. Agents also are defined in 
terms of goals, intentions, plans and beliefs and thus seem a very 
good fit. 

However, the traditional agent architecture can best be 
depicted as in figure 2. This follows the sense-reason-act loop. In 
such a loop the agent senses the environment, updates its beliefs 
and based on its current goals and intentions checks which action 
it should perform next.  

Figure 2. architecture of  BDI agents 
In this architecture the reasoning part is autonomous and 

cannot be interrupted. It is a well-known fact that this feature can 
lead to big problems in real-time environments where quick 
reactions to changing situations are necessary. 

The most well-known social robots Max and Kismet [1,3] 
have thus been implemented mainly using a reactive architecture 
in which the robot directly responds based on the inputs it gets 
from the environment (although in Max [3] also goals are used 
and in Kismet [1] “urges” play a role). 

Since real-time aspects are very important for social 
behaviour and thus for social robotics we are trying to combine 
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the traditional BDI architecture with the more reactive 
approaches that already exist. In the next section we sketch a 
short overview of the architecture and will explain shortly which 
role the social reasoning takes here and how this is modelled in 
this architecture. 

2 ARCHITECTURE  

In figure 3 we show the architecture that is used to model the 
social robot as we are implementing it on the iCat.  

Figure 3. architecture of a social robot 
Although we will not discuss the architecture in detail (we have 
another paper in preparation for that [4]) the figure illustrates 
nicely that the architecture of a social robot is a lot more 
complex than that of a traditional agent. This complexity stems 
from the combination of the following two points: 

1. Social behaviour encompasses many different 
elements that should be combined. 

2. Real-time aspects are important for social behaviour. 
As an example of point one, a social robot has to interpret and 
give social cues. In order to interpret a social cue the robot 
should be aware of the emotions of the user, have a user profile 
and history, have domain knowledge and be aware how its 
position is in both the physical and social relation with the user. 
If one takes only the first point into account, one could still use a 
traditional agent architecture. This architecture could have a 
complex belief base encompassing models of the user(s), domain 
knowledge, history, etc. However, the second point indicates that 
there is no unlimited time to deliberate on its actions. For many 
groups in robotics, the real time aspect prompted them to start of 
with a reactive system that could respond in time to an event. Of 
course this was one of the reasons for Brooks to propose a 
layered architecture in which each layer builds on a (reactive) 
layer below [2]. 

The way we try to solve the problem of combining a very 
rich deliberation process with real-time aspects is by splitting up 
the different elements of the social reasoning in separate 
components that can run in parallel but interact through a few 
main deliberation loops. On the highest level we distinguish 
three deliberations. One for maintaining the dialogue with a user, 
one for general goal achievement and one for motor behaviour. 
The last one is just drawn for completeness as it is not needed for 
the iCat which only can move (some parts of) its head. 

These deliberation cycles are connected with lower level 
processes on both the input and output side. Besides these two 
traditional parts we also formed this into a kind of hybrid Brooks 
architecture and have a low-level reactive module that takes care 
of primary reactions and urges such as hunger, sleep, etc. 

The main challenge in using this architecture is not so 
much the deliberation processes on the highest level, but 
determining which data to feed into these high level deliberation 
processes and what to handle in the other modules. E.g. it is clear 
that one wants some geometric reasoning to take place on the 
vision input. This can be used to reason that a ball is moving. 
However, does one just indicate that the ball is moving or also 
the change in position or speed? Depending on what the 
deliberation loop is doing different types of data might be 
important at different intervals. If the robot is contemplating to 
intercept the ball, it probably wants to know as much as possible 
about the position and speed changes of the ball. But if it is 
actually talking with the user about dinner, the ball is only a 
distraction and no data is needed except that the ball is moving. 

Our thesis is that social reasoning depends for a large part 
in determining how to zoom in and zoom out of the different 
processes that comprise the social situation and combine the 
results of these processes in a coherent way. This can be (partly) 
achieved by using things like “focus of attention” and 
maintaining a “shared situation awareness”. Both terms are 
however not very precisely definable and need more exploration 
to be truly useful. 

7 CONCLUSIONS 
We have sketched an architecture for social robots and 

tried to indicate the position of social reasoning from the 
perspective of this architecture. The work is an ongoing effort 
and we need more experience with an implementation to be able 
to sustain our claim that this architecture helps in modelling and 
implementing social robots. An important aspect for us is the 
question how to actually program a robot like this. Which parts 
of the architecture should be domain independent, which 
programming language should be used for the different modules 
and how should they be connected. 
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How can machines reason?
Mateja Jamnik1

1 Can machines reason like humans in
mathematics?

Some of the deepest and greatest insights in reasoning were made
using mathematics. It is not surprising therefore that emulating such
powerful reasoning on machines – and particularly the way humans
use diagrams to “see” an explanation for mathematical theorems – is
one of the important aims of artificial intelligence.

2 Diagrams for reasoning

Drawing pictures and using diagrams to represent a concept is per-
haps one of the oldest vehicles of human communication. In mathe-
matics, the use of diagrams to prove theorems has a rich history: as
just one example, Pythagoras’ Theorem has yielded several diagram-
matic proofs (one is given in the figure below) in the 2500 years fol-
lowing his contribution to mathematics, including that of Leonardo
Da Vinci’s 2000 years later. These diagrammatic proofs are so clear,
elegant and intuitive that with little help, even a child can understand
them [9].

b

b a

c b

a

a

b a

a

cb

a2 + b2 = c2

The concept of the “mutilated” checkerboard is another useful
demonstration of how intuitive human reasoning can be used to solve
problems. If we remove two diagonally opposite corner squares (like
in the picture of the mutilated checkerboard in the figure below):

1 University of Cambridge Computer Laboratory, UK, Web:
www.cl.cam.ac.uk/˜mj201

can the board still be covered with dominoes (that is, rectangles made
out of two squares)? The elegant solution is to colour the checker-
board with alternative black and white squares, like the chessboard
(in the figure below),

and do the same with the dominoes so that a domino is made of
one black and one white square. The solution then immediately be-
comes clear: there are more black squares than white squares, and so
the mutilated checkerboard cannot be covered with dominoes. This
problem is very easy for people to understand, but no system has yet
been implemented that can solve it in such an elegant and intuitive
way.

Here is another example of an “informal” diagrammatic proof: that
of a theorem about the sum of odd natural numbers. Unlike in auto-
mated theorem proving, where this problem is tackled symbolically
with formal logical tools, the diagrammatic operations of our proof
enable us to “see” the solution: a square can be cut into so-called “L”
shaped pieces (as in the figure below), and each “L” represents a suc-
cessive odd number, since both sides of a square of size n are joined
(2n), but the joining vertex was counted twice (hence 2n− 1).

n2 = 1 + 3 + 5 + · · ·+ (2n− 1)

These examples above demonstrate how people use “informal”
techniques, like diagrams, when solving problems. As these reason-
ing techniques can be incredibly powerful, wouldn’t it be exciting if
a system could learn such diagrammatic operations automatically?
So far, few automated systems have attempted to benefit from their
power by imitating them [5, 1, 2, 4]. One explanation for this might

26



be that we don’t yet have a deep understanding of informal tech-
niques and how humans use them in problem solving. To advance
the state of the art of automated reasoning systems, some of these in-
formal human reasoning techniques might have to be integrated with
the proven successful formal techniques, such as different types of
logic.

3 From intuition to automation
There are two approaches to the difficult problem of automating rea-
soning. The first is cognitive, which aims to devise and experiment
with models of human cognition. The second is to approach the prob-
lem computationally – attempting to build computational systems
that model part of human reasoning.

In my research at the University of Cambridge, I have taken steps
along the computational approach. While at the University of Edin-
burgh, I built a system known as Diamond that uses diagrammatic
reasoning to prove mathematical concepts [6, 8]. Diamond can prove
theorems such as the one above about the odd natural numbers us-
ing geometric operations, just like in the example. With Diamond I
showed that diagrammatic reasoning about mathematical theorems
can be automated. Diamond uses simple and clear concrete rather
than ambiguous general diagrams (in the example above, the con-
crete example is for n = 6). The “inference steps” of the solution
in Diamond are intuitive geometric operations rather than complex
logical rules. The universal statement of the theorem is showed using
concrete cases by means of particular logical rules. The solution in
Diamond is represented as a recursive program, called a schematic
proof, which given a particular diagram, returns the proof for that
diagram [7, 3]. To check that this solution is correct, Diamond car-
ries out in the background a verification test in an abstract theory of
diagrams.

Diamond currently only tackles theorems which can be expressed
as diagrams. However, there are theorems, like the mutilated checker-
board, that might require a combination of symbolic and diagram-
matic reasoning steps to prove them, so-called heterogeneous proofs.
The figure below demonstrates a heterogeneous proof. The theorem
states an inequality: a+b

2
≥
√

ab where a, b ≥ 0. The first few sym-
bolic steps of the proof are:

a + b

2
≥

√
ab

↓ square both sides of ≥
(a + b)2

22
≥ ab

↓ ×4 on both sides of ≥
(a + b)2 ≥ 4ab

↓
a
2 + 2ab + b

2 ≥ 4ab

The second part of the proof, which is presented in the figure below,
shows diagrammatically the inequality a2 + 2ab + b2 ≥ 4ab.

b

ba

ab

a

b

a

ab

b

a

b
ab

ab
ab

ab
a2

b2

In Cambridge, I am now investigating how a system could au-
tomatically reason about such proofs. This requires combining di-
agrammatic reasoning in Diamond with symbolic problem solving
in an existing state-of-the-art automated theorem prover. The way
forward is to give such a heterogeneous reasoning framework access
to intelligent search facilities in the hope that the system will not
only find new and more intuitive solutions to known problems, but
perhaps also find new and interesting problems.

Automated diagrammatic reasoning could be the key not only to
making computer reasoning systems more powerful, but also to pro-
viding the necessary tools to study and explore the nature of human
reasoning. We might then have a means to investigate the amazing
ability of the human brain to solve problems.
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Open Problems in Simulation and Story Analysis
Ethan Kennerly1

Abstract. The game designer is charged with an aesthetic 
imperative. The design is partitioned into four channels: 
simulation, user interface, story, and look and feel. Of these, the 
simulation and story channels are considered. In a game, the 
aesthetics of a simulation and of a dramatic story are suspected 
to be deeply coupled in conflict, choice, and change. Using the 
mechanics-dynamics-aesthetics framework, the simulation and 
story channels are isolated to survey practical problems
encountered when designing a game, including dramatic 
elements of the player's choice, conflict, and change.  

1 INTRODUCTION1

x x o 
o o  
x o x 

Table 1. A game board of Tic-tac-toe on the turn of X 

In the game board of Tic-tac-toe, how many moves does the user 
have?  The player of X has only one move, but the user has at 
least one more option. She can quit playing. In fact, on every 
turn the user always has the option to quit playing. While game 
theory usually has no need to consider this alternative, quitting 
play is the ultimate problem that game designers face. In non-
interactive entertainment, such as a dramatic movie, the 
audience, too, has the option to physically leave or mentally 
excurse on a daydream. Along the lines of decision theory, the 
user is trying to satisfy an aesthetic preference for entertainment 
(over boredom). The user not only has a choice of moves to 
make in the game, but may also choose, when none of the moves 
promise to be entertaining, to quit playing and seek 
entertainment elsewhere. If the system requirements and the user 
requirements have been met, then the game has failed to 
entertain. Out of all the options available to the user, the game 
has ceased to be the most engaging. Perhaps the game session 
engendered frustration or, as in the Tic-tac-toe example, 
boredom.  

Hereafter, I shall italicize phrases that indicate problems 
designers face, for which formal techniques would be a boon.  
As a designer in need, I cannot claim competence for their 
solution.  Instead this survey is intended to promote 
collaboration between designers and theorists.   

The Tic-tac-toe user's boredom is derived from having solved 
the problem posed by the simulation dynamics. In the Tic-tac-toe 
example above, it does not matter whether the pieces of the user 
interface are ergonomic or whether the endgame cinematic has 
an epic look and feel. To facilitate this distinction when 
analyzing the design of a game, over the past few years I have 

1  Interactive Media,    School of Cinematic Arts,    University of 
Southern California,   United States   kennerly@finegamedesign.com

found it helpful to partition the game design into four channels: 
simulation, user interface, story, and look and feel.  

gameplay style 
inferred simulation story 
perceived user interface look and feel 

Table 2. Four channels of game design 

Here is a brief definition and example of each channel, using 
the ancient Chinese boardgame, Go. 

� simulation: The abstract rules governing play. In Go's 
simulation, a new stone's position may not be in an 
occupied cell.

� user interface: The input controls and the output 
representation to the human players, abstracted from any 
fine art. In Go's user interface, there is an orthogonal grid,
and several black and white markers intended to be placed 
on the intersections. 

� story: The premise, characters, and plot that the user is 
internally narrating. In Go's story, a group is alive or dead
and may be attacked or defended.

� look and feel: The sensorial style and artistry, such as 
stylistic qualities of visual, aural, and tactile senses. In the 
look and feel of a fine Go set, the board is thick and made 
of golden kaya wood, the black stones are slate and the 
white are clamshell with faint wavy lines on one side. 

In a manner somewhat similar to Jesse James Garrett's dual 
representation of interface and information [1], all four channels 
contribute to the user's experience. Analyzing a game into these 
channels isolates phenomena under discussion and invites a 
multidisciplinary analysis of games, which leverages the decades 
to centuries of expertise in discrete mathematics, ergonomics, 
dramatic writing, and the sensorial arts. Design discovers a 
consonance among the channels.  

In this article, only the channels of simulation and story will 
be discussed, because of the wealth of prior theoretical work. By 
a dual analysis of the simulation and story channels, we will see 
that channel consonance is a corequisite to entertainment. 

Here is an example of simulation and story consonance. At 
DigiPen, a team of students created their senior project, 
Narbacular Drop. In the premise of its story, Princess No-knees 
escapes a devious dungeon. In the salient feature of its 
simulation, the avatar maps space on arbitrarily placed portals to 
advance through puzzles. The simulation and story compatibility 
is slightly dissonant; the user's belief is stretched to accept a 
princess that shoots teleporters. In the follow-up, Portal, the 
salient feature of the simulation is the same, but Portal's premise 
of its story is: A human test subject completes a robotic lab's 
training. The story's premise of a science fiction laboratory fits 
better with the simulation mechanics of space-warp puzzles. So 
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the simulation and story channels are interdependent, and in the 
case of Portal, they are consonant. 

Designers, who must combine simulation and story, would 
benefit from a model that unifies the aesthetics of a game's 
simulation and story [2, 3]. 

2 AESTHETIC REQUIREMENTS 
In 2005, Gregor Benedetti had evoked a fearful look and feel in 
HeroCard Nightmare. But the simulation and story channels of 
the game were not evoking a consonant sense of tension and 
fear. So the project was cancelled. Hating to see the evocative art 
and components go to waste, I proposed a redesign of the 
simulation and story channels, while preserving the user 
interface and look and feel channels. Benedetti's horrific look 
and feel set an aesthetic requirement of fear and suspense. I 
faced the practical problem: What simulation and story dynamics 
heighten tension and induce an entertaining form of fear?   

Because the general problem of correlating a user's 
emotional response to a game's simulation mechanics is 
germane to game design, Marc LeBlanc proposed partitioning 
the design into: mechanics, dynamics, and aesthetics [4]. 
Following each definition is an example in the simulation 
channel and story channel of Go.   

� mechanics: the rules and assets of the game, as an artifact 
of development. In Go's simulation mechanics, if a 
contiguous set of stones has no empty neighbors, then that 
set of stones is eliminated.  In Go's story mechanics, if a 
group loses all its liberties the group is killed.

� dynamics: the game session created from the execution of 
the mechanics and its interaction with users. In Go's 
simulation dynamics, suppose that during play a maximally 
connected set of stones only has one empty neighbor, and 
so might be eliminated during the next move.  In Go's story 
dynamics, her dumpling is about to be eaten.

� aesthetics: the emotional experience by the users. In Go's 
simulation aesthetics, suppose a player is worried about 
diminishing their points by the count of stones eliminated.  
In Go's story aesthetics, suppose a player is indignant at 
having her dumpling eaten. 

The overview suggests a functional relationship: mechanics 
influence dynamics, which influence aesthetics. The users have 
unique beliefs and preferences. For that reason, designers 
empathize with the user, and aim to understand the user's 
aesthetic preferences, even when the user does not understand 
them [5]. 

Aesthetics has long been a domain of interest among 
dramatists. Egri restates a classic model of aesthetic 
requirements as a drama's subjective experience, which consists 
of a rising action, climax, and conclusion [6]. In a dramatic 
story, Egri posits that the aesthetics correlate to the dynamics of 
the story. Let us look at the story dynamics and consider their 
possible confluences with simulation dynamics. 

3 DYNAMICS OF SIMULATION AND STORY 
Egri explains the dynamics of drama by fundamentals often 
referred to as character, conflict, choice, and change. Due to a 
broad scope of media and attention to the psychology of 
motivation, I will adapt Egri's concepts to games.  

Personality and objective makes a character more interesting. 
In God of War, the bloodlust of Kratos elicits an emotional 
response, albeit immature and for a juvenile aesthetic profile.  

The characters in a drama are pitted in conflict. In Half-Life, 
Gordon's lab is invaded by aliens. In Ico, Ico and Yorda are 
trapped in a castle and pursued by shadows.  

The choices made by the characters drive their story. Gordon 
Freeman explores an alien-infested laboratory. Ico escapes a 
demonic castle.  

The result of the choice that the character makes changes the 
values and beliefs of the character, in narratives and games. The 
psychology of Macbeth changes from loyal to murderous. The 
isolation of Ico from Yorda reveals his, and the target user's, 
need for companionship.  

To elevate tension, writers sometimes employ dynamics of 
risk to craft the character's options into a dilemma. The greatest 
such dilemma in a story is the crisis. In the season one finale of 
the television drama, Heroes, Peter and Nathan Petrelli face the 
crisis of destroying New York or committing seeming suicide.   

Let us apply these dramatic terms to the simulation. 

3.1 Representing a simulation session as a 
dramatic story 

Sid Meier's most popular game, Civilization, emphasizes the 
aesthetics of the simulation channel. In the management of an 
empire, the user is often considering the dynamics of the 
simulation as a "series of interesting choices."     

Part of the interest in a choice is due to the "risk and return" 
[7].  The user risks his or her resources or chances of winning in 
exchange for the prospect of greater resources. Here is a 
modified example from Super Mario Bros. At the beginning of 
World 5-1, the user may take a low-risk option of destroying a 
Koopa Troopa (turtle) by fireball, or perform the higher risk 
maneuver of jumping onto and then kicking the turtle shell to hit 
several enemies in a combo. If the user's timing or trajectory is 
mistaken, then the avatar might lose a life to the Koopa Troopa. 
To compensate for the higher risk, expert execution yields an 
extra life. So with sufficient skill, the risk of loss is offset by the 
gain. For another example in Reiner Knizia's two-player card 
game Lost Cities, before pursuing an expedition a player may 
play an investment card. The investment card multiplies the 
points of the expedition, which may turn out to be negative or 
positive. Correlating the simulation dynamics of risk and return 
to the aesthetic experience of play, such as excitement, would 
refine the design of simulation mechanics. 

Part of the interest in a choice is due to the drama.  Marc 
LeBlanc applies the aesthetics of a dramatic arc to the card game 
Magic: The Gathering.  During the opening game, players have 
few resources, so the intensity of conflict is relatively low. The 
players draw resources for attacking and defending through 
mechanics that conform to a producer-consumer pattern [8].  
Thereby the uncertainty and inevitability increase until it is 
obvious which player will win. Then tension diminishes [4]. 
Likewise, in Go, Poker, StarCraft, and Civilization, resources are 
produced over time, through producer-consumer mechanics. For 
the target users of these kinds of games, the dynamics of risk 
emerging from such mechanics often induce an aesthetic 
experience that adheres to a dramatic arc [4].  
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3.2 Modeling a dramatic story as a simulation 
session 
The requirement of rational agents with perfect knowledge is 
incompatible with storytelling. From Shakespeare to soap opera, 
drama is about characters with imperfect intellects [6]. 
Addressing this, Lowe and Pacuit formally model mistaken 
beliefs and preferences in a dramatic story [9]. In their analysis 
of an example story, they represent the characters as players in a 
formal game, who make choices that lead to conflict and whose 
conclusion changes the beliefs of at least one of the characters. 
This model elucidates a fundamental connection between the 
channels of story and simulation. If their techniques could be 
adapted to model the aesthetic consequences of changes in 
belief, then it might help integrate the design of a game's 
simulation and story.  

Although a game's drama cannot be reduced to a narrative [2], 
and the emotions of videogames differ from those of cinema 
[10], the simulation and story share similar characters, conflict, 
choice, and change. Egri analyzes dramatic conflict as opponents 
attacking and counterattacking. Lowe and Pacuit analyze a story 
as tactical scheming. Modeling the player of a game in Egri's 
dramatic terms and Lowe and Pacuit's terms of beliefs, it is 
reasonable to conjecture: The player, facing a conflict, makes the 
main character's choices and through the conclusion of the most 
difficult choice, the crisis, experiences a change in values or 
beliefs. To develop this hypothesis, let us discuss some special 
cases. 

4 DRAMA: CORRELATING DYNAMICS TO 
AESTHETICS  
Conflict is crafted by balancing player skill and scenario 
challenge [11, 12]. By design the difficulty and risk of problems 
with a similar solution, which Inoue and Ushijima call a 
gimmick, is ramped. In Super Mario Bros, the gimmick of a cliff 
is iterated in four stages so the user may: remember, practice, 
apply, and master that gimmick. In their example, a cliff is leapt 
from four times:  first, with ground below, second without, third 
with a performance evaluation at the flagpole, and fourth with a 
moving platform [13]. Designers sequence the difficulty and risk 
to teach an essential skill of play while developing a dramatic 
arc, derived from challenging the player.  This design task would 
benefit from a theoretical relationship between challenge 
construction, skill acquisition, and the aesthetics of drama.

One special case of the dramatic conflict has been formalized 
in deterministic turn-based games of perfect information. In 
combinatorial game theory, the heat of a game state correlates 
the simulation's dynamics to the urgency of making a choice 
[14]. In Go, this is often a situation when one or both players can 
claim initiative, such as during a ko fight. It would be interesting 
to investigate whether the combinatorial game theoretic heat of 
a simulation state correlates to the aesthetic experience of its 
users.

In the dynamics of the simulation channel, there have been 
several mathematical analyses, some of which could be 
suspected to have correlations to the aesthetic quality of the 
game's users. For instance, Chess has too many draws at the 
championship level [15]. An extremal case of this trend is Tic-
tac-toe, or any other game that a player has solved. The result of 
every session is predictable, and therefore changes no beliefs.  

A videogame can induce a sudden change in belief that results 
in surprise [16]. Emiliano Lorini and Cristiano Castelfranchi 
have formally modeled surprise as an epistemic change [17]. 
While their model is beyond my comprehension, if it is 
compatible with the simulation dynamics of a game that 
modifies player belief, this epistemic model of surprise would 
offer a special case solution to the problem of correlating 
simulation dynamics to aesthetics.  

For some classes of game simulations, some parts of the 
dynamics have been formalized. To give HeroCard Nightmare a 
simulation dynamics-induced sense of suspense and fear, I 
inverted the salient simulation mechanics of Clue. In 
Nightmare's simulation channel, you begin with a deal of cards 
that when discovered, eliminates you from the game. In the story 
channel, you are shown a photograph of where you will die 
(your dealt scene card), and who will kill you (your dealt killer 
card). Together, these simulation and story mechanics induce 
dynamics of bluffing correlating to aesthetics of fear. Probability 
of discovery increases during play, increasing fear, while 
disseminating disinformation may mislead players, incentivizing 
bluffing. Moving someone else's killer pawn away might deceive 
other players into misidentifying your actual killer. I have an 
intuitively derived and empirically tested correlation of 
Nightmare's simulation dynamics to the aesthetics of its user 
experience. What I did not have was a theory of knowledge 
games. Hans P. van Ditmarsch modeled the salient mechanics of 
Clue (or Cluedo) as a knowledge game, in which players are 
dealt cards, and winning consists of knowing the deal of the 
cards [18]. In doing so, there is a formal model of the dynamics 
of play. If the theory of knowledge games could be extended to 
model correlations to a user's aesthetic experience, then the 
aesthetics of a game like Clue could be discussed analytically. 

In both the dynamics of a simulation channel and a story 
channel of some dramatic games, choice reveals character and 
advances the conflict toward a conclusion. In a model like Lowe 
and Pacuit's, a choice reveals information of a player's 
preferences, and therefore adjusts the beliefs of observers. The 
actions of a player in Clue, Poker, or Go reveals the aspects of 
the strategy and beliefs of the active player. This applies to many 
genres of games.   

It is hard to imagine a satisfying simulation channel in which 
the enthusiastic player does not have some belief about the 
simulation dynamics or about another player altered through the 
course of play. Seeing a newly dealt card in Seven-card Stud 
Poker or Lost Cities changes belief on the strength of one's hand. 
This change in belief may alter tactics. Discovering a weakness 
in one's wall of stones in Go may stimulate the player to protect 
the weakness before it is exploited. Such cases of play often 
induce excitement among users.  It would be a boon to designers 
if the dynamics of belief change, such as the work of Ditsmartch, 
Lorini and Castelfranchi, could be adapted to model a user's 
emotional state.   

5 CONCLUSIONS 
A player (in the simulation channel) and a character (in the story 
channel) changes or reveals preferences. The player-character 
can be jointly analyzed as a simulation-story. For instance, Ico's, 
and the user's, preferences for companionship, are revealed when 
Yorda is lost. Lowe and Pacuit have taken steps to model the 
revelation of preferences in a simulation-story.  
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This article has not formalized techniques, which are beyond 
the author's competence. Instead, I have italicized practical 
problems that designers face without theoretical tools. Centuries 
ago, Cardano, Pascal, and Fermat formalized the analysis of 
simulation mechanics in games of chance, clarifying the design 
of countless dice and card game mechanisms to follow.  Even if 
the simulation and story problems are not solvable, partial 
solutions would advance the art of crafting games that satisfy our 
aesthetic requirements. 
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A Perception Oriented MAS Model
with Hybrid Commonsense Spatial Reasoning

Stefania Bandini and Alessandro Mosca and Matteo Palmonari and Giuseppe Vizzari 1

Abstract. This paper presents an approach to the integration of a

logic based approach to the extension of behavioural specifications in

a reactive model. In fact, in general, reactive models provide a robust

support to the modelling and implementation of agent’s environment,

they often lack in supporting the definition of complex autonomous

agent behaviours. In particular the paper will describe how the Hy-

brid Commonsense Spatial Logic approach to spatial reasoning can

improve the definition of behavioural rules for agents in the Mul-

tilayered Multi-Agent Situated System (MMASS) model. The two

models are briefly introduced, then a description of the integration of

the two approaches is given, with examples related to agents spatial

perception.

1 Introduction

Reactive agent models are very often based on indirect interaction

models [13], which support a poor agent internal architecture and

very simple behavioural specification mechanisms (e.g. stimulus-

action rules). These models generally provide a relevant role of the

environment in agent coordination and interaction, but in general

also in their decisions on their actions. From the Influence-Reaction

model, to pheromone [20] and computational field [17] based ap-

proaches, reactive agent models have provided clear definitions of

notions like locality and perception. Using the head-body metaphor

described in [23], these models provide a robust support to the mod-

elling, design and implementation of agents’ bodies and environ-

ment.

Nonetheless their simple agent architecture might also represent

a limit in the definition of complex and autonomous behaviours.

While very complex overall system behaviour may be obtained as

an emergent effect of local actions and interactions of very simple

agents [19], it might be necessary or even only convenient to be

able to exploit higher level expressions, typical of deliberative ap-

proaches. The latter, in fact, were often focused on the definition

of models, techniques, languages supporting the definition of agents

that reason explicitly on facts related their knowledge of the envi-

ronment, in addition to conceptualizations of their goals, plans or

intentions (see, e.g., Belief Desire and Intention [22] models).

However, very often these models overlook the notion of percep-

tion, and in general the interaction among the agent and the envi-

ronment in which it is placed. While there are some approaches that

provide the definition of a sort of environmental ontology and mech-

anisms supporting the transition from environment conditions to con-

cepts on which agents can reason [10], this paper proposes a different

1 Department of Informatics, Systems and Communication, Univer-
sity of Milano-Bicocca, Italy, email:{bandini, alessandro.mosca, mat-
teo.palmonari, vizzari}@disco.unimib.it

approach.

The Multilayered Multi-Agent Situated Systems (MMASS) [2]

will be introduced as a multi-agent model providing an explicit spa-

tial structure representation and a set of interaction mechanisms that

are strongly related to agents’ context. Exploiting this structure and

these mechanisms it is possible to define systems of agents which

can obtain complex form of coordination by means of a simple be-

havioural specification.

However, although it is quite simple to model a situation in which

an agent is able to move in a spatial structure according to signals

that are spread in it by elements of the environment modelled as

static agents, it is not so simple to encapsulate into MMASS action

specification the deliberative process that governs the autonomous

choice of an agent, i.e. to be sensitive to a specific type of signal,

and thus its choice to move towards a certain destination. Basically

agents follow their perceptions and they have a rather reactive fla-

vor, whereas actual modelling experiences, i.e. in the simulations

domain [4], showed that their decision making process could take

advantages from a more structured knowledge of the environment.

This leads to investigate the possible integration among a perception-

based multi-agent model and commonsense spatial reasoning from a

knowledge representation perspective.

The aim of this paper is therefore to present the integration of

MMASS with a model-based logical approach to spatial reasoning

in order to provide some of the MMASS agents with a more rational

behavior, giving them the opportunity to exploit an explicit model

of the environment in their action selection process. The MMASS

model is introduced in the next section, with respect to its basic el-

ements and concepts and to formal definitions. Section 3 presents a

formal model supporting commonsense spatial reasoning; since this

Commonsense Spatial Model (CSM) is defined as a relational struc-

ture, it is shown how it can be viewed as the semantics specification

for a hybrid modal language. The integration of the MMASS model

with the CSM is discussed in section 4, investigating the motivations,

the mapping between the two model and some reasoning issues. Con-

cluding remarks end the paper.

2 Multilayered Multi-Agent Situated System
Model

2.1 An Overview of MMASS Model

MMASS provides an explicit model of the environment, that is a

graph of sites on which agents are situated. Every site may host at

most one agent (according to a non-interpenetration principle), and

every agent is situated in a single site at a given time (non–ubiquity

principle). Agents inherit the spatial relationships defined for the site

32



it is occupying; in other words an agent positioned in site p is con-

sidered adjacent to agents placed in sites adjacent to p.

The adjacency relation among agents is a necessary condition

for the applicability of reaction, the first kind of interaction mech-

anism defined by the MMASS model. This interaction mechanism

involves two or more agents that are placed in adjacent sites and al-

lows them to synchronously change their state, after they have per-

formed an agreement. The second interaction mechanism defined by

the MMASS model provides the possibility for agents to emit fields,

that are signals able to diffuse through the environment that can be

perceived by other agents according to specific rules. Fields may con-

vey more complex kind of information than just their intensity value,

moreover for every field type a diffusion function can be specified

in order to define how related signals decay (or are amplified) dur-

ing their diffusion in the environment, from the source of emission

to destination sites. Other functions specify how fields of the same

kind can be composed (for instance in order to obtain the intensity

of a given field type at a given site) or compared. From a seman-

tic point of view fields themselves are neutral even if they can have

related information in addition to their intensity; they are only sig-

nals, with an indication on how they diffuse in the environment, how

they can be compared and composed. Different agent types may be

able to perceive them or not and, in the first case, they may have

completely different reaction, according to their behavioural speci-

fications. An agent may perceive a field with a non–null intensity

active in the site it is situated on according to two parameters charac-

terizing its type and related to the specific field type. The first one is

the sensitivity threshold, indicating the minimum field intensity that

an agent of that type is able to perceive. The second is the receptive-
ness coefficient and it represents an amplification factor modulating

(amplifying or attenuating) field value before the comparison with

the sensitivity threshold. Thanks to these parameters it is possible

to model dynamism in the perceptive capabilities of agents of a give

type, since these parameters are related to agent state. In this way, for

instance, the same agent that was unable to perceive a specific field

value could become more sensitive (increase its own receptiveness

coefficient) as a consequence of a change in its state. This allows to

model physical aspects of perception, but also conceptual ones such

as agent interests.

Reaction and field emission are two of the possible actions avail-

able for the specification of agent behaviour, related to the specifi-

cation of how agents may interact. Other actions are related to the

possibility to move (transport operation) and change the state upon

the perception of a specific field (trigger operation). These primitives

are part of a language for the specification of MMASS agents be-

haviour [2]. An important part of the language also provides the pos-

sibility to dynamically modify the structure of agent environment,

in order to generate new sites and edges (or destroy existing ones)

and create (or destroy) agents of a specific type, with a given initial

state. Agent type is in fact a specification of agent state, perceptive

capabilities and behaviour.

The model has been successfully applied to several simulation

contexts in which the concepts of space and environment are key

factors for the problem solving activity and cannot be neglected (e.g.

crowd modelling [4], localization problems [3]). In the ubiquitous

computing context, instead, active entities of a pervasive system (e.g.

users having a computational device, sensors and other sources of in-

formation) can be modelled as agents which interact by means of an

infrastructure which is somehow mapped to a spatial structure (see,

e.g., [5]). This structure should reflect the dynamics of the actual

environment, and thus it should dynamically determine the possi-

ble interactions among agents according to spatial relationships (e.g.

distance). The MMASS model allows the representation of these el-

ements (i.e. active entities and their environment) in a unified frame-

work. In the following the model will be briefly introduced and for-

mally described.

2.2 MMASS: Formal Definitions
A Multilayered Multi–Agent Situated System (MMASS) is de-

fined as a constellation of interacting Multi-Agent Sistuated Sys-
tem (MASS) that represent different layers of the global system:D
MASS1, . . . , MASSn

E
. A single MASS is defined by the tripleD

Space, F, A
E

where Space models the environment where the set

A of agents is situated, acts autonomously and interacts through the

propagation of the set F of fields and through reaction operations.

The structure of a layer is defined as a not oriented graph of sites.

Every site p ∈ P (where P is the set of sites of the layer) can contain

at most one agent and is defined by the 3–tuple
D
ap, Fp, Pp

E
where:

• ap ∈ A∪ {⊥} is the agent situated in p (ap = ⊥ when no agent is

situated in p, i.e. p is empty);

• Fp ⊂ F is the set of fields active in p (Fp = ∅ when no field is

active in p);

• Pp ⊂ P is the set of sites adjacent to p.

In order to allow the interaction between different MMASS lay-

ers (i.e. intra-MASS interaction) the model introduces the notion of

interface. The latter specifies that a gateway among two layers is

present with reference to a specific field type. An interface is defined

as a 3–tuple
D
pi, pj , Fτ

E
where pi ∈ Pi, pj ∈ Pj , with Pi and Pj

sets of sites related to different layers (i.e. i �= j). With reference

to the diffusion of field of type Fτ the indicated sites are considered

adjacent and placed on the same spatial layer. In other words fields

of type Fτ reaching pi will be diffused in its adjacent sites (Pp) and

also in pj .

A MMASS agent is defined by the 3–tuple < s, p, τ > where τ
is the agent type, s ∈ Στ denotes the agent state and can assume

one of the values specified by its type (see below for Στ definition),

and p ∈ P is the site of the Space where the agent is situated. As

previously stated, agent type is a specification of agent state, percep-

tive capabilities and behaviour. In fact an agent type τ is defined

by the 3–tuple
D
Στ , P erceptionτ , Actionτ

E
. Στ defines the set

of states that agents of type τ can assume. Perceptionτ : Στ →
[N × Wf1 ] . . . [N × Wf|F | ] is a function associating to each agent

state a vector of pairs representing the receptiveness coefficient and

sensitivity thresholds for that kind of field. Actionτ represents the

behavioural specification for agents of type τ . Agent behaviour can

be specified using a language that defines the following primitives:

• emit(s, f, p): the emit primitive allows an agent to start the diffu-
sion of field f on p, that is the site it is placed on;

• react(s, ap1 , ap2 , . . . , apn , s′): this kind of primitive allows the

specification a coordinated change of state among adjacent agents. In

order to preserve agents’ autonomy, a compatible primitive must be

included in the behavioural specification of all the involved agents;

moreover when this coordination process takes place, every involved

agents may dynamically decide to effectively agree to perform this

operation;

• transport(p, q): the transport primitive allows to define agent
movement from site p to site q (that must be adjacent and vacant);

• trigger(s, s′): this primitive specifies that an agent must change
its state when it senses a particular condition in its local context (i.e.
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its own site and the adjacent ones); this operation has the same effect

of a reaction, but does not require a coordination with other agents.

For every primitive included in the behavioural specification of an

agent type specific preconditions must be specified; moreover spe-

cific parameters must also be given (e.g. the specific field to be emit-

ted in an emit primitive, or the conditions to identify the destination

site in a transport) to precisely define the effect of the action, which

was previously briefly described in general terms.

Each MMASS agent is thus provided with a set of sen-

sors that allows its interaction with the environment and other

agents. At the same time, agents can constitute the source of

given fields acting within a MMASS space (e.g. noise emit-

ted by a talking agent). Formally, a field type t is defined byD
Wt,Diffusiont, Comparet, Composet

E
where Wt denotes the

set of values that fields of type t can assume; Diffusiont : P ×
Wf × P → (Wt)

+ is the diffusion function of the field computing

the value of a field on a given space site taking into account in which

site (P is the set of sites that constitutes the MMASS space) and

with which value it has been generated. Composet : (Wt)
+ → Wt

expresses how fields of the same type have to be combined (for in-

stance, in order to obtain the unique value of field type t at a site),

and Comparet : Wt × Wt → {True, False} is the function that

compares values of the same field type. This function is used in order

to verify whether an agent can perceive a field value by comparing

it with the sensitivity threshold after it has been modulated by the

receptiveness coefficient.

It must be noted that this basic set of primitives can be suitably

exploited to generate significant patterns of behaviour, for instance

supporting the modeling of pedestrians, as discussed in [8]. However,

this formal model is not the best support to represent and manage in

a modular and flexible way the different agent attitudes and goals,

such as those driving the movement of a human agent in a large scale

scenario. In the case of crowd modeling, we use a finite state au-

tomata to represent different attitudes towards movement (e.g. move

out of a room into a corridor, move towards the stairs), with transi-

tions among these states (e.g. passed from the office door, arrived at

the stairs). This kind of automata can be viewed as a form of rep-

resentation of knowledge about the environment and agent’s goals.

This way of defining agents’ behaviours, however, is not simple and

leads to specifications that are hardly reusable.

Even in simulation scenarios, there are situations in which the as-

sumption that (i) agents own some form of knowledge on the environ-

ment in which they are situated and (ii) they can exploit it to decide

on the actions to be carried out is a realistic one. Moreover, to sup-

ply the modeler with proper abstractions and mechanisms to specify

some aspects of agents’ behaviours that are not easily captured by

simple states and reactive rules would simplify the modeling phase

and the specification of agents’ behaviours. In the following we will

describe a model and an approach to provide additional abstractions

supporting a simpler and more effective way of defining agents’ be-

haviours.

3 Commonsense Spatial Model

3.1 Basic Concepts: Places and Conceptual Spatial
Relations

The literature about space modeling, allowing the adoption of com-

putational frameworks to develop reasoning capabilities, is wide and

distributed in several areas of Artificial Intelligence such as Auto-

mated Vision, Robotics, Knowledge Representation. Within a rough

classification, two main classes of approaches can be distinguished:

a first one tends to justify commonsense spatial inference with math-

ematical models such as Euclidean geometry, trigonometry, differ-

ential equations systems and so on [12]; in the second one different

topological approaches can be considered, ranging from point set and

algebraic topology, with the choice of different kinds of primitive en-

tities and relationships (e.g. RCC calculus [21], modal logics [1]), to

topological route maps (see [15, 16], and [14]).

Within the second conceptual framework, commonsense spatial
reasoning can be supported by defining a formal model of the envi-

ronment that exploits the basic notions of place and conceptual spa-

tial relation. This approach was fruitfully proposed to enable context-

awareness in pervasive computing environments [7], where spatial

disposition of information sources distributed in the environment

(e.g. close circuit cameras, smart home or complex industrial plant

sensor networks) can be mapped into a set of relations among in-

teresting places (i.e. a topology) and high-level reasoning beyond

low-level sensors’ capabilities can be carried out by reasoning about

properties holding at different places.

What about the relationships among this approach to spatial rea-

soning and MAS? With respect to pervasive computing systems this

approach is justified by the consideration that there is little interest

in applying reasoning to obtain a deeper knowledge of the spatial

environment for what concerns its morphological aspects, because

those aspects are partly known by design and partly computable by

means of technological tools. But since our aim is to enable agents

with some spatial reasoning capability, and not to build spatial mod-

els, e.g. from visual information, the argument for pervasive com-

puting holds as well here. In fact, the MAS model we start from,

i.e. MMASS, already provides a model of the environment and the

fact that this model is a graph bounds to reason precisely over back-

ground graph-like structures. Therefore, if we want to integrate such

a perception based model with logic-based reasoning capabilities, we

should start from the basic spatial structure available from the model:

there exist a given spatial structure but this structure needs to be for-

mally specified from a logical point of view (trivial) and (more inter-

estingly) represented and enriched in order to enable agents’ reason-

ing capabilities.

In the following subsection we will present the notion of Com-

monsense Spatial Model (CSM) as a relational structure, analyzing

the formal properties of the commonsense spatial relations involved.

It will be shown that, being a relational structure, a CSM can be taken

as the semantic specification for a hybrid multi-modal language, ex-

ploiting the features that such a logical approach provides (names

for states and the possibility to embed satisfaction statements into

the language). Then, since the aim of this paper is to look forward

the integration with the MMASS model presented in Section 2, it

has been chosen to present reasoning not by means of a calculus

(although it can be proved that is possible to define a sound and com-

plete tableaux based calculus for most significant classes of CSMs)

but rather as model checking of hybrid formulas, and an example of

how this could work will be given.

3.2 CSM : a Model for Commonsense Spatial
Reasoning

A Commonsense Spatial Model CSM = 〈P, RS〉 is a relational
structure, where P = {p1, ..., pi} is a finite set of places, and R =
{R1, ..., Rn} is a finite non-empty set of binary conceptual spatial
relations, labeled by means of a set of labels N .

A place can be any entity completely identifiable by a set of prop-
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erties, as argued in the previous section. The set R can be any ar-

bitrary set of binary CSRs, although some classes of relations, that

are significant for a wide reasoning domains, will be analytically and

formally characterized in the following paragraphs. This first lack

of constraints on what can be taken as a CSR, may be seen as a

weakness of the model, but is related to the main goals guiding this

approach and to the fact that a morphological account of spatial re-

lations is not the first object of a commonsense model of space as

intended here. This mean that it is not possible (nor useful) to iden-

tify a minimal set of primitives relations as it has been done with

other well known topological models (e.g. RCC calculus in [21], and

spatial modal logic of [1]).

Nevertheless, as already mentioned, there are some significant

classes of relations that play a special role in the definition of a com-

monsense model of space. In particular, a place can be ”proximal to”

another place, or it can be be ”contained in”, or it can be ”oriented”

with respect to another (distinct) place. The concepts of proximity,

containment, and orientation identify three classes which, in their

various declination, seem us to be archetypical in commonsense spa-

tial reasoning and can be discussed according to the formal properties

of the relations they group together.

Proximity. A first basic relational concept that is useful to define

space concerns the possibility of reaching one place from another

(in both physical and metaphorical sense). Two places are said to be

proximal, in this sense, if it is possible to go from one to the other

without passing through another place. A proximity relation RP it is

said to hold between two places p and q when the place q is directly

reachable from place p. This relation can be modeled as a physical

“adjacency” relation since it is irreflexive and symmetric (this is the

type of relation exploited in most of discrete models of space based

on both irregular and regular graphs, or cells grids). However, differ-

ent criteria of proximity can be adopted (e.g. proximity relation as

networking among devices in distributed systems).

Containment. Since places are arbitrary entities possibly with dif-

ferent shapes, dimensions and nature (e.g. a room and a printer are

both places), a physical inclusion relation RIN over places is needed

in order to relate different types of places: an object may be in a room

that may be in a building (where the object, the room and the building

are interesting place of the same commonsense spatial model). The

relation RIN (p, q) is interpreted as stating that the place q is con-
tained in the place p; RIN is a standard mereological relation: it is a

partial order, that is, a reflexive, antisymmetric and transitive relation.

Stronger antisymmetry, i.e.∀p, q(RIN (p, q)∧RIN (q, p) → p = q),

can be exploited to infer identity between two places for which is said

that one is in another and vice versa.

Orientation. Finally, we need some relations to ensure orientation
in space giving an account of entities’ relative disposition: assum-

ing that the concept of “reference point” is a rudimentary but funda-

mental way to start orienting into space. Assuming specific reference

points consists in ordering entities with respect to these particular

points, in such a way that every entity is put in relation with the ref-

erence point directly or indirectly. Whatever the contingent choice

of the reference point, what is really important is the notion of order

coming from its existence. A natural choice into a 2D space can be

the exploitation of the four cardinal points, North, East, South, West,

by means of the introduction of relations such as RN , RE , RS , and

RW among places (where, RN (p, q) holds iff p is at north of q).

The class of orientation relations consists of strict partial orders on

the set of places that is, they are irreflexive, asymmetric and tran-
sitive relations; the order is “partial” because two places might be

incomparable, and has always a greatest element, that is, a top ele-

ment (e.g. the North for RN ). Some relations can be defined as the

converse of other ones (e.g. RS of RN ), and other non-primitive re-

lations such as at north-east of (RNE), can eventually be defined by

means of usual set theoretic operators from the previous ones, e.g.

RNE = RN ∩ RE .

These three relation classes play a fundamental role in common-

sense spatial reasoning because, as far as a qualitative account of the

things arrangement into space is concerned, the joint assumption of

relations of the three classes above, although not provably exhaus-

tive, provides a characterization of the environment, yet qualitative

and rough, but which meets at least the following representational

requirements:

• the definition of a basic graph relating places according to their

reachability by means of proximity relations. This responds to the

answer “where can I go from here?”;

• a rough (qualitative) ordering of places into a 2Dd or 3D space

by means of orientation relations (3D if a up-down order is added):

this is important to someway reflect the idea of disposition of places

and objects in space. Neither a grid nor a Cartesian reference system

are necessarily exploited here, but the notion of disposition is traced

back to the concept of order, and more precisely, to the projection of

various orders on the place domains;

• the possibility of taking into account places of various types and

size, representing different layers of abstraction by means of con-

tainment relations (a desk into a room, a room into a building).

Given the importance of those three classes in the emergence and

definition of a Commonsense Model of space, we want to identify a

special (more interesting) class of CSM that will be called standard
CSM (SCSM ), consisting of the set of CSMs where all the rela-

tions are of type proximity, containment and orientation and there is

at least one relation for each category. Moreover, since the orienta-

tion relations are always defined with respect to a reference point,

that is, the top of the respective order, the set of place must include

a place for every orientation relation to be taken as the top element.

Formally: let assume that Ro
1, ..., R

o
n, is a set of orientation relations

each one with its top element topi, Rc
1, ..., R

c
n is a set of contain-

ment relations, and Rp
1, ..., Rp

n is a set of proximity relations. A stan-
dard commonsense spatial model SCSM is a CSM where R =
{Ro

1, ..., R
o
n, Rc

1, ..., R
c
n, Rp

1, ..., Rp
n} and {top1, ..., topn} ∈ P .

The model is basically defined, but besides the properties of each

type of relation, it is possible to explicitly take into account also cross
properties of the model that concern the relations among different

CSRs and their interdependencies. Something has been said for ori-

entation relations such as RS and RN , where converse definition is

intuitive, but much more can be done, for example, if we want to ex-

ploit the inheritance of orientation relations through the containment

relation (i.e. if a place p0 is at west of a place p1, every place con-

tained in p0 is at west of p1). It will be shown in the next section that

hybrid languages are very powerful in the specification of those cross

properties.

3.3 Reasoning into Space: a Hybrid Logic
Approach

Now the passage from the model to logic is straightforward: since

every CSM is a relational structure, it can be naturally viewed as a

kripkean semantic specification for a multi modal language. More

generally, classes of CSMs defined by specific sets of relations (and

by their properties) can be made correspond to “frames”, whose re-

lations define the meaning of the modal operators of the language.

Nevertheless, if modal languages are known to be suitable for rea-
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soning about relational structures, and have been exploited for tem-

poral, spatial and many other logics (see [9]), Hybrid Logic adds

to the modal perspective features that are particularly useful with

respect to our approach to commonsense spatial reasoning. In fact,

Hybrid languages are modal languages that allow to express (in the

language itself) sentences about satisfiability of formulas, that is to

assert that a certain formula is satisfiable at a certain world (i.e. at

a certain place in our framework). In other words, it is a formidable

tool to reason about what is going on at a particular place and to rea-

son about place equality (i.e. reasoning tasks that are not provided by

basic modal logic).

Formally, this is achieved by adding to the language a specific sort
of atomic formulas (i.e. “nominals”) that are evaluated to be true at a

single state of the model (whose valuation is a singleton in W , which

is said to be the its denotation) and introducing a set of “satisfaction

operators” @i. Then semantics is given as usual for modal logic, and

introducing the following truth condition statements for the set of

satisfaction operators:

W, w |= @iφ if and only if W, w′ |= φ,

where the place w′ is the denotation of i, i.e. V (i) = w′.

Property CSR class Definition
(ref ) reflexivity C @i�i

(irref ) irreflexivity P,O @i¬�i
(sym) symmetry P @i��i

(asym) asymmetry O @i¬��i
(antisym) antisymmetry C @i� (�i → i)

(trans) transitivity O,C ��i → �i

Table 1. SCSM properties definability

One of the more interesting feature of Hybrid Logic is the oppor-

tunity of simply defining class of frames by means of pure formu-

las, that is, formulas that do not contain propositional variables. By

means of those formulas, which allow to define properties not defin-

able with plain modal logic, it is possible to completely define the

class of frames corresponding to SCSMs. Table 1 contain the proper-

ties relevant to the SCMS relations, to which the following formulas

asserting the existence of top element for the orientation relations

and its unicity must be added:

@i��� ↔ ¬�� (ex)

@i¬�� → @j¬�� → @ij (uni)

Now it is possible to exploit hybrid logic formulas to formally de-

fine a particular instance of a SCSM to be exploited with respect to

MMASS. We want to grant flat orientation in space in four direc-

tions, adjacency among places (it is possible to reach a place from

another one) and to model containment among places; with respect

to the latter, in order to simplify reasoning, we introduce two con-

tainment relations defining the second as the inverse of the other one,

so that it will be easy to reason along both the direction of the ≤
relation. We will call the following Basic Standard Commonsense

Spatial Language and give its proper semantics [6].

The Basic Standard Commonsense Spatial Language
(SCMSbasic) Lb is a hybrid language containing the modal
operators �N , �E , �S , �W , �IN , �NI and �A, the respective
boxes (�N , and so on), and where
{north, east, south, west} ∈ NOM .

Figure 1. The emergence of a commonsense spatial model in the context
of a monitored apartment. On the left a 3D model of the apartment and a

cross-section of its corridor are presented. In the right side, the generation of
the corresponding spatial model is represented: the nodes are the interesting
places (rooms and sensors), while proximity and containment relations are

represented by dashed and unbroken lines respectively. Orientation relations
can be guessed but have been omitted for sake of clarity.

Formulas of Lb are interpeted over a SCSM : �IN , �NI are in-

terpreted over containment accessibility relations, �A over a proxim-
ity relation, and �N , �E , �S , �W over orientation relations, whose

top elements are respectively the denotation of north, east, south,
west.

To have an overview about the meaning of interesting formulas

consider that the set of pure defining the frames is given by the com-

bination of those formulas with respect to the different operators:

�N , �E , �S , �W irref, asym, trans, ex, uni
�IN , �NI ref, antisym, trans

�A irref, sym

Moreover by means, again, of pure formulas it is possible to spec-

ify appropriately cross properties among CSRs. In particular, cou-

ples of orientation and containment relations are defined conversely,

and orientation is inherited trough containment (i.e. if a place has a

specific orientation with respect to another place, then every place

contained in it inherits such an orientation):

@i (�N�Si ∧ �S�N i)
@i (�E�W i ∧ �W �Ei)

@i (�IN�NI i ∧ �NI�IN i)
��i → �IN��i where � = (N |E|S|W )

Finally, interpretation of North is bound by the formula

@north¬�N i, and analogous formulas are introduced for the other

top elements.

According to the aims of the modeled correlation task, a domain

dependent set of properties can be chosen and represented in the for-

mal language by means of a suitable set of symbols for propositional

letters (e.g. the information “there is a man”, coming from a local

data processing, can be represented with a proposition “is man”, true

or false at some place of the model).

The combination of the multimodal and hybrid expressiveness

provides a powerful logical reasoning tool to shift perspective on

a specific place by means of a @i operator, which allows check-

ing properties holding over there. As an example, take a Smart

Home scenario, as sketched in Figure 1, where different sensors are

distributed into rooms. The system may have various task, among

which, for instance intrusion detection and alarm managment; when

a system devoted to intrusion detection need to query if “a glass is

broken” at the place corresponding to the broken-glass sensor, the
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satisfiability of the formula @window sensorbroken glass must be

checked. Moreover, exploiting this operator, it is possible to define

local access methods to explore the spatial model according to the

other defined operators - e.g. checking the satisfiability of the for-

mula @kitchen♦W ♦INsmoke formally represents the verification,

for the system, that “in” some room “at west of” the kitchen some

“smoke” has been detected.

Here appears a new aspect that is crucial to the exploitation of

a hybrid logic in a multi-agent system framework, an issue related

to the double perspective over reasoning, both local and global, that

this logic introduces. In modal logic reasoning and deduction start

always from a given point of the model, i.e. from what is taken as the

“current world”. In terms of the interpretation of worlds as places,

this means that reasoning is performed by a local perspective, and

precisely, from the place in the environment taken as the current one.

Since, according to the presented model, agents are situated in places,

each agent can reason about context from its local perspective but ex-

ploiting a shared model of the environment. Taken an agent, check-

ing the satisfiability of the formula ♦P (sensor ∧ broken glass)
from its current place means to query if a broken glass has been de-

tected by a sensor adjacent to it (an adjacent place on which sensor
and broken glass are true). On the other hand, Hybrid Logic, still

preserving the same local attitude to reasoning of classic modal

logic, allows global queries such as @window sensorbroken glass.

This, in fact means, that whatever is the agent on which reasoning

is performed, the query regards a specific place/device, that is, the

window sensor.

4 Integration of MMASS and CSM

4.1 Motivations

The previous Sections introduced two different models, one aimed

at allowing the definition of multi-agent systems in which the spa-

tial aspects of the environment are a crucial factor and another sup-

plying concepts, abstractions and mechanisms supporting the repre-

sentation and reasoning on facts related to spatial information and

knowledge. The motivations to consider a possibile integration of

the introduced models derives from experiences of applications of

the MMASS to the development of simulations in different domains.

The main consideration is that MMASS agents have a rather reac-

tive flavor. The modelling activities generally provide the definition

of a spatial structure, the modelling of types of signals which are ex-

ploited to define the interaction mechanisms among situated entities

and then the specification of the behaviours related to agents which

inhabit the system. Some of these entities can be immobile agents

which are used to generate (possibly dynamical) properties of por-

tions of the environment through the emission of fields. The latter

is generally made up of a set of rules specifying that an action may

take place according to certain conditions. The preconditions of these

rules may be composed of elements of the model and thus do not al-

low a simple specification of complex expressions on properties of

the environment. Moreover, the behaviour of agents depends on their

state, which also determines the signals that they may perceive. State

changes can thus represent the deliberation of a change in the goals

of an agent. Once again, the preconditions of this kind of action can-

not easily encapsulate a form of reasoning on beliefs and complex

expressions on agent’s context.

CSM has been introduced as a suitable structure on which rep-

resent and perform reasoning on facts related to spatial information

and knowledge. The related hybrid language in fact allows to speak

about the MMASS environment, to place information (as properties)

at sites, and to reason about their meaningful correlation.

A way to integrate CSM and MMASS provides thus the possibil-

ity to exploit this language for the definition of parts of agents’ state

that are related to their beliefs on spatial elements of their context

(including the presence of other agents). In this way it would be pos-

sible to specify preconditions to agents’ actions that pertain complex

expressions supported by this formalism. In this way, agents could

be endowed with additional abstractions and concepts supporting a

more complex form of reasoning about their behaviors (e.g. interac-

tion with other agents, movement). This can be achieved by means of

model checking techniques for formulas of the hybrid language in-

troduced above, basically because of the homogeneity of the model

of space embedded in MMASS and CSMs, the relational structures

that provides the semantics to the hybrid language. Both MMASS

and CSMs represents the environment through a graph-like model

and this allows to draw a first mapping between the basic concepts

of MMASS spatial representation and the CSMs relational structure.

These concepts, together with their proper defining axioms, will be-

come components of the agent state and they will be associated with

domain-specific action selection strategies exploiting them.

Figure 2. The figure show an example of how an agent environment can be
modeled in MMASS: the nodes of the graph are sites, and the clearer points
represent agents situated in them. In a CSM the sites become site-places and

the agents agent-places contained in them. Site-places can be grouped
together according to the room they are located in with respect to the map in

the center.

4.2 Mapping
Firstly, the fundamental elements of the MMASS model, that is

“agent” and “site”, are translated in the CSM by means of the unique

notion of “place”: in CSM both sites and agents of MMASS be-

come places. But, since places are (completely) identified by means

of the set of properties holding on it, two properties such “site” and

“agent” can be exploited also to qualify two first different types of

places: places that are sites in MMASS and places that in MMASS

are agents. For simplicity we will refer to those types of places re-

spectively as site-places and agent-places (see fig. 2).

Secondly, however the adjacency relations among sites has been

defined in MMASS (adjacency among sites can be defined follow-

ing different criteria, e.g. arbitrarily, or based on Moore or Von-

Neumann neighborhood on the sites sets), this relation is represented

by means of a proximity relation RPa among site-places in the CSM;

in fact, proximity relations are characterized exactly by the basic for-

mal properties of adjacency relations. Finally, situatedness of agents,

i.e. every agent is situated on a site, is represented by means of a

containment relation RIN , that is, agent-places are contained in site-

places. In this way, the first mapping from a MMASS model leads to
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a CSM whose nodes are qualified by means of the distinction among

agents and sites, and which includes a proximity relation holding

among site-places according to adjacency of sites in MMASS and a

containment relation among site-places and agent-places according

to the disposition of MMASS agents into the sites’ graph.

Now, this can be considered a first mapping between the two mod-

els, but how does it reflect on representation and reasoning as far

as the Hybrid Language for CSM is concerned? Well, Hybrid Logic

turns out to be extremely versatile in such contexts. What we need is

to include in the language a set of nominals i1, i2, ..., in to name both

sites and agents we are interested in (for example, in the apartment of

fig. 1, nominals can be smoke sensor, camera 1, and so on). Then

formulas such as @isite and @jagent allows to define the type of

place, that is, they say that the place i is a site-place and the place

j is an agent-place. An operator ♦Pa is interpreted over RPa , such

that with a formula @i♦Paj it is possible to express in the language

that the place j is adjacent to the place i (remember that nominals

are, syntactically, formulas and can be used like other formulas, with

the difference that they are true always at a single state of the model).

Finally, if an agent-place i is situated in a site-place j, this can be as-

serted by means of a formula @j (site ∧ ♦IN (i ∧ agent)), where

♦IN is the containment operator interpreted over the commonsense

spatial relation RIN .

Naturally, agents must know also important structural principles of

MMASS which define the interactions among agents and sites, such

as non-interpenetration and non-ubiquity (see section 2.1). Let i, i′

be nominals for site-places and j,j′ nominals for agent-places, these

two principles can be modeled in the CS Hybrid Language with the

following two formulas:

@i

`
♦IN

`
j ∧ j′

´´
→ @jj

′
(1)

@j

`
♦IN

`
i ∧ i′

´´
→ @ii

′
(2)

The first formula says that if a site-place contains two different

agent-places, these places are the same (i.e. the two nominals name

the same place), and therefore guarantees the non-interpenetration

principle. Conversely, non-ubiquity is expressed by the second for-

mula, which asserts that an agent-place cannot be contained (i.e. sit-

uated) in different site-places, where the meaning of ♦IN is defined

as the inverse of ♦IN .

Moreover, since a CSM has been defined as an open model, in-

creasing the complexity of the hybrid language associated, it is pos-

sible to introduce new places, qualified by properties, and new orien-

tation, containment and proximity relations whose meanings go be-

yond the original representational objectives in the MMASS model.

In this way new, higher level information coming from abstractions

of the agents’ environment can be included in the commonsense spa-

tial model exploited by deliberative agents.

As for the new places, it is interesting for the deliberative agents

to be able to reason about the spatial disposition of places group-

ing together a large set of sites coming from the MMASS infras-

tructure, once that these sites are identified as semantic units (e.g.

rooms, passageways, buildings, offices, halls, squares, etc.). For ex-

ample, places as “kitchen room”, “corridor” and so on (see fig. 1),

can be used to abstract a higher level representation with respect to

the MMASS spatial model and named in the language with specific

nominals; the site-places in CSM are linked to those new places by

a containment relation, so that, e.g. a place “kitchen” contain site-

places that on their turn may contain an agent-place. As for the ex-

tension of the set of CSRs, orientation relations turn out to be partic-

ularly important to distinguish among adjacent places (e.g. the for-

mula @kitchen♦W corridor say that there exists a place “corridor”

at west of the room “kitchen”). Orientation relations are inherited

through the containment relation as stated by the following formula:

@i

`
♦∗i

′ ∧ ♦IN j
´
→ @j♦∗i

′, (3)

where ∗ ∈ {N, E, S, W} and i, i′, j are nominals for places.

Moreover, observe that new places and relations introduced in CSM

admits the possibility, proper of MMASS, of representing and con-

necting different layers according to different levels of abstraction

(see Fig. 2).

4.3 Reasoning
Behavioral characteristics of deliberative agents strongly depend on

their inferential capabilities. Actions selection strategies and sensitiv-

ity threshold to fields are influenced by the present status of the agent

and, during is life, the status of the agent is in fact influenced by its

spatial model-based reasoning activity. In this framework, MMASS

agents that reasons upon the spatial disposition of the entities popu-

lating the environment, perform their reasoning by means of model

checkers for hybrid formulas. The model checker checks the satisfi-

ability of the truth conditions of multi-modal propositional formulas

according to a given model (a Kripke structure with a CSM frame

and a valuation function).

The formula evaluation process consists in searching through the

graph of sites (that represents the agents’ environment) for a node at

a given proposition holds. Since the number of sites in the graph is

finite, the evaluation process will have to explore only a finite num-

ber of graph nodes. Since the model checking technique explores

the graph by following the semantics associated to the modal opera-

tors of the language, one of the outcomes of the formula evaluation

process consists in the definition of specific paths of nodes through-

out the graph. Any vector of nodes, ending with a site at which the

proposition of interest holds, may become a movement-action plan

for the agent in MMASS. The complete cycle, involving the spatial

reasoning performed on agents’ knowledge bases and the MMASS

mechanisms for managing agents’ actions, can be depicted as fol-

lows:

Step 1. The MMASS based system provides a goal to agents, such

as the sensitiveness to a given field type associated to a certain rele-

vant such as the exit of a building in a evacuation context (the same

goal to all agents or, in a more complex situation, different goals for

each agent).

Step 2. MMASS knows the location of each agent at an instant of

time, and it is possible to map this location to a hybrid logic place (for

instance through a mapping between specific field types and places).

Step 3. According to the location of an agent, an algorithm trans-

lates into a hybrid logic formula the goal of the agent (e.g. looking

for the exit of the building); the verification of the satisfiability of

that formula starts from the site in which the agent is located.

Step 4. The satisfiability process decomposes the formula, making

explicit the intermediate places (and thus field types) the agent have

to reach in order to achieve its final goal.

Step 5. The resulting graph of places, that are needed to satisfies

the formula, is thus transmitted to the MMASS system that will take

care of the movement of the agent.

Now, consider an example dealing with the “emit” action, in the

context of the Smart Home case depicted in fig. 1. In the MMASS

computational framework, a graph of sites represents the environ-

ment in such a way that the several devices spread over it are mod-

eled as situated agents (agents can be: a sensor, an access point, a

PDA, and so on). Given to a specific agent, e.g. the monitoring and
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control component of the system, an explicit representation of the

environment through a CSM, it is possible to add logic-based pre-

conditions to the agent’s action selection strategy. Suppose that an

alarm must be diffused by this agent (through a field emission) when

he infers that some smoke has been detected by a “sensor contained

in a site at west of the kitchen”, the precondition of this “emit” ac-

tion can be represented exploiting the higher level representation of

the environment by the hybrid formula:

@kitchen♦W ♦INsmoke (4)

Given a model W ′, the model checker verifies the truth condi-

tions of the above formula exploring the model through the following

steps:

|= @kitchen♦W ♦INsmoke iff there exists a place
w = kitchen, s.t.

|=w ♦W ♦INsmoke iff there exists a place w′, with
wRW w′, and

|=w′ ♦INsmoke iff there exists a place w′′, with
w′RINw′′, and

|=w′′ smoke �

It is relevant to observe that the finiteness that always character-

izes the CSM model (namely, the set of places and relations is finite),

guarantees that the verification algorithm of the formulas satisfiabil-

ity, implemented in the model checker, terminates.

5 Concluding Remarks
This paper presented two different models, and more precisely the

MMASS which supports the definition of complex MASs in which

the environment, and especially its spatial aspects, can be explic-

itly represented and exploited by interaction mechanisms, and CSM

which represents a structure on which represent and perform reason-

ing on facts related to spatial information and knowledge. The main

aim of the paper was to propose an integration of the two models

aimed at supplying more expressive abstractions supporting the be-

havioural specification of MMASS agents. In particular, CSM repre-

sents a suitable formalism to express complex conditions involving

information related to facts representing properties of elements of a

spatial abstraction. These conditions can be exploited for the defini-

tion of preconditions to MMASS actions. The next steps of this re-

search are aimed at the implementation of the model checker for the

SCSM language into the MMASS platform and at the design of ap-

plications exploiting the proposed integration in the context of ubiq-

uitous systems and supporting the simulation of crowd behaviours in

realistic environments (e.g. shopping centres).

Interesting suggestions for future developments, especially involv-

ing the hybrid logic introduced in the paper and the supported spatial

reasoning capabilities, come from the works on the ontological en-

hancement of agent knowledge bases [18, 11]. In fact, ontological

knowledge provides information that are necessary to qualify the en-

vironment, therefore increasing the reasoning capabilities of agents

acting and interacting in it. Ontological knowledge can be naturally

represented within the hybrid multi-modal paradigm by means of sets

of propositional symbols holding at specific places of the model.

Actually, there are many domains in which time dimension is cru-

cial and a very interesting problem for further formal and theoret-

ical work is how to consider time and dynamism integrated with

CSM . On one hand, in fact, considering the dynamical evolution of

a MMASS system, the explicit spatial reasoning may need to relate

facts true at different places at different time (properties holding over

a place change in time). On the other hand, in domains characterized

by the presence of wireless technologies, interesting places, prop-

erties holding over them and the relations’ extension may change,

since new interesting places can be discovered (e.g a mobile agent is

identified as a place) and known places can move.
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Don’t Give Yourself Away: Cooperation Revisited 

Anton Nijholt1 
 

1Abstract.  In the future, sensor-equipped environments will be 
able to detect, interpret and anticipate our intentions and 
feelings. While on one hand this allows more natural interaction 
between humans and human activity supporting intelligent 
environments, on the other hand it allows these environments to 
collect more information about the user than he or she finds 
desirable for a satisfactory interaction. That is, there are many 
human-human interaction situations where it is quite acceptable 
or even necessary that part of the intentions and feelings of one 
conversational partner remains hidden for the other. We will 
discuss research on ambient intelligence and human-computer 
interaction that allows us to introduce and discuss this problem 
and we illustrate our viewpoints with examples from our own 
research on virtual humans interacting with human partners that 
act, behave, and perform in environments equipped with sensors 
that capture and interpret human behaviour.  

1 INTRODUCTION 

Most of our research in human-computer interaction assumes 
that humans and computers cooperate. And although there is 
research on adaptive interfaces, most of the time the user has to 
adapt to the interface by using rather unnatural devices, follow 
interaction protocols, speak clearly, etcetera. Here we explore 
human-computer interaction where there is not necessarily 
cooperation and where it may be in the interest of the user to 
hide his intentions or feelings. When we talk about interaction 
then we don’t limit ourselves to verbal interaction. On the 
contrary, in what follows we assume situations and 
environments where all modalities that can be displayed 
(movements of body parts, posture and gestures, facial gestures, 
speech, gaze, (neuro-) physiological) can be observed by the 
interacting partners. 

2 NO DESIRE TO BE FORTHCOMING OR 
COOPERATIVE 

People often hide their feelings, they often hide their thoughts, 
and they often hide information. People often behave differently 
depending on when they are alone or when others are around. 
People sometimes want to hide from others; they are not always 
in need of an audience, bystanders or partners. 

People have their interests and preferences. Depending on 
them, and their personality and their mood, they voluntary or 
involuntary give away part of themselves during interactions. 
People do not always want to be forthcoming. Moreover, they 
play roles. Implicit or explicit decisions are made about the roles 
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they want to play and what they want to disclose, where, when, 
and how. This is also known as privacy. They also make 
decisions how much effort they will make in understanding a 
conversational partner and his or her interactional goals. Also, 
too much interest from others in our motivations is not 
appreciated. We don’t want other people to read our mind. We 
are not always interested in reading other people’s mind. 

Neither is it always in our interest to be cooperative. 
However, in general, being cooperative, just as being polite, can 
sometimes help us to get closer to our interactional goal. In a 
conversation we can flatter our conversational partner, we can 
purposely misunderstand our partner in order to be able to make 
a humorous remark, and we can play the devil’s advocate, and 
nevertheless be cooperative. We play along with the rules of a 
conversation or a negotiation and therefore we are cooperative 
despite possible elements of competitiveness. In these situations 
Grice’s maxims on cooperation, i.e. assumptions a listener is 
supposed to have about the interaction behaviour of a speaker, 
seem to be violated, but the relevance of the behaviour can be 
explained from a pragmatic, conversational point of view, rather 
than from a sentence level point of view. Conversational partners 
can achieve their goals although they can have competitive 
interests. To achieve these goals it is acceptable that people hide 
their feelings and intentions. Moreover, it is quite acceptable that 
they tell lies. 

Clearly, lies don’t follow Grice’s maxims. People don’t 
follow Grice’s maxims, since all people sometimes lie in 
everyday conversations. They say things they don't mean, they 
tell self-oriented lies, i.e., lies for one’s own benefit, or other-
oriented lies, i.e., for the benefit of others. Social lies are meant 
to benefit relationships. Lies act as a social lubricant [1]. We 
don't always want to speak the truth; we don't always want to 
hear the truth. And sometimes we don’t want to find out the 
truth. Lies are in the interest of both conversational partners in 
an interaction. In addition to telling the truth, during a row 
people will also exaggerate or say things they don’t mean. Lies 
can be nonverbal. We can nonverbally feign surprise or 
sincerity. We can pretend to be happy by our facial expression; 
we can pretend to be rich by our clothes. 

Interactions can be completely nonverbal or nonverbal 
supported by speech. Consider for example, two partners 
coordinating their behavior during dancing, students 
coordinating their movements with a fitness trainer or a sports 
instructor, and a conductor conducting an orchestra. Clearly, in 
sports (e.g., baseball, soccer, tennis, …) and in games 
misleading your opponent by feigning movements, introducing 
sudden interruptions of movements or changes in behavior is 
essential and is part of the entertainment or sports experience. 
Nonverbal humor is an example of friendly misleading your 
partner, e.g. during disco dancing by feigning certain 
movements. 
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In all these observations the nonverbal characteristics of the 
interaction are extremely important. Even during conversations 
these characteristics can say more about what people mean or 
want others to believe than the content of the verbal utterances. 
People can read these nonverbal characteristics and they can be 
misled by these nonverbal characteristics in their interactions. 

Obviously, there is not necessarily a balance between 
capabilities of conversational partners. Partners differ in 
background, knowledge, attitudes and personality. A partner can 
be more determined to reach a certain goal, a partner can have 
more social intelligence and be able to read the mind of its 
human opponent better than he or she is able to do. Not all 
partners in interactions have equal means. 

3 DISAPPEARING COMPUTERS AND 
INTERFACES 

Human-computer interaction is about designing interfaces 
between humans and computers. Before there were Personal 
Computers for most of the computer users the interface consisted 
of a counter where you could deliver your program punched on 
tape or cards. After that end users were allowed real-time remote 
access to computers using terminals that allowed the composing 
and editing of programs. Personal Computers provided end users 
with facilities to interact with software designed by software 
companies or by themselves. User interface software mediated 
between users and application and system software. Graphical 
user interfaces aimed at efficient and user-friendly interaction. 
Interface technologies now include speech and language input, 
haptic input, and vision input. Moreover, in addition to 
professional applications where efficiency is important and 
necessary, home and recreational computer use became 
extremely important and these applications require interfaces 
where there is a user access layer where user friendliness, ease of 
learning, adaptiveness, and fun to use are the main design issues, 
rather than efficiency considerations that appear in levels below. 

As mentioned, interface technologies now include speech and 
language input, haptic input, and vision input. But there is more. 
Since we can have sensors embedded in the environment, 
including walls, furniture, devices, robots and pets, now the 
environment has become intelligent and it can perform not only 
reactive, but also pro-active behaviour, trying to anticipate what 
the inhabitant is doing and doing this by perceiving activities and 
all kinds of verbal and nonverbal behaviour. Embedded sensors 
include cameras, microphones, location and movement sensors, 
and sensors that collect and distinguish various types of 
physiological information and brain activity patterns. 
Information about the behaviour of the inhabitants and their 
implicit and explicit addressing of the environment can be fused 
and interpreted in order to support the inhabitants by providing 
appropriate feedback. 

This research, in particular when research activities into 
social and intelligent interfaces are included, has become known 
as ambient intelligence research. Well-known is also Mark 
Weiser’s vision of disappearing computers (“The most profound 
technologies are those that disappear. They weave themselves 
into the fabric of everyday life until they are indistinguishable 
from it.”) [2] and the associated question how we can design 
implicit and explicit interaction, with multiple human 
inhabitants, for sensor-based interfaces [3]. In our view [4] in 
these environments humanoids and pet-like devices can play a 

useful role in observing inhabitants and interacting with them. 
Agent-modelled virtual humans, (mobile) robots, pets (virtual or 
robotic animals) can have specific human-oriented tasks in smart 
environments (e.g., be a friend, assist in cooking, take care of 
house security, retrieve information, assist in health-care and 
fitness, be an opponent in games or sports), and they can 
represent human beings (e.g., family members that are away 
from home but have there whereabouts or activities visualized). 
They can also communicate with each other, distributing, 
sharing and integrating their experiences, and learning about the 
inhabitants and visitors of these environments, making them 
transparent, independent of the role they play. Being able to 
capture and interprete what is going on Capturing and 
interpreting of events and activities, e.g. in home environments, 
allows future retrieval and replay of events and experiences in, 
for instance, 3D virtual environments [5]. 

4 NOT GIVING AWAY YOUR INTENTIONS 
OR FEELINGS 

The main topic of discussion in this paper is not about privacy or 
privacy protection. But clearly, when we talk about not giving 
away intentions and feelings, there is the underlying assumption 
that you are acting and behaving in a world (ambient intelligence 
environment, smart environment) that is inhabited by agents that 
perceive your acts and behaviour and that may profit from the 
knowledge that is obtained in that way. And, they may have 
goals that do not necessarily match yours, maybe on the 
contrary. Hence, such agents may collect information that 
threatens your privacy by using this information without you 
being aware of it, without your consent, and sometimes against 
you. We can not expect that we can always choose our own 
agents. The providers of our smart environments will make 
choices, they have commercial interests and they have to follow 
political burps and fluctuating political and societal demands.  
Where can we hide from those who provide our environments 
with sensors and communicating intelligent agents that allow the 
environment to pretend social and intelligent awareness while 
collecting information during the interactions with us [6]? 

Their agents will have their own interests, or rather their 
owners’ interests, and therefore they will persuade us to adapt to 
their goals. As mentioned in [7], there will even be situations 
where our virtual personal assistant will take a decision to 
deceive us (in our ‘own interest’, of course) and also situations 
where we will want to deceive our personal assistant. 

In our research we don’t look into details of these issues. 
Rather we look at human behaviour during natural conversations 
and other interactions and the reasons to hide information, i.e., 
not display ourselves, not to be forthcoming or, even, wanting to 
mislead our (artificial) interaction partner and provide him or her 
with information that is not necessarily complete or true. 

In future ambient intelligence environments, are we still able 
to provide our conversational partners with incomplete and 
sometimes wrong information about ourselves, our intentions 
and our feelings just as we are able to do and are used to do, and 
probably for good reasons, in real-life situations nowadays? This 
question can be asked for real-time face-to (virtual) face 
conversational interactions, but there are also many other 
situations where it is rather natural not to show everything we 
know or everything we feel. In our research on continuous 
interaction modelling (in contrast to ‘turn-taking’ interaction [8]) 
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we designed and implemented applications where it turned out 
that humans in their interactions with embodied partners felt that  
there sometimes were advantages in not displaying their 
intentions and feelings, and, also the other way around. This 
became clear in our research on a so-called Sensitive Artificial 
Listener (SAL), developed in the framework of an EU FP6 
Network of Excellence on the role of emotions in the interface, 
in which we participated [9], in our research on an interactive 
virtual dancer [10], an interactive virtual conductor [11], an 
interactive virtual fitness trainer [12], and in our research on an 
educational virtual environment for nurse education [13]. 

In these applications both the nonverbal interaction behaviour 
and the fact that during interactions all conversational partners 
continuously display nonverbal interaction behaviour [14], made 
clear that continuously decisions are being made about what a 
human partner would like to become displayed to a virtual 
interactional partner, and the other way around. Examples that 
emerged in our applications are: using humour to temporarily 
mislead a conversational partner, not being sincere by feigning 
interest in a conversation, not yet wanting to show your fatigue 
to your fitness trainer or colleagues, feigning movements during 
a dance interaction, and feigning movements in a virtual reality 
entertainment game. 

5 HUMAN COMPUTING TECHNOLOGIES 

Many authors have discussed smart environments, ambient 
intelligence, ubiquitous computing or pervasive computing. 
Mostly their starting point is the technology that makes it 
possible to embed environments with sensors, intelligent 
sensors, and communicating sensors. Our starting point is the 
support of human beings in their activities in smart 
environments. That is, rather than in traditional computer science 
where the assumption is that human beings should add to the 
tasks that a system has to perform, we investigate how sensor-
equipped environments can support human beings in their daily 
home and professional activities, how they can contribute to 
their well-being, and how they can contribute to their curiosity to 
explore new areas of interest. For that reason we need to look at 
anticipatory user interfaces that should be human-centred and 
should be built for humans based on human models. 

Our natural environments, whether they are home, office, or 
public space environments, become smart. They are being 
equipped with sensors, where the sensors themselves can be 
intelligent, but, more importantly, where the information that is 
obtained from various kinds of sensors is fused and interpreted, 
allowing relevant feedback generation from the environment and 
its devices to the inhabitants of the environment. Tangible 
objects, robots, virtual pets, furniture, walls, doors, virtual 
humans displayed on screens, etc., may re-actively and pro-
actively provide support to real humans in their daily 
professional, home, and recreational activities. While doing this, 
these environments need to collect information about the user: 
his activities, his intentions, his moods, and his emotions. We 
discuss three viewpoints related to the ambient intelligence 
approach to computing and supporting inhabitants of ambient 
intelligence environments. 

The first viewpoint in our research concerns the level of 
sophistication at which the environment understands what is 
going on and is able to provide support [15]. Depending on this 
level of sophistication models are needed that range from simple 

rules, such as, turn the light on when someone enters the room, 
to cognitive user models that are used by the environment to 
understand, e.g., why a person is choosing a particular chair 
around a table in a meeting room. 

The second viewpoint concerns the way the environment and 
its devices are asked to use the embedded knowledge or decide 
to use this embedded knowledge in support of the activities of 
the environment’s inhabitants or visitors. For example, in [16] 
we find an interaction space divided by two axes. One axis 
ranges from re-active to pro-active behavior, while the other axis 
covers the range from low to high level attention of these sensor-
equipped smart environments. The main message here is that we 
can design intelligence in the interface and that due to this 
intelligence, in particular intelligence that is fed from 
observations from the environment, the interface can evoke 
behavior that (1) hides processing from the user, (2) can provide 
feedback to questions or actions requiring feedback, (3) can 
anticipate user’s actions, and (4) can enter and entertain the 
interaction with other users. 

The third viewpoint is related to the research methodology. 
Our research starts with observing how people behave and 
interact. For example, in the AMI and AMIDA project [15] we 
have a large collection of data concerning people interacting 
with each other. This data is annotated using annotation tools 
and annotation schemes. Tools and schemes are not perfect. 
However, machine learning technologies can be used to improve 
in an iterative way, analysis and modelling of (multi-party) 
interaction. 

6 (NON-) COOPERATIVE BEHAVIOR BY 
USERS, PARTNERS, AND OPPONENTS 

Our research is on natural cooperative and uncooperative 
behaviour. Clearly, we look at Grice’s maxims, but we also 
distinguish situations where people may prefer not too be fully 
informative, not to display all relevant information, and maybe 
even prefer to mislead their interaction partner. It is not always 
in your interest to open yourself to a conversational partner. 
Moreover, interactions can become much more interesting and 
useful when such conversational rules are neglected or violated. 
This is certainly the case in applications where your interests 
forces you to disagree with your partner (or rather opponent), for 
example in discussions, games, or sports. Clearly, we are not 
talking about verbal interaction only. In our research we include 
nonverbal interaction and also all kinds of other activities that 
can be perceived by our interaction partners (or opponents). 

It should be mentioned that there is a friction that emerges 
when on the one hand our smart environments and processing 
technologies not only allow, but also invite natural interaction 
behaviour, while on the other hand the processing technologies 
become able to extract more information about our intentions 
and feelings from this natural interaction behaviour than we 
would like to become known in a natural human-human 
interaction situation. How to deal with partners that have not 
necessarily been designed to help us, how to deal with partners, 
e.g. in games and sports that are opponents rather than friends? 
In the remaindrr of this paper we will in particular look at 
entertainment and sports applications. Therefore, in the next 
section, we will look at such applications and introduce the so-
called exertion interfaces. 
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7 DANCES, SPORTS, GAMES, FITNESS 

Entertainment, health, sports, and leisure applications using 
information and communication technology often require and 
encourage physical body movements and often applications are 
designed for that reason. In our research we look at bodily and 
gestural interaction with game and leisure environments that are 
equipped with sensors (cameras, microphones, touch, and 
proximity sensors) and application-dependent intelligence 
(allowing reactive and proactive activity). Interpretation of the 
bodily interaction, requiring domain-dependent artificial 
intelligence, needs to be done by the environment and the agents 
that maintain the interaction with the human partner. In the 
display of reactive and pro-active activity embodied virtual 
agents play an important role. Virtual agents can play the role of 
teacher, coach, partner or buddy. One underlying assumption is 
that emphasis on activities in which the experience rather than 
the result will be used to guide the design of social and 
intelligent systems that will become part of ambient intelligence 

home environments [5]. 
Bodily activity, to be captured by cameras, microphones, 

pressure and location sensors, has been considered for many 
applications related to sports, games, entertainment, fitness, and 
education. Hence, there is a virtual therapist that helps patients to 
recover from injuries [17], an exercise bicycle as user interface 
to a virtual environment [18], a Tai Chi training master [19] and 
a shadow boxer [20] that acts as a fitness environment to help 
prevent neck and shoulder pain, or a Kick Ass Kung-fu system 

where the children use Kung-fu to fight virtual enemies 
displayed on a screen [21]. 

Interfaces to such environments have been called physical 
interfaces or exertion interfaces. Especially for the latter it is 
assumed that the interaction requires intense physical effort, for 
example, repeatedly shooting balls against a wall. This latter 
example has been realized in the “Sports over a Distance” 
project at the Media Lab in Dublin [22]. In their exertion 
interface users are connected through a video conference screen. 
For each of them the remote player is displayed on the screen. 
The screen is divided into blocks and the players have to strike 
the blocks with a regular soccer ball in order to score (see Figure 
1). Blocks can ‘crack’, ‘break’, and ‘disappear’. Players see the 
results of the other player and can try to break a block that has 
been cracked by the other player. A really hard strike will break 
a block at once. Hence, in the game there is a combination of 
tactics and intense physical effort. More recently “Airhockey 
over a Distance” has been introduced. In this approach not only 
airhockey tables are networked and augmented with video 
conferencing, but there is also a physical puck that can be shot 
back and forth between the two connected locations by 
measuring the  intensity of hitting  the ‘wall’  and ‘firing’ a puck 
at the remote location from the position where it hit the wall. 

In our HMI Lab we have designed three applications in which 
our ideas about nonverbal and bodily interaction have been 
implemented. The applications are illustrated in Figure 2. The 
implementations are there, but they are certainly not final. We 
looked at the design, implementation and evaluation of a virtual 
dancer that invites a visitor to her environment to dance with her, 
a conductor that guides musicians in its environment to play 
according the score designed by a composer, and a virtual trainer 
(e.g. in the role of fitness trainer or physiotherapist) that knows 
about exercises that need to be performed by a user or patient. In 
all these applications there is a continuous interaction between 
embodied agent and its human partner. Moreover, rather than 
have the more traditional verbal interaction supported by 
nonverbal communication, here the main interaction that takes 
place is nonverbal, and speech and language, when present at all, 
take the supporting role. External signals like music being 
played can also have a role in addition to the multimodal 
communication. 

It should be mentioned that industry (Sony, Microsoft, 
Nintendo) have become aware of applications where users move 
away from keyboard, mouse and joystick. The dance pad, the 
DanceDanceRevolution (DDR) games and the DDR tournaments 
are examples, but so are the Sony EyeToy games that use 
computer vision input and the Nintendo Wii motion-sensitive 

 
Figure 2. Virtual dancer, virtual conductor and virtual fitness trainer 

 
Figure 1. Sports over a Distance 
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input device. And, finally, Microsoft has investigated the use of 
a dance pad to allow a user to issue commands to his or her 
email program [23]. 

8 PLAYING WITH BEHAVIORAL 
INFORMATION 

In ambient intelligence environments we have the technology to 
capture human behavior in everyday life. In our ambient 
entertainment view the same technology is available and we can 
either assume that a particular user or visitor of our ambient 
entertainment environment already carries a user profile that has 
been generated from the user’s behavior in the past, or we can 
assume that during a possibly playful interaction with the 
environment a profile can be obtained and can be used by the 
environment to adapt to the user’s characteristics (for example, 
personality, preferences, mood and capabilities). 

What can we learn about the user when we can observe his or 
her behavior during some period of time? What can we learn 
from behavioral information captured by cameras, microphones 
and other types of sensors? In [24] results are reported from 
short observations of expressive behavior. Observations include 
the assessment of relationships, distinguishing anxious and 
depressed people from normal people, predicting a judges’ 
expectations for a trial outcome, determining political views of 
television newscasters, et cetera. Personality judgments from 
‘thin slices of behavior’ and their accuracy are also discussed in 
[25]. 

An example where real-time behavioral analysis is done by a 
computer can be found in [26].  In their approach a participant is 
invited in front of a video camera for about 30 seconds. At the 
end of this period a personality profile for the earlier mentioned 
Big Five personality traits will be generated. 

Taking into Account Involuntary User Responses 
In the examples mentioned in section 7 we have bodily 
interaction with the computer system. Input to an entertainment 
environment can be based on conscious decisions made by the 
human. This is usually the case when keyboard, mouse or 
joystick is used. In the examples we have body and hand 
gestures, changes of position, etc., to ‘control’ the system and to 
perform a certain entertaining task.  

Information collected in a user profile, possibly obtained with 
the methods discussed in section 3 and 4, can be used to adapt an 
entertaining activity in advance to a particular user and during 
the activity it helps to anticipate and interpret the user’s actions 
in the environment. 

Behavioral signals and patterns during activities provide 
(additional) information about the tasks that a user wants to 
perform, the way they should be performed and the user’s 
appreciation of task, performance, and context. Sensing and 
understanding these signals is an important issue in ‘human 
computing’ [3] and it makes human computing an important area 
of research for entertainment computing. This kind of input is 
not always consciously provided by a user and is sometimes 
beyond the control of the user.  Behavioral signals also provide 
information about the affective state of the user and this 
information is needed to adapt the environment (more or less 
control by the user, other challenges, etc.) to the user. 

More information about the affective state of the user of an 
entertainment environment can be obtained by collecting and 
interpreting information obtained from measuring physiological 
processes and brain activity. Physiological cues are obtained 
from, for example, respiration, heart rate, pulse, skin temperature 
and conductance, perspiration, muscle action potentials and 
blood pressure [27]. Unfortunately, this information can mostly 
not be obtained unobtrusively. 

Finally, we should mention measured brain activity. Again, 
measuring brain activity, e.g. by using an EEG cap, can provide 
information about the affective state of the user (frustration, 
engagement, etc.) and this can be used to dynamically adapt the 
interface to the user and provide tailored feedback. 

User Control of ‘Involuntary’ Responses 
HAL: I'm afraid. I'm afraid, Dave. Dave, my mind is going. I can 
feel it. I can feel it. My mind is going. There is no question about 
it. I can feel it. I can feel it. I can feel it. I'm a... fraid. 

 From: A Space Odyssey, Stanley Kubrick, 1968 

Playing against a computer is not fair. The computer knows 
about our affective state and can decide to communicate this 
information to our (virtual) opponents or collaborators in the 
environment who can use it to their advantage. On the other 
hand, apart from adapting the environment, the computer can 
also make the  human player aware of his or her affective state 
so that he or she can make an attempt to control it since it can 
decrease own performance and give away unwanted information 
to other players in the game. 

In games and sports opponents can be misled. We can as well 
try to mislead or tease our virtual and human partners who 
perform in a computer-controlled environment. One step further 
is that we have entertainment games where misleading the 
computer is essential part of the game. A simple example is 
playing soccer against a humanoid robot and the robot’s aim is 
to win rather than to offer its human partner an enjoyable 
experience. In such a situation misleading means for example 
making feints. But also, for example, trying to look more tired 
than we really are and all other kinds of misleading behavior. In 
our virtual dancer installation (section) it happens that human 
dancers try to tease the virtual dancer by doing something much 
unexpected and see how she reacts. In other environments we 
may want to hide our intentions from the computer by 
controlling our facial expressions (e.g., in a poker game with a 
computer that can observe us). That is, once we know that our 
non-human opponent is receptive for our behavioral, 
physiological or even brain processes, we can try to cheat in 
order to obtain more satsfaction from the entertainment game. 
Although game research in this direction is rare, it is well-known 
that people can learn to control, up to a certain level, these 
processes. Research and development in brain-computer 
interfacing and its medical applications makes clear that 
interesting new types of entertainment will become available in 
the future [28, 29]. 

9 CONCLUSIONS 

In ambient intelligence environments the environment learns 
about the user. The environments will be inhabited by, among 
others, virtual humans and human-lime robots that are there to 
support us, but also to support other humans making use of these 
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environments. Human computing technology allows the 
environment to extract information about the user from his 
behavior and his activities, including his interaction behavior. 
Our assumption is that for maintaining natural human behavior 
in such environments we should be able to hide information 
from the artificial humans in these environments, we should be 
allowed to lie, and we should have the opportunity to mislead 
our artificial partners. This is particular true in situations where 
we play games or do sports with our artificial partners as we 
illustrated with some examples from our own research. In that 
case we look at the computer as our opponent, in addition to 
being a provider of enjoyable experiences. Rather than providing 
the computer with information about ourselves we then prefer to 
mislead the computer and hide information about our affective 
state or even control and manipulate our behavioral, 
physiological and brain processes so that we consciously can 
provide the computer with misinformation in order to become 
the ‘winner’ in smart entertainment environments.  
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Private Information and Inference about Inference:
Experiments with Human Subjects and Computer Agents

Sobei H. Oda and Gen Masumoto and Hiroyasu Yoneda1

Abstract. This paper describes how players infer other players’
inference in the game of Schredelseker [7]. Schredelseker did a se-
ries of laboratory experiments and simulations of his zero-sum game
played by players who are informed to different degrees, reporting
that modestly informed players often suffered from greater losses
than no-informed ones did. This paper formulates each player’s profit
rigorously to examine why such paradoxical income distribution was
observed. In addition, mathematical analysis and experiments with
human subjects and/or computer agents are given to illustrate how
players’ inter-inference about other players’ inference affects the dis-
tribution of income among them.

1 Introduction

Let us assume that speculators trade future commodities among
them. Since they repeat buying and selling commodities among them
without producing or consuming anything, speculative traders play
a zero-sum game: (A) the sum of all traders’ profit is zero. Never-
theless those who have private information which may affect future
prices can make use of it to determine whether they buy or sell fu-
ture commodities. It seems certain that (B) more informed traders
have more chance to make more profit than less informed traders
have. The least informed speculators, who have no private informa-
tion, would have no other way but to buy or sell randomly. However,
does it give them equal chance to make money (to buy a commodity
whose price will increase or to sell a commodity whose price will
decrease) and to lose money (to sell a commodity whose price will
increase or to buy a commodity whose price will decrease)? If so,
(C) no-informed traders can expect zero profit, which is inconsistent
with (A) and (B).
Schredelseker [7] formulated a simple model to describe specula-

tive trading among traders with different private information. He did
a series of its simulations and experiments to find that (B) is not al-
ways the case: modestly informed players quite often suffered from
greater losses than no-informed players did; see also [2]. This paper
examines why such paradoxical distribution of profit were observed.
The point is that modestly informed players often use their private in-
formation without considering other players’ behaviour properly. If
you are informed enough to predict future prices perfectly or have
no information about future prices, you need not or cannot con-
sider your rivals’ strategies: you have only to buy those commodities
whose prices will rise and sell those commodities whose prices will
fall or you have nothing to think about. However, if you are mod-
estly informed, you must take other players’ strategies into account
to maximise their advantage over less informed rivals while minimis-

1 Kyoto Sangyo University, Japan, email: oda@cc.kyoto-su.ac.jp

ing their disadvantage against more informed ones, which calculation
could be too demanding for you to solve.
This paper is an extended abstract of our recent studies [6], which

explains details of mathematical analysis of Schredelseker’s model
and Yoneda, Masumoto and Oda [10], which explain the results of its
experiments with computer agents as well as with computer agents
and human subjects. We hope that new results and findings will be
included in the final paper.
In this paper we shall present some mathematical formulations of

players’ inference about other players’ inference as well as new com-
puter simulations to illustrate what dynamics players’ inter-inference
will generate. In Section 2 we shall formulate Schredelseker’s model
rigorously with small modifications. In Section 3 we shall examine
the model to show the mechanism that distorts (B). In Section 4 we
shall formulate a series of players’ inference about other players’ in-
ference in the model. We shall define players’ inference about other
players’ inference in the first subsection; analyse it mathematically
for a small number of players in the second subsection; introduce
additional assumptions to define their inference about other players’
inference about other players’ inference, ... in the third subsection;
show some results of simulations to illustrate what dynamics the se-
ries of inference about inference could generate. In Section 5 we shall
mention results of experiments with computer agents and human sub-
jects.

2 Schredelseker’s model

The model of Schredelseker (2007) is summarised in the following.

1. The price of a commodity in the spot market of Day Two (tomor-
row) Q is determined to be the sum of 2N stochastic variables
X1, X2, ..., and X2N which are zero or unity independently with
equal probability:

Q =

2N∑
i=1

xi. (1)

Here xi stands for the realised value of Xi, which equals 0 or 1.
The accumulate distribution function of Q is defined as

Prob(Q≤q) =
1

22N

q∑
i=0

2N !

(2N − i)!i!
. (2)

2. There are 2N +1 speculative traders (players) who buy or sell the
commodity among them in the future market of Day One (today).
Although the equilibrium price of the tomorrow’s spot market Q
is not realised before tomorrow, x0, x1, ..., and x2N are all deter-
mined before the today’s future market is open and the first k of
them are known to Player k before she determines Rk: Player 0
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knows none of x1, x2, ..., and x2N ; Player 1 knows X1 = x1;
Player 2 knows X1 = x1 and X2 = x2; ...; Player 2N knows
X1 = x1, X2 = x2, ..., and X2 = x2N . In short, Player k is
unconditionally better informed than Player k − 1 in the meaning
that what the latter knows is all known to the former.2

3. All players declares their reservation prices (ask/bid prices): R0,
R1, ..., and R2N+1 where Rk stands for the reservation price of
Player k. Once she announces her reservation price to be Rk,
Player k must buy a unit of the commodity ifRk is higher than the
equilibrium price of the today’s future market P while she must
sell a unit if Rk < P (she may be asked to buy a unit or to sell a
unit or to trade nothing if Rk = P ).

4. The equilibrium price of the today’s future market P is determined
to be the median of all the 2N + 1 players’ reservation prices:

P = RiN (3)

where (i0, i1, · · ·, i2N ) is a permutation of (0, 1, ..., 2N) that sat-
isfies

Ri0≤Ri1≤ · · ·≤RiN−1≤RiN≤RiN+1≤ · · ·≤Ri2N−1≤Ri2N .
(4)

Players i0, i2, ..., and iN−1 sell to Players iN+1, iN+2, ..., and
i2N (a unit from a seller to a buyer at Price P ) while Player iN
does not take part in trade. The person who does not trade may not
be determined uniquely, because there may exist two or more per-
mutations of 0,1, ..., and 2N that satisfy (4). In such cases one of
them is chosen randomly to chose the player who does not trade,
but P is always determined uniquely by (3):3

RiN = μ(R0, R1, · · ·, R2N ). (5)

5. The 2N players who buy or sell in the today’s future market trade
reversely in the tomorrow’s spot market at price Q to offset their
speculative trades. As a result, the profit of Player k is determined
as

Πk(P,Q,Rk)⎧⎪⎨
⎪⎩

= P −Q if Rk < P or (Rk = P and k �=iN )
= 0 if k = iN

= Q− P if P < Rk or (P = Rk and k �=iN )
,

(6)

which implies that the 2N + 1 players play a zero-sum game:

2N∑
i=0

Πi(P,Q,Ri) = 0. (7)

We assume that what is mentioned above is known to all players as
common knowledge.

3 Players’ Expectation of Profit

What Player k can and must determine is the value of her
reservation price Rk; her profit is determined according to all
player’s reservation prices including her own one. In other words,

2 In the text we often designate a typical player as Player k. For convenience
we assume Player k is female while her competitors are all male.

3 Though the number of players is an even number in the original model,
we assume it is an odd number to determine P uniquely. In addition to the
tie-break rule mentioned in the text, there can be several tie-break rules that
determine who trade and who do not if two or more traders have PiN

as
their reservation prices. The analysis of the text does not change essentially
whichever rule is assumed.

her strategy is a mapping from her private information set
{X1 = x2, X2 = x2, · · ·Xk = xk} to her action Rk. What is the
strategy that maximises the expected value of her profit?
Let us assume Player k expects that P is not greater than p with

probability

Probk(P≤p) =

∫ p

0

fk(p; xk, Rk)dp (8)

and that Q = q with probability

Probk(Q = q) = gk(q; xk) (9)

where
xk = (x1, x2, · · ·, xk) . (10)

Here the following is assumed: Player k correctly regards P as a
continuous variable and Q as a discrete variable; she may utilise her
private information xk to estimate Probk(P≤p) and Probk(Q = q);
she may take account of the effect of her own decision Rk on
Probk(P≤p).
Player k can calculate the following conditional probability from

her private information.

Prob

⎛
⎜⎜⎜⎝Q = q

∣∣∣∣∣∣∣∣∣

X1 = x1

X2 = x2

...
Xk = xk

⎞
⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= 0 for q <

k∑
i=1

xi

=

{
(2N − k)!

(2N − k − q)!q!

}
22N−k

for
k∑

i=1

xi≤q≤2N − k +

k∑
i=1

xi

= 0 for 2N − k +
k∑

i=1

xi < q

.

(11)

We assume that she adopts the objective probability (11) as her sub-
jective probability about Q:

gk(Q; xk)⎧⎪⎪⎨
⎪⎪⎩

= 0 for Q < Qmin
k (xk)

=
1

22N−k

(2N − k)!

(2N − k −Q)!Q!
for Qmin

k (xk)≤Q≤Qmax
k (xk)

= 0 for Qmax
k (xk) < Q

(12)

where45

Qmin
k (xk) =

k∑
i=1

xi and Qmax
k (xk) = 2N − k+

k∑
i=1

xi. (13)

4 It is not essential for our formulation that Player k regards the condi-
tional probability as her subjective probability. If the subjective probabil-
ity gk(Q; xk) differs the objective probability given by right-hand side of
(12), the analysis in the text holds true without modification.

5 Since x0 is not defined, we must add Qmin
0 = 0 and Qmax

0 = N to
(13) to defineQmin

k andQmax
k for all k (0≤k≤2N ). To keep explanation

simple, however, we do not mention such natural stretching to the cases
where k = 0 in the text; such irrational expressions as Qmin

0 (x0) and
Qmax

0 (x0) should be read asQmin
0 andQmax

0 .
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Let Ik(xk) be the closed interval between Qmin
k (xk) and

Qmax
k (xk):

Ik(xk) =
{
Q
∣∣∣Qmin

k (xk)≤Q≤Qmax
k (xk)

}
. (14)

Player k, who knows (6) and (12), can see that choosing Rk outside
Ik(xk) is weakly dominated by choosing it at the either end of the
interval:

Rk < Qmin
k (xk)

⇓
Πk(P,Q,Rk)≤Πk(P,Q,Qmin

k (xk)) for all P

(15)

and

Qmax
k (xk) < Rk

⇓
Πk(P,Q,Rk)≤Πk(P,Q,Qmax

k (xk))for all P .

(16)

We assume that Player k chooses Rk in Ik not to choose a weakly
dominated strategy:

Qmin
k (xk)≤Rk≤Qmax

k (xk). (17)

In addition we assume that Player k considers that none of her rivals
choose a dominated strategy either:

Qmin
h (xh)≤Rh≤Qmax

h (xh) for all h (h�=k), (18)

which implies that
0≤P≤Pmax = 2N. (19)

Incidentally it should be noted that (17) implies that

0 < Πk(P,Q,Rk) = |P −Q| if Rk∈Ik(xk) and P �∈Ik(xk),
(20)

which can be another reason why we assume (refequation: interval of
Rh) and is an expression of the advantage of better informed players
because

{Q} = I2N (x2N )⊂I2N−1(x2N−1)⊂ · · ·⊂I1(x1)⊂I0
= {Q |0≤Q≤2N } . (21)

In particular, Player 2N , who is perfectly informed, has no chance to
suffer from losses as long as he keeps R2N = Q.
From (8), (12), (17) and (19), the values of P and Q that Player k

who has private information xk expects subjectively are

P �
k (xk, Rk) =

∫ Pmax

0

fk(P ; xk, Rk)PdP (22)

and

Q�
k(xk) =

Qmax
k∑

Qmin
k

gk(Q; xk)Q =
2N − k

2
+

k∑
i=1

xi (23)

respectively. Hence the profit that Player k expects subjectively is
expressed as

Π�
k(xk, Rk) =

∫ Pmax

0

fk(P ; xk, Rk)

Qmax
k (xk)∑

Q=Qmin
k

(xk)

{gk(Q; xk)Πk(P,Q,Rk)} dP,

(24)

from which we can obtain

∂Π∗
k(xk, Rk)

∂Rk

= 2 {fk(Rk; xk, Rk) + φk(Rk; xk, Rk)} {Q�
k(xk)−Rk}

− 2Fk(Rk; xk, Rk) + 2
∂

∂Rk
Fk(Rk; xk, Rk)

− ∂

∂Rk
Fk(Pmax; xk, Rk).

(25)

Here it is assumed that the following functions exist.

Fk(P ; xk, Rk) =

∫ P

0

fk(p; xk, Rk)dp (26)

Fk(P ; xk, Rk) =

∫ P

0

Fk(p; xk, Rk)dp (27)

φk(P ; xk, Rk) =
∂Fk(P ; xk, Rk)

∂Rk
(28)

If she considers that her choice of Rk does not affect P , Player k
will choose Q�

k(xk) because, in addition that it is in Ik(xk), (25 )
implies that

fk(P ; xk, Rk) = fk(P ; xk)

⇓

0 � ∂Π∗
k(xk, Rk)

∂Rk
⇔ Rk�Q�

k(xk).

(29)

However, sinceRk is one of the reservation prices that determines
P as their median, what value Player k chooses as Rk can change
the value of P . If she takes it into account, Player k can see that
Rk = Q�

k does not maximise her profit, though (24) may be so com-
plicated that she could not discover the value of Rk that maximises
the expected value of her profit.

4 Taking Competitors’ Strategies into Account

4.1 Level One and Two Strategies

Let us define Player k’s Level One Strategy L1k as choosing her ex-
pectation of Q as her reservation price, and her Level Two Strategy
L2k as choosing such a reservation price that maximises the expec-
tation of her profit on the supposition that her competitors all follow
their level two strategies:

L1k : Rk = Q�
k(xk) (30)

L2k : Rk∈I(2)
k (xk) (31)

where

I
(2)
k (xj) =

⎧⎨
⎩Rj

∣∣∣∣∣∣
Rj = Q�

j (xj) for all j (j �=k)
⇓

Π�
k(xk, rk)≤Π�

k(xk, Rk) for all rk

⎫⎬
⎭ . (32)

Player k can obtain L2k in the following way.

1. Since she can see x1, x2, ..., and xk−1 from her private in-
formation xk, Player k can readily see Q�

0, Q
�
1(x1), ..., and

Q�
k−1(xk−1).

2. Player k calculates the reservation prices of Players k + 1, k + 2,
..., and 2N for every possible combinations of the realised values
ofXk+1,Xk+2, ..., andX2N :

Q�
h(zh

k ) =
2N − h

2
+

k∑
i=1

xi +

h∑
i=k+1

yi (33)
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where yi (k + 1≤i≤2N ) stands for the value of Xi which is re-
alised but unknown to Player k and

zh
k = (x1, x2, · · ·, xk, yk+1, · · ·, yh). (34)

3. Player k calculates P for every z2N
k and Rk :

P �
k (Rk; z2N

k ) = μ (N,Q�
1(x1), · · ·, Q�

1(xk−1), Rk,

Q�
k+1(z

k+1
k ), · · ·, Q�

2N (zh
2N )
)
.
(35)

4. Player k calculates the expectation of her profit for every z2N
k and

Rk:

Π�
k(Rk, z

2N
k ) = Πk(P �

k (Rk; z2N
k ), Q�

h(zh
k ), Rk). (36)

5. Since each z2N
k is realised with equal probability, she can calcu-

late her profit that she can expect when her private information for
every xk and Rk:

Π�
k(Rk; xk) =

1

2N − k

1∑
yk+1=0

1∑
yk+2=0

· · ·
1∑

y2N=0

Π�
k(Rk, z

2N
k ).

(37)
6. Player k chooses suchRk that maximisesΠ�

k(Rk; xk) as her sec-
ond level strategy.

4.2 Example

Let us examine the case where there are five players (N = 2). We
shall construct each player’s level two strategy in the following para-
graphs, summarising its implications at the end of this subsection.
As an example we outline how to obtain Player One’s level two

strategy. Player One can see the value of x1. If he knows x1 = 0,
on the supposition that Players Zero, Two, Three and Four all follow
their level one strategies, Player One can see that one of the following
eight cases is realised with equal probability.

⎛
⎜⎜⎝
x1

y2

y3

y4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ ⇒

⎧⎪⎪⎨
⎪⎪⎩

R0 = 2
R2 = 1
R3 = 0.5

Q = R4 = 0

⇒ Π1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

= 0.5 for R1 < 0.5

= 0.25 for R1 = 0.5

= 0 for 0.5 < R1 < 1

= −0.5 for R1 = 1

= −1 for 1 < R1

(38)

⎛
⎜⎜⎝
x1

y2

y3

y4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ ⇒

⎧⎪⎪⎨
⎪⎪⎩

R0 = 2
R2 = 1
R3 = 0.5

Q = R4 = 1

⇒ Π1 = 0 for all R1

(39)

...

⎛
⎜⎜⎝
x1

y2

y3

y4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
1
1
1

⎞
⎟⎟⎠ ⇒

⎧⎪⎪⎨
⎪⎪⎩

R0 = 2
R2 = 2
R3 = 2.5

Q = R4 = 3

⇒ Π1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

= −1 for R1 < 2

= − 2
3

for R1 = 2

= 0 for 2 < R1 < 2.5

= 0.25 for R1 = 2.5

= 0.5 for 2.5 < R1

(40)

from which Player One can express the expectation of his profit as a
function of R1:

x1 = 0
⇓

Π�
1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= 0.5+0+···−1
8

= −0.0625 for R1 < 0.5

= 0.25+0+···−1
8

= −0.09375 for R1 = 0.5

= 0+0+···−1
8

= −0.125 for 0.5 < R1 < 1

= −0.5+0+···−1
8

= −0.1875 for R1 = 1

= −1+0+···−1
8

= −0.25 for 1 < R1 < 1.5

= −1+0+···−1
8

= −0.28125 for R1 = 1.5

= −1+0+···−1
8

= −0.3125 for 1.5 < R1 < 2

=
−1+0+···− 2

3
8

= −0.3541666· · · for R1 = 2

= −1+0+···+0
8

= −0.3125 for 2 < R1 < 2.5

= −1+0+···+0.25
8

= −0.28125 for R1 = 2.5

= −1+0+···+0.5
8

= −0.25 for 2.5 < R1

.

(41)
He can also see his profit that is expected if x1 = 1, which is sym-
metric with (41):

x1 = 1 ⇒ Π�
1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= −0.25 for R1 < 1.5

= −0.28125 for R1 = 1.5

= −0.3125 for 1.5 < R1 < 2

= −0.3541666· · · for R1 = 2

= −0.3125 for 2 < R1 < 2.5

= −0.28125 for R1 = 2.5

= −0.25 for 2.5 < R1 < 3

= −0.1875 for R1 = 3

= −0.125 for 3 < R1 < 3.5

= −0.09375 for R1 = 3.5

= −0.0625 for 3.5 < R1

.

(42)
From (41) and (42) Player One obtains his level two strategy:

I
(2)
1 (x1)

{
= {R1 |(0≤)R1 < 0.5} if x1 = (0)

= {R1 |3.5 < R1(≤4)} if x1 = (1)
(43)

where inequalities in parentheses are imposed by (17).
Level two strategies for Players Zero, Two, Three and Four can be

obtained similarly:

I
(2)
0 = {R0 |(0≤)R0 < 0.5} ∪ {R0 |3.5 < R0(≤4)} (44)

I
(2)
2 (x2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

= {R2 |(0≤)R2 < 0.5} if x2 = (0, 0)

= {R2 |2.5 < R2(≤3)} if x2 = (0, 1)

= {R2 |(1≤)R2 < 1.5} if x2 = (1, 0)

= {R2 |3.5 < R2(≤4)} if x2 = (1, 1)

(45)
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I
(2)
3 (x3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= {R3 |(0≤)R3 < 1} if x3 = (0, 0, 0)

= {R3 |(1≤)R3(≤2)} if x3 = (0, 0, 1)

= {R3 |(1≤)R3 < 1.5} if x3 = (0, 1, 0)

= {R3 |(2≤)R3(≤3)} if x3 = (0, 1, 1)

= {R3 |(1≤)R3 < 2} if x3 = (1, 0, 0)

= {R3 |2.5 < R3(≤3)} if x3 = (1, 0, 1)

= {R3 |(2≤)R3(≤3)} if x3 = (1, 1, 0)

= {R3 |3 < R3(≤4)} if x3 = (1, 1, 1)

(46)

I
(2)
4 (x4) = {R4 |R4 = x1 + x2 + x3 + x4 } for all x4. (47)

Here inequalities in parentheses are imposed by (17).

Having seen all players’ level two strategies, we could surmise the
following as general properties which would hold true for 3≤N .6

(a). Although a player may follow his/her level one strategy to max-
imise his/her profit when his/her competitors determine their
reservation prices thoughtlessly, the performance of the level one
strategy is rather poor — in fact it is often the worst in the mean-
ing that it minimises the expectation of his/her profit — when all
competitors follow their level one strategies.

(b). Player k’s level two strategy is determined not uniquely as a cer-
tain value of Rk but as an interval or a union of intervals of Rk.
Even if (17) is imposed, no interval but I(2)

2N (x2N ) degenerates to
a point.

(c). Buying at any price (Rk = ∞) or selling at any price (Rk = 0)
can be Player k’s level two strategy, namely Rk = Qmin

k (xk) or
Rk = Qmax

k (xk) under the condition of (17), can be her level
two strategy. In our example (N = 2), as we have seen in this
subsection, either Rk = Qmin

k (xk) or Rk = Qmax
k (xk) can be

the Player k’s level two strategy except for k = 0 and k = 2N .
Yet it is not always the case for largerN . For example, bothRk =
Qmin

k (xk) and Rk = Qmax
k (xk) can be the level two strategy of

Player 3 if N = 3 and x3 = (0, 0, 1).
(d). Unlike level one strategies, level two strategies depends on the

permutation of x1, x2, ..., and xk. As an example we saw that
Q�

2((1, 0)) = Q�
2((0, 1)) = 2 while I(2)

2 ((1, 0))∩I(2)
2 ((0, 1)) =

∅ forN = 2.
(e). Player Zero, who has no private information may be able to re-

duce his disadvantage if he realises how other players use their
private information to which he cannot access. In our example, if
he is aware that more informed players all follow their level one
strategy, Player Zero can change his strategy from L10 to L20 to
reduce the expectation of his loss from 0.25 to 0.125.

4.3 Additional Rules for Simulations

Let Rl
k(xk) be the value of Rk that Player k chooses as her Level l

strategy. It would be straightforward to define R(3)
k (xk) if R(2)

k (xk)
is determined uniquely: L3k(xk) would be defined as her strategy
that maximises her expectation of profit on the supposition that her
competitors all follow their level two strategies. However, (b) implies
that R(2)

k (xk) is not determined uniquely even if (17) is imposed.
In the circumstances we assume the following in our simulations

to define R(2)
k (xk) uniquely.

6 what is mentioned in the text is checked for larger numbers ofN by numer-
ical calculations, though it does not assure that it holds for allN .

Rule 1(2) Define J(2)
k (xk) as the set ofRk that belongs to I

(2)
k (xk)

and a multiple of 1
4
:

J
(2)
k (xk) = I

(2)
k (xk) ∩

{
0,

1

4
,
2

4
,
3

4
, · · ·8N

4

}
. (48)

If J(2)
k (xk) contains only one element, let it be R(2)

k (xk).
Rule 2(2) If J(2)

k (xk) contains two or more elements, eliminate
such points that are not nearest to R(1)

k (xk). If there remains only
one element as a result, let it be R(2)

k (xk).
Rule 3(2) If two Rk remain, choose the smaller one as R

(2)
k (xk).

The rules mentioned above definesR(2)
k (xk) uniquely. We have only

to remember the analysis of the previous subsection to confirm it.
Since Q�

j (xj)∈
{
0, 1

2
, 2

2
, · · ·, 4N

2

}
, Πk remains constant for all Rk

between m
2
and m+1

2
. Hence if Πk is maximised at a certain value

of Rk between m
2
and m+1

2
, it is maximised also at Rk = 2m+1

4
,

which assures, together with I(2)
k (xk) �= ∅, that J(2)

k (xk) �= ∅.
Once R

(2)
j (xj) are all determined uniquely, we can define

R
(3)
k (xk) uniquely in the following way. First, we can define I3

k(xk)

for R(2)
0 , R(2)

1 (x1), ..., and R
(2)
2N (x2N ) just as we define I2

k(xk) for
R

(1)
0 , R(1)

1 (x1), ..., and R
(1)
2N (x2N ). Since R(2)

j (xj)∈J(2)
k (xk), we

can define J(3)
k (xk) as I(3)

k (xk)∪ {0, 1
8
, 2

8
, · · ·, 16N

8

}
, which is not

empty and thus from which we can choose the smallest value of Rk

that are closest to R(2)
k (xk) as the unique R(2)

k (xk). We can repeat
these procedures to define R(4)

k (xk) =
mk4
16
, R(5)

k (xk) =
mk5
32
, ....

4.4 Simulations

Let us mention some results of our simulations. To save space, we
shall summarise them in five figures with minimal captions. First we
shall see how income distribution changes among players as they
adopt their higher level strategies; (B) mentioned in Introduction
does not hold in Figure 1 (N = 2 or the number of players is five)
and in Figure 2 (N = 5 or the number of players is eleven). Then we
shall see (C) mentioned in Introduction does not hold true in Figure
3 (N = 2) and Figure 4 (N = 5), examine the mechanism that de-
creases random players’ profit less than zero. Last we shall mention
in Figure 5 that L1k may be the strategy that maximises the expecta-
tion of Player k’s profit if her competitors all choose their reservation
prices randomly.

5 Experiments

We did experiments with computer agents and human subjects at
Kyoto Experimental Economics Laboratory (KEEL), Kyoto Sangyo
University (KSU) on October 13 and 16, 2004. In total 46 under-
graduates of KSU played the game mentioned in the previous section
as a unique human player with 100 computer agents. To put it con-
cretely, each subject played the game (a) with 100 level one strategy
agents for 100 rounds as Player 100; (b) with 100 stage one strategy
agents for 100 rounds as Player 30; (c) with 100 stage strategy for
100 rounds as Player 30. Twenty one subjects played the three ses-
sions in the above-mentioned order, while the other subjects played
the last two sessions reversely.
Figures 6(Left) and 6(Right) show how gain and loss were dis-

tributed among human subjects and computer agents in Sessions (b)
and (c) respectively. There the horizontal and vertical axes are the
same as in the previous figures; the data in Figure 6(Left) is aggre-
gated from Session (b) played as the second session and Session (b)
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Figure 1. Distribution of profit among players (the number of players is
five).

as the third session, because the performance of players (subjects and
agents) are not different between the two sessions; a similar remark
applies to the data in Figure 6(Right). An decrease in loss or increase
in gain of Player 30 is visible in Figures 6(Left) and 6(Right), which
fact suggests that our subjects changed their strategies according to
the strategy of their competitors.

6 Concluding Remarks

As Keynes mentioned in Chapter Six of General Theory, “profes-
sional investment may be linked to those newspaper competitions in
which the competitors have to pick out the six prettiest faces from
a hundred photographs, the price being awarded to the competitor
whose choice most nearly corresponds to the average preferences
of the competitors as a whole.” ([3], pp. 156) This comparison to
Keynes’ beauty contest is often referred to in economic literatures as
an illustration of the complexity and instability of a system composed
of those subjects who can think and who knows others can think too.
A simplified version of Keynes’ beauty contest is the p−beauty

contest ([4], [5], [1]), where players can infer other players’ infer-
ence, other players’ inference about other players’ inference, ... to
reach a unique Nash equilibrium. Like the p−beauty contest, Schre-
delseker’s model is a zero-sum game where players’ inference about
inference plays an important role, but it presupposes an hierarchy of
private information: Player k is better informed than Player k − 1,
who is better informed than Player k−2, .... This presumption seems

Figure 2. Distribution of profit among players (the number of players is
eleven).

to be a good abstraction from actual economies consisting not of per-
fectly informed rational traders and random traders who have no in-
formation and no power of inference but of various people who are
informed and rational to different degrees. Inference about inference,
together with jumping out of the system [9, 9], characterises systems
consisting of human beings. Although our mathematical analysis and
simulations are far from perfect, we hope that our analysis shed a new
light on the analysis of Schredelseker’s model, which could stand for
further analysis and laboratory experiments as a test bed for the the-
ory of inter-inference about inter-inference.
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Figure 3. The case where Player Zero chooses R1 randomly between
Qmin = 0 andQmax = 4 while the other players follow their level one

strategies (the number of players is five).
Upper graph. Although Player Zero’s loss is smaller than it is when he
follows his level one strategy (compare Figure 1), it is still negative.

Conjecture (C) mentioned in Introduction is wrong, but (B) is not realised.
The reason Player Zero suffers from losses is twofold: (i) the absolute value
of his positive profit is smaller on average than the absolute value of his loss;
(ii) he earns positive profit profit more frequently than he suffers from

negative profit. In fact Player Zero’s loss comes largely from (ii) at least in
the present example.

Lower Right Graph. Player Zero’s average profit is certainly smaller than
his average loss, but the difference is not very large.

Lower Left Graph. Player Zero loses money more frequently than he wins
positive profit. It is because his better informed competitors occupy such

advantageous positions that leave him a smaller chance to win and a a larger
chance to lose whateverR0 he may choose. It can be checked in the example
of section 4.2. Out of the sixteen possible (y1, y2, y3, y4), eight offer Player
Zero a chance to earn positive profit; four fix his profit zero whatever R0 he
may chooses; four deprive him from enjoying positive profit. In addition, as
is apparent in (??),R0 must be in a much smaller interval for 0 < Π0 than it

is for Π0 < 0 even in the first eight cases.

Figure 4. The case where Player Zero chooses R1 randomly between
Qmin = 0 andQmax = 11 while the other players follow their level one

strategies (the number of players is eleven).

Figure 5. Profit distribution among players (the number of players is five)
in the cases where Player 0 choosesQmin

0 = 0,Q�
0 = 2 orQmax

0 = 4
consistently as R0 while the other players choose their reservation prices
stochastically between 0 and 4 with equal probability. If his competitors
follow their level one strategies, bothR0 = 0 and R0 = 4 bring about

larger profit in the long run thanR0 = 2: as (??) shows, R�
0 = −0.125 for

R0 = 0 or R0 = 4 while R�
0 = −0.25 for R0 = 2. As is shown above,

however, if her rivals determine their reservation prices randomly, R0 = 2 is
much more profitable for her than R0 = 0 and R0 = 4 are.
In addition it is observed in our simulations for 1≤k and 3≤N that
Rk = Q�(xk) brings about greater Π�

k than Rk = Qmin(xk) and
Rk = Qmax(xk) do if other players all choose their reservation prices
randomly. It seems to suggest that L1k may be the strategy that maximises
Πk if all the other players choose their reservation prices randomly, though

rigorous mathematical proof is wanted.

Figure 6. Left Graph. Income distribution among a human subject (Player
30) and middle-value strategy agents. Right Graph. Income distribution
among a human subject (Player 30) and either-end strategy agents
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Addressing NP-Complete Puzzles with Monte-Carlo
Methods1

Maarten P.D. Schadd and Mark H.M. Winands
H. Jaap van den Herik and Huib Aldewereld2

Abstract.
NP-complete problems are a challenging task for researchers, who

investigate tractable versions and attempt to generalise the meth-

ods used for solving them. Over the years a large set of successful

standard methods have been developed. We mention A* and IDA*

which have proven to be reasonably successful in solving a set of

NP-complete problems, particularly single-agent games (puzzles).

However, sometimes these methods do not work well. The intrigu-

ing question then is whether there are new methods that will help us

out.

In this paper we investigate whether Monte-Carlo Tree-Search

(MCTS) is an interesting alternative. We propose a new MCTS vari-

ant, called Single-Player Monte-Carlo Tree-Search (SP-MCTS). Our

domain of research is the puzzle SameGame. It turned out that our

SP-MCTS program gained the highest scores so far on the standard-

ised test set. So, SP-MCTS can be considered as a new method for

addressing NP-complete puzzles successfully.

1 INTRODUCTION
Creating and improving solvers for tractable versions of NP-

complete problems is a challenging task in the field of Artificial In-

telligence research. As Cook [9] proved: all problems in the class of

NP-complete problems are translatable to one another [16]. This im-

plies that a solution procedure for one problem also holds for other

problems. Otherwise stated: if an effective method is found to solve a

particular instance of a problem, many other problems may be solved

as well using the same method.

Games are often NP-complete problems. The rules for games are

well-defined and it is easy to compare different methods. For our in-

vestigations we have chosen a one-person perfect-information game

(a puzzle3) called SameGame. In Section 2 we will prove that this

puzzle is NP-complete.

The traditional methods for solving puzzles, such as the 15×15

puzzle and Sokoban, are A* [15] or IDA* [19]. Other problems, such

as the Travelling Salesman Problem (TSP) [3] require different meth-

ods (e.g., Simulated Annealing [12] or Neural Networks [23]). These

methods have been shown to solve the puzzles mentioned above rea-

sonably well. An example of a practical and successful use of these

methods are pathfinders which are, for example, used inside an in-

creasing number of cars. A drawback of the methods is that they need

1 This contribution is a revised version of an article under submission to CG
2008.

2 Maastricht University, Maastricht, The Netherlands, email:
{maarten.schadd, m.winands, herik, h.aldewereld}@micc.unimaas.nl

3 Although arbitrary, we will call these one-player games with perfect infor-
mation for the sake of brevity puzzles.

an admissible heuristic evaluation function. The construction of such

a function may be difficult.

An alternative to these methods can be found in Monte-Carlo Tree

Search (MCTS) [7, 10, 18] because it does not need an admissible

heuristic. Especially in the game of Go, which has a large search

space [5], MCTS methods have proven to be successful [7, 10]. In

this paper we will investigate how MCTS addresses NP-complete

puzzles. For this purpose, we introduce a new MCTS variant called

SP-MCTS.

The course of the paper is as follows. In Section 2 we present the

background and rules of SameGame. Also, we prove that SameGame

is NP-complete. In Section 3 we discuss why classical methods are

not suitable for SameGame. Then we introduce our SP-MCTS ap-

proach in Section 4. Experiments and results are given in Section 5.

Section 6 shows our conclusions and indicates future research.

2 SAMEGAME
We start by presenting some background information on SameGame

in Subsection 2.1. Subsequently we explain the rules in Subsection

2.2. Finally, we prove that SameGame is NP-complete in Subsection

2.3.

2.1 Background
SameGame is a puzzle invented by Kuniaki Moribe under the name

Chain Shot! in 1985. It was distributed for Fujitsu FM-8/7 series in a

monthly personal computer magazine called Gekkan ASCII [20]. The

puzzle was afterwards re-created by Eiji Fukumoto under the name

of SameGame in 1992. So far, the best program for SameGame has

been developed by Billings [24].

2.2 Rules
SameGame is played on a rectangular vertically-placed 15×15 board

initially filled with blocks of 5 colours at random. A move consists

of removing a group of (at least two) orthogonally adjacent blocks

of the same colour. The blocks on top of the removed group will fall

down. As soon as empty columns occur, the columns to the right are

shifted to the left. For each removed group points are rewarded. The

amount of points is dependent on the number of blocks removed and

can be computed by the formula (n − 2)2, where n is the size of the

removed group.

We show two example moves in Figure 1. When the ‘B’ group in

the third column of position 1(a) is played, it will be removed from

the game and the ‘C’ block on top will fall down, resulting in position
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1(b). Because of this move, it is now possible to remove a large group

of ‘C’ blocks (n=5). Owing to an empty column the two columns at

the right side of the board are shifted to the left, resulting in position

1(c).4 The first move is worth 0 points; the second move is worth 9

points.

(a) Playing ‘B’ in the cen-
tre column

(b) Playing ‘C’ in the cen-
tre column

(c) Resulting position

Figure 1. Example SameGame moves.

The game is over if either the player (1) has removed all blocks

or (2) is left with a position where no adjacent blocks have the same

colour. In the first case, 1,000 bonus points are rewarded. In the sec-

ond case, points will be deducted. The formula for deduction is sim-

ilar to the formula for rewarding points but is now iteratively applied

for each colour left on the board. During deduction it is assumed that

all blocks of the same colour are connected.

There are variations that differ in board size and the number of

colours, but the 15×15 variant with 5 colours is the accepted stan-

dard. If a variant differs in scoring function, it is named differently

(e.g., Jawbreaker, Clickomania) [2, 21].

2.3 Complexity of SameGame
The complexity of a game indicates a measure of hardness of solv-

ing the game. Two important measurements for the complexity of a

game are the game-tree complexity and the state-space complexity

[1]. The game-tree complexity is an estimation of the number of leaf

nodes that the complete search tree would contain to solve the ini-

tial position. The state-space complexity indicates the total number

of possible states.

For SameGame these complexities are as follows. The game-tree

complexity can be approximated by simulation. For SameGame, the

game-tree complexity for a random initial position is 1085 in average.

The state-space complexity is computed rather straightforwardly. It

4 Shifting the columns at the left side to the right would not have made a
difference in points. For consistency, we will always shift columns to the
left.

is possible to calculate the number of combinations for one column

by C =
∑r

n=0
cn where r is the height of the column and c is the

number of colours. To compute the state-space complexity we take

Ck where k is the number of columns. For SameGame we have 10159

states. This is not the exact number because a small percentage of the

positions are symmetrical.

Furthermore, the hardness of a game can be described by deciding

to which complexity class it belongs [16]. The similar game Clicko-

mania was proven to be NP-complete by [2]. However, the complex-

ity of SameGame can be different. The more points are rewarded for

removing large groups, the more the characteristics of the game dif-

fer from Clickomania. In Clickomania the only goal is to remove as

many blocks as possible, whereas in SameGame points are rewarded

for removing large groups as well. In the following, we prove that

SameGame independently from its evaluation function belongs to the

class of NP-complete problems, such as the 3-SAT problem [9].

Theorem 1 SameGame is NP-complete

For a proof that it is NP-complete, it is sufficient to reduce

SameGame to a simpler problem. We reduce SameGame to Click-

omania, which has been proven to be NP-complete with 5 colours

and 2 Columns [2]. A SameGame instance with 2 columns is eas-

ier to solve than the standard SameGame instance with 15 columns.

Instead of proving that finding the optimal path is NP-complete, we

prove that checking whether a solution s is optimal is already NP-

complete. A solution is a path from the initial position to a terminal

position. Either s (1) has removed all blocks from the game or (2)

has finished with blocks remaining on the board. Even in the second

case a search has to be performed to investigate whether a solution

exists that clears the board and improves the score. If we prove that

searching all solutions which clear the board is NP-complete, then

SameGame is NP-complete as well.

Clickomania is a variant of SameGame where no points are re-

warded and the only objective is to clear the board. Finding one so-

lution to this problem is easier than finding every solution. Therefore,

it is proven that SameGame is a harder problem than Clickomania;

SameGame is NP-complete, too.

3 CLASSICAL METHODS: A* AND IDA*

The classical approach to puzzles involves methods such as A* [15]

and IDA* [19]. A* is a best-first search where all nodes have to be

stored in a list. The list is sorted by an admissible evaluation function.

At each iteration the first element is removed from the list and its

children are added to the sorted list. This process is continued until

the goal state arrives at the start of the list.

IDA* is an iterative deepening variant of A* search. It uses a

depth-first approach in such a way that there is no need to store the

complete tree in memory. The search will continue depth-first until

the cost of arriving at a leaf node and the value of the evaluation

function pass a certain threshold. When the search returns without a

result, the threshold is increased.

Both methods are heavily dependent on the quality of the evalua-

tion function. Even if the function is an admissible under-estimator,

it still has to give an accurate estimation. Well-known puzzles where

this approach works well are the Eight Puzzle with its larger relatives

[19, 22] and Sokoban [17]. Here a good under-estimator is the well-

known Manhattan Distance. The main task in this field of research

is to improve the evaluation function, e.g., with pattern databases

[11, 13].
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These classical methods fail for SameGame because it is not easy

to make an admissible under-estimator that still gives an accurate es-

timation. An attempt to make such an evaluation function is by just

rewarding points to the groups on the board without actually playing

a move. However, if an optimal solution to a SameGame problem has

to be found, we may argue that an “over-estimator” of the position

is needed. An admissible over-estimator can be created by assuming

that all blocks of the same colour are connected and would be able

to be removed at once. This function can be improved by checking

whether there is a colour with only one block remaining on the board.

If this is the case, the 1,000 bonus points at the end can be deducted.

However, such an evaluation function is far from the real score on a

position and does not give good results with A* and IDA*. Tests have

shown that using A* and IDA* with the proposed “over-estimator”

resemble a simple breadth-first search. The problem is that after ex-

panding a node, the heuristic value of a child is significantly lower

than the value of its parent, unless a move removes all blocks with

one colour from the board.

Since no good evaluation function has been found yet, SameGame

presents a new challenge for the puzzle research. In the next section

we will discuss our SP-MCTS method.

4 MONTE-CARLO TREE SEARCH

This section first gives a description of SP-MCTS in Subsection 4.1.

Thereafter we will explain the Meta-Search extension in Subsection

4.2.

4.1 SP-MCTS

MCTS is a best-first search method, which does not require a po-

sitional evaluation function. MCTS builds a search tree employing

Monte-Carlo evaluations at the leaf nodes. Each node in the tree rep-

resents an actual board position and typically stores the average score

found in the corresponding subtree and the number of visits. MCTS

constitutes a family of tree-search algorithms applicable to the do-

main of board games [7, 10, 18].

In general, MCTS consists of four steps, repeated until time has

run out [8]. (1) A selection strategy is used for traversing the tree

from the root to a leaf. (2) A simulation strategy is used to finish

the game starting from the leaf node of the search tree. (3) The ex-
pansion strategy is used to determine how many and which children

are stored as promising leaf nodes in the tree. (4) Finally, the result

of the MC evaluation is propagated backwards to the root using a

back-propagation strategy.

Based on MCTS, we propose an adapted version for puzzles:

Single-Player Monte-Carlo Tree Search (SP-MCTS). Below, we will

discuss the four corresponding phases and point out differences be-

tween SP-MCTS and MCTS.

Selection Strategy Selection is the strategic task that selects one

of the children of a given node. It controls the balance between

exploitation and exploration. Exploitation is the task to focus on

the move that led to the best results so far. Exploration deals with the

less promising moves that still may have to be explored, due to the

uncertainty of their evaluation so far. In MCTS at each node starting

from the root a child has to be selected until a leaf node is reached.

Several algorithms have been designed for this setup [7, 10].

Kocsis and Szepesvári [18] proposed the selection strategy UCT

(Upper Confidence bounds applied to Trees). For SP-MCTS, we use

a modified UCT version. At the selection of node N with children

Ni, the strategy chooses the move, which maximises the following

formula.

X + C ·
√

ln t (N)

t (Ni)
+

√∑
x2 − t (Ni) · X2

+ D

t (Ni)
. (1)

The first two terms constitute the original UCT formula. It uses

the number of times t (N) that node N was visited and the number

of times t (Ni) that child Ni was visited to give an upper confidence

bound for the average game value X . For puzzles, we added a third

term, which represents the deviation [10, 6]. This term makes sure

that nodes, which have been rarely explored, are not under-estimated.∑
x2 is the sum of the squared results achieved in this node so far.

The third term can be tuned by the constant D. Coulom [10] chooses

a move according to the selection strategy only if t (Ni) reached a

certain threshold (here 10). Before that happens, the simulation strat-

egy is used, which will be explained later. Below we describe two

differences between puzzles and two-player games, which may af-

fect the selection strategy.

First, the essential difference between the two is the range of val-
ues. In two-player games, the results of a game can be summarised by

loss, draw, and win. They can be expressed as numbers from the set

{−1, 0, 1}. The average score of a node will always stay in [−1,1].

In a puzzle, a certain score can be achieved that is outside this inter-

val. In SameGame there are positions, which can be finished with a

value above 4,000 points. If the maximum score for a position would

be known, then it is possible to scale this value back into the men-

tioned interval. However, the maximum score of a position might not

be known. Thus, much higher values for the constants C and D have

to be chosen than is usual in two-player games.

A second difference for puzzles is that there is no uncertainty on
the opponent’s play. This means that solely the line of play has to be

optimised regarding the top score and not the average of a subtree.

Simulation Strategy Starting from a leaf node, random moves are

played until the end of the game. In order to improve the quality of

the games, the moves are chosen pseudo-randomly based on heuristic

knowledge.

In SameGame, we have designed two static simulation strategies.

We named these strategies “TabuRandom” and “TabuColourRan-

dom”. Both strategies aim at making large groups of one colour. In

SameGame, making large groups of blocks is advantageous.

“TabuRandom” chooses a random colour at the start of a simula-

tion. It is not allowed to play this colour during the random simu-

lations unless there are no other moves possible. With this strategy

large groups of the chosen colour will be formed automatically.

The new aspect in the “TabuColourRandom” with respect to the

previous strategy is that the chosen colour is the colour most fre-

quently occurring at the start of the simulation. This may increase

the probability of having large groups during the random simulation.

Expansion Strategy The expansion strategy decides which nodes

are added to the tree. Coulom [10] proposed to expand one child per

simulation. With his strategy, the expanded node corresponds to the

first encountered position that was not present in the tree. This is also

the strategy we used for SameGame.

Back-Propagation Strategy During the back-propagation phase, the

result of the simulation at the leaf node is propagated backwards to

the root. Several back-propagation strategies have been proposed in

the literature [7, 10]. The best results that we have obtained was by

using the plain average of the simulations. Therefore, we update (1)

the average score of a node. Additional to this, we also update (2) the
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sum of the squared results because of the third term in the selection

strategy (see Formula 1), and (3) the best score achieved so far for

computational reasons.

The four phases are iterated until the time runs out.5 When this

happens, a final move selection is used to determine, which move

should be played. In two-player games (with an analogous run-out-

of-time procedure) the best move according to this strategy will be

played by the player to move and the opponent then has time to cal-

culate his response. But in puzzles this can be done differently. In

puzzles it is not needed to wait for an unknown reply of an opponent.

Because of this, it is possible to perform one large search from the

initial position and then play all moves at once. With this approach

all moves at the start are under consideration until the time for SP-

MCTS runs out.

4.2 Meta-Search
A Meta-Search is a search method that does not perform a search on

its own but uses other search processes to arrive at an answer. For

instance, Gomes et al. [14] proposed a form of iterative deepening

to handle heavy-tailed scheduling tasks. The problem was that the

search was lost in a large subtree, which would take a large amount

of time to perform, while there are shallow answers in other parts of

the tree. The possibility exists that by restarting the search a different

part of the tree was searched with an easy answer.

We discovered that it is important to generate deep trees in

SameGame (see Section 5.2). However, by exploiting the most-

promising lines of play, the SP-MCTS can be caught in local max-

ima. So, we extended SP-MCTS with a straightforward form of

Meta-Search to overcome this problem. After a certain amount of

time, SP-MCTS just restarts the search with a different random seed.

The best path returned at the end of the Meta-Search is the path with

the highest score found in the searches. Section 5.3 shows that this

form of Meta-Search is able to increase the average score signifi-

cantly.

5 EXPERIMENTS AND RESULTS
Subsection 5.1 shows tests of the quality of the two simulation strate-

gies TabuRandom and TabuColourRandom. Thereafter, the results of

the parameter tuning are presented in Subsection 5.2. Next, in Sub-

section 5.3 the performance of the Meta-Search on a set of 250 posi-

tions is shown. Finally, Subsection 5.4 compares SP-MCTS to IDA*

and Depth-Budgeted Search (used in the program by Billings [4]).

5.1 Simulation Strategy
In order to test the effectiveness of the two simulation strategies we

used a test set of 250 randomly generated positions.6 We applied SP-

MCTS without the Meta-Search extension for each position until 10

million nodes were reached in memory. These runs typically take 5

to 6 minutes per position. The best score found during the search is

the final score for the position. The constants C and D were set to

0.5 and 10,000, respectively. The results are shown in Table 1.

Table 1 shows that the TabuRandom strategy has a significant

better average score (i.e., 700 points) than plain random. Using

the TabuColourRandom strategy the average score is increased by

5 In general, there is no time limitation for puzzles. However, a time limit is
necessary to make testing possible.

6 The test set can be found online at
http://www.cs.unimaas.nl/maarten.schadd/SameGame/TestSet.txt

Table 1. Effectiveness of the simulation strategies

Average Score StDev

Random 2,069 322
TabuRandom 2,737 445
TabuColourRandom 3,038 479

another 300 points. We observe that a low standard deviation is

achieved for the random strategy. In this case, it implies that all posi-

tions score almost equally low.

5.2 SP-MCTS Parameter Tuning

This subsection presents the parameter tuning in SP-MCTS. Three

different settings were used for the pair of constants (C; D) of For-

mula 1, in order to investigate which balance between exploitation

and exploration gives the best results. These constants were tested

with three different time controls on the test set of 250 positions, ex-

pressed by a maximum number of nodes. The three numbers are 105,

106 and 5 × 106. The short time control refers to a run with a maxi-

mum of 105 nodes in memory. In the medium time control, 106 nodes

are allowed in memory, and in long time control 5 × 106 nodes are

allowed. We have chosen to use nodes in memory as measurement

to keep the results hardware-independent. The parameter pair (0.1;

32) represents exploitation, (1; 20,000) performs exploration, and

(0.5; 10,000) is a balance between the other two.

Table 2 shows the performance of the SP-MCTS approach for the

three time controls. The short time control corresponds to approx-

imately 20 seconds per position. The best results are achieved by

exploitation. The score is 2,552. With this setting the search is able

to build trees that have on average the deepest leaf node at ply 63,

implying that a substantial part of the chosen line of play is inside

the SP-MCTS tree. Also, we see that the other two settings are not

generating a deep tree.

In the medium time control, the best results were achieved by us-

ing the balanced setting. It scores 2,858 points. Moreover, Table 2

showed that the average score of the balanced setting increased most

compared to the short time control, viz. 470. The balanced setting

is now able to build substantially deeper trees than in the short time

control (37 vs. 19). An interesting observation can be made by com-

paring the score of the exploration setting in the medium time control

to the exploitation score in the short time control. Even with 10 times

the amount of time, exploring is not able to achieve a significantly

higher score than exploiting.

The results for the long experiment are that the balanced setting

again achieves the highest score with 3,008 points. Now its deepest

node on average is at ply 59. However, the exploitation setting only

scores 200 points fewer than the balanced setting and 100 fewer than

exploration.

From the results presented we may draw two conclusions. First we

may conclude that it is important to have a deep search tree. Second,

exploiting local maxima can be more advantageous than searching

for the global maxima when the search only has a small amount of

time.
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Table 2. Results of SP-MCTS for different settings

Exploitation Balanced Exploration

105 nodes (0.1; 32) (0.5; 10,000) (1; 20,000)

Average Score 2,552 2,388 2,197
Standard Deviation 572 501 450

Average Depth 25 7 3
Average Deepest Node 63 19 8

106 nodes (0.1; 32) (0.5; 10,000) (1; 20,000)

Average Score 2,674 2,858 2,579
Standard Deviation 607 560 492

Average Depth 36 14 6
Average Deepest Node 71 37 15

5 × 106 nodes (0.1; 32) (0.5; 10,000) (1; 20,000)

Average Score 2,806 3,008 2,901
Standard Deviation 576 524 518

Average Depth 40 18 9
Average Deepest Node 69 59 20

5.3 Meta-Search

This section presents the performance tests of the Meta-Search ex-

tension of SP-MCTS on the set of 250 positions. We remark that the

experiments are time constrained. Each experiment could only use

5 × 105 nodes in total and the Meta-Search distributed these nodes

fairly among the number of runs. It means that a single run can take

all 5 × 105 nodes, but that two runs would only use 250,000 nodes

each. We used the exploitation setting (0.1; 32) for this experiment.

The results are depicted in Figure 2.

Figure 2 indicates that already with two runs instead of one, a sig-

nificant performance increase of 140 points is achieved. Furthermore,

the maximum average score of the Meta-Search is at ten runs, which

uses 50,000 nodes for each run. Here, the average score is 2,970

points. This result is almost as good as the best score found in Ta-

ble 2, but with the difference that the Meta-Search used one tenth

of the number of nodes. After ten runs the performance decreases

because the generated trees are not deep enough.

Figure 2. The average score for different settings of the Meta-Search

5.4 Comparison
The best SameGame program so far has been written by Billings

[4]. This program performs a non-documented method called Depth-

Budgeted Search (DBS). When the search reaches a depth where its

budget has been spent, a greedy simulation is performed. On a stan-

dardised test set of 20 positions7 his program achieved a total score

of 72,816 points with 2 to 3 hours computing time per position. Us-

ing the same time control, we tested SP-MCTS on this set. We used

again the exploitation setting (0.1; 32) and the Meta-Search exten-

sion, which applied 1,000 runs using 100,000 nodes for each search

process. For assessment, we tested IDA* using the evaluation func-

tion described in Section 3. Table 3 compares IDA*, DBS, and SP-

MCTS with each other.

Table 3. Comparing the scores on the standardised test set

Position nr. IDA* DBS SP-MCTS

1 548 2,061 2,557
2 1,042 3,513 3,749
3 841 3,151 3,085
4 1,355 3,653 3,641
5 1,012 3,093 3,653
6 843 4,101 3,971
7 1,250 2,507 2,797
8 1,246 3,819 3,715
9 1,887 4,649 4,603

10 668 3,199 3,213
11 1,073 2,911 3,047
12 602 2,979 3,131
13 667 3,209 3,097
14 749 2,685 2,859
15 745 3,259 3,183
16 1,647 4,765 4,879
17 1,284 4,447 4,609
18 2,586 5,099 4,853
19 1,437 4,865 4,503
20 872 4,851 4,853

Total: 22,354 72,816 73,998

7 The positions can be found at the following address: http://www.js-
games.de/eng/games/samegame.
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SP-MCTS outperformed DBS on 11 of the 20 positions and was

able to achieve a total score of 73,998. Furthermore, Table 3 shows

that IDA* does not perform well for this puzzle. It plays at the human

beginner level. The best variants discovered by SP-MCTS can be

found on our website.8 There we see that SP-MCTS is able to clear

the board for all of the 20 positions. This confirms that a deep search

tree is important for SameGame as was seen in Subsection 5.2.

By combining the scores of DBS and SP-MCTS we computed that

at least 75,152 points can be achieved for this set.

6 CONCLUSIONS AND FUTURE RESEARCH

In this paper we have shown how MCTS addresses NP-complete

puzzles. As a representative puzzle, we have chosen the game

SameGame and have proven that it is NP-complete. We proposed

a new MCTS variant called Single-Player Monte-Carlo Tree Search

(SP-MCTS) as an alternative to more classical approaches that solve

(NP-complete) puzzles, such as A* and IDA*. We adapted MCTS by

two modifications resulting in SP-MCTS. The modifications are (1)

the selection strategy and (2) the back-propagation strategy. Below

we provide three observations and subsequently two conclusions.

6.1 Conclusions

First, we observed that our TabuColourRandom strategy (i.e., reserv-

ing the most frequent occurring colour to be played last) significantly

increased the score of the random simulations in SameGame. Com-

pared to the pure random simulations, an increase of 50% in the av-

erage score is achieved.

Next, we observed that it is important to build deep SP-MCTS

trees. Exploiting works better than exploring at short time controls.

At longer time controls the balanced setting achieves the highest

score, and the exploration setting works better than the exploitation

setting. However, exploiting the local maxima still leads to compara-

ble high scores.

Third, with respect to the extended SP-MCTS endowed with a

straightforward Meta-Search, we observed that for SameGame com-

bining a large number of small searches can be more beneficial than

doing one large search.

From the results of SP-MCTS with parameters (0.1; 32) and with

Meta-Search set on a time control of around 2 hours we may con-

clude that SP-MCTS produced the highest score found so far for the

standardised test set. It was able to achieve 73,998 points, breaking

Billings’ record by 1,182 points. So, our program with SP-MCTS

may be considered at this moment the world’s best SameGame pro-

gram.

A second conclusion is that we have shown that SP-MCTS is ap-

plicable to a one-person perfect-information game. SP-MCTS is able

to achieve good results on the NP-complete game of SameGame.

This means that SP-MCTS is a worthy alternative for puzzles where

a good admissible estimator cannot be found. Even more, SP-MCTS

proves to be an interesting solution to solving similar tractable in-

stances of NP-complete problems.

6.2 Future Research

In the future, more enhanced methods will be tested on SameGame.

We mention three of them. First, knowledge can be included in the

8 The best variations can be found at the following address:
http://www.cs.unimaas.nl/maarten.schadd/SameGame/Solutions.html

selection mechanism. A method to achieve this is called Progres-
sive Unpruning [8]. Second, this paper demonstrated that combining

small searches can achieve better scores than one large search. How-

ever, there is no information shared between the searches. This can

be achieved by using a transposition table, which is not cleared at

the end of a small search. Third, the Meta-Search can be parallelised

asynchronously to take advantage of multi-processor architectures.

Furthermore, to test our theories about the successfulness of SP-

MCTS in solving other NP-Complete problems, we would like to

investigate how well this method performs on, for instance, (3-) SAT

problems.
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Experimental Computational Philosophy:
shedding new lights on (old) philosophical debates

Vincent Wiegel and Jan van den Berg1

Abstract. Philosophy can benefit from experiments performed in
a laboratory for philosophical experimentation (SophoLab). To illus-
trate the power of Experimental Computational Philosophy, we set up
and ran several experiments on a part of Harsanyi’s theory on utili-
tarianism. During decomposition and translation of this theory in the
experimental setting of Sopholab, we discovered that it is underspec-
ified. We filled in some blank spots and found out that information
and its costs are key in the effectiveness of act and rule utilitarian-
ism. We also identified three further elements that have particular
influence on the effectiveness of both strands of utilitarianism: group
size of agents, decision-making around uncertainty, and social cul-
ture towards particular types of actions. We conclude having shown
that setting up computational philosophical experiments is a useful
way to gain new and deeper insights in existing argumentations used
in old (and new) philosophical debates.

1 Introduction
In philosophy it can be hard to test a theory in practice, i.e., on hu-
mans because it would be unethical to expose them to harm or im-
possible because the number of different settings is simply too large
to cover all of them in test situations. In addition, it is often required
to analyze a philosophical theory with respect to aspects like consis-
tency, completeness, and soundness of reasoning. These observations
invite for the creation of a laboratory where experiments can be set
up to test philosophical theories.

As with all experiments, philosophical experiments (should) make
use of an environment in which situations of study are recon-
structed in a way that abstracts from non-relevant factors. This can
be achieved by transforming the theory under examination into a
different conceptual structure that exhibits the necessary features of
abstraction and control. The new conceptual structure may be con-
structed by making use of a conceptual framework together with a
set of techniques. The role of the conceptual framework is to provide
a consistent set of concepts to rephrase the theory. Game theory [5]
may be considered as such a conceptual framework, another one is
the belief-desire-intention model [1]. Key characteristic of such a
framework is that theories that have been formulated in terms of its
concepts can easily be prepared for experimental testing by making
use of the corresponding techniques. A computer with some software
can offer such techniques creating an experimental environment for
Computational Philosophy: SophoLab [6]. SophoLab is the name by
which the whole of methods, techniques and systems as mentioned
above, is designated. The experiments detailed below have been ex-
ecuted using SophoLab.

1 Faculty of Technology, Policy, and Management, Delft University of Tech-
nology, The Netherlands, email: {v.wiegel,j.vandenberg}@tudelft.nl

Several people have worked as a Computational Philosopher.
Danielson [2, 3], for example, has constructed computer programs
that represent players at a game. He uses the game and the strategies
of the players that represent particular moral philosophical stances,
to test these positions. In similar ways, computers are increasingly
used by social scientists and philosophers to support their research
activities. The study of utilitarianism can also benefit from these new
means of experimental research because many assumptions and ax-
ioms of the theory can be cast in logical and mathematical forms.
This motivated us to use the theory of utilitarianism provided by
Harsanyi [4] as a test case for experimental computational philos-
ophy. Therefore, the goal of this paper is to introduce the basic ideas
underlying experimental computational philosophy and to illustrate
the approach by analyzing experimentally Harsanyi’s theory of utili-
tarianism.

The rest of this paper is structured as follows. In section 2 we pro-
vide a quick overview of the methodology of experimental computa-
tional philosophy. Section 3 prepares the experiments by analyzing
Harsanyi’s theory of utilitarianism showing some white spots. Sec-
tion 4 describes the setup and running of the experiments according
the methodology described in section 2. This description includes
the report of the results found. In the final section 5 we present some
conclusions.

2 Experimenting in philosophy

What does it mean to run philosophical experiments? The answer to
this question can not be written down in a few statements. Elsewhere,
the methodology and the translation are described in more detail [6].
For the current purpose we give a short description of the steps taken
in the setting up of experiments, running them, and translating back
the results of the experiments. These steps are

1. Decomposing the selected philosophical theory into assumptions,
premises, predictions, etc.

2. that can be translated into a concrete experimental setting,
3. and translated into the elements of the intermediate conceptual

framework.
4. The concrete experimental setting must be reflected in the inter-

mediate conceptual framework.
5. The theory is implemented in the laboratory based on the require-

ments of the conceptual framework,
6. reflecting the concrete experimental setting.
7. Experiments are conducted
8. and the results are translated back into the (restated) terms of the

theory
9. that can be used to confirm, refine, reject, etc. the theory.
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Figure 1. Steps in experimental computational philosophy [6].

As has been announced above, we illustrate the above-given gen-
eral outline of experimental computational philosophy by analyzing
and implementing Harsanyi’s theory of utilitarianism. We first start
by explaining the relevant basic issues of this theory.

3 Harsanyi’s theory of utilitarianism
Harsanyi’s theory of utilitarianism [4] has its roots in the work of
Adam Smith, Immanuel Kant and the utilitarian tradition of Jeremy
Bentham and John Stuart Mill. From Bentham and Mill he takes the
concept of maximization of social utility (social welfare function) as
the criterion of the morally good. He prefers rule utilitarianism over
act utilitarianism and formulates his moral criterion as follows ( [4],
page 41):

“...a correct moral rule is that particular behavioral rule that
would maximize social utility if it were followed by everybody
in all situations of this particular type.”

In addition, rationality plays an important role in his theory. In his
view ethics is a part of a general theory of rational behavior on par
with decision theory and game theory. The rationality criterion is ex-
pressed as Pareto optimality and the Bayesian rationality postulates.

Using utilitarianism as our starting point including its definition of
what is morally good (i.e., maximum social utility), we focus on the
claims that Harsanyi makes as to how best achieve the moral good.
In order to be able to test his claims in an experimental setting, we
interpret his recommended behavioral rules as strategies as used by
(individual) agents. Then, Harsanyi’s arguments can be formalized as
follows. Let S1, S2, . . . , Sz be the strategies Si of agents 1, 2, . . . , z,
where each strategy Si is an element of the set of all possible strate-
gies. The social welfare function W (S1, . . . , Sz) is the sum of all
individual utilities:

W (S1, . . . , Sz) =
z∑

i=1

Ui(), (1)

where Ui() is the utility of agent i. The welfare function
W (S1, . . . , Sz) is maximized over the strategies S1 to Sz of all
agents:

Wmax = max
S1...Sz

W (S1, . . . , Sz). (2)

The utility function must adhere to the rationality requirements such
as a complete pre-ordering and continuity.

In our discussion and experimentation we will focus on Harsanyi’s
preference of rule over act utilitarianism. We will not be concerned
with Harsanyi’s assumptions on interpersonal utility comparison, his

axiomatic justification of utilitarianism nor with the social welfare
function. Hence, we will take many assumptions of his theory for
granted whether we agree with them or not. It is our aim to investigate
his theory and particular aspects of it, and not argue against it. It
is our job as laboratory technician in the SophoLab to set up the
experiment with the theory as starting point. The question of rule
versus act utilitarianism is the focus point or, more precisely, which
version of utilitarianism is preferable. Harsanyi is quite clear on this
( [4], page 56):

“...the basic question we have to ask is this: Which version of
utilitarianism will maximize social utility? Will society be bet-
ter of under one or the other? This test very clearly gives the
advantage to rule utilitarianism.”

In Harsanyi’s view the question of morality is that of maximizing so-
cial utility. This is the same for both act and rule utilitarianism. Their
decision rule, however, differs. For the rule utilitarian agent the deci-
sion of other fellow rule utilitarian agents is an endogenous variable,
whereas for the act utilitarian agent the decision of all others, be they
utilitarian or otherwise motivated, are exogenous ( [4], page 57):

“An act utilitarian moral agent assumes that the strategies of all
other moral agents (including those of all other act utilitarian
agents) are given and that his task is merely to choose his own
strategy so as to maximize social utility when all other strate-
gies are kept constant. In contrast, a rule utilitarian moral agent
will regard not only his own strategy but also the strategies of
all other rule utilitarian agents as variables to be determined
during the maximization process so as to maximize social util-
ity.”

Like has been mentioned above, Harsanyi prefers rule utilitarianism
over act utilitarianism. To strengthen this position, Harsanyi gives an
elaborate example ( [4], pages 57, 58):

“For example, consider the problem of voting when there is an
important measure in the ballot but when voting involves some
minor inconvenience. Suppose, there are 1,000 voters strongly
favoring the measure, but it can be predicted with reasonable
certainty that there will also be 800 negative votes. The measure
will pass if it obtains a simple majority of all votes cast. How
will the utilitarian theories handle this problem?
First, suppose that all 1,000 voters favoring the measure are
act utilitarian agents. Then each of them will take the trouble
to vote only if he thinks that his own vote will be decisive in
securing passage of the measure, that is, if he expects exactly
800 other people favoring the meaner to vote (since in this case
his own vote will be needed to provide the 801 votes required
for majority). But of course, each voter will know that it is ex-
tremely unlikely that his own vote will be decisive in this sense.
Therefore, most act utilitarian voters will not bother to vote, and
the motion will fail (...).
In contrast, if the 1,000 voters favoring the measure are rule
utilitarian agents, then all of them will vote (if mixed strategies
are not allowed). This is so because the rule utilitarian deci-
sion rule will allow them a choice only between two admissible
strategies: one requiring everybody to vote and the other re-
quiring nobody to vote. As this example shows, by following
the rule utilitarian decision rule people can achieve success-
ful spontaneous co-operation in situations where this could not
be done by adherence to the act utilitarian decision rule (or at
least where this could not be done without explicit agreement
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on coordinated action, and perhaps without an expensive orga-
nization effort).”

However, these statements immediately raise some questions. E.g.,
based on the assumptions made, rule utilitarian agents seem to be in
a better position to organize cooperation and coordinate their strat-
egy. However, we may wonder whether act utilitarian agents are also
allowed to cooperate in one way or another. And if so, how does
the coordination take place? Is there someone taking the lead and
calling on others? What information flow is required for coordina-
tion to be successful? What effect would that have on their behav-
ior? Another key issue is that of the decision rules used. Both seek
to maximize utility. The main difference is that in the rule utilitar-
ian decision rule the fellow rule utilitarian agents are endogenous,
whereas in the act utilitarian decision rule all other agents’ strate-
gies are exogenous. Regarding both decision rules the question is for
both endogenous and exogenous variables: what assumptions about
the values are made? And how? Do the agents form hypotheses about
the behavior of others? If so, how do they reason about them? Do they
apply some maximum likelihood reasoning?

We hope to have made clear that there are, at first glance, some
questions (related to some ‘white spots’ in the theory) that need an-
swering before we can say that a satisfactory explanation has been
given for the claims made. We hypothesize that through the setting
up of generic mechanisms to represent the problems, various options
can be investigated.

4 The experiments

In this section, we prepare, model and run various experiments re-
lated to Harsanyi’s theory of utilitarianism. To do so, we apply the
steps of the methodology as explained in section 2.

4.1 Step 1: Decomposition

The main components of Harsanyi’s rule and act utilitarianism as
discussed in the preceding section are

• The utility functions chosen: they will be specified below in Step
2.

• The decision rule for act utilitarian agents favoring more utility
over less. This concerns a decision made by each individual act
utilitarian agent i yielding a strategy Si where the agent takes into
account the set of (assumed) strategies of all other agents, i.e.,
Sother = S1, . . . , Si−1, Si+1, . . . , Sz.

• The decision rule for the rule utilitarian agents which differs in
the definition of the endogenous and exogenous variables. Each
rule utilitarian agent uses the same reasoning while taking into
the set of (assumed) strategies of all act utilitarian agents: as a
consequence of this, all rule utilitarian agents will, if subject to
equal circumstances, end up with the same conclusion.

• The social welfare function W () chosen, here defined as the sum
of the utilities of the individual agents according to equation (1).

Harsanyi’s theory concludes with a preference of rule over act util-
itarianism. Therefore, the hypothesis to be tested is the following
one: rule utilitarian agents will outperform act utilitarian agents, i.e.,
Wrule > Wact where Wrule, Wact is the social welfare function in
case the agents behave like rule utilitarian agents and act utilitarian
agents respectively.

4.2 Step 2: Experimental Setting
Step 2 concerns the translation of the problem into a framework and
experimental setting. To do so, we take Harsanyi’s example: There
are two parties, one act and one rule utilitarian party. They are en-
gaged in a voting that each hopes to win. According to the prediction
by Harsanyi the rule utilitarian agents will win the vote whenever
they have the majority. And more to the point, the hypothesis is that
the act utilitarian agents will not be able to win, even if they have the
majority. Key in Harsanyi’s argument is the fact that each (act) utili-
tarian has two options: to go voting or do something else (that yields
a positive utility). As each of act utilitarian agents has to decide for
himself, the question he has to answer is: will my voting make any
difference? If not, then he will do something else. As each of the act
utilitarian agents will think in a similar way none will vote, and the
vote is subsequently lost. The act utilitarian agent faces a situation
in which there are, logically speaking, four possible outcomes. One,
he will not go voting while enough of his fellows will, in which case
he derives his share of the benefits from the won vote and the utility
of doing X. Two, if the vote is lost he will at least have the utility
from action X. Three, if he votes and the vote is lost he will derive
utility from neither. Four, if the vote is won, the winning will provide
utility but he has forgone the utility associated with X. To set up
an executable experiment the utilities and preference functions have
to be exact and quantified. We will start using the following pay-off
structure defining the individual utility for the act utilitarian agents:

• do something else while enough others votes: 50
• vote while enough others votes: 40
• do something else while not enough others votes: 10
• vote while not enough others votes: 0

The rule utilitarian agents on the other hand will all follow one
rule, and if that rule is to vote then they will not be in danger of
unintentionally losing the voting game. So, all rule utilitarian agents
will always go voting. Therefore, the pay-off structure of the rule
utilitarian agents is a simple one: each rule utilitarian agent yields
an individual utility of 40 in case the rule utilitarian agents win the
voting, and of 0 in case they loose the voting. This discussion points
to an open spot in Harsanyi’s presentation. Rule utilitarian agents are
not able to exploit the majority they have. The surplus of voters can-
not be used to gain additional utility doing something else, whereas
the act utilitarian agents are able to do so. We finally observe here
that the pay-off structures of both types of agents are parameterized
and can be changed in the course of the experimentation.

4.3 Steps 3: Translation
The framework is based on the belief desire intention (BDI)
model [1], implemented using the technique of computers and Java
programming. It consists of agents that represent the moral agents
from the Harsanyi example. As in the example they are involved in
a voting. They will have the desire to maximize their utility, they
holds beliefs about what other agents will do, and they will form in-
tentions to go voting or do something else. They can reason about
their beliefs and intentions in a logical way. Trying to translate this
in the elements of the intermediate framework, we encounter several
problems:

• In Harsanyi’s example, the agents know there are 1800 agents in-
volved, of which 800 belong to one party and 1000 to the other
party. They know that a simple majority suffices to win the vote.
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As how they come to know this and other things, Harsanyi pro-
vides no explanation. Actually, Harsanyi assumes that both types
of agents have certain information. E.g. with respect to the rule
utilitarian agents we observe that (1) all rule utilitarian agents are
supposed to be equal (that is adhere to the same decision rule), (2)
they know they are the same, (3) they also know about the number
of agents involved in the voting, and (4) they know what it takes
to win a vote, the qualified majority.

• Perhaps this is fine for the rule utilitarian agents (since, based on
these assumptions, they are able to win the voting game in many
cases), but for the act utilitarian agents not so assumptions are
being made. So several questions may be posed like (1) what in-
formation do act utilitarian agents know, (2) how do they get their
information from? (3) how do they form their beliefs?, and (4) how
do they make decisions given the choice of the other agents. To do
their job, they must have some notion about their fellow agents in-
tended behavior. Harsanyi actually does not exclude some kind of
agreement or organization to arrive at some form of co-operation.
Then the question is: (5) what kind of co-operation would that be?
and (6) what will it cost?

From this discussion it should be clear that the argumentation as pre-
sented by Harsanyi and the example are not implementable as they
are. Most crucial is the absence of an explanation how the utilitar-
ian agents come by some knowledge about the world they live in,
who their fellows are and what their intentions are. This forces to a
revisiting of the steps 2 and 3.

4.4 Steps 2 till 4 (repeated): Extending and
Adjusting

Let us first consider the question where the utilitarian agents get the
information about the other agents from. One of the options that
poses least demands on institutional organization is having the voters
meet in chance groups before the vote, where they can question each
other about both their type (rule or act utilitarian) and their intention
(voting or not). This requires no pre-organized meetings, no knowl-
edge of the whereabouts of fellows, no deliberate grouping (though
that would certainly make sense). Moreover, it seems natural, mem-
bers of a congress, members of parliament meeting each other in the
corridors, the lunch room, etc. discussing the upcoming vote. In ad-
dition we observe that information collection might or might not be
free. To add the possibility that information is not freely available we
introduce a negative utility on enquiry. Agents are further supposed
to be free to decide whether or not to acquire information. The utility
(cost of information) will be first set at -2 and will be changed during
the experiments.

At the start, we assume that the act utilitarian agents will hold no
beliefs about other agent’s intentions. They all have an innate desire
to maximize utility. They go about gathering information in a group
with a certain group size. Typically, the groups for the information
exchange are much smaller than the voting group (which consists of
all potential voters). The information exchange groups are assembled
at random. Agents can be added to groups as a member. Agents de-
cide whether they want to participate in the information exchange
and voting and sign up for a group. In the experiment, all agents will
participate in the information exchange where they ask their fellows
about their intentions. Now the question is where does this first in-
tention come from. If each agent asks the other agents about their
intention, needing this information to form his own intention, we
are stuck. We therefore assume some propensity to go voting. This

propensity will be modeled as the chance to go voting (i.e., the com-
plementary chance will express the probability to to do something
else). Given the propensity probability, the initial intention to go vot-
ing (or not) is assigned randomly to the (act) utilitarian agents. Next,
each agent i contacts the members of the information exchange group
they belong to, in order to form his (her) personal belief about the ex-
pected number Ei(V ) of voters of each party (excluding agent’s own
vote). In its most basic form this is done by extrapolating the findings
in the small groups to the whole population.

Given their beliefs, the next question is how the act utilitarian
agents will form their final intention (that is transformed into action).
To start with, there are three different decision rules that come to
mind where α represents the majority vote, i.e., for our voting game
with 1800 voters, α = 901.

1. Harsanyi’s version: if agent i thinks he will make a difference go
voting, otherwise do something else or, more formally:

Go voting if α− x < Ei(V ) < α + y where
x = 2 and y = 0,

otherwise do something else. (3)

2. Generalized version: if agent i thinks his party will win or lose
anyway do not go voting but use the opportunity to gain some
additional utility by doing something else or, more formally:

Go voting if α− x < Ei(V ) < α + y where
α− x ∈ [0, 1800] and α + y ∈ [0, 1800],

otherwise do something else. (4)

3. An even more extended version which is expressed as follows:

Stick with intention if α− x < Ei(V ) < α + y,

do something else if Ei(V ) ≥ α + y,

and go voting if Ei(V ) ≤ α− x,

where α− x ∈ [0, 1800] and α + y ∈ [0, 1800]. (5)

Rule 1 (defined by (3)) is Harsanyi’s version of the act utilitarian
decision rule. If, and only if, the agent’s vote is decisive, he will go
voting. Rule 2 (defined by (4)) is a generalized version of rule 1.
The only difference being that the margins within which the agent
will conceive his vote as decisive is extended. He does not have to
be voter 901 in order to go voting but might be say voter 904. A
justification for this extension is uncertainty. Under circumstances
it might be hard to get a correct impression of the exact number of
voters. One might get the impression wrong by some margin. This
margin then has to be taken into account. Rule 3 defined by (5) is
different. It is introduced as an alternative in the experiment to see
whether other outcomes are possible under different assumptions. It
takes the current intention of the agent into account as well as the
expected outcome of the voting based on the expected number of
voters of each party. If the expectation is that the vote will probably
be won, the current intentions by all agents is perfectly suited and
should not be altered, including its own one. Again, there are some
margins for uncertainty. If the expectation is that the vote will be won
by a sufficiently large margin, the agent will decide to do something
else. If the expectation is that the vote will be lost this has to be
remedied by going to vote. This is probably the hardest element in
the decision rule to justify from a rational point of view. The chance
that the vote will be decisive is small indeed, the utility of doing
something else is guaranteed and should be preferred. Otherwise, if
the alternative utility is small, the agent may take the chance and
decide to go voting.
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4.5 Step 5 and 6: Implementation

Trying to keep the focus on the main arguments has made us de-
cide to skip all kinds of implementation details. Here we only men-
tion that, as basic elements of the SophoLab framework, so-called
agents, groups, games, and a referee are used to implement the
above-sketched ideas. For more details, we refer to [6], chapter 5.

4.6 Step 7: Running the experiments

Running the experiments consists of executing the computer program
with different sets of the parameters. The model embedded in the
software has a set of input and output variables. The input variables
include the decision rules, the number of runs, the tolerance margins,
the number and types of agents, the propensity (to vote or not to
vote), the group size (of inquiry groups), the sequence of actions,
and the pay-off matrices. The output variables are the average score
of all types of agents, as well as their max, min scores.

Table 1. The results of 6 voting runs with 48 act utilitarian and 32 rule
utilitarian agents: the first six rows show the input parameter values, the last
two rows the resulting output in terms of average score (av sc), maximum

score (max sc), and minimum score (min sc).
decision rule 3 number of runs 6
margins 3.5, 3.5 number of agents 80
agent types act, rule utilitarian number per type 48, 32
propensity 0.8 inquiry group size 40
sequence 2x inquiry + voting pay-off inquiry 1

pay-off voting 50, 40, 10, 0
av sc (act) 243 max, min sc (act) 288, 228
av sc (rule) 0 max, min sc (act) 0, 0

4.6.1 Some first results

Table 1 represents the results of a run in which 80 agents, of which
48 act utilitarian agents and 32 rule utilitarian agents are involved in
a voting. The act utilitarian agents follow decision rule 3 (as defined
by (5)) with (tolerance) margins of 3.5. This means that if they ex-
pect between 37,5 (38) and 44,5 (44) of their fellows to go voting,
they will stick to their original intention. The propensity (probability
of going to vote, initially) equals 0.8. Gathering information costs 1
utility for act utilitarian agents (not of relevance for rule utilitarian
agents) and is done in groups of 40 agents (defined by the inquiry
group size), winning the vote brings 40 utilities per agent, etc. The
outcomes of this experiment are as follows: on average the act utili-
tarian have a score of 243 which is slightly more than the rule utili-
tarian could have achieved. The maximum average utility for the rule
utilitarian agents is 240 (6 times 40 for winning the vote when they
are the majority party). The act utilitarian that was best had a total
utility of 288 while the worst off scored 228.

Following decision rule 2 with wider tolerance margins shows
similar results in case the total number of agents is 20, with 12
act utilitarian agents and 8 rule utilitarian agents. The group size in
which information is gathered was smaller (namely 5 which equals
25% of the total group size). On average the utility gathered by the
act utilitarian agents appeared to be slightly less than what rule util-
itarian agents would have achieved. Most importantly, we again ob-
served that the rule utilitarian agents could never win the voting: for
further details we refer to [6].

4.6.2 General findings

Many runs were executed in which some variables were kept con-
stant while one or two other variables were varied to investigate its
success. By running many such tests a picture arises that we will now
describe. The experiments show that, independent of the configura-
tion, decision rule 1 (as described by inequality (3)) is disastrous for
the act utilitarian agents. They never win a voting, not even when they
form the majority, as predicted by Harsanyi. When the decision rule
is relaxed in order to include uncertainty, the act utilitarian agents
fare better. In some runs they are able to win the voting. Important
seems to be the tolerance in the decision rule, that is the extent of un-
certainty allowed for. Decision rule 3 is even more successful. From
a fairly small tolerance onwards the act utilitarian agents are able to
win the vote when they have the majority. All decision rules allow
the act utilitarian agents to exploit the majority surplus. Part of the
population does not vote while the vote is still won. In cases where
the vote is lost, still some utility is gained by some (rule 2 and 3) or
all act utilitarian agents (rule 1).

The tolerance margin can vary from zero to half the size of the
population. With a tolerance of zero the decision rule is the one pro-
posed by Harsanyi. With a tolerance of half the population size we
have effectively a rule that says ‘vote always’, this is, of course, the
rule utilitarian strategy. As Harsanyi predicted with a tolerance of
zero, act utilitarian agents are not able to win a vote. What did sur-
prise was that after an increase to about 3.5, act utilitarian agents are
almost always winning the vote when they have the majority. An-
other important element is the cost of information. From the previous
aspect of tolerance we learned that some tolerance in the decision
making helps. This is, of course, only the case if there is some in-
formation about what to expect. Thus information exchange is vital.
Information is valuable only if it helps increase the chances of a won
vote, which again is in part dependent on the tolerance. As the cost
of information increases act utilitarian agents still win their votes,
but at an increasing cost. When cost is high rule utilitarian agents do
markedly better because they have less need for information. This
relationship is directly proportional.

4.7 Steps 8 and 9: Translating back to the theory

The decision rule as described by Harsanyi works out badly for the
act utilitarian agents. The generalized version (decision rule 2) works
already better while the adapted version (decision rule 3) proves even
more beneficial. We argued above that the adaptation of the rule does
not violate the act utilitarian character, but does take into account un-
certainty (which is left out of Harsanyi’s account). So with a slight re-
laxation of the decision rule act, utilitarian agents win the vote, con-
trary to Harsanyi’s prediction. And under certain conditions - larger
tolerance margins - we have seen that act utilitarian agents perform
better than rule utilitarianism could have done. This follows from
their ability to exploit the surplus of votes.

The size of the informal group that exchange information influ-
ences the performance significantly. The relationship is not linear.
Small (12,5% of total population) and large (50% of total popula-
tion) groups perform clearly better than medium sized (25% of to-
tal population) groups. As the population size grows act utilitarian
agents improve their performance. For rule utilitarian agents the min-
imum and maximum scores are always the same. For the act utilitar-
ian agents the minimum and maximum score vary markedly. The
individual differences are explained by the random influences that
are built in through both inclination and grouping. The decision rule
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appears to be fairly stable to variations in propensity to vote among
the act utilitarian agents.

There are stable decision rules that allow act utilitarian agents to
function successfully with a minimal requirement of information.
The situations in which act utilitarian agents outperform rule utili-
tarian agents are by no means artificial. The success of act utilitarian
agents depends to an important extent on the availability and costs of
information, and on the decision rule. Contrary to Harsanyi’s claim
act utilitarian agents can successfully and spontaneous coordinate
their actions. This requires a somewhat different decision rule.

5 Discussion and Conclusions
We have examined Harsanyi’s arguments in favor of rule utilitarian-
ism over act utilitarianism. His arguments stand within a heated (old)
discussion on which version of utilitarianism is to be preferred. His
claim that “...the basic question we need to ask is this: Which version
of utilitarianism will maximize social utility? Will society be better
of under one or the other? This test very clearly gives the advantage
to rule utilitarianism” was tested in an experimental setting. And, not
only does Harsanyi makes a particular claim, he also provides the
criterion by which the claim is to be judged: maximization of social
utility. Since social utility is defined as the basis of the morally good
in utilitarianism, our (experimental) approach of calculating social
utility scores for different utilitarian rules is in the heart of the philo-
sophical discussion on what is the preferred version.

The experiments executed show that act utilitarian agents need
not fare worse than rule utilitarian agents in certain circumstances.
This is especially remarkable if one takes into account that they can
achieve their results by epistemically less demanding assumptions.
They are also able to exploit the surplus of votes when they have the
majority to gain some additional utility. This compensates for their
occasional loss of the vote due to imperfect (wrong) expectations
about the number of fellow act utilitarian that will show up. Core at
this ability to perform fairly well is a small relaxation of the decision
rule as presented by Harsanyi. It consists of allowing some degree of
uncertainty into the decision rule.

The experiments we ran are limited in scope and are open to sev-
eral objections. Actually, several other assumptions may be chosen
with respect to both act utilitarian agents and rule utilitarian agents.
We are aware of the fact that the corresponding experiments may
yield still other outcomes. We have planned to perform such addi-
tional philosophical experiments in the near future. So, at this mo-
ment, none of the conclusions and observations we made in this pa-
per are conclusive. But at least we hope to have shown - and that is
the main message based on the research performed sofar - that set-
ting up experiments is a useful way to gain new and deeper insights in
existing argumentations used in old (and new) philosophical debates.

References
[1] M.E. Bratman, Intention, Plans and Practical Reasoning, Harvard Uni-

versity Press, Cambridge, 1981.
[2] P. Danielson, Artificial Morality, Routledge, London, 1992.
[3] Modeling Rationality, Morality and Evolution, ed., P. Danielson, Oxford

University Press, New York, 1998.
[4] J.C. Harsanyi, ‘Morality and the Theory of Rational Behaviour’, in Util-

itarianism and Beyond, ed., Sen et al., (1982).
[5] John von Neumann and Oskar Morgenstern, Theory of Games and Eco-

nomic Behavior, Princeton University Press, Princeton, NJ, 3rd edn.,
1953.

[6] Vincent Wiegel, SophoLab, Experimental Computational Philosophy,
Ph.D. dissertation, Faculty of Technology, Policy and Management,
Delft University of Technology, 2007.

67



Higher-Order Knowledge in Computer Games
Andreas Witzel and Jonathan A. Zvesper1

- Hello, I’m looking for the room for making love.
- Oh, right. You must mean the Honeymoon Suite. Well, that’s

straight that way, can’t miss it.
- I know where it is. I just wanted you to know that I know

where I’m going, so you needn’t bother with me.

“The Missing Ingredient”
First part of the movie “Four Rooms” (1995)

Abstract. Our main aim is to raise awareness of higher-order
knowledge, i.e. knowledge about knowledge, as an issue in simulat-
ing realistic non-player characters in computer games. We motivate
the importance of higher-order knowledge with arguments, as well as
a few examples. We survey existing games and literature to show that
this issue is currently neglected. We also refer to our earlier work to
illustrate one approach to simulating higher-order reasoning, which
we call “explicit knowledge programming”. Finally we describe a
number of issues which arise when carrying out such an implemen-
tation, some of which go beyond the scope of the present motivation
of computer gaming, and are of more general interest.

1 Introduction
If you ask people why they do things, they often give you reasons in
terms of knowledge and beliefs.2 The answer to the question, “Why
did the chicken cross the road?”, i.e., “To get to the other side”, does
not tell the whole story: if we were to attribute human agency to our
feathered agent, then a complete answer would be couched in terms
of her beliefs and desires. Because we are social animals, these rea-
sons sometimes will involve several agents. In order to reason about
interactive behaviour amongst such groups of agents, we have re-
course to higher-order beliefs (which are beliefs about beliefs). For
example, if Ann knows that Bob knows that the party starts at 8, then
she usually won’t tell him, unless she wants to make sure that he
knows that she knows it. Indeed, how could one reason about such
a situation without talking about higher-order beliefs? Even if Paul
Churchland were correct, and one’s talk of beliefs were unscientific
nonsense, still it is pervasive and has some explanatory force. If peo-
ple engage, consciously or unconsciously, in reasoning about beliefs,
then a natural way to simulate some aspects of human behavour, par-
ticularly those aspects involving interaction, is to engage in reasoning
about beliefs.
1 ILLC, University of Amsterdam, and CWI, Amsterdam, The Netherlands,

e-mail:{awitzel,jonathan}@illc.uva.nl
2 We view “belief” as a more general notion than “knowledge”: knowing

something implies believing it. Concepts are defined in analogous ways
for belief and knowledge, and we will use “epistemic” to mean “of/about
beliefs/knowledge”. In the more technical parts we will for simplicity focus
on knowledge.

An important goal of interactive fiction (IF) games or, more gener-
ally, computer role playing games (RPGs) is to simulate convincingly
social situations within a virtual world. We believe that to this end
epistemic reasoning is crucial. It would therefore be natural for a pro-
grammer to be able to describe the behaviour of computer-simulated,
non-player characters (NPCs) using rules that contain explicit knowl-
edge statements, including higher-order ones. However, as we will
see in Section 2, in current computer games this epistemic aspect is
surprisingly overlooked.3 To strengthen our argument, in Section 3
we will give some scenarios, involving higher-order epistemic rea-
soning, that we find plausible to occur in RPGs.

In [28] we described an approach for providing knowledge state-
ments on the level of a programming language, and for proving that
such statements are evaluated faithfully with respect to a formal def-
inition of knowledge. That approach is modular in the sense that
all aspects of epistemic modeling can be implemented in a dedi-
cated knowledge module. In the context of computer games, an NPC
scripter could thus use high-level tools and would be alleviated from
having to keep track of these things explicitly and manually. We will
briefly describe that approach, which uses ideas from epistemic logic,
in Section 4.

We will conclude by raising some open issues in Section 5. These
are concerned with making the knowledge module tractably imple-
mentable by restricting the possible inputs and queries. The basic
questions are:

• What kinds of events should be used as inputs to change the state
of the module, and how to formalize them? Even a simple event,
like the player picking up an object, may have an effect on some
agents’ (higher-order) knowledge. These effects will depend on
subtleties of the wider situation.

• What kinds of queries to the module are relevant? Not all theoreti-
cally possible knowledge statements will occur or even be realistic
to compute. Since the goal is to simulate real-life social interac-
tion, to answer this question one has to look at human higher-order
reasoning.

2 State of the Art
We will briefly review the current state of the art with respect to
epistemic modeling in computer games, both in the “real world” and
in (academic) research.

2.1 Real World
The state of the art in commercial computer games is not easy to
judge, since computer game companies are not very keen on publish-
3 When we refer to “computer games” in this paper, we have games like RPGs

and IF in mind. For other games, like poker, epistemic aspects have indeed
been considered.
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ing the details of their AI implementations. So if one doesn’t want to
rely on the enthusiastic slogans from marketing departments, then
the best sources of information about computer game AI are private
web pages like [29] where observations and analyses from playing,
interview quotations, and possibly the website creator’s own knowl-
edge and experience as AI programmer are carefully collected and
presented. For an extensive list of online resources, see [23].

From these resources it becomes evident that epistemic reasoning
is definitely not in the focus of existing computer game AI, and we
did not find any mention of higher-order reasoning. For example, the
highly acclaimed Radiant AI engine is used in the RPG The Elder
Scrolls: OblivionTM [6] to make the game more lifelike. The follow-
ing quotation from an interview [5] during the testing phase of the
game AI illustrates its functioning:

One [non-player] character was given [by the testers] a rake and
the goal ”rake leaves”; another was given a broom and the goal
”sweep paths,” and this worked smoothly. Then they swapped
the items, so that the raker was given a broom and the sweeper
was given the rake. In the end, one of them killed the other so
he could get the proper item.

Obviously, the characters didn’t mutually know their interests, or
they couldn’t make use of that knowledge.

To us it seems natural that one would use a logic-based approach
in order to effectuate epistemic reasoning. Indeed, a logic-based for-
malism is an important part of what we will suggest in Section 4.

References in these directions are scarce. In [18], it is suggested
to use logic for NPC scripting; however, higher-order epistemic rea-
soning is not considered, and the article seems to have been left at a
brainstorming stage and not followed up on. The clearest statement
promoting the use of epistemic reasoning comes from the famous IF
writer Emily Short [25]:

Abstract Knowledge. One of the artificial abilities we might like
to give our NPCs, aside from the ability to wander around a
map intelligently and carry out complex goals, is the ability
to understand what they are told: to keep track of what items
of knowledge they have so far, use them to change their plans
and goals, and even draw logical inferences from what they’ve
learned.

It is not clear whether this refers to higher-order knowledge, or
whether “abstract” just is meant to imply that the implementation
should be generic and encapsulated in a knowledge module; in any
case, the currently existing IF implementation of such ideas [11] is
restricted to pure facts and does not include any reference to the pos-
sibility of higher-order knowledge.

2.2 Research
Computer game AI is slowly becoming accepted as an area for se-
rious academical research [15, 13]. In recent years, conferences and
other scientific meetings on the interface of artificial intelligence and
computer games have emerged [24, 4, 17] and special issues of mag-
azines have appeared [1, 2, 3].

Again, where knowledge is considered, the concern seems to be
exclusively domain knowledge, or knowledge about facts in the game
world, as in [22, 26]. A more general approach of using agent pro-
gramming languages to script NPCs (e.g. [16]) inherits the epistemic
reasoning facilities of such languages – which tend to focus on facts.
The closest in spirit to higher-order modeling are attempts to detect

the general attitude of the human player (for example, aggressive or
cautious) and to adjust the game AI accordingly. But we could find
no references to explicit higher-order epistemic modeling.

The ScriptEase system [8] is an academic approach to NPC script-
ing, which was motivated by the insight that the scripting process
needs to be simplified. It provides a graphical interface for generating
behaviours of characters in a commercial RPG. However, knowledge
statements to steer the behaviour are not considered.

A very interesting approach, described in [9], uses deontic logic to
specify NPC behaviour in a rule-based fashion. While epistemic is-
sues are not considered there, a fusion of these two aspects could pro-
vide a highly suitable system for scripting believable social agents.

Some literature on higher-order reasoning in multi-agent systems
that does not focus on computer games is also very relevant. In [10],
the specific problem of agent communication is studied, in which
agents weigh costs against expected benefit of communication. The
authors point out the importance of using higher-order reasoning,
in the form of beliefs about beliefs, when agents make such assess-
ments. Their particular interest is in formal representation of belief
“abduction”. We do not consider abductive reasoning here, but we
recognise that it is also important in our settings.

We also note that higher-order reasoning is discussed in [30] in the
context of a Petri Net method for designing “intelligent team training
systems”. The authors suggest that using Petri Nets can help to over-
come tractability issues in epistemic reasoning. However, they note
that communication, an important ingredient in the kind of social in-
teraction we wish to simulate, “is more complicated than Petri Nets
can represent”. We do not consider the Petri Net formalism further,
but if progress is made in this area it could be of relevance.

3 Scenarios and Examples
Having seen that higher-order epistemic reasoning is not currently
considered in the context we are interested in, we will now describe
a few small scenarios of social interaction naturally involving this
kind of reasoning. We believe that by simulating the aspects of the
real world that are highlighted by these examples, computer game
worlds will become more convincing.

Scenario 1. If Ann is (openly) present when Carl tells Bob about
some fact, then she won’t tell the same fact to Bob again a minute
later. Indeed, doing so under usual circumstances would be puzzling
and inexplicable behaviour.

Scenario 2. If Ann gets an advantage from lying to Bob, and knows
that he doesn’t know the truth then she might indeed lie; if she knows
he does know then she usually won’t; if she doesn’t know whether
he knows then her decision may depend on other circumstances.

Scenario 3. Part of being a doctor is the obligation to help people
around you whom you know to be sick.4 Imagine Ann is a doctor
who unfortunately would profit of getting rid of Bob. Not only will
she take care that no-one sees her putting the poison into his glass,
she will also make sure (e.g. by immediately going on holidays) that
no-one knows that she knows that Bob is dying, because otherwise
not saving him would make her suspicious.

The simple rule of pragmatics in Scenario 1 (that things which are
commonly known5 aren’t usually worth stating) makes essential use

4 This scenario is inspired by a discussion from [20].
5 Something is common knowledge among a group of agents if all agents

know it, know that they all know it, and so on ad infinitum.
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of epistemic reasoning. Moreover, whatever character type Ann in
Scenario 2 is supposed to have, implementing it should be facilitated
by epistemic operators. The last scenario may seem a bit contrived,
but on the other hand it is very common for game characters to have
professions, and in a world of intrigue and adventure having to get
rid of someone is also quite conceivable. It manifestly also involves
epistemic reasoning.

The variety and generality of these scenarios illustrates how ap-
plicable the underlying ideas are in many different situations which
could occur in IF or RPGs.

4 Making Knowledge Explicit

If more attention should be paid to epistemic reasoning in simulating
human interaction in IF and RPGs, a natural question is: how should
this be done? In this section we propose an approach for tackling
the problem of programming a simulation of higher-order epistemic
reasoning.

The approach is based around epistemic logic.6 That is, we pro-
pose using some formal language in which epistemic statements
can be formulated and evaluated. The formulae of such a language
might for example be built recursively from “atoms”, which are non-
epistemic facts, by using propositional connectives, like ∨ (or) and
¬ (not), and knowledge operators Ka, one for each agent a being
simulated. We will call these “epistemic formulae”. So for example
if p were an atom, then KaKbp could be an epistemic formula with
the intended reading “a knows that b knows that p”.

In [28], we described a simple and preliminary implementation
to provide statements involving explicit knowledge formulae on the
programming language level, and proved the implementation to be
sound with respect to a formal notion of knowledge defined on the
level of the underlying process calculus. We took a modular ap-
proach, writing a knowledge module that is instantiated for each pro-
cess. We will briefly review this work in the following.

In our particular implementation, the events that were used as in-
puts to the knowledge module were always synchronous communi-
cations between two of the processes concerning the values of some
bits. In general though, an event can be anything which would have
epistemic effects. The idea is to pass to the knowledge module of a
process a the events that a ‘observes’.

The queries to which the knowledge module can respond
are epistemic formulae. We used a formal language with atoms
px0 ,¬px0 , px1 ,¬px1 , . . . for each of the bits x0, x1, . . ., and a
knowledge operator Ka, Kb, . . . for each of the processes a, b, . . ..7

Then, as an example, the formula KcKb¬px2 means that process c
knows that process b knows that x2 has the value 0. If the knowl-
edge module of process a were passed this formula it could respond
by saying “yes”, “no” or “don’t know”. If the module were to re-
spond “yes”, then this should be interpreted as (the agent which is
modelled by process) a knowing that c knows that a knows that x2

is 0. A programmer can use such queries, for example, in conditional
statements and thus have the program flow depend on the process’s
knowledge.

Even with a simple implementation, it was desirable to prove that
it was in some sense “correct”. Thus we used a formalism from the
literature on epistemic logic, namely Kripke models. The argument

6 The research field of epistemic logic can be said to have been initiated
with [14].

7 Note that here we are not using the richer language that could be built using
also the connectives ¬ and ∨ mentioned above.

for correctness of the implementation then proceeds in two steps,
which can roughly be stated as follows:

• Argue that a particular model M represents faithfully the intuitive
situation which we intended to capture.

• Prove that knowledge formulae are evaluated in the same way by
process a after the sequence of events σ as they are by agent a in
the model M after the same sequence of events.

One criticism that one can make of using a Kripke model formal-
ism as an intermediate step is that that formalism itself can appear
unintuitive. However, we know of no more philosophically grounded
and mathematically robust formalism with which to work in the con-
text of reasoning about higher-order knowledge. (In order to deal
with various phenomena like so-called “explicit belief”, or inconsis-
tent beliefs, many other models have been proposed, but these are
all essentially refinements or variations of Kripke models – see [19,
Sections 2.4 to 2.13] for a selective survey.)

The Kripke model that we specified for the particular implemen-
tation we had in mind resembled an “interpreted system” from [12].
It was not our aim to implement directly an entire interpreted sys-
tem, which in this case is an infinite structure. Even if it is finitely
representable, we might only be interested in certain parts of it.

In general, an implementation can be simplified by considering a
subclass of the formulae that would be in the full logical language
which the model could interpret. As it happened, for the particular
implementation we had in mind (a distributed implementation of an
algorithm for eliminating dominated strategies in strategic games), it
was only necessary to consider formulae from the very simple epis-
temic language that we have described.

In the case of simulating realistic human agents (so in particular
within IF and RPGs), the limits to human cognitive faculties should
be taken into account. So for example, would it make sense to allow
as queries to the knowledge module epistemic formulae involving
complex iterations as in, “Ann believes that Bob believes that Carl
doesn’t believe that Ann believes that Derek believes that it’s rain-
ing”?

5 Open Issues
This brings us to the question of what inputs and queries to the
knowledge module ought to be allowed. The two parts of this ques-
tion are to some extent independent.

The first part concerns the events in the game world that should
affect the knowledge states of the characters. In a way the issue of
what events should be taken into account is up to the designer of
the world. We think it is difficult to make a general statement about
which kinds of events matter and which don’t.

Once the events that the virtual world generates are more or less
decided, we need abstract representations of them and specifications
of their exact conditions and epistemic effects. Again it is difficult to
make general statements, because they depend on the specific event.
For example, if an event consists in the player picking up an object,
the simplest approach would be that it becomes common knowledge
between all present agents that the player possesses that object. But
there is some freedom in the degree of fine-grainedness and detail in
which this event should be represented and processed. Should simply
all agents in a certain radius gain common knowledge, or should it
be taken into account in which direction they are currently looking
and whether everyone is mutually visible?

The second part of the question, which is clearer than the previous
part and which we believe may be answered empirically, concerns
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the class of knowledge statements that matter and that the knowl-
edge module should be able to handle. Here again the fact can be
used that the computer games we have in mind want to realistically
model human social interaction. The question, which is also of in-
dependent interest, then becomes: What class of epistemic formulae
are evaluated by humans in everyday life, consciously or not?

Some results from experimental game theory about levels of
strategic thinking [7] can be interpreted as being relevant to this
question. However, these experiments do not focus on everyday so-
cial interaction. For example, the Beauty Contest game mentioned in
the previous reference might invoke conscious and explicit reason-
ing about the other agents, while we believe that, through years of
experience in social interaction, the requisite higher-order reasoning
processes may also occur on a more intuitive and reflexive level.

Furthermore, the experimental designs are in general not specifi-
cally concerned with knowledge, so that at best the results can give us
hints about the nesting depth of knowledge operators. Clearly other
criteria might define the class of knowledge formulae that are of rel-
evance in social interactions.

For example, from Scenario 2 it is clear that formulae like

Ka¬Kbp

KaKbp

¬(KaKbp ∨ Ka¬Kbp)

matter. However, that doesn’t necessarily hold for all formulae of
knowledge operator depth 2. Also, human reasoning capabilities may
not be monotonic with respect to this complexity measure. For ex-
ample, for a special concept like common knowledge, which in the-
ory involves infinite depth, we might want to assume that humans
are able to cope with it, while this does not hold for “intermediate”
depths like 10000.

The main issue thus remains: How can we define this class of rel-
evant formulae?

In [27], results from experiments suggest that subjects use first-
order Theory of Mind (beliefs about others’ beliefs), but not “all
kinds of reasoning possible and useful in this context”. This supports
the claim that the depth of knowledge operators is not the only rel-
evant criterion. It is further reported that some subjects use second-
order Theory of Mind, which corresponds to third-order epistemic
formulas.

While it is interesting to look at such questions in experimental
setups, an alternative approach could shed additional light on these
issues, namely to come up with realistic social situations and think
about what kinds of reasoning processes go on. This is basically what
we did in Section 3, and work by Parikh is an excellent source for
enlightening examples (see e.g. [21]). Such thought experiments or
observations from real life can be convincing enough to remove the
need for abstractions and reproducible lab conditions as provided by
experiments, for the benefit of being set in more natural environ-
ments, where human reasoning capabilities possibly profit from ex-
perience and training in specific social situations.

6 Summary
The main aim of this paper was to raise awareness of higher-order
knowledge as an issue in simulating realistic non-player characters
in computer games. Section 2 surveyed existing games and literature
and found that this has not yet been done. Section 3 gave some il-
lustrative and motivating examples of what we mean by higher-order
knowledge, in situations that could plausibly occur in IF and RPGs.

Section 4 gave an example of an implementation of explicit knowl-
edge programming. One suggestion of this paper is that this is a sen-
sible and realistic approach to implementing higher-order knowledge
reasoning, and therefore to simulating some interactive aspects of
human behaviour. Finally, Section 5 described a number of issues
which arise when carrying out such an implementation. We raised
issues which go beyond the scope of the present motivation of IF and
RPGs, and are of general interest.
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