AISB

SUMMER CONFERENCE
JuY 1974

University of Sussex:

A.P. Ambler and
R.J. Popplestone

John Burge

D.J.M. Davies

Ira P, Goldstein
Steven Hardy

Patrick J. Hayes
John Knapman

C. Lamontagne

David C. Luckham
and Jack R, Buchanan

Alan K. Mackworth

Donald Michie

P.D. Scott
Aaron Sloman

Brian Smith and
Carl Hewitt

James L. Stansfield

Gerald Jay Sussman

Kennetn J, Turner

Sylvia wWeir
David Wilkins

Yorick Wilks

Richard ¥. Young

CONTENTS

Inferring the position of bodies from
specified spatial relationships

Al and sensori-motor intelligence

Representing negation in a Planner
system

Understanding single picture programs
Automatic induction of LISP functions

Some problems and non-problems in
Representation theory

Programs that write programs and
know what they are doing

Defining some primitives for a

computational model of visual motion
perception

Automatic generation of programs
containing conditional statsments

Using models to see

A theory of evaluative comments in
chess

Cortical embodiment of procedures
On learning about numbers

Towards a programming apprentice

Active descriptions for representing
Knowledge

The virtuous nature of bugs

Computer perception of curved
objects

Action perception

A& non-clausal theorem proving system

A computer system for making inferences

about natural language

Production systems as models of

14

26

37

50

63

80

90

102

127

138

160

2u7

257

2868

INFERRING THE POSITION OF BODIES FROM SPECIFIED SPATIAL RELATIONSHIPS

A.P. Ambler and R.J. Popplestone

Dept. of Machine Intelligence,
School of Artificial Intelligence,
University of Edinburgh,
Edinburgh EH8 9NW,

Scotland.

Abstract

A program has been developed which takes a specification of a set of
bodies and of spatial relations that are to hold between them in some goal
state, and produces expressions denoting the positions of the bodies in
the goal state, together with residual equations linking the variables in

these expressions.
1. Introduction

The work described in this paper is motivated by the desire to con-
struct an easily instructable robot to work in the domain of automatic
assembly, Earlier work at Edinburgh (1) produced a device capable of
being easily "taught" to recognise solid bodies from a small number of
viewpoints_and in isolation, and to stack them in pre-determined places.
Tt could also extract bodies from a heap and place them in isolation to
recognise them. However the ensuing assembly of the objects from their
standard positions was programmed bv specifying the motions of the robot
absolutely (e.g. moveto(9,7); graspto(0); ...). A much less painful way
of instructing the robot would be to specifv spatial relations that are to
be established between parts being manipulated. Thus one might say
"Place the cylindrical face of the rod against the sloping faces of the
Vee block" (see Fig. 9). Even if such an English sentence had to be
transcribed into a sort of predicate calculus form, the gain in instruct-

ability of the device would be great.
2. Positions

In order to describe the motions of a rigid bodv one needs the
Affine group of rotations and translations of 3-space. We call a member
of this group a position. If p, and P, are positions, then we write P.P,
for the functiocnal composition of p, and Pye We will use the two
positions valued functions twix and trans where twix(@) is a rotation b ©
about the X-axis zand trans(x,y,z) is a translation by (x.v,z), We also
use the constant position M which turns the X-axis back on itself. in

the program, consiant posiiions are represented bv 4 by 4 matrices in the
2 P T

imbler and Popplestione

usual way (for example see [2'},

3. Features and spatisl relstions

The spatial relations we consider here are againgt and fits.
These hcld not between bodies but between features of bodies, Features are
either shafts (cylindrical), faces (planar), or holes (cylindrical).
Examples of features are depicted in Figs. 1-3. Each body has a set of
axes embedded in it. Each feature has axes associated with it. The
feature axes are chosen according to certain conventions, namely that the
{-axis of the axis set of a face is always pointing out from the face,
with the Y and Z axes lving in the face, and the X-axis of s shaft or
hole lies along the axis of symmetry of the feature, with the origin at
the tip of the shaft or the mouth of the hole. The position of a feature
in a bodv is defined to be that position which will transform the body

axes into the feature axes.

Figure 1. The axes of a face

X

Figure 2. The axes of a shaft

Ambler and Popplestone

Figure 3. The axes of a hole

At present, the descriptions of the bodies are input manually, but
work at Edinburgh is directed to being able to form suitable "body models"
of objects whose surfaces are all plane or cylindrical by using a TV
camera in conjunction with a projected light stripe. Such a body model
contains a specification of all the features with their type (face, shaft,

hole) and position.
In this peper we define the relation against to be such that:

a face is against another face when they are coplanar, and with their

normals in opposition;

a face is against a shaft when the X-axis of the shaft lies in a
plane parallel to the plane of the face, and removed from it by a
distance equal to the radius of the shaft;

4 bt
bt

$d VR TR

a shaft cannot be against a hole;

a shaft cannot be against a face;

ete,
We define the relation fits to be such that:

a shaft fits a hole when their X-axes lie along the same line, but in

opposition;

a face cannot fit a face;

etc.

Note that this is a verv incomplete description of against and fits.

Ambler and Popplestone

We also need conditions invelving the actual dimensions of the features,
such as that a face is against another face only when their outlines over-
lap by a certain minimal amount, and that a shaft fits a hole only when
its origin is between the origin of the hole and the point on the X-axis
at minus the depth of the hole. We need to include facts about the space
occupancy of objects - e.g. that two objects cannot occupy the same space
at the same time, These latter conditions give rise to inequalities.

It is envisaged that future work will concentrate on dealing with these
inequalities. At present we only consider the equalities produced using

our incomplete definitions of against and fits,

The program takes a list of body models, and a specification of the
against and fits relations that are to hold, and returns a function G from
bodies to expressions, where the expressions denote positions that the
bodies must be in to satisfy the relations. These expressions will in
general contain free variables, and the program also returns equations
(possibly null) between these free variables, having attempted to elim-

inate these variables as far as possible (the equations are non-linear).
4, Relations between two features

The program for deriving the equalities is based upon the following
considerations, Firstly it should be noted that if a feature of one body
is spatially related to a feature of another then the number of degrees of
freedom of the two bodies considered together is less than the 12 they
would have if thev were free to move. Suppose that a body B1 has
position P, and a body B2 has position Ps and face F1 of B1 is against
face F2 of B2 (Fig. 4) then for some 6, y and z

p?=f;1 M twix(6) trans(o,v,z) f,p, (4.1)

where f7 and f? are the positions of F1 and F

o°

Ambler and Popplestone

Figure 4. Face F1 against face F2

In equation (4.1) the variables y and z correspond to the ability of
F1 to be translated with respect to F2 while still remaining in contact,
and the variable © corresponds to the ability of F1 to rotate with respect
to F2 while preserving the contact. In the case where a shaft F1 fits a
hole F2 or conversely (Fig. 5), we have a similar equation to (4.1) except
that the relative translation is along the direction of the common axis of
svmmetry.

Tigure 5. Shaft F, fits hole F1

Ambler and Popplestone

Shaft F1 against face F2

The remaining case that we deal with is when F1 is a face and F2
is a shaft, (Fig. 6). Here we get two equations, one for expressing p2
in terms of P, and the other for expressing P, in terms of Py These are:
p2=f;1 twix(8) XTOY trans(x,-a,z) twix(#) P, (4.2)
p1=f;1 twix(@) trans(x,y,a) XTOY twix(@) f2p2 (4.3)

where a is the radius of the shaft, x and z in the one case, and x and y
in the other correspond to the translation of the shaft across the face,
© corresponds to the rotation of the shaft about a normal to the face, and
¢ corresponds to the shaft rotating about its axis of symmetry and XTOY is

a constant position which transforms the X-axis to the Y-axis.

5. Satisfying simultaneous relations

We have seen how to express the position of one body in terms of the
position of another when the two bear a specified spatial relationship to
each other. In general we are interested in making a number of relations
hold simultaneously between a number of bodies (see section 8 ‘or exampleé.
The program derives expressions for the positions of these bodies by first
selecting one to be the base. (A fixed one if possible, otherwise an
arbitrarily chosen one.) A body which has a feature related to a feature
of the base then has its position expressed symbolically in terms of the
position of the base according to the equations of section 4. This new

set of bodies with

Ambler and Popplestone

positions defined is then used to provide expressions for the positions
of the bodies related to them. Now it may happen that there are loops
in the graph relating bodies (for instance the rod mentioned in section 1
is related in 2 ways to the Vee block, namely it is against both faces).
In that case the program has two alternative expressions for the position
of the body. It selects one of them to be the position, and forms an
equation saying that the two are equal.

Thus at the end of this phase, assuming that the relation graph is
connected all bodies will have an expression for their position, and a
number of equations between positions will have been generated. Now,
related to the fact that the Affine group is the semi-direct product of
the group of translations and the group of relations, it is possible to
consider the rotational component of the equations separately. (See (3)
in which the treatment of these equations is considered in full) Briefly,
however the system deals with the equations of the form

twix(0)=a (5.1)
twix(0,) a twix(6,)=b and (5.2)
twiz(0,) a twix(6,) b twix(03)=c (5.3)

It is shown in (3) that, depending on the values of a, b and c, the
above equations have solutions, giving constant values for 01, 92, 93.
It should be noted that the rotation equations are first reduced by
applying the transformations

twix(01) twix(02)=tuix(o1 + 92) and (5.4)
twix(Q) M=M twix(-0) (5.5)

The effect of this phase is to produce a number of linear equations

on the ©'s. These are used to eliminate as many of the 8's as possible.,

Having deduced as much as possible by considering the rotations by
themselves, and having substituted symbolically or numerically for the
variables which have been eliminasted, the program proceeds to attack

the equaticns of the form
P.=P, (5.6)
by multiplving symbolically by the zero vector 0, tc get

0p,=0p, (5.7)

Ambler and Popplestone

It is shown in (3) that it is sufficient to solve this equation,

The svmbolic multiplication depends on the equalities

trans(a.b;c) ((x,¥,2))=(x+a,y+b, z+c) (5.8)
and

swix(8) ((x,v,2))=(x,v c0s@ -z sin@, v sin® +z cose) (5.9)

Using (5.8) and (5.9) an equation between twe symbolic vectors is
derived, and by equating the components, three real equations are

obtained for each equation of the form (5.6).

5. The implementation

The expeditious implementation on a computer of the symbolic
menipulation described in this paper obviously requires a language in
which it is easy to implement a range of data-types and with "heap"
rather than stack storage control. In fact we use POP-2 (4), Much of
the algebraic manipulation is not specified in POP-2, however, but in
terms of production which are input to an Algebra System written in POP-2.

Equalities such as 5.4 are written as:
ALL THETA PHI; TWIX(THETA) MP TWIX(PHI) - TWIX(THETA + PHI)

meaning that anything that matches the expression to the left of the arrow
is to be replaced by what is to the right. MP is an associative operator
meaning matrix product. The Algebra Svstem automatically performs cer-
tain simplifications such as working out constant subterms, the elimin-
ation of identity elements corresponding to operators, and the replace-
ment of anv subterm in which a zero of the operator occurs by the zero.
The matching process in applying productions tskes accoumt of
associativity, If an operator is both commutative and associative then

tne svstem automatically collects multiples of repeated subterms.
+ An example

Jiver a fixed block (the "world") of height 20, with position I and

#itn a nole of depth 8 drilled into its top surface a: (50,50,2C) - i.e.

posi*ion of hole feature=XT0Z trans(50,50,20)

position of face at bottom of hole=XTOZ trans(0,0,12)

8

Ambler and Popplestone

put a post into the hole so that the shaft (feature position of shafi=H)
fits the hole, and the end face of the post is sgainst the bottom of the
nole, (Fig. 7).

Figure 7. Post in hole, with 1 degree of freedom

Equating the position of the post derived through fits relation to
the fixed world

(W~ "M twix(01) trans(X1,0,0) XT0Z trans(50,50,20)1)
with the position derived through the against relation

(™M twix(02) trans(0,Y1,21) XT0Z trans(0,0,12)1)
produces the eguation

twix(81) 4rans(X1,0,0) XT0Z trans(50,50,20)
= twix(82) trans(0,Y!,21) XT0Z trans(0,0,12)

with 3 (post)=twix(62) trans(0,Y!,Z2‘) XTOZ trans(0,0,12), Solving the

rotation enuations produces the real equation
e - 68!l =0

Now substituting 82 for 9! in the equation, and solving tre trans-

lation equation gives

Ambler and Popplestone
L1==8, Y1=50, Z21=50
and = (post) becomes

?wIx(82) trens(0,50,50) XTOZ trans(0,0,12)

i,e. the post fitted into the hole has only one degree of freedom -

rotation about its own axis.

. Other problems
We have used the svstem to sclve several other problems:

(1) Given a fixed worlé with a fixed wall on it, put a block down
so that a particuler side is against the worldtop and another particular

side is against the wall.

(2) Given a fixed world with two fixed walls at right angles put
one block down so that specified faces are against the worldtop and the
wallside, and put a second block down so two specified faces are against
the worldtop and the second wall and so that a particular pair of faces
of the blocks are against each other, (Fig. 8). This produces a
situation where one block has no degrees of freedom, and the other block

is only free to slide along between the walls and the first block.

Figure K. Two blorks against two walla and each other

Ambler and Poppleatone

(3) Given a fixzed world with a fixed wall on it, put a
cylindrical rod down so that it is lying on the worldfop with one end
sgainst the wallside.

(4) Given a fixed block with a "V" shaped groove cut into it, put
a cylindrical rod down so that its cylindrieal surface is against both
sides of the groove, (Fig. 9).

—
\

VEE BLOCK

Figure 9. Rod resting against groove in Vee block

(5) Given a fixed world with two holes drilled into it, fit two
posts into the holes, with their ends against the bottoms, and fit a
crossbar into two holes drilled into the posts, so that its ends are
against the bottoms of the holes, (Fig. 10). In this case the posts
have no degrees of freedom, and the crossbar can only rotate about its
own axis. During the course of solving this problem, five equations
are set up, and the rotation of the posts in their holes can only be

determined by considering both the fits relations of the crossbar.

11

g CROSSBAR t V

Figure 10. Crossbar fitted into two posts in holes

(6) Given three blocks, with holes drilled in each end, and pins
fitting into the holes to join the blocks into a triangle, determine the
position of two of the blocks, given that one is fixed, and they are of
relative lengths 3, 4 and 5.

9. The relation to previous work

Most work with robot manipulators requires the solution of equations
of one sort or another, but usually such equations are stereotyped, that
is to say it is required to get the ianipﬁlator to grip one block or to
put a block in a known place. For instance see Paul (5) and Ejiri et al
(6); Feldman (7). ”

Nevins et gl,(B) have dealt with the automatic production of the
:dynamic equatioﬁs for an arbitrarv manipulator whose connection graph is

linear.

1
Fikes (9), Moore and Foster (10) have considered the solution of

equations as part of a general problem solving svstem.

Lcknowledgements

We thank the Science Research Council and the Dalle Molle #oundation

for support.

Footnote

4

‘Moore, J S. A personal communication.

12

Ambler and Popplestone

Refarences

1.

Ambler, A4.P., Barrow, H.G., Brown, C.M., Burstall, R.M. and
Popplestone, R.J. (1973) A versatile computer-controlled assembly

system, Proceedings of Third International Joint Conference on
Artificial Intelligence, Stanford, California, pp. 298-307.

Roberts, L.G. (1965) Machine perception of 3-dimensional solids.

In Optical and Electro-optical Information Processing, (eds.

J.T. Tippet, et gli, M.I.T. Press, Cambridge, Mass.

Ambler, A.P. and Popplestone, R.J. (1974) Turning spatial relations
into equations, Research memorandum MIP-R-107, Department of

Machine Intelligence, School of Artificial Intelligence, University
of Edinburgh.

Burstall, R.M., Collins, J.S. and Popplestone, R.J. (1971)
Programmi in POP-2, Edinburgh: Edinburgh University Press.

(4 revision of POP-2 Papers, Edinburgh: Edinburgh University Press,
(1968), with much new material.

Paul, R. (1971) Trajectory control of a computer arm. Proceedings

of Second International Joint Conference on Artificial Intelligence,
London, pp. 385-390.

Ejiri, M., Uno, T., Yoda, H., Goto, T. and Takeyasu, K. (1971) An
intelligent robot with cognition and decision-making ability.
Proceedings of Second International Joint Conference on Artificial
Intelligence, London, pp. 350-358.

Feldmen, J., Pingle, K., Binford, T., Falk, G., Kay, A., Paul, R.,
Sproull, R, and Tenenbaum, J. (1971) The use of vision and
manipulation to solve the "Instant Insanity" puzzle, Proceedings
of Second International Joint Conference on Artificial Intelligence,
London, pp. 359-3%64.

Nevins, J.L., Whitney, D.E. and Simunovie, S.N. (1973) System
architecture for assemblv machines. A Report in Advanced Automation
R764, Charles Stark Draper Laboratory Inc., Cambridge, Mass.

Fikes, R.Z. (°270) REF ARF: A system for solving problems stated
as procedures. Artificial Intelligence 1, No, 1, 27-120.

Foster, J.M¥. (1270) "he philosophy behind Abset. S.R.C. Computer
Research Group, Dept. of Engineering, Marischal College, Aberdeen.

Al and Sensari-Motor Intelligence

John Burges
Department of Psychology, University of Durham

In this talk I shall discuss the earliest period of human cognitive
development, the period of sensorimotor intelligence (SMI), in terms provided by
Al One aim in doing so is to show that the application of Al concepts and
techiniques in the study of this period will prove useful for the understanding
of infancy (and incidentally to Al itseif). A few issues central to Al will be
taken and used as a basis for discussion of aspects of sensorimotor
intelligence. SMI can be a good test-bed for Al ideas - at least as informative
as that provided by, say, chess. The world of an infant is in no sense a toy
world, yet itis small. Itis more than an arbitrary subset of our world but
can be computed manageably. Moreover, most of the phenomena anyone would
ascribe to the action of "intelligence” may be found in the first two years of
human life. Another aim of this paper is to give some feeling for the
significance of this earliest phase of human development for our understanding
of man.

The presentation will begin with a brief outline of the course of
sensorimotor development as described by Piaget. Attention will then be
focussed on the last stage, that of "rapid internal coordination”, which will be
compared with devices with a solution to the frame problemin Al. An
investigation of the behaviour of infants will be proposed as an approach to the
solution of the frame problem, and a number of issues involved in such an
attempt will be discussed. The paper ends with some comments aout the relation
between Al and Psychology.

*Currently at the Department of Computer Science,Carnegie -Mellon University

14

John Burge

2 The Psychology of SMI

Without a doubt the most famous student of children’s cognitive development
has been Piaget. He was interested in creating an experimental epistemology by
finding out how children interpret the world and seeing how their interpretation
develops with time and experience. He summed up his interests in the origin of
cognition with the name "genetic epistemology”. He began his research by
observing his awn children’s spontaneous actions and their reactions to
situations which he set up himself, as this example shows:

Obs 16. ... Laurent, at 0;7(5) [i.e. at 7 months and 5 days]loses a

cigarette box which he has just grasped and swung to and fro. Unintentionally
he drops it outside the visual field. He then immediately brings his hand

before his eyes and looks at it for a long time with an expression of surprise,
disappointment, something like an impression of its disappearance. But far from
considering the loss irremediable, he begins once again to swing his hand,
although it is empty; after this he looks at it once more! For anyone who has
seen this act and the child’s expressionit is impossible not to interpret such
behavior as an attempt to make the object come back. Such an observation. ..
places in full light the true nature of the object peculiar to this stage: a

mere extension of the action. ... he grasps and swings the cigarette box

...; when he loses it right after having taken it he searches on the coverlet
with his hand. However, when he drops it again under any other circumstance, he
does not try to find it again. 1then again offer him the same box above his

eye level; he makes it fall by touching it but does not search for it!

(Piazet ’54a)

Clearly the conceptual world of the baby is somewhat different from our
conceptual world and Piaget, by the use of simple but judicious experimentation,
has shown that it is organised on animmediately practical basis throughout the
first two years of contact with the physical world. He found that as
development proceeded there was an increasing capacity for the representation of
absent states of affairs, facility with which was held to mark the advent of the
nex! period. He called the first period, from O to 2 years, the period of
Sensori-Motor Intelligence. The brief survey of it which follows will show what
vast progress the child makes in his construction of reality within this first
period of intellectual growth.

15

John Burge

Piaget ("54a) describes six stages in the development of SMI. Stagelis
characterized by instinctive reflexes, stage II by habitual (acquired) reflexes,
stage I1I by secondary circular reactions, stage IV by means-end behaviour,
stage V by tertiary circular reactions and the final stage, stage VI by "rapid
internal coordination” of problem solving processes.

As an example of a reflex schema, Piaget cites sucking. At this stage
objects are known only through their capacity to enter into reflex activity. In
stage Il the reflexes are modified so as to become extended in scope - to, for
example, systematic thumbsucking. In Piaget’s terms, this "involves the
formation of a schema of a higher order (a genuine habit), which then integrates
the lower schema [i.e. the reflex] with itself.”

Stage 1], starting at about 3 or 4 months, is marked by the appearance of
the secondary circular reaction. Anexample of this is that of the infant
shaking some rattles on the pram cover by means of a string attached to it.
Initially, the child grasps the string and inadvertently shakes the rattles. On
hearing the result he repeats the process. Inatypical circular reaction this
repetition will recur for some time. In the primary circular reaction of stage
I (e.g. thumbsucking) the body itself is affected repetitiously; in the
secondary circular reaction, external objects are affected, usually via
prehension.

The fourth stage, starting around 8 to 10 months, involves the
concatenation of schemata which produces means-end behaviour. An example is the
removal of a screen to retrieve an object placed behind it. Because the
schemata may be concatenated in an arbitrary order, whereas the habitual
coordinations of the second stage are fixed firmly together in discrete
uncommunicating schemata, Piaget refers to an increase in the “mobility’ of the
schemata.

The characterization of these mobile means is the preoccupation of stage V.
The tertiary circular reactions consist,as do all circular reactions, of
repetitions of new phenomena, but this time with "variations and active
experimentation” - for example, dropping a toy from various heights and studying
the trajectory.

16

John Burge

The final stage, stage VI (around 18 months) involves the internal solution
of problems. Piaget cites the example of a stick, with which his child had
previously had no contact, affording insight into its practical potentialities
for reaching things without actual trial and error. Another example will be
discussed in the next section.

Figure 1 may help to conceptualize the stages and the relations between
them. Init are distinguished the stages involving a new type of information
processing behaviour - the "modes"” - from the stages involving the mere
acquisition of data in in association with these modes of organization -
“explicit data gathering”. Figure 2 attempts to relate these modes to a
progressively bifurcating development of descriptive terms which are justified
by the modes. These modes may be related to Kant’s "a priori” categories - "a
priori®, that is, so far as Kant’s introspections on his own, adult, state were
concerned.

Piaget’s rather homely methods and theoretical analysis may be attacked in
a variety of ways. To consider them would quickly generate a complex argument
for which there is no space here, but it would be inappropriate to take all that
Piaget has written without criticism. His writings can thus be put to only a
relatively weak use here - merely to provide a framework within which to
appreciate the character of sensorimotor development. Another aspect of
Piagetian theory for which there is insufficient space is its structural
aspects. These are less pronounced for the sensorimotor period than for the
later periods. The structures he uses for these are regular mathematical
structures (Beth and Piaget *66). Had he had a knowledge of the use of the
irregular structure manipulations of Al, he might have been able to characterize
the structural aspects of infant behaviour more completely. This line of
enquiry will not be pursued explicitly here. It will, however, be implicit in
the following discussion of insightful behaviour and its origin.

3 The Frame Problem and'Stage VI
The frame problem, simply stated, is that of keeping track of what is going

on in the world while attempting to change some aspect of it. The difficulty is
that an action may have side-effects not immediately representable in the

17

John Burge

data-base describing the state of the world. One is tempted at first sight to
believe that the problem should be gquite readily soluble, but this illustration
from Raphael (’71) should dispel such naivety. Suppose that initially a
situation is described by four facts:

{f1) A robaot is at position A.
(f2) A box called Bl is at position B.
{f3) A box called B2is on top of B1.
(f4) A, B, C and D are all positions in the same room.
Suppose moreover that two kinds of actions are possible:
(al) The robot goes from x to y, where x and y may be any of A, B,C
and D.
{a2) The robot pushes Bl fromx {oy.
Consider two tasks:
(t1) The robot should be at C.
(t2) B1 should be at C.

t1 can be accomplished by the action of type al,’go from A ta C". After
performing the action, the system should know that facts {2 to 4 are true, but
that f 1 must be replaced by
(f1°) The robot s at position C.
t2 requires the use of a2, and both and f1 and {2 must be changed. The problem
is to work out which facts have changed as a result of the action. Raphael says
that although one can think of ways of doing this, they all seem to break down
in complicated cases. He gives two examples:
(p 1) *Determine which facts change by matching the task specification
against the model.’
This would fail for t1 if the robot got to C by pushing B1 there (which is not
unreasonable if the box were between the robot and C and pushing it there were
easier than going round), thus changing f2.
(p2) *Specify which facts are changed by each action operator.”
This procedure is also not sufficient, since derived information such as
(f5) B2is at position B.
will be made false by t2.

18

John Burge

According to Raphael the solution to the frame problem is unknown. (Its
solution may, indeed, require abandoning the first-order predicate calculus of,
for instance, McCarthy and Hayes (’69), which anyway has rather definite
limitations according to Anderson and Hayes ('72). Be that as it may Jacqueline
Piaget demonstrated that she had solved it before her second year was over:

Observation 181 repeated.- ... Jacqueline at 1;8(9) arrives at a closed door

- with a blade of grass in each hand. She stretches out her right hand toward
the knob but sees that she cannot open it without letting go of the grass. She
puts the grass on the floor, opens the door, picks up the grass again and

enters. But when she wants to leave the room things become complicated. She
puts the grass on the floor and grasps the doorknob. But then she perceives
that in pulling the door toward her she will simultaneously chase away the grass
which she placed between the door and the threshald. She therefore picks it up
to put it outside the door’s zone of movement. (Piaget ’54b)

Perhaps this shows only a partial solution, as Jacqueline did make a
mistake as she was about to leave the room. The mistake was short-lived and
easily corrected. What is interesting about it is that the consequences of it
could be foreseen and that the correction was made without trial and error. She
certainly gained very little information about the nature of the problem of
getting herself and her blades of grass out of the room. Her *mistake’ - and if
she had not made it, it could have been argued that the blade of grass had been
placed outside the range of the door by chance - allows one to see what was
missing from a complete insightful action. A number of such observation of her
actions in similar situations might well provide alist of all the necessary
components. Itis only towards the end of the sensorimotor period that the
internal factors that define the next stage begin to obscure the origination of
performed behaviour, so that the components which are invisible at stage VI will
have been on display in the preceding mode, stage IV. Itis precisely this
invisibility which makes it plain that the child has solved the frame problem.
In order to find out how he has done it one could do worse than follow the
advice of Chairman Mao, quoted by Anderson and Hayes:

You can’t solve a problem? Well, get down and investigate the present facts and
its past history!... Only a blockhead cudgels his brains on his own, or

13

John Burge

together with a group, to *find a solution’ or ’evelve an idea’ without making
any investigation. It must be stressed that this cannot possibly lead to any
effective solution or any good idea.

4 Factors in Tracing the Child’s Selution

In following this advice and investigating the history of the problem (or,
rather, the history of the infant’s solution to it) we find that external
feecback governs the younger infant’s attempts, rather than some internal
feedback producing ’insightful’ actions. Moreover, exactly as quoted in the
examples above, one can see exactly what processes are occurring so that
theories can reflect the data rather closely.

One also needs well-understood theoretical constructs in order to fabricate
a viable theory. Fortunately those applicable to the mode preceding that of
rapid internal coordination (see Figure 1) have been elaborated in Al following
the work of Newell and Simon (’63) on GPS. Some aspects of this branch of Al
have even been amenable to systematic analysis, for instance the traversing of
graphs (Michie ’70). The lack of not only these formalised concepts but also
the computational power to deduce rigorously the results of theories based on
thern may be important reasons why Tolman’s (*32) attempt to apply "means-end
analysis” to learning by rats did not catch on in the Thirties.

Another issue which bears on this is that of representation, both in
general and particular terms. Generally, the infant constructs his reality ina
rmanner quite different from that of the adult, as has been illustrated above.
The classifications of Figure 2 correspond to gross structures for
representation, to Kant’s categories (Korner *55), perhaps. For the finer
details let us consider putting some meat on a guggestion of Meltzer’s (*70)
that a sensible way to acquire generalizations about the world is to generalize,
i.e.

from P(a) infer (x)P(x)

All structures are generalizations, although they may not be due to just such a
process of generalization. Let us, however, look at Meltzer’s process. He gave
two examples. The first was the inference of aimost all the axioms of group

20

John Burge

theory from ten statements about two groups. The second was from a more complex
domain. That was of a child throwing a stone and seeing it sink in a pool.

What is it that allows a child to make - as Meltzer claims he does - the

"(deductively invalid) inference that all stones if dropped on water will sink"

and not any of a host of more or less general inferences, some of which are
incorrect? Clearly the child must make careful use of his current representation

of the world in order to learn anything new about it and at the same time remain

in a state of approximate adaptation.

One could do experiments with children to explore this issue of how current
structures limit generalization in early learning. Here is a rather
entertaining example from linguistic development quoted by McNeill (66):

Child: Nobody don’t like me.
Mother: No, say "nobody likes me".
Child: Nobody don’t like me.

(eight repetitions of this dialogue)

Mother: No, now listen carefully; say "nobody likes me".
Child: Oh!Nobody don’t likes me.

The hapless child did not make the generalization his mother wanted him to.
Indeed, itis alittle difficult to see how she could have signified that she
wanted him to delete the "do" with the consequent double negative, evenif she
could have formulated the problemin the first place. (And as it happens, the
nterise" was correct anyway, given the presence of a "do” in the sentence.) It is
not easy to envisage a generalization procedure which the child could sensibly
employ to improve his grammar in the direction intended by his mother.

Investigation of the details of the child’s structural representation must
bear these considerations in mind.

21

John Burge

5 Structural Learning

Now that sophisticated software has made it possible to consider
implementing theories of sensorimoter development in detail as process models,
the question of how the structures develop with experience may be examined
afresh. Hopefully it will become practicable to identify exactly the potential
cracks in each structural level which allow the next level to unfold. A start
has been made in this direction by Newsted ('73). He has begun to implement
Cunningham’s (*72) interpretatiopn of the Piagetian first period in terms of
Hebb’s (*49) hypothetical neural learning processes.

It may be found that mere differentiation and recombination of reflexes (as
proposed by Piaget) cannot provide for early intellectual development and that
something additional will have to be added. That would lead to a position
similar to that of Chomsky ('65). He proposed that normal learning methods
would be inadequate for first language acquisition, and that extra principles
would be needed to latch on to "universal” (i.e. general) properties of all
adult languages. Supposing that we did use the same basic learning mechanism as
animals, these supernumary principles would help characterize whatitistobe a
man. This is animportant goal of psychology which seems to have been forgotten
long ago, and it may be that Al is in a position to help achieve it. This will
be especially so after Al-based work on learning by infants, for Chomsky had no
clear idea how children ordinarily learn about the world. The discovery of this
will be impossible without the wholesale importation into developmental
psychology of Al techniques and results. Another drawback for the Chomskian
view of universals of adult language as an explanatory aid in first language
acquisition is that they provide nothing more than constraints on the solution,
rather than specify the acquisition process. An Al approach would work close to
each structure as it grew and so could provide a better account of the
relationship between innate heuristics and generalizations in the
fully-developed structure than Chomsky’s conjecture that the former somehow lock
on to the latter. It could also distinguish any specitically linguistic prior
knowledge from that which is general to sensorimotor activity.

22

John Burge

6 Conclusion

This talk has attempted to show that Al and early developmental psychology
may be of value to each other. 1t has been suggested that the infant’s gradual
approach to the insightful solution of problems may be a valid technique to
employ in solving the frame problem. However the problem itself would not have
become apparent had it not been for the detailed analysis of action forced upon
Al by the neutrality of software ignorant of the ways of the world.

The position advanced does not fall wholly into one of Newell’s (70) eight
possible relationships between Al and psychology. They are

(1) No relationship

(2) Metaphor/attention-focussing
(3) Forces operationality

(4) Provides language

(5) Provides base (ideal) models
(6) Sufficiency analysis

(7) Theoretical psychology

(8) Self sufficient

In none of these is there provision for transferring ideas or results from
psychology to Al, and that this is possible and indeed desirable is one of the
contentions of this paper. Work on chess problems provides another example of
Al making use of psychology. Simon and Chase ('73) consider observations on the
perceptual abilities of grandmasters as a means of isolating the important

factors to develop in the evolution of better programs - rather as has been
suggested here for the frame problem. Good ('69) proposed a collection or
principles of play from good books on chess. These principles were the results
of their propounders’ introspective analyses of their own methods of working.

In present-day chess technology it is difficult to tease apart the psychological
from the purely Al components.

Clowes’ ('73) timely attempt to proselytize Al to a rather powerful subset
of psychology takes this one stage further. His argument was based partly on
the historical priority of psychology. What, he asked, was the point of
continually rediscovering the wheel?

23

John Burge

In contrast with both Clowes and Newell, this paper has argued neither that
"psychology proposes but Al dispases” or its reverse, but that the two
disciplines may best be developedtogether.

References

Anderson and Hayes *72 "An Arraignment of Theorem-Proving or the Logician’s
Folly" Edinburgh DCL Memo No. 54

Beth and Piaget "66 "Mathematical Epistemology and Psychology" Reidel

Chomsky "65 "Aspects of the Theory of Syntax” MIT Press

Clowes 73 AISB Summer School, Oxford

Cunningham *72 "Intelligence: Its Organisation and Development” Academic Press

Good’69 "A Five-Year Plan for Automatic Chess” p89 Machine Intelligence 2 EUP

Hebb *49 "The Organisation of Behavior” Wiley

Korner °55 "Kant" Penguin

McCarthy and Hayes 63 "Some Philosophical Problems from the Standpoint of
Artificial Intelligence" p463 Machine Intelligence 4 EUP

McNeill 66 "Developmental Psycholinguistics” p15 of "The Genesis of Language”
eds Smith, F and Miller, G.A. MIT Press

Melizer *70 "Generation of Hypotheses and Theories” Nature vol 225, p972

Michie *70 "Heuristic Search” Computer Journal vol 14, p96

Newell 70 "Remarks on the Relationship between Artificial Intelligence and
Cognitive Psychology" p363 of "Theoretical Approaches to Non-Numerical
Problem-Salving" eds Banerji and Mesarovic Springer-Verlag

Newsted *73 "Simulation as a Way to Understand a Theory: A Preliminary Model
of Cunningham’s Hebb-Piaget Theory of Intelligence" School of Business
Administration, University of Wisconsin, Milwaukee

Piaget ’54a "“The Construction of Reality in the Child" Basic Books

Piaget '54b "The Origins of Intelligence in the Child" RKP

Raphael '71 "The Frame Problem in Problem-Solving Systems” p159 of "Artificial
Intelligence and Heuristic Programming” eds Findler and Meltzer EUP

Simon and Chase *73 "Skill in Chess" American Scientist vol 61, p394

Tolrnan *32 "Purposive Behavior in Animals and Men" Appleton-Century

24

stage internal mode relations between ctare
mpodes
I reflex
,r—_____~\--jfordination
I (habit) primary -
secondary IzI

oncateratioh
Iv means-end

internal coordination .
tertiary
Vi rapid ift:x;ul—‘__/

coordination

Figure 1

reflex

habit

action sensation

neans=end

categories underlined

motive action

modes cf action not underlired

rapid internal
coordination

intention activity

o
%‘
5
o
N

REPRESENTING NEGATIOR 1IN A PLAMNER SVYSTEM
D.J.k. Davies

Theoretical Psychology Unit,
School of Artificial Intelligence,
Edinburgh University.

Abstract

A program is described which carries on a dialogue with the operator,
accepting English statements and questions, noting the statements and
answering the questionms. A method is described for representing negative
information. The program goes beyond previous question-ahswering systems
in that new information can be given in English even where this entails
selectively removing older information. Universal and existential
"quantifiers' and negation may be used in both statements and questions.
The treatment of the quantifiers is outlined. The program uses POPLER
1.5, a PLANNER-1ike system.

Key-words

Natural Language, PLANNER, Negation, Quantifiers, Question-answering,
Procedures.
Introduction

This paper concerns a Natural-language question-answering program
which will accept new information in English as well as answering
questions. The program uses POPLER 1.5 (Davies 1973), a PLANNER-like
system, rather than predicate logic; methods are presented for

(i) representing negative information such as in (1) and (2);

John doesn't own that house. 1)
No-one ate any apples. (2)
and

(ii1) removing or 'forgetting' old items of information which conflict
with new statements.
These methods depend on the use of 'self-erasing procedures'. The
relationships between negation and universal and existential quantifiers
will be outlined.

The program can be given new information by typing in a suitable
English indicative sentence, and the information will then be used in
answering subsequent questions to which it is relevant. A particular
problem arises when such a statement contradicts information stored
previously: the out-of-date informetion must be removed. This problem
is exceedingly difficult to solve in a system based on the storing of

predicate calculus formulas. Inconsistencies must be avoided; however

26

D.J.K. Davies

it is generally hard to know which formulas to remove when a new formula
is added, particularly when quantifiers are involved. So far, no system
based on predicate calculus has demonstrated a solution to this, and that
is an important reason for using a PLANNER-like system.

In a PLANNER-like system, propositional information can be
represented by two different methods. First, a list-constant 'assertion'
can be stored in the 'data-base'; this method is suitable for 'atomic
facts' which do not contain any quantifiers or variables, e.g. [IN COW1
FIELD2]. Secondly, information can be represented by procedures -
programs called through pattern matching. A procedure has a pattern
as well as its body of program. In eppropriate circumstances, procedures
are called and their bodies run; the procedures called are those whose
patterns 'match' a given 'target pattern' item. Before any procedure is
used, it has to be 'asserted', telling the calling mechanism that it is
available for use. It is possible subsequently to 'erase' the procedure
withdrawing it from use again.

Two main types of procedure are used in the program: asserting
and infer procedures. Asserting procedures are called with the function
draw, which may be read as "draw conclusions from ...". Draw is applied
to an item (which represents a proposition) and calls all asserting
procedures whose patterns match that item. One call of draw may cause
several procedures to be called.

Infer procedures are called with the system function infer, which
also takes an argument item which represents a proposition; infer will
try to infer the proposition's truth. Infer calls an infer procedure
whose pattern matches the item; if several such procedures are available
then only one is called. If, however, a back-tracking 'failure' backs
up, then infer calls another procedure instead if there is one.

The operator maintains a dialogue with the program by typing English
statements and questions on a teletype, and the program responds to each
ocne in turn. The program is of interest as z (very incomplete) model of
a 'hearer' of English, not of a 'speaker’', and the program's responses are
stereotyped. A typical dielogue is shown in Figure 2; the marginal
rotes will be explained later. The cperator may use negaticn and
'quantifier' words in his questions and statements; this covers the
words: each, every, any, all, some, 2, an, not, there is, no-one,
something, etc. Collective uses ("I paid £500 for all those cows"),

cardinals ("Five sheep were stolen') and "many' and "few' are not hendled.

The domain of disccurse is very limited in subject matter. A

D.J.M. Davies

npumber of pecple own various animals and keep them in varicus fields.
Certain facts are known to the program beforehand, but its ‘beliefs' will
change in accordance with what it is told. The precgram demonstrates some
'upderstanding' of negation and the quantifiers, but it is not a detailed
model for the concepts of ownership and place.

The program is based on the principles put forward by Davies and
Isard (1971) for a model of a hearer. The response to any utterance
takes place in two stages as shown in Figure 1. The utterance is first
'compiled' into a piece of program which represents the (cognitive)
meaning of the utterance. That is, if the hearer then runs this piece of
program he will respond appropriately. For instance, a statement
‘compiles’ into a program to store the information (and erase out-of-date
information). A question 'compiles' into a program which, if run, will
compute and print a suitable reply. This 'compilation' of the utterance
may be regarded as 'understanding' it. The program then goes on tec run
the compiled utterance, thus producing a response. There are no
interesting peripherals available to the program, so there is no provision
for responding to imperatives (e.g. '"Shut the door"). In what follows,
we shall not examine the 'compilation' process in detail but will look at

the programs which various types of utterance compile into.

Simple Assertions

The simple assertion (3) compiles into the program (4).

Cowl belongs to Brown. (3)
(ACKNLDGE (DRAW [BELONG COW1 BROWNI)) “)

This program looks like a mixture of LISP and POP-2. Parentheses mean a
function call in LISP format, while square brackets mean a list as in
POP-2. Every statement compiles into a program of the form (ACKNLDGE
(DRAW 1ist)) where list represents the proposition.

When (4) is run, draw is applied to the given list and (as described
earlier) calls asserting procedures whose patterns match it. Draw
returns some result, and the function acknldge is applied to it. Actually,
all the work is done by the procedures, and acknldge merely prints "OK'.
In (4) the argument of draw is a 'simple fact' and there are twec standard
procecures to be run. The procedure ASSTINFO is called for any 'simple
fact' and inserts it into the data-base. The procedure BELONGl is specific
to assertions about BELONG; it checks (in this case) whether COWl1 belonged
to someone other than Brown, and if so removes the out-of-date information.

It may be that draw will also call one or more other asserting procedures

28

L.J.¥. Davies

which have been created by previocus statements.

Other statements are handled in a generally similar way; draw is
applied to e list which represents the information, and calls procedures.
There are different standard procedures for all the various types of

statements (negations, existentials, etc).

Simple Yes-No Questions

A Yes-No question compiles into a program closely related to that

for the corresponding statement. For example, (5) 'compiles' into (6):

Does cowl belong to Brown? (6))]
(ANSWER (YESNO [BELONG COW1 BROWNI)) (6)

The program (6) differs from (4) only in the two functions called. Yesno
is a function which takes a list representing a proposition, and looks to
see whether (on the basis of the stored information) it is true, false, or

undecidable. It returns true, false or undef as its result, and the

function answer prints a suitable reply.

Yesno first tries to establish the truth of the proposition by using
the function deduce. Deduce takes the list and looks in the data-base to
see whether it is a 'simple fact' which has already been recorded there.

If that fails, deduce calls infer to see whether there is an infer proced-
ure which will establish the truth of the proposition. If deduce succeeds
then yesno returns true.

If deduce fails, then yesmo has to discover whether the proposition
is refutable. The method adopted for doing this in most question-answer-
ing systems is to try to 'prove' (i.e. deduce) its negation. In this
system, however, we capitalise on the fact that new information can be
added and that inconsistent old information is thereupon removed. That is,
yesno applies draw to its argument, and watches to see whether this entsails
erasing any piece of information., If anything has to be erased then the
given proposition is inconsistent with the available information, so yesno
returns false. If nothing was erased then yesno returns undef since the
question is undecidable. This application of draw by yespo is dome in
'Sceptical Mode', which means that any attempt to erase something will
irmediately be spotted (causing execution of draw to be terminated), and

that in any case all side-effects of the draw will be undone afterwards.

For example, suppose that (3) has already been typed in, and we now

ask (5). Deduce will find [BELONG CCWT BRCOWNI in the data~base, so

D.J.M. Davies

yesno returns true and the reply is "Yes". On tke other hand, suppose
that we ask (7) which 'compiles' intoc (8): '

Does Williams own cowl? (7)
(ANSWER (YESNG [BELONG COW1 WILLIAMSI1)) (8)

Yesno tries deduce first, but that will fail; the given list is not in

the data-base, and no procedure will be able to infer it. Therefore draw
is applied to the list in Sceptical Mode. Draw operates as usual for a
simple fact, calling ASSTINFO ‘and BELONG1l in this case. BELONG1l will now
find that [BELONG COW1 BROWN] is recorded in the data-base, and therefore
erases it. Since this is done in Sceptical Mode, the erasure is 'trapped',
the effects of the draw are undone again, and yesno exits with result
false.

Let us now consider the treatment of a simple denial such as (9),

which compiles into (10):

Cow3 does not belong to Brown. (9)
(ACKNLDGE (DRAW [NOT [BELONG COW3 BROWN11)) (10)

When (10) is run, the standard procedure DENYFACT is called, which special-
ises in denials of simple facts. This procedure first erases the list
[BELONG COW3 BROWN] from the data-base if necessary. However, this is

not sufficient, because yesno would now merely return undef if applied to
that 1ist. DENYFACT therefore also creates (and asserts) a new asserting

procedure (11) which represents the specific denial.
(PLAMBDA ASSERTING [] [BELONG COW3 BROWN] (ERASEA (FRAMEDATA 1))) (11)

This procedure has pattern [BELONG COW3 BROWN] so it will be called if
draw is applied to that list. When it is called, its only effect is to
erase itself from the index of procedures in use. (The expression
(FRAMEDATA 1) will evaluate to the procedure itself at run-time.)

If we now ask the question (12), which compiles into (13),

Does Brown own cow3? (12)

(ANSWER (YESNO [BELONG COW3 BROWNI)) (13)

yesno will try deduce first as usual. As in the previous case, deduce
will fail, because Brown does not own cow3. Once again, yesno then
applies draw to its argument, in Sceptical Mode. As we have just remarked,
draw will now call procedure (11), which erases itself. This erasure is
'trapped’' in sceptical mode, so yesno finally returns false again, which
is correct.

On the other hand, i(fwe subsequently state '"Brown owns cow3", then

draw is applied to the same list, but not in Sceptical Mode this time.

g

D.J.M, Davies

Procedure (11) is called, and erases itself; it will have no further
effect. It can be seen that procedure (11) represents the meaning of

the denial (9) in a very direct manner.

uantifiers

Figure 3 summarises the treatment of the various quantifiers by
draw and deduce. Each of the various actions is implemented by means
of a "specialist" procedure; the whole system is recursive (with the
exception of IFANY statements), permitting complicated propositions to
be handled.

It can be seen from Figure 3 that there are three quantifiers,
THEREIS, FORALL, and IFANY, not two as in predicate logic. THEREIS is
the existential quantifier, while FORALL and IFANY are distinct universal
quantifiers; this distinction arises because propositions may change
in truth value as the hialogue progresses. Each type of quantifier binds
a variable, of a specific type, over a 'matrix'. FORALL claims that the
matrix is true for all individuals of a given type, at the time of the
utterances (all utterances are in the present tense). IFANY goes further,
claiming that the matrix will remain true of all such individuals for all
future time (until a later statement explicitly rejects this again).

For example "Every one of my friends takes drugs' applies to my friends
now (and presupposes that I have at least one); it is a FORALL statement.
In contrast, "Anybody caught trespassing will be prosecuted" is an IFANY
statement, applying on future occasions (but not presupposing that
anybody will get caught).

A FORALL statement can be 'run' by checking off all the relevant
individuals in turn, asserting the matrix of each. This usually reduces
to a series of simple facts or simple denials. An IFANY statement,
however, also requires the creation of one or more procedures, depending
on the structure of the matrix. The procedures represent the meaning of
the statement as a rule of inference, permitting it to be used in
changed situations and about newly introduced individuals. The procedures
depend on the structure of the matrix. Each separate structure requires
different treatment, and consequently only a limited variety can be
handled.

In general, the words every and each translate into FORALL, while
all translates into IFANY. (Collective uses are not yet handled.)

Any also translates into IFANY in some contexts, but becomes THEREIS

31

D.J.¥. Davies

in questions and negative contexts, and in the antecedent of another
universal quantifier. 'Definite' comstructions such as "any of the ..."
become FORALL. This scheme follows Vendler (1967) and Johmson-Laird
(1870) .

Cornsider, for example, the statement (14) which compiles into (15).

Any cow in fieldl belongs to Brown. (14)
(ACKNLDGE (DRAW “[IFANY [(COW) V1]
[IMPLIES [IN £*V1 FIELD] [BELONG £%V1 BROWN111))
(15)
When (15) is run, draw calls the appropriate specialist procedure which
creates (and asserts) two new procedures. These new procedures will
read thus (slightly simplified):
proci=
(PLAMBDA INFER [[(COW) V11] [BELONG £*V1 BROWN]
(DEDUCE [IN £*V1 FIELD11)
(DRAW [BELONG £*V1 BROWNID)) (16)
and
{(PLAMBDA ASSERTING L[[(COW) V111 [NOT [BELONG £*V1 BROWN]]
(COND [(HASRICC (DEDUCE [IN £*V1 FIELD11))
(ERASEA procl)
(ERASEA (FRAMEDATA 1))1]
[ELSE (DRAW INOT [IN £%V1 FIELD111) 1)) 17
The first procedure (16) permits one to infer that a cow belongs to
Brown if it can be deduced to be in fieldl. Whenever this inference is
made, the conclusion is also put into the data-base to avoid having to
repeat the computation. The other procedure is triggered by a denial
that Brown owns a certain cow, and normally draws the conclusion that the
cow concerned is not in fieldl. The complication is required because it
must be possible to erase these two procedures again. This is done by
stating 'in one breath' that some cow is in fieldl but is not owned by
Brown. When (17) is triggered by a denial that Brown owns a certain cow,
it checks whether that cow is known to be in fieldl by virtue of the
current utterance (hasricc does this). If so, then the two procedures
are erased since the asserted conjunction is inconsistent with the IFANY
statement.
It can be seen from Figure 3 that the negation of a universal is
an existential, and vice versa. This is in accordance with predicate
logic. The negation of (14) will be converted to the existential (18),
by virtue of the rule for negating IMPLIES.

32

D.J.M. Davies

[THEREIS [(COW) V1l [AND [IN £xV1 FIELD1] INOT BELONG £+V1 BROWN111]l (18)

When a THEREIS list is supplied to draw, the specialist procedure
concerned first tries to deduce it, which is done by looking for any
instance. If no individual already satisfies the matrix, then an
'arbitrary' individual of the given type is hypothesised and the matrix
asserted of it. This will, for example, serve to erase the procedures
(16) and (17), and to permit THEREIS to be subsequently deduced.
However this technique is unsatisfactory; perhaps the system should
ask the operator which individual is dnvolved. A similar problem arises
with statements involving cardinals, e.g. "Brown owns five animals".

In a statement, the negation of THEREIS becomes IFANY (rather
than FORALL). This means that a procedure will be created. For
example, '"Brown doesn't own any animals" gives rise to the procedure

(19), which is self-erasing rather like (11).

(PLAMBDA ASSERTING [[(ANIMAL) V211 [BELONG £*V2 BROWN]
(ERASEA (FRAMEDATA 1))) 19)

On the other hand, 1n deduce the negation of THEREIS becomes FORALL. To
answer ''Who does not own anything?" the system looks for people with
no known possessions, rather than for people who are explicitly known

not to have possessions.

Relationship to Previous Work

The main previous attempt to translate English into a PLANNER-like
language is Winograd's system (1972). Winograd's system provided only
limited scope for the operator to tell the program things; on the
whole, the BLOCEKS program knows most things already. It was possible

to tell that program who "owned" various blocks, and subsequently to

ask questions. However, his treatment of denials was not entirely
satisfactory. When something was denied, an infer procedure (in our

terminology) was created which is triggered by the attempt to infer

the proposition denied; the procedure makes it its business to ensure
that the false propositicn cannot be inferred. The trouble with this is
that no distinction is drawn between the answers "No” and ""Dunno" to a
yes-no question.

The treatment of '"quantifiers" described here is based primarily on

Vendier's (1967) account, but has obvioue affinities with predicate logic.

D.J.¥. Davies

Acknowledgments

I am glad to acknowledge the encouragement of and helpful discussions
with my colleagues, especially Professor H.C. Longuet-Higgins and
Stephen Isard. This work was supported in part by the Science Research
Council.

References

Davies D.J.M. (1773) POPLER 1.5 Reference Manual TPU Report 1, Edinburgh
University.

Davies, D.J.M. & Isard, S.D. (1971) Utterances as Progranms, in Machine
Intelligence 7 (eds Meltzer & Michie) Edinburgh University Press.

Johnson-Laird P.N. (1970) The interpretation of quantified sentences, in
Advances in Psycholinguistics (eds Flores D'Arcais & Levelt) North-
Holland, London.

Vendler Z. (1967) Each and Every, Any and All, in Linguistics in Philosophy
Cornell University Oress, Ithica, N.Y.

Winograd T (1972) Understanding Natural Language. Edinburgh University

Press.
UTTERANCE W%:%}.%;‘T) PIECE OF PROGRAM REB?;F’ ACTION
in English € in POPLER 1.5 P Store information
or answer question.
Figure 1. Response to an Utterance

3u

: Sheep4 belongs to Brown.

0K

: Does Williams own sheep4?

1 BELIEVE [BELONG SHEEP4 BROWN]
NO

: Willaims owns all animals in field2.
0K

: Sheep4 is in field2.

0K

: Who owns sheep4?

THE ANSWER IS: WILLIAMS

: Is every cow in field2 the property of

Williams?
[NO (COW) WHICH [IN £+V3 FIELD2]]
YES

: Is each sheep in field2 owned by Williams?

YES

: Does any sheep in field2 belong to Brown?
1 BELIEVE PROCEDURE (PLAMBDA INFER ...)

NO

: There is a cow in field2 which is owned by

Brown.
0K
: Do all the sheep in field2 belong to
Williams?
YES

D.J.M. Davies

Sceptical; item being erased.

IFANY inference.

The inference has been made.
FORALL question.

No referents.

THEREIS question.

Seeptiecal; procedure erased.

Procedures erased now.

FORALL question.

: Do all sheep in field2 belong to Williams? JIFANY question.

DUNNO

Figure 2. A Sample Dialogue

Davies

D.J.H.

rsuotisonb-gu

(Lra LON] ® QNV] 32n030)

([{aq LON] ® S3ITdWI]
ERlELD]

(C(® LON] IBA SIIYIHL]
391024)

([[® LON] XBA SI3YIHL]
30nQ3aa)

([[® LON] T®a 77VH04]
ERI[EID]

*quesead jou
8% 3T I8yl }O2Yd 03
288Q-818p U} }OOT

([*¥x LON] 32N03Q)
{etueq ednpaq oy

S0A}300UN0) pUB BJOTJIIUBNY JO O1qBL

‘g 8andirg

*gjuame1831S snotaaxd £q pPe3ONI}BUOD USSQ IABY
gsoanpaocoxd axegam seosedo Ivrnotired uy pemroyxad aq Asw SUOTIDB IAYIQ
‘gpanpesoxd paspuels 9yl Aq 9880 YOBO UT dUOP ST 1BUYM SMOUS STq8} STYL

“gjuemalels

(C[9 LON] ® ONV] MYHG)
([{a LON] ® S3IITdWI]
Mvda)
([[®™ LON] IBA STI¥IHL]
MYda)

([{m LON] T®A SIIYIHL]
MVda)

([[W LON] X8A ANV4I] MVYQ)

raanpeooxd 3uyseso-y1o8 OYBN
{9s8(Q-838p WOIJ SAOWIY

([*¥X ION] MV¥Q)
Auaq oF

*suofisend
-HM pu® ousax

q

eonpep uayj ‘® meaq
‘yjoq eonpaq
*9ouB3BUT
,Lxva3tqae,

ue 103y aonpa(q

*IEeNpIATPUT
£x9a9 I03 3dNPaQq

*30UB}SUT UB JOF YOO

*988(q~838P UT Y0OOT

(Xx 32Nn03Q0)
@onpaq oJ

oused m S3ULWAIVIS

°q meIp uayl
aTqu-9onpap S ¥ I

‘qioq asaq

*sexnpasoxd 30nI1SUOD
uayj [BNpTATPUT
Lxaae 1oy meaqg

‘TenprATPUT
Lxans IoF mBI(

*30uUB)BUT
,LxeI37qI8, 3ONIFBUOCD
a8 IMIoaYlO0 {oaTqe
~aonpap F1 3uiyirou oq

*9880-8B38D UT AI01S

(XX MYYQ0)
MBIQ OL

:uy pasq

[q ® SATTRI]

[4 B ANV]

[W IBA ANVAI]

[u 1ea TIVHOJ)

[@ X8A STIYAHL)

joey atdmrs

UNDERSTANDING SIMPLE PICTURE PROGRAMS

Ira P. Goldstein
Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract

A collection of powerful ideas--description, plans, linearity,
insertions, global knowledge and imperative semantics--are explored
which are fundamental to debugging skill. To make these concepts
precise, a computer monitor called MYCROFT is described that can debug
elementary programs for drawing pictures. The programs are those
written for LOGO turtles.

Keywords: debugging, program writing, planning, linearity

1. Introduction

This paper reports on progress in the development of a monitor for
debugging elementary programs. Such research is important both for
its practical applications as well as for its investigation of
concepts which are fundamental to programming skill. A computer
monitor called MYCROFT has been designed that can repair simple
programs for drawing pictures [Goldstein 1974]. The reasons to
develop such monitors are:

1. to provide a more precise understanding of the
fundamentals of programming;

2. to facilitate the development of machines capable of
debugging and expanding upon the programs given them by
humans; and

3. to produce insight into the problem solving process so
that it can be described more constructively to
students.

MYCROFT is intended to supply occasional advice to a student to
aid in the debugging of programs that go awry. {Just as the system's
namesake, Mycroft Holmes, occasionally supplied advice to his younger
brother Sherlock on particularily difficult cases.) 1In this
interaction, the user supplies statements that describe aspects of the
intended picture and plan, and the system fills in details of this
commentary, diagnoses bugs and suggests corrections. In this paper,
however, I shall not emphasize this interactive role. Instead, my
primary purpose will be to describe MYCROFT as a model of the
debugging process. This is reasonable since MYCROFT's utility as an
advisor stems directiy from its understanding of debugging skill.

MYCROFT is able to correct the programs responsible for the bugged

pictures shown in figures 2, 3, 4 and 5 so that the intended pictures
are achieved. In this paper, the debugging of figure 2, a typical

37

Wi

Goldstein

example, will be thoroughly explained. Figures 3, 4 and 5 are
corrected in analogous ways: see [Goldstein 1974] for details.

K
N

\\\\\\\ 11::::::_
Intended MAN) Picture drawn by NAPOLEON
FIGURE 1 . FIGURE 2

Picture drawn by
INTENDED TREE bugged TREE program

FIGURE 3

38

Goldstein

3

—

Picture drawn by bugged WISHINGWELL
Intended WISHINGHELL . T rvaran

FIGURE 4

oio_ A

i I
SN L9
NI

Intended . Picture drawn by bugged
FACEMAN FACEMAN program

FIGURE 5

39

Goldstein

These pictures are drawn by program manipulation of a graphics
device called the turtle which has a pen that can leave a track aiong
the turtle's path. Turties play an important role in the LOGO
environment where childran learn problem solving and mathematics by
programming display turtles, physical turtles with various sensors,
and music boxes [Papert 19723. Turtle programs have proven to be an
excellent starting point for teaching programming to children of all
ages, and therefore provide & reasonable initial problem domain for
building a program understanding system.

The context of MYCROFT's activity is the interaction of three
kinds of description: graphical (i.e. the picture actually drawn),
procedural (the turtle program used to generate the picture) and
predicative (the collection of statements used to describe the desired
scene). For MYCROFT, debugging is making the procedural description
produce a graphical result that satisfies the set of predicates
describing intent. Thus, debugging here 1s a process that mediates
between different representatinns of the same object.

2. Flowchart of the System

The organization of the monitor system is illustrated in figure 6.
Input to MYCROFT consists of the user's programs and a model of the
intended outcome. For the graphics world, the model is a conjunction
of geometric predicates describing important properties of the
intended picture. MYCROFT then analyzes the program, building both a
Cartesian annotation of the picture that is actually drawn and a plan
explaining the relationship between the program and model. (Any or
all of the plan can be supplied directly by the user, thereby
simplifying MYCROFT's task.)

The next step is for the system to interpret the program's
performance in terms of the model and produce a description of the
discrepancies. These discrepancies are expressed as a list of the
violated model statements. The task is then for the debugger to
repair each violation. The final output is an edited turtle program
(with copious commentary) which satisfies the model. (Occasionally,
the plan that MYCROFT hypothesizes requires implausible repairs--for
example, major deletions of user code--resulting in the debugger
asking the plan-finder for a new plan.)

The remainder of this paper introduces MYCROFT by describing the
debugging of NAPOLEON (figure 2) and discussing some important ideas
about the nature of plans. For a discussion of the other modules
shown in the flowchart, see [Goldstein 1974].

3. Picture Models

To judge the success of a program, MYCROFT requires as input from
the user a description of intent. A declarative language has been
designed to define picture models. These models specify important
properties of the desired final outcome without indicating the details
of the drawing process. The primitives of the model language are
geometric predicates for such properties as connectivity, relative

40

MODEL

FLOWCHART OF MYCROFT

USER

PROGRAM

implausibled debugging — find new plan

planning suggestions MODEL
AN PRET | DEBUG
FINDPLAN PL. INTERPRE VK)LATIONSJ
3
purposes
RMANG CARTESIAN
PICTURE
ANNOTATOR DESCRIPTION
> !

D = data

debugging advice - caveats

O= modules of mycroft

FIGURE 6

REPAIRED
PROGRAM

upe3epion

Eoldstsin

position, length znd location. The following models are typical of
those that the user might provide to describe figure 1.

MODEL MAN

M1l PARTS HEAD BODY ARMS LEGS

M2 EQUITRI HEAD

M3 LINE BODY

M4 V ARMS, V LEGS

M5 CONNECTED HEAD BODY, COMNECTED BODY ARMS, COMNECTED BODY LEGS
M6 BELOW LEGS ARMS, BELOW ARMS HEAD

END

MODEL V

M1 PARTS L1 L2

M2 LINE L1, LINE L2

M3 CONNECTED L1 LZ (VIA ENDPOINTS)
END

MODEL EQUITRI

M1 PARTS (SIDE 3) (ROTATION 3)

M2 FOR-EACH SIDE (= (LENGTH SIDE) 100)

M3 FOR-EACH ROTATION (= (DEGREES ROTATION) 120)
M4 RING CONNECTED SIDE

END

The MAN and V models are underdetermined: they do not describe,
for example, the actual size ot the pictures. The user has latitude
in his description of intent because MYCROFT is designed only to debug
programs that are almost correct. Therefore, not only the model, but
also the picture drawn by the program and the definition of the
procedure provide clues to the purpose of the program.

4. The NAPOLEON Example

MYCROFT is designed to repair a simpie class of procedures called
Fixed-Instruction Programs. These are procedures in which the
primitives are restricted to constant inputs. Sub-procedures are-
allowed; however, no conditionals, variables, recursions or iterations
are permitted. Given below are the three programs which drew figure
2--NAPOLEON, VEE, and TRICORN. The "<{-" commentary is calied the pian
and was generated by MYCROFT to tink the picture models--MAN, V and
EQUITRI--to the programs.

TO NAPOLEON {- (accomplish man)

10 VEE <~ (accomplish legs)

20 FORWARD 100 <- (accomplish (piece 1 body))
30 VEE <- (insert arms body)

40 FORWARD 100 ¢~ (accomplish (piece 2 body))
50 LEFT 90 - (setup heading (for head))
60 TRICORN <~ (accompiish head)

END

42

Goldstein

TC VEE <~ (accomplish v)

10 RIGHT 45 - (setup heading for 11)

20 BACK 100 <{- (accompiish 11)

30 FORWARD 100 - (retrace 11)

40 LEFT 90 <~ (setup hesading for 12)

50 BACK 100 - {accomplish 12)

60 FORWARD 100 <~ (retrace 12)

END

TO TRICORN <~ (accomplish equitri)

10 FORWARD 50 {- (accomplish (piece 1 (side 1)))
20 RIGHT 90 ¢~ (accomplish (rotation 1))

30 FORWARD 100 <~ (accomplish (side 2))

40 RIGHT 90 <~ (accomplish (rotation 2))

50 FORWARD 100 <~ (accomplish (side 3))

60 RIGHT 90 <~ (accomplish (rotation 3))

70 FORWARD 50 <~ (accomplish (piece 2 (side 1)))
END

The turtle command FORWARD moves the turtle in the direction that
it is currently pointed: RIGHT rotates the turtle clockwise around its
axis. A complete description of LLOGO can be found in [Abelson 1974],
but is not needed here.

A Cartesian representation of the picture is generated by an
annotator that describes the performance of turtle programs. The plan
is used to bind sub-pictures to model parts. This allows MYCROFT to
interpret programs with respect to their models and produce lists of
violated model statements. MYCROFT produces the following 1ist of
discrepancies for NAPOLEON:

(NOT (LINE BODY)) ;The body is not a line.

(NOT (BELOW LEGS ARMS)) ;The legs are not below the arms.

(NOT (BELOW ARMS HEAD)) ;The arms are not below the head.

(NOT (EQUITRI TRICORN)) ;The head is not an equilateral
triangle.

MYCROFT is able to correct these bugs and achieve the intended picture
using both planning and debugging knowledge.

5. Plans

This section introduces a vocabulary for talking about the
structure of a procedure which is useful for understanding both the
design and debugging of programs. A main-step is defined as the code

required to achieve a particular sub-goal {sub-picture). A

interface between main-steps. Thus, from this point of view, a
program is understood as a sequence of main-steps and preparatory-
steps. A similar point of view is found in [Sussman 1973]. The plan
consists of the purposes linking main- and preparatory-steps to the
model: in the turtle world, the purpose of main-steps is to accomplish
(draw)} parts of the model; and the purpose of preparatory-steps is to
properly setup or cleanup the turtie state between main-sieps or,
perhaps, to retrace over some previous vector.

43

Goldstein

A modular main-step is a sequence of contiguous code intended to
accomplish a particular goal. This is as opposed to an interrupted
main-step whose code is scattered in pieces throughout the program.

In NAPOLEON, the main-steps for the legs, arms and head are modular;
however, the code for the body is interrupted by the insertion of the
code for arms. The utility of making this distinction is that modular
main-steps can often be debugged in private (i.e. by being run
independentiy of the remeinder of the procedure) while interrupted
main-steps commonly Tail becauss of unforseen interactions with the
interleaved code associated with other steps of the plan.

Linearity is an important design sirategy for creating programs.
It has two stages. The first is to break the task into independent
sub-goals and design solutions (main-steps) for each. The second is
then to combine these main-steps into a single procedure by
concatenating them into some sequence, adding (where necessary)
preparatory-steps to provide proper interfacing. The virtue of this
approach is that it divides the probiem into manageable sub-problems.
A disadvantage is that occasionally there may be constraints on the
design of some main-step which are not recognized when that step is
designed independently of the remainder of the problem. Another
disadvantage is that linear design can fail to recognize opportunities
for sub-routinizing a segment of code useful for accomplishing more
than one main-step. A linear plan will be defined as a plan
consisting only of modular main-steps and preparatory steps: a non-
linear plan may include interrupted main-steps.

6. Linear Debugging

Linearity is a powerful concept for debugging as well as for
designing programs. MYCROFT pursues the following linear approach to
correcting turtie programs: the debugger's first goal is to fix each
main-step independently so that the code satisfies all intended
properties of the model part being accomplished. Following this, the
main-steps are treated as inviolate and relations between model parts
are fixed by debugging preparatory-steps. This is not the only
debugging technique available to the system, but it is a valuable one
because it embodies important heuristics (1) concerning the order in
which violations should be repaired and (2) for selecting the repair-
point (location in the program) at which the edit for each violation
should be attempted.

Following this linear approach, MYCROFT repairs the crooked body
and the open head of NAPOLEON before correcting the BELOW relations.
Repairing these parts is done on the basis of knowledge described in
the next two sections. Let us assume for the remainder of this
section that these property repairs have been made--NAPOLEON appears
as in figure 7--and concentrate on the debugging of the violated
relations.

Treating main-steps as inviolate and fixing relations by modifying
setup steps limits the repair of (BELOW LEGS ARMS) to three possible
repair-points: (1) before the legs as statement 5, (2) before the
first piece of the body as statement 15 and (3) before accomplishing
the arms as statement 25. MYCROFT understands enough about causality
to know that there is no point in considering edits following the

4y

Goldstein

NAPOLEON with statement 15

NAPOLEON with parts corrected as RIGHT 135
FIGURE 7 FIGURE 8

execution of statement 30 to affect the arms or legs. The exact
changes to be made are determined by imperative semantics for the
model primitives. This is procedural knowledge that generates, for a
given predicate and location in the program, some possible edits that
would make true the violated predicate. MYCROFT generally considers
alternative strategies for correcting a given violation: it prefers
those edits which produce the most beneficial side effects, make
minimal changes to the user's code or most closely satisfy the
abstract form of the plan.

For BELOW, the imperative semantics direct DEBUG to place the legs
below the arms by adding rotations at the setup steps. More drastic
modifications to the user's code are possible such as the addition of
position setups which alter the topology of the picture; however,
MYCROFT tries to be gentle to the turtle program (using the heuristic
that the user's code is probably aimost correct) and considers larger
changes to the program only if the simpler edits do not succeed. The
first setup Tocation considered is the one immediately prior to
accomplishing the arms. Inserting a rotation as statement 25,
however, does not correct the violation and is therefore rejected.

The next possible edit point is as statement 15. Here, the addition
of RIGHT 135 makes the legs PARTLY-BELOW the arms and produces

figure 8. This edit is possible but is not preferred both because the
legs and arms now overlap and because the legs are not COMPLETELY~
BELOW the arms. MYCROFT is cautious, being primarily a repairman
rather than a designer, and is reluctant to introduce new connections
not described in the model. Also, given a choice, MYCROFT prefers the
most constrained meaning of the model predicate. If the user had
intended figure 8, then one would expect the modal description to
include additional declarations such as (CONNECTED LEGS ARMS) and

45

Golidstein

(PARTLY-BELOW LEGS ARMS).

Adding RIGHT 90 as statement 5 achieves (COMPLETELY-BELOW LEGS
ARMS) and the NAPOLEON program now produces the intended picture
(figure 1). This correction has beneficial side effects in also
estabiishing the proper relationship between the head and arms,
confirming for MYCROFT that the edit is reasonable, since a particular
underlying cause is often responsible for many bugs. Thus the result
of (DEBUG (BELOW LEGS ARMS)) is:

5 RIGHT 90 <~ (setup heading such-that (below legs arms)
(below arms head))
(assume (= (entry heading) 270))

The assume comment records the entry state with respect to which
the edit was made. If the program is run at a future time in a new
environment, then debugging is simplified. The cause of a BELOW
violation w11l now immediately be seen to be an incorrect assumption,
and the corresponding repair is obvious -- insert code to satisfy the
entry requirements described by the assumption. This illustrates the
existence of levels of commentary between the model and the program,
each layer being more specific, but aiso more closely tied to the
particular code and runtime environment of the program.

Linear debugging greatly raestricts the possibilities that must be
considered to repair a violation. It is often successful and
constitutes a powerful first attack on the probiem of finding the
proper edit; however, it is not infallible. Non-linear bugs due to
unexpected interactions between main-steps would not be ‘caught by this
technique. '

Figure 9 illustrates a non-linear bug. (INSIDE MOUTH HEAD) is

O O

-

0
FIGURE 9

violated but it cannot be repaired by adjusting the interface between
these two parts (indicated in figure 9 by the dotted 1ine OP) since
the mouth is longer than the diameter of the head. The imperative
semantics for fixing INSIDE recognize this. Consequently, MYCROFT
resorts to the non-linear technique of modifying main-steps to repair
a relation between parts. The imperative semantics suggest changing
the size of one of the parts because this transformation does not

46

Goldstein

affact the shape of the part and consequently will probably not
introduce new violations in properties describing the part. Advice is
required from the user to know whether shrinking the mouth is to be
preferred to expanding the head. Two more non-linear debugging
techniques are discussed in the next two sections: one is based upon
knowing the abstract form of plans, and the othar uses domain-
dependent theorems about global effects.

7. Insertions

In programming, an interrupt is a break in normal processing for
the purpose of servicing a surprise. Interrupts represent an
important type of plan: they are a necessary problem solving strategy
when a process must deal with unpredictable events. Typical
situations where interrupts prove useful include servicing a dynamic
display, and arbitrating the conflicting demands of a time sharing
system. 1In the real world, biological creatures must use an interrupt
style of processing to deal with dangers of their environment such as
predators.

A very simple type of interrupt is one in which the program
associated with the interrupt is performed for its side effects and is
state-transparent, i.e. the machine is restored to its pre-interrupt
state before ordinary processing is resumed. As a result, the main
process never notices the interruption. In the turtle world, an
analogous type of organization is that of an inserted main-step
(insertion). It naturally arises when the turtle, while accomplishing
one part of a model (the interrupted main-step), assumes an
appropriate entry state for another part (the insertion). An obvious
planning strategy is to insert a sub-procedure at such a point in the
execution of the interrupted-step. Often, the insertion will be
state-transparent: for turtles, this is achieved by restoring the
heading, position and pen state. The insertion of the arms into the
body by statement 30 of NAPOLEON is an example of a position- and pen-
but not heading- transparent insertion.

Insertions do not share all of the properties of interrupts. For
example, the insertion always occurs at a fixed point in the program
rather than at some arbitrary and unpredictable point in time. Nor
does the insertion alter the state of the main process as happens in
an error handler. However, if one focusses on the planning process by
which the user's code was written, then the insertion as an
intervention in accomplishing a main-step does have the flavor of an
interrupt.

The FINDPLAN module aids the debugger in a second way beyond just
the generation of the plan. This is through the creation of caveat
comments to warn the debugger of suspicious code that fails to satisfy -
expectations based on the abstract form of the plan. In particular,
if FINDPLAN observes an insertion that is not transparent, then the
following caveat is generated:

30 VEE <- (caveat findplan (not (rotation-transparent insert))).

The non-transparent insertion may have been intentional, e.g. the
preparation for the next piece of the interrupted main-step may have

w7

Goldstain

been placed within the insertion. The user's program may have
prepared Tor the next main-sisp within the inssrtion. Hence, FINDPLAN
does not immediately attempt %o correct the anomalous code., Only if
subsequent debugging of some model wiolation confirms the caveat is
the code corrected. There will often be many possible corrections for
a particuliar model viglation. The caveat 15 used to increass ths
plausibility of those edits that eliminate FINDPLAN's complaint. In
this way, the abstract form of the plan heips to guide the debugging.

For NAPOLEON, analysis of (MNOT (LINE BODY)) lsads MYCROFT to
consider (1) adding & rotation as statement 35 to align the second
piece of the body with the first or (2) placing this rotation into VEE
as the final statement. Ordinarily, linear debugging would prevent
the latter as it does not respect the inviclability of main-steps.
However, it is chosen here bgcause of the corroborating complaint of
FINDPLAN. The underlying cesuse of the bug is a main-step error (non-
transparent insertion) rather than a preparatory-step failure. Thus,
(DEBUG (LINE BODY)) produces:

70 RIGHT 45 <- (setup heading such-that (transparent vee))

8. Geometric Knowledge

Linearity, preparation and interrupts are general problem-solving
strategies for organizing goals into programs. However, it is
important to remember that domain-dependent knowledge must be
available to a debugging system. The system must know the semantics
of the primitives if it is to describe their effects.

The debugger must also have access to domain-dependent information
to repair main-steps in which the sub-parts must satisfy certain
global relationships. For example, TRICORN has the bug that the
trianglie is not closed. Each main-step independently achieves a side
but the sides do not have the proper global relationship. Debugping
is simplified by the explicit statement in the model that:

(FOR-EACH ROTATION (= (DEGREES ROTATION) 120)).

But suppose the model imposed no constraints on the rotations. Then
the design of the rotations would have to be deduced from such
geometric knowledge as the fact that N equal vectors form a regular
polygon if each rotation equals 360/N degrees.

The pieces of an interrupted-step such as the first side of
TRICORN are not always separated by a state-transparent insert. (This
would be a local interruption.) Instead, it is possible that more
global knowledge is needed to understand the properties of the
intervening code which justifies the expectation that the pieces will
properly fit together. In TRICORN, the second piece (drawn by
statement 70) must be collinear with the first (drawn by statement
10). The global property of the code which justifies this is that
equal sides and 120 degree rotations results in closure. Thus,
debugging violations of globaily interrupted-steps requires domain-
dependent knowledge.

Goldstein

9. Conclusions

The design of MYCROFT required an investigation of fundamantal
problem solving issues including description, simplification,
linearity, planning, debugging and annotation. MYCROFT, however, is
only a first step in understanding these ideas. Further investigation
of more complex programs, and of the semantics of different problem
domains is necessary. It is also essential to analyze additional
planning concepts such as ordering, repetition and recursion as well
as the corresponding debugging techniques. Ultimately, such research
will surely clarify the learning process in both men and machines by
providing an understanding of how they correct their own procedures.

10. Bibliography

[Abelson 1973]

Abelson, H., Goodman, N. and Rudolph, 1.

LOGO manual

LOGO Memo 7 LOGO Project, MIT AI Laboratory (August 1973)

[Floyd 1967]

Floyd, R. W.

"Assigning Meaning to Programs®

Proc. Symp App. Math AMS vol. XIX (1967)

[Fahlman 1973]

Fahiman, Scott

A Planning System For Robot Construction Tasks
AI-TR-283 MIT AI Laboratory (May 1973)

[Goldstein 1974]

Goldstein, I.P.

Understanding Simple Picture Programs
AI-TR-294 MIT AI Laboratory (March 1974)

[Hewitt 1971]

Hewitt, C.

"Procedural Embedding of Knowledge in PLANNER"
Proc. IJCAI 2 (September 1971)

[McDermott 1972]
McCermott, D.V. and G.J. Sussman
The CONNIVER Reference Manual

AI Memo 259 MIT Al Laboratory (July 1973)

[Papert 1972]

Papert, Seymour A.

“"Teaching Children Thinking®

Programmed Learning and Educational Technology, Vo1.9, (Sept. 1972)

[Sussman 1973)

Sussman, G.J.

A Computational Model of Skill Acquisition
AI-TR-297 MIT AI Laboratory (September 1970)

49

Automatic Induction of LISP Functions

Steven Hardy

Essex University, December 1373

Abstract

A program that infers and codes the LISP function "naturally"
intended by a single input-output pair (sample computation) is
described. The program uses a knowledge of LISP programming
and an extended LISP system to develop and test hypotheses
.about the function. The program is written in POPCORN, a POP2
implementation of many of the ideas embedded in CONNIVER.

Keywords

Automatic Programming, Induction, LISP, CONNIVER,

50

Automatic Induction of LISP Functions

Steven Hardy#*

The task of Automatic Programming is to make it easier to use
computers. Initial developments were languages, such as FORTRAN,
which make it possible to specify a numerical algorithm without all
the details of its implementation. Within the language, though, it

is necessary to specify, precisely, the algorithm.

Recent work has centred on the extent to which the specification
of the algorithm itself can be made unnecessary. Thus we have two
major problems - firstly, how to describe the problem solved by a

program and secondly, given such a description, how to generate, auto-

matically, a program solution, Feldman discusses this, at length, in
his paper "Automatic Programming' Eﬂ, as does Baltzer in his review
of the topic [l].

A popular approach has been to specify the problem with an input/
output predicate, usually relying on a resolution based theorem prover
to construct a proof that implicitly contains the necessary program [}6].
This approach has a number of drawbacks. Existing theorem provers are
not very powerful and this limits the size of problem that can be tackled.
Further, it seems as difficult, and presumably as error prone, to .
describe a program - especially one that will involve iteration - in
predicate calculus as to actually code it. Also, as has been pointed
out by several recent writers [7, 8 and 1@], any intelligent proof
system needs to employ knowledge not only in the form of axioms defining
the problem domain, but also in the form of "control" statements embody-
ing one's understanding of how such proofs might well be achieved. This
has led to the development of the ideas embedded in languages such as
PLANNER [8] and CONNIVER [12 and 15].

Another approach relies on debugging an existing program to
achieve the wanted effect - which might be a LOGO drawing [5] or some

action in the BLOCKS world used in Winograd's program [14 and 17].

*The work reported here was carried out under the support of the Science
Research Council.

I should like to thank the members of the Computing Centre for their
advice and guidance. Special thanks go to Mike Brady whose constant
help has been invaluable.

Alternatively we could base an automatic programming system on
a capacity for inductive generalization. Despite the fact that there
are infinitely many functional extensions of the input-output pair
("iopair"):

(A B C D) =>= ((A) (B) (C) (D)) (1)

there is only ome function that would be regarded by LISP programmers
as the "obviously" intended one, viz:

(A B ~-- 2) =>= ((A)(B) --- (Z))

I have written a program, called GAP (Generalizing Automatic
Programmer) which attempts to model the LISP programmer to this extent.
When presented with iopair (1) GAP produces:

(LAMBDA (X)
(COND ((ATOM X) NIL)
(T (CONS (LIST (CAR X)) (SELF (CDR X))))))

If presented with, say,
(ABCD) & (EFGH)=>=(AEBFCGDH)
it produces:

(LAMBDA (X1 X2)
(COND ((OR (ATOM X1)(ATOM X2)) NIL)
(T (CONS (CAR X1)
(CONS (CAR X2)
(SELF (CDR X1) (CDR X2))))))).

GAP is written in POPCORN [ﬁ], an extension of POP2 [5] that
provides many of the features of CONNIVER [12 and 15]. The program
contains a number of heuristic routines which embody knowledge about
various possible formats for LISP functions. GAP looks for features
('cues') of the input, output and the relationship between them.
These are used to activate the appropriate heuristic routine. This
nakes a hypothesis about the basic format of the function, which GAP
attempts to verify, and complete, using an extended LISP system.
Whilst doing this, GAP can discover new cues which can either affect

the current hypothesis or be used to generate new hypotheses.

The routines to notice cues and take the necessary action are
stored in the POPCORN data base, indexed by situations to which they
are applicable. This makes it possible to add new routines without

having to alter the rest of the program. It can be seen that the

52

detailed flow of control will be very dependent on which cues are

noticed and in what order they are noted.

The complete program occupies less than 30k words on a PDP-10.
It takes three or four seconds of CPU time for each of the above

examples,

In section two I show GAP at work on a few simple examples;
in section three there is a fuller discussion of the LISP system.
Ia conclusion I point out some shortcomings of the program and

describe the direction of my current work.

Section Two = GAP at work

When given the iopair (A B C D) =>= ((A) (B) (C) (D)) the cue
that GAP notices is that the length of the output is proportional to
the length of an input -~ in fact equal to the only input's. This is
often the case with simple CDR-loop functions - which are those recur-
sively written LISP programs whose recursion line has the form f(cdr(2)).
Such programs embody an essentially iterative process [ll], and are one

of the most commonly occurring types of LISP function,

Because of this GAP hypothesises that the function is recursive,

with the basic body:
(CONS <form x> (SELF (CDR X)))

GAP divides functions into various types; a simple composition of CARs
znd CDRs is of type PARTOF, for example. <form x> denotes an expression
that is an application of a function of type FORM to x. Type FORM
functions are the whole range of GAP and are those functions where the
output is formed directly out of the input, without special reference

o any particular atoms.

To validate its hypothesis GAP tries to make the above body
evaluate to ((A) (B) (C) (D)) when » is (A B C D). It realises that
<ferm x> nust evaluate to (4) and sets itself the subsidiary problem
(5 2 C D) =>= (A), which it solves by a call on the POPIORN data base
e&nc nence a possible recursive call of GAP. It uses the function it

zets to decide that <form x> can be replaced by (LIST (CAR X)),

i

taving done this GAP works out that the body would 'explain’
the output if (SELF NIL) evaluated te BIL. GCAP also knows that most
recursive functions stop befors they would have caused an error - in
ctner words the recursion line of a function needs some 'minimum!
value of the inputs which should be checked for in some appropriate
test. In this case x must be & pair, as it has a CAR and a2 CDR, and

so an appropriate test is (ATON X). GAP extends its hypothesis to:

(COND ((ATOM X)<partof =>)
(T (COnS (LIST (CAR X)) (SELF (CDR X)}))})

GAP now usez the fact that this must evaluate to NIL when ¥ is
UIL to replace <partcf x> by NIL. HNotice GAP has a double check on

the point at which the function stops recursing.

If we had given GAP the iopair
(A 3 C D) =>= ((A) (B) (C) (D) (B) (C) (D) (C) (D) (D))

then the cue noted would have been that the length of the output is
proportional to N * (N+1)/2, where N is the length of some input. This
can nappen if a CDR-loop function has another CDR-loop function as a
subroutine., So GAP splits off the first four elements of the output
and finds an expression to produce them before proceeding to 'solve'

the iopair in a similar way to the previous example.

GAP has a little trick when given functions with more than one
input. It looks at the output, element by element, in terms of which

input it came from. Thus, if given the iopair:
(ABCD) & ""=>=(ABQBCQCDQ)

GAP looks at the list (X1 X1 X2 X1 X1 X2 X1 X1 X2). It is trivial to
recognize the repeated - X1 X1 X2 - in this list and so GAP decides to
investigate the body:

ATPEND (LIST <form xl1><form x1><form x2>)

(SELF <partof xl><partof x2>))

T

ne LIS? system, using the matcher, realises that (LIST <form xl>
<form xi><form »2>) rnust evaluate to (A B Q) and can thercfore be

replaced by (LIST (CAR X1)(CAR (CDR X1)) X2).

54

wnilst processing the recursive call of SELF, all the LISP system

knows of Xi and X2 is that they are parts of, respectively, (A B8 C L)

ELl

nd Q. It soon finds that (CAR X1) is B though and so it knows X1 is
(5.UNKNOWH). This can only be the CDR of (A B C D) and so <partof xl1>
is replaced by (CDR X1). Similarly <partof x2> is replaced by X2.

The function is now nearing completion. An appropriate test - in
tnls case (OR (ATOM X1) (ATOM (CDR X1))) - is put in and after final

polishing up GAP produces:

(LAMBDA (X1 X2)
(COND ((OR (ATOM X1) (ATOM (CDR X1))) NIL)
(T (CONS (CAR X1)
(CONS (CAR (CDR X1))
(CONS X2 (SELF (CDR X1) X2))))))).

The method just described (looking for repeated patternms in an
'origin list') is a homomorphic mapping of the problem, to create a new
problem with a smaller search space, which can be solved to provide a
pian for the solution of the main problem. This is a common method of

solving problems and several researchers have used it, notably [3],
i\o] and [\3:].

This method can be extended if it is unsuccessful, by regarding
zultiple occurrences of the same origin as a single occurrence. The
modified origin list for the iopair

(ABCD)g "Q"==(ABCDQBCDQCDQDAQ)
is (X1 X2 X1 X2 X1 X2 X1 X2) and the repeated - X1 X2 - suggests the

recursion line:-

(APPEND (APPEND <form Xl><form X2>)
(SELF <partof X1l><partof X2>))

which can te expanded to a complete function in the way already described.

The cues described above all assume that atoms from the front

T

the inputs come at the front of the output. Therefore, when we

O

ive GAP the Zlopair

(3]

(A2 CD) & "" =>=(DQCQBQAQ

it splits the output into the segment (D Q) and (C QB QA Q) -

«hich leads to an incorrect racursion line hypothesis. When the

55

Steven Hardy

method discovers it has made a wrong hypothesis it tries tc find out

if it should have split from the back rather than the front of the
output. It does this by replacing the atoms in the two initial sep-
ments (in this case (D Q) and (C Q B Q A Q)) by numbers representing
which element of an input they came from - and so has (4 #) and
(3¢82¢1@). The 'average atom' in the first of these is 2 (= (4+§)/2)
but this is greater than the average for the second segment 1 (=

(3+2+2+@+1+@)/6). If the second segment is due to a recursive call
of the function it ought to have a higher averége. As this is not so,
GAP tries splitting from the back and tries the hypothesis

(APPEND (SELF <partof xl><partof x2>) -
(LIST <form xl><form x2>)).

Some cues used by GAP recognise immediately that the output is
being built up from the back. Suppose a function recurs on the CDR of
some input, and otherwise only references the CAR of that input. If
this is so, it might be possible to split the output into three segments -
the inner one, due to the recursive call of the function, containing no
atoms from the CAR of the relevant input and the outer segments containing

none from the CDR., This method splits the output of the iopair

(ABCD)=>=(ABCDDCBA)
into (A), (B C DD C B) and {A), and hence suggests the recursion line:-
(APPEND (LIST (CAR X1))
(SELF (CDR X1))
(LIST (CAR X1))).

The principle of guessing which atoms will be in the three seg-
rments of the output is extended by another cue. This counts the times

the atoms from a particular input occur in the output. For example,
(RhBCDEF)=>=(ABBCDDETFTF)

h2s an atom count list (1 2 1 2 1 2) - meaning A occurred once, B

occurred twice and so on,

The repeated -1 2~ in this list suggests splitting the output
into three segments - the outer ones containing one A and two B's, the
inner one containing one C, two D's, one E and two F's. This splits
the output into (A B B), (CD DEF F) and (). The length of -1 2-
in two - and this suggests a function recursing on the CDDR of its

Input.

56

DL VI iUy

Thus the method suggests the recursion line

(APPEND (LIST (CAR X1) (CAR (CDPR X1)}))

(SELF (CDR (CDR X1))))

POPCORN allows GAP to work in a backtracking mode if it gets
a problem it can't solve in any other way. GAP considers a hypothesis
that could be represented by a body something like:

(APPEND <form inputs> (SELF <partof inputs>)).

<form inputs> is allowed to evaluate to successively larger segments
from the front of the output until the whole expression can be made
consistent with the output. We know that <form input> is unlikely to
evaluate to, say, NIL - but it is not possible to tell the LISP system
facts like this. So the way GAP actually investigates this altermative
is a little messier than described. A comprehensive actor system, like

that described by Hewitt [9] would probably make this easier.

Section Three - The Program's Knowledge of LISP

GAP has a powerful LISP system to analyse expressions. One part

performs simple optimisations, for example:
((LAMBDA (W X)(CAR W)) Y 2) is replaced by (CAR Y)
(APPEND (LIST X) Y) is replaced by (CONS X Y).

This simplifies the task of keeping expressions in a reasonably effi-

cient, natural format.

A second part is a conventional LISP evaluator - except that it
has a capability for partial evaluation of expressions whose values
are not completely defined., If all we know of Y is that it is an atom,

and we know nothing of X then

(CONS X Y) evaluates to (UNKNOWN.SOMCATOM)
(CoNZ ((AT2M X) 1) (T 2)) evaluates to UNINOWN

(2oN2 ((ATGY Y) 1) (T 2)) evaluates to 1.

A Final, nore complex, part uses the result of evaluating an

expressicn to deduce things about the expression itself and about

what the valuz of things on the alist must be. It takes as arpument

a, possibly incomplete, alist, an expression and what one wants the
57

LLEVEEL ity

expression to evaluate to, It returns a list of alists that are
consistent with the inputs. If given, for example, a null alist,

the expression (APPEND X Y) aad the result (& B) it returns:-
(((X.KIL) (Y.(& B)))

((x.(a)) (¥.{B)))
((X.(A B))(Y.NIL)))

If told that X is a pair, by giving it the initial alist
((X. (UNKNOWI . UNKNOWN))) then it does not, of course, return the
possibility with X equal to NIL.

1f there are no consistent alists, for example (LIST X Y) to
evaluate to (A B C), then it returns NIL,

It also completes expressions, If given a null alist, the
expression (APPEND X <partof x>) and the result (A B CD B C D)

then one possibility it returns is:

((X.(ABCD)) (<partof x>. (CDR X)))

It calls on the POPCORN data base - and hence the whole GAP

program - for the solution of any functions it needs.

The control structure of POPCORN is such that it need not
generate its alternatives all at once - it does this by returning a
tag that allows the computation of alternatives to continue if nece-
ssary. lowever, as the routine works by backtracking it is best
avoided when expected to try a lot of alternatives - processing a

CONS is far simpler than processing an APPEND.

Conclusion

At present GAP assumes that atoms in the input of an iopair
given to it are universally quantified over all S-expressions. Thus
it takes no note of the identity of particular atoms, nor of tle fact
that they are atoms. Thus tne iopair

(& AB (X Y)) =>= ((a) (A) (B) ((X Y)))

describes the same function as

(A B C D) =>= ((A) (B) (C) (D))

58

This means that because it doesn't understand the concepts

involved, GAP could not possibly build functions like:-

ner g8 ((AWW) (B.X) (C.Y) (D.2)) =>= "y" (Assoc)
((aB) ((¢) D) ((E))) =>= (ABCDE) (Flatten)
(ABCD) S (CDEF)=>=(ABCDETF) (Union)

At present I am studying, and trying to implement, ways of
solving some of these kind of problems, GAP will need to decide what
type of function a particular iopair describes. The range of types
GAP can cover is, at present, so small that GAP need only decide whether
to hypothesize that a function is recursive - described as type RECUR -
or a simple composition of CARs CONSs and APPENDs - described as type
BUILD.

Some progress can be made by enriching the information content
of an iopair by using ellipsis. In this way, one can more precisely
describe a function by an iopair since the ellipsis mechanism is, in
fact, an abbreviation for an infinity of iopairs., Thus the automatic
programming problem remains, but the inductive generalisation is less

Gifficult. We can use the mechanism to disambiguate an iopair. The

function described by:
(A B C D) =>= ((AB) (CD))
night include either of the following iopairs:

(ABCDETF)=>=((AB) (CD) (EF))
(RABCDETF)=>=((ABC) (DEF))

This ambiguity is removed by the description:

(AB---Y2)=>x ((&4 B) -—- (Y 2))

Ellipsis can be given a useful meaning that requires no 'intelli-
gence' to unpick. Suppose we say that ellipses in the output of an
iopair coms from a recursive call of the function applied to the
eilipses in tie input. Using this definition we can see that the
Soilowing tairs of icpairs describe the same function ~ but the iopair

witn eilizsis is unamziguous:-

(4 ==-) 8& (£ --=) =>= (A £ ---)

(A5 CD)ez (LFGUL)=>x (ALEBT CGDH),

59

Toven b

(& ~==) &8 "Q" zrz (A) —=-)
ne same as

(A3 CD)ea"=>=(AQBQC

(& ===) =>= (A --- A)
the same as

(ABCD)=>=(ABCDDCBA),

(AB---)=>=(ABB ---)
the same as

(ABCDEF)=>=(AEBCDDETTF),

(A ===) =>= (=== A)
the same as

(ABCD)=>>=(DCBA).

Functions can be described to GAP in this language, and the
relevant code of GAP is ‘quite small and very fast. This isn't very
surprising as we nave reduced ellipsis to an unambiguous syntactic

cevice.

As I try to understand what is needed to build an automatic
crogramming system, several facts become increasingly clear. A
srogram will need a mixed description - a single iopair is woefully
inadequate - and the program should be interactive - in part to
complete its own internal description of a problem. This is, of

course, to be expected - the same is true of people.

For these reasons I feel GAP will be difficult to extend unless
It can include the person for whom the function is being written in
its <iscussion of a problem. This means that GAP's internal descrip-
zion of a problem must be understandable by reople. Much of ry effort
2een, and will continue to be, devotad to this end. If this is so,

to give CAP hints without a detailed knowladge of its

b
-
[S

el

El

(]

(s

Lo

(7]

kKeferences

Baltzer R., A Global View of Automatic Programming.

IJCAI-3, pp 494-439,

Burstall R.M., Collins J.S. and Popplestone R.J.,
Programming in POP2.

Edinburgh University Press 1971.

Duda R.O, and Hart P.,
Experiments in the Recognition of Hand-Printed
Text. Proc. FJCC 1968 pp 1139-1151.

Feldman J.A. Automatic Programming.

AIM-160, CS-255, Stanford University.

Goldstein I, Forthcoming Ph.D. Thesis.

Massachusetts Institute of Technology.

Hardy S., The POPCORN Reference Manual.
SCH-1 Essex University 1973.

., Computation and Deduction.
Proceedings of the Conference on the Mathematical

Basis of Computation. Czechoslovakia 1973.

Hewitt C., PLANNER - a language for proving theorems in robots.
IJCAI-1, pp 295-300.

Hewitt C., Bishop P. and Steiger R.,
A Universal Modular ACTOR Formalism for Artificial
Intelligence. IJCAI-3, pp 235-245.

xelly ».D., Edge Detection in Pictures by Corputer using
Planning. Machine Intelligence &. Edinburgh

University Press.

‘zlarthy J., Towards a Mathematical Science of Computation
Proc., IFIP 1353
Mrsersont DLV, and Sussman G.J.
The CONNIVER Reference Manual. AIN-259, MIT,
Solral Y. A Context Sensitive Line Finder for Recognition

of Polyhedra, Artificial Intelligence Vol. 4 (1973}

’)

(o]
o

L

7

i

Sussman 0.J. Teaching of Procedures - a Progress Report.

AIM-270, KIT.

Sussman G.J. and Nebermostt D.V.
Why Conniving is better than Planning.

AIM~255A, HIT.

iialdinger R.J.
Constructing Programs Automatically using
Theorem Proving. Ph.D. Thesis, Carnegie-Mellon

University.

Winograd T. Understanding Natural Language. Edinburgh

University Press.

Winston P.H. The MIT Robot. Machine Intelligence 7, Edinburgh

University Press.

62

Some Problems and Non-Problems in Representation Theory

Patrick J. Hayes

0. Introduction

The purpose of this paper is to give a brief survey of some general
issues and problems in representing knowledge in AI programs. This
general area I will call representation theory, following John McCarthy.
Its boundaries are, like those of all interesting subjects, not crisply
defined, It merges in one direction with programming language design,
in another with philosophical logic, in another with epistemology, in
another with robotics. Nevertheless, it is an increasingly important
aspect of AI work, Since my main concern here is to draw attention to
problems which seem to me to be difficult, and issues which seem to be
important, this paper should be read as an appeal for help rather than
a statement of achievements (and comments, criticisms and suggestions
are welcome),

Inevitably, to believe that some issues are important, and some
problems difficult, is to believe that others aren't. At the end of the
paper 1 draw attention to some specific points of disagreement with
other authors. It may be helpful, however, to point out immediately that
my goals here are not philosophical, but technical. Some commentators
on an earlier draft seemed to take it as an essay in philosophical analysis
in the modern Oxford style. My aim rather is to substitute, for informal
and apparently endless philosophical discussion, the precision of mathe-
matics. (This aim is not achieved in this paper, I hasten to add, but is
I hope brought nearer.) To emphasise this, I will, when introducing a
technical woerd intended (ultimately) to have a precise meaning, underline
it.

1. Semantics

There are many ways known of systematically representing knowledge
in a sufficiently precise notation that it can be used in, or by, a compu-
ter program. I will refer generally to such a systematic representational
method as a scheme. It is not a very good word, but one cannot say
'language' as that begs an important question (see section 2). Examples
of schemes include logical calculi, some programming languages, the
systematic use of data structures to depict a world (e.g. as in the early
Shaxey's use of an array as a room-map), musical notation, map making
conventions, circuit diagrams, 'JCM Schemas', 'Conceptual Dependency'
notation, 'Semantic Templates' (all in [?f}), etc, A configuration is
a particular expression in a scheme: an assertion, a p;géram, a data
structure, a score, a map, etc. Thus one might, formally, define a scheme
to be a set of configurations.

All of these examples are formal in the sense that the question,
«4hether a particular arrangement of marks is a well-formed configuration,
always has e definite answer: there is a definite notion of well-formedness.
Hany ways which humans have of conveying meaning will not be allowed as
schemes, for they fail this criterion: drawings, phctographs, poems,
conversational English, musical perfermances, TV pictures, etc. In brief,
I wish to draw a distinction between (formal) schemes, in which knowledge
can be stored and used by a program, and on the other hand, (informal)

%3

Hayves

scenes or perceptual situations requiring the deployment of knowledge
for their successful interprestation,

I am aware of several philosophical problems in analysing this
distinction further. As a rough-and-ready guide, schemes can be recog-
nised by the fact that one can construct ill-formed 'configurations'.
There is no such thing as an ill-formed photograph. MNatural language
is & borderline case, as are accurate line drawings of pelyhedra.

Schemes are usually intended as vehicles for conveying meanings
about some ‘werld' or environment. In order to be clear about this
important topic, a scheme must have an associated semantic theory. A
semantic theory is an account of the way or ways in which particular
configurations of the scheme correspond to (i,e. have as their meanings),
particular arpangements in the external world, i.e. the subject matter
about which the scheme is intended to represent knowledge. Some of the
schemes referred to above have very precise semantic theories, others have
none (and seem to rejoice in this lack: see section 7 below), others
(music, maps, circuit diagrams) have informal semantic theories which
can be made precise by the approach outlined in section 2 below.

It is not at all fashionable in AI at present to give semantics for
new representational schemes, and this is, I believe, a regrettable source
of confusion and misunderstanding. Now, one cannot prove such an opinion,
of course, One can point to other fields where syntactic confusion and
proliferation of ad-hoc formalisms has been or is being replaced by the
development of semantic insights: notably, philosophical logic and the
design of programming languages. One can point to the way in which, in
AI itself, elementary semantic ideas have been re-invented by various
authors over the years (especially the Frege/Tarski notion of individuals
and relations between them, which crops up with remarkable regularity

y s]). And one can point to several important questions which simply
cannot be answered without a semantic theory. Of these, the most urgent
concern the equivalence or otherwise of different formalisms. Is there a
difference in meaning between a conjunction of atomic predicate-calculus
assertions and the corresponding semantic network? Is there anything which
can be expressed in the notation of Merlin [16 which cannot be expressed
in a logical notation? The answer to both these questions is yes, in fact:
but without a semantic theory the questions cannot even be precisely formu-
lated. Finally, discussion in the AI literature, on, for example, the
different roles of deductive, inductive and analogical reasoning and the
relative merits or demerits (either technical or philosophical) of various
formalisms, is often ill-informed or at best vague due to a lack of a
clear model theory for the systems under discussion.

Nothing so far has been an argument for any particular sort of
semantic theory: for example, some kinds of 'intensional', ‘operational!’,
'meaning-intentional' or 'procedural' semantics, may eventually enable the
meanings of configurations in a scheme to be rigorously defined. However,
as a matter of fact, the only mathematically precise account which I have
seen of how a scheme can talk of entities outside of the computer, is the
Tarskian model theory for first-order logic (but see section 2 below)., I
Selieve there are important reasons for going beyond this semantics, but
many of the arguments in the AI literature against the use of predicate
logic as a scheme are based or misunderstandings of one kind or another,
especially the assumption that the use of predicate calculus necessarily
involves the use of a general-puppose theorem-proving program, (See section
7 for more discussion.) To defend first-order logic is unfashionable:
however, I do want to emphasise that it is the semantics of predicate logic

64

PRLEIUR G dsyyuo

which I wish to preserve. I have no brief for the usual syntax: networks,
for example, can be used as a syntactic device for expressins predicate
calculus facts. GSome other authors advocate_ rather the use of predicate
calculus syntax either without semantics {19, or with an alien semantics
imported from computational thecry [é]. This is throwing out the baby
and keeping the bathwater.

To insist on a semantic theory is not, of course, to insist that
the expressions comprising a program's beliefs are accurate, i.e. that
what they express about the world is in fact the case. (This common mis-
understanding may be caused by the phrase "truth-recursion", which leads
people to think that metamathematics guarantegs infallibility.) Without
a semantics, one cannot even say precisely what is being claimed about the
vorld: that is the point.

It is important to emphasise that to regard a formalism ‘'simply' as a
programming language: that is, a way of getting the machine to do what one
wants, is to adopt a rather different point of view towards it. (Unless,
that is, the semantics of the scheme are concerned with machines and what
they do,) For example, many people argue that PLANNER is to be regarded
'simply' as a programming language which provides useful facilities for
the sorts of programming one finds oneself involved in when writing AI
programs. Much of the force of the criticism in E?i] for example, is from
this position, While this is a perfectly respectable point of view, it is
different from the one which regards PLANNER as a scheme which refers to
external worlds of, say, blocks, It is even different from the idea that
PLANNER is a scheme which refers to problem-solving processes or the like.
For the 'programming language' view encourages the user (for example), if
he needs a new semantically primitive notion, like negation, to encode it
- that is, to implement it - in PLANNER in some way. In terms of schemes
this is a change of scheme, since the semantics have been enriched.

To put it extremely: the only difference, in this view, between
(say) CONNIVER and (say) FORTRAN, is user convenience: for one could
implement the one in the other, (I have heard precisely this view forcibly
maintained by professional systems programmers). Hewitt characterises the
essence of PLANNER in terms of schemas E}J‘ While this syntactic approach
works up to a point, the relationships between programming languages are,
I feel, greatly clarified by giving them natural semantics. The trivial
universality which FORTRAN possesses can then be eliminated by the require-
ment that in embedding one language in another there is a corresponding
embedding of the meanings of programs. "Implemented in", as a relation
between languages, then ceases to be an embedding since the meaning of
(say) THCONSE does not correspond to the meaning of the rather large piece
of (say) FORTRAN which would be in the implementation (actually, several
pleces scattered about the program but related by context,) The former
has to do, presumably, with goals and facts and such things: the latter,
probably, with arithmetic relationships between numbers which represent
list structures in some way.

In saying all this, cne must admit that there is much force in the
position that it is too early in Al to settle on particular schemes with
fixed semantics, According tc this view, AI programs should be implemented
using all possible programming skill and ingenuity and we snould leave to
the future the (perhaps rather arid) task of tidying~up., Huch very good
A1 work has Leen done from this standpoint, and will probablv continue to
be done, I do not wish to give the impression of arguing against pragmatic
expediency in writing advanced programs., 3ut I do feel that it {s not too
early to investigate schemes with organised semantics, both on general
grounds of schelarliness and because [believe that such schemes are

£5

Parrick J. Hayes

ultimately easier to use in programming.

2. Linguistic and direct representations

Several authors have drawn attention to a distinction between repre-
sentations consisting of a description in some language and representations
which are in some sense more direct models or pictures of the things repre-
sented, I first met this distinction in [1], and it has been more
recently emphasised by Sloman {22]. It seems tc be clearly important but
I have met with surprising difficulty in trying tc make the distinction
precise.

One problem is to suitably define what is meant by a descriptive
language, for we must not beg the question by being too restrictive in
our definitions of language. Thus Sloman's emphasis on what he calls
analogical representations is really a plea for the consideration of a
wider class of languages than those in which the only semantic primitive
is the application of a function to arguments (Sloman's term is 'Fregean'
languages, like predicate calculus and PLANNER. Some authors seem to have
interpreted Sloman as arguing against the use of descriptive representations
[3], but this is a misunderstanding.)

Another problem is that a representation which appears to be a direct
model at one level of analysis, may, upon enquiring further, be itself
represented in a descriptive fashion, so that it becomes impossible to
describe the overall representation as purely either one or the other.

For example, a room may be directly represented by a 2-dimensional array

of values which denote the occupants of various positions in the room: but
this array may itself be implemented by the programming system as a list of
triplets <i,j,a[},j]>, i,e. by a sort of description. It seems essential,
therefore, to use a notion of level of representation in attempting to make
the distinction precise,

Third, any representation must also be a direct representation of
something., For, the pattern of marks which is a configuration of the
scheme, can convey meaning only by virtue of the fact that its parts are
physically arranged in some definite way. This physical arrangement has
to be a direct representation of (at least) the way in which meanings of
some configurations are compounded into meanings of larger configurations.

Fourthly, the notion of direct representation seems to depend upon
some similarity between the medium in which the representation is embedded,
and the thing represented, Thus a map of a room is a direct representation
of the spatial relationships (in the horizontal place) in the room, by
virtue of the similarity between the 2-dimensional plane of the paper and
the 2-dimensional plane of the floor of the room. The paper is a direct
homomorph of the room: they are the same sort of structure (2-D Euclidean
space), admitting the same sorts of operations (sliding, rotation, measure-
ment), but the map is a simplification of the reality, in the sense that
certain properties present in reality (colour, exact shapes, etc.) and
certain relations (the third dimension, comparisons of value) are missing
in the map. Another example is an ordered vector of items in a core
store: here the medium is the address structure of the store, which is
similar to the integers in respect of its ordering relationships, but not
(for example) in respect of its cardinality (stores are finite).

Putting all this together, one arrives at the following general
position. There are things called media in which one can construct certain

66

Fatrick J. Haves

configurations of marks or symbols: that is, arrangements of marks in
wnich relations exhibited directly in the medium hold between the marks.

A language is defined (syntactically) by a set of 'primitive' symbols

and a set of grammatical rules which define new configurations in terms

of old ones. One gets the usual ideas of parsing. (It could be mathe-
matically interesting to see how much of formal language theory can be
generalised to this setting from the conventional 'string' case of 1-
dimensional media. One can certainly define context-free, and context-
sensitive grammars, but I am not so sure about finite-state, for example.)
A model for such a language is provided by a set of entities acting as
meanings of the primitive symbols; and, for each grammatical rule, a
semantic rule which defines the meaning of the configuration in terms of
the meanings of its parts. (One needs variables and variable-binding
expressions also, so this account needs elaboration and qualification,

but space does not permit a full discussion,) This, so far, is the usual
Tarskian idea of a truth-recursion, generalised to this more general notion
of language. But now, we also insist that each medium-defined relation
used in constructing configurations corresponds to a similar relation in
the meanings, and that the representation is a structural homomorph of

the reality with respect to these relations. That is, the meanings of
configurations must exist in a space which is similar to the represen-
ting medium, and the syntactic relations which are displayed directly by
the symbol-configurations of the language, must mirror semantic relations
of the corresponding kind. The directness of a direct representation lies
in the nature of the relationship between the configurations and the reality
they represent (it is a relation of homomorphism rather than denotation).
A scheme is not direct because of any syntactic features (such as being 2-
dimensional) of its schemes, or because of any special qualities (such as
being continuous) of the worlds it describes.

It is possible to give formal grammars for simple maps, to emphasise
how this account fits the facts, along the lines of Rosenfeld's isotonic
grammars Ds . To emphasise again: map-making conventions are, in this
view, a language, of which the maps are expressions. The relationship of
these expressions to reality is that the primitive symbols denote features
of a terrain in a way defined by the map key, and the positional relation-
ships between symbols directly display corresponding relationships between
the denoted features.

In electrical circuit diagrams, lines joining symbols denoting
components directly denote, in their topological structure this time, the
electrical connectivities in the actual circuit. Another example is
provided by the simple narrative convention. In "He got up. He got
dressed. He went out. He walked to the shop ... ", we understand a time-
sequence which is directly denoted by the ordering of the (timeless)
separate propositions. This convention is also used in programming
languages and cartoon strips, with the same sort of semantics. A final
example is provided by networks. A network is a configuration which is a
relational structure, Web grammars are the appropriate parsing device.
The most obvious way of giving this a semantics is by declaring that a
model is any relational structure into whicn the network can ke hcmomor-
phically embedded. According to this semantics, a network has the same
meaning as tne conjunction of predicate calculus atoms corresponding to
the arcs of the network. (It is a straightforward exercise in system
programming to convert a list of such &omic assertions intc a network,
represented in the core-store medium by using 'addresses' as the direct
analog of 'is connected to', for efficient retrieval,) As we will see,
however, one can give a rather different semantics to networks, which makes
them more expressive in an important way.

Patrick J. haves

4 more complete and rigorous account of this wilil be published
elsewners. The major problem is to find a general precise characteri-
saticr of what is meaznt by "medium™ and "similar'. I am currently working
on an algebraic account (in wnich a medium is a category), but it is not
yet altogether satisfactory. <{(Suggestions are welcome.)

The importance of all this, apart from the intrinsic interest of the
subject, seems to me to lie ip three points. (1) It shows that direct
representations are not incompatible with linguistic representations, and
can be given a precise model theory along Tarskien lines (which supports
Sloman's view in [2Z]). (2) It suggests ways in which efficient deductive
systems may be generalised from work in computational logic, (3) The
notion of '"medium' captures tne idea of levels of representation mentioned
earlier, For a medium may not be physically drectly present, but may
itself be represented by configurations in some quite other medium, as in
the array example, Or again, consider a simulation language like SIMULA.

This provides a medium consisting of processes and events and certain
relations between them., This medium, taken in its own terms, gives a
direct representation of time which is often extremely useful. But if one
goes deeper, time is represented in a quite indirect way involving numerical
descriptions and long chains of inference. This 'looking-deeper' means
not treating SIMULA as a medium to be used to represent, but rather as a
Teality which is itself represented in some medium (say, FORTRAN or
assembly language). The choice of primitive relationships defines both
the medium and the level at which analysis will cease,

This shows, incidentally, that Sloman's arguments for the utility
of analogical representations, based on the idea that they are somehow
more efficient in use than Fregean representations, are fallacious., For
an analogical representation may be embedded in a medium which is itself
represented in a Fregean way in some other medium. Any discussion of
efficiency must take into account the computational properties of the
medium,

3. Exhaustiveness and plasticity

An important fact about schemes with Tarskian semantics is that a
configuration in such.a scheme is, in general, a partial description of
the environment. It constrains the form of a satisfying world, but does
not (in general) uniquely determine one. And even if it does uniquely
determine a world (is categorical, in the technical term), this fact can
only be determined by metamathematical analysis: there is no sense in
which one can say in the scheme itself, "this is a complete description"

Yow this means that one has the opportunity of adding information
ad 1lib, further specifying the world. (Hence the idea of conjunction
arises very naturally). The process of adding information ecan be arrested
only by the whole configuration becoming inconsistent, i.e. making an
assertion about the world which is so strong that no such world exists.
Different schemes will have different particular notions of consistency,
sut this general outline follows from the abstract properties of the
satisfaction relationship between configurations and worlds, This ability
to accept new pieces of information and to gradually accumulate knowledge
piecemeal is one of the most valuable aspects of Tarskian schemes. Thus,
the idea of a 'knowledge base' of separate pieces of information, to which
new pieces can be added freely without a need,in particular, to pay attention
to control flow or other organisational matters, is very familiar and
important,

This possibility of adding information is one aspect of a scheme's
lasticity, i.e. the ease with which changes can be made to configurations
in the scheme. Plasticity is essential for nontrivial learning, and for
any system working on limited information in an uncertain world.

However, there are times when one does want to be able to make a
claim of exhaustiveness in a representation. For example, we might want
to represent that all the relations of a certain kind, between the entities
represented in the configuration, are also represented in the configuration;
or, that all the facts about some entity, which are in some sense relevant
to some problem or task, are present in the configuration.

One important example of the need for this sort of assumption is the
well-known frame problem. Consider a traditional description of the
monkey-bananas problem, in natural English. How do you know there isn't
a rope from the box, over two pulleys, and down to the bananas (so that as
you move the box, the bananas ascend out of reach)?® Well, we assume that
the simple description has given us all the relevant information to do with
causal chains in the situation: we assume it is an exhaustive account of
the machinery of the room. Much of the difficulty of the frame problem
lies in the impossibility of expressing this assumption in the predicate
calculus. (Using the causal-connection theory developed in Eq , we could
say there was no causal connection between the box and the bananas; but
that is not strictly true: the monkey can throw one at the other, for
example. In any case it is unsatisfactory as a general solution.)

(Parenthetically, I would like to take this opportunity of suggesting
that we should stop talking about the frame problem. There are, it is
now clear, several independent difficulties bound up in the normal formu-
lation. One was just noted; another is the lack of a good representation
of the way in which causal chains follow trajectories determined by mecha-
nisms in the environment; another is the heuristic problem of organising
inferences involving causality. The presence of state-variables in the
language is not part of the problem, as some authors seem to have believedJ

Another, rather different, example of a claim of exhaustiveness is
provided by the sort of analogy reasoning epitomised by Evan's well-known
program, and formalised in the Merlin system Db]. This is normally
regarded as essentially non-deductive reasoning, but it can be regarded
as deductive reasoning from some rather strong hypotheses. Thus, suppose
we decide that a certain collection of properties of an individual, taken
together, constitutes an exhaustive description of it, from a certain
'point of view', For example, we might say that a man was a mammal with
a nose and feet. What could this mean? Well, it might mean that certain
facts about men can be established by the use of these pronrerties only:
that is, an essentially proof-theoretic assertion. Now, with this meaning,
if we replace the properties in the description with others (of the same
'type', in some sense: e.g. with corresponding sort structures in a multi-
sorted logic), then corresponding facts can be established relative to
the altermative properties. Thus, in the example of [16], if a pig is a
mammal with a snout and trotters, then we can regard a pig as a man with
a snout for a nose and trotters for feet, The existence of the 'analogy'
follows from the (presumed) sufficiency of the list of properties., It
follows deductively from the claims expressed in the putatively exhaustive
descriptionsof men and pigs.

*This example due to Alan Newell

Fatrook o, hayes

This account of analogy (which is related to Kling's ideas)
suggests natural explanation of {for example) the breakdown of an
analogy {(the claim of exhaustiveness fails: e.g. some property of men
needs other hypotneses than those of noses and feet), and naturally
relates ‘analogical! and 'deductive' reasoning.

low, there is a way in wnich a direct representation can be .
considered to be exhaustive, by a slight alteration to the semantic
rules. We may insist that the medium-defined relations of a configura-
tion completely mirror the corresponding relations in the reality: that
is, that a medium-defined relation holds between subconfigurations if
and only if the corresponding relation holds in the world between the
entities denoted by the subconfigurations. Let us call such a represen-
tation, strongly direct.

For example, a map is strongly direct in this sense: all the 2-
dimensional spatial relationships which hold between tewns, rivers, etc.
also hold in the map between the symbols denoting them. (They are also,
often, exhaustive in a stronger sense; that all the entities (towns,
rivers) present in the reality are denoted by symbols in the map. Thus
we say, of a map with a river missing, that it is wrong, not just incom-
plete. It misleads us because we assume that if a river isn't marked,
it isn't tnere.)

An example of a direct representation which isn't strongly direct
is provided by networks: a relation may well not be displayed in the
graph, However, we can also use networks as a strongly direct represen-
tation, if we consider the medium to be the algebra of relational
structures with a given signature. Thus we would insist that either all
or none of the instances of a certain relation are displayed in the network.
A family tree is a strongly direct representation in this sense, relative
to the relationships 'child of' and 'married', With this semantics,
(which can be specified algebraically) a network is no longer equivalent
in meaning to the simple conjunction of the atomic facts represented in it.
(If we call this conjunction C, it is equivalent to C with the added rule:
if CH~@ then 1@, for any atom @ in the appropriate vocabulary.) Winston's
use of networks to describe concepts [ié seems to be closer to this
latter semantics than to the former one, for example.

In unpublished work at Stanford, Arthur Thomas is developing a
different approach to combining exhaustiveness with a Tarskian semantics,
based on Hintikka's 'model sets'.

Strongly direct representations are less plastic than direct/Tarskian
representations, in that information cannot be accumulated piecemeal in
them. To add information to a strongly direct representation is to alter
the information expressed by it. Alterations, as opposed to mere additions,
raise problems of their own, ‘

The trouble with alterations is that the information being altered
may have been used earlier as a premis in a deduction of some kind., Thus,
other pieces of information which obtain their support in some sense, from
the altered information, are now endangered, and should probably be re-
examined. This seems to require the system to keep an explicit record of
aow it formed its beliefs: a aistory of its own thinking. And this seems
pronibitively expensive (of either space or time: one could recompute
rather than store), due to exponential factors in the amount of information
required,

Under some circumstances, it may be possible to re-evaluate &
pelief on criteris independent from its original derivation, as for
example in adjusting the fit of lines to a gray-level picture (this
observation due to Aaron Sloman), but in general I do not think cne
can avoid the problem.

This dilemma seems insoluble. There must be a clever series of
compromises which steer us between its horns, but I don't know of any
work in this direction.

More far-reaching alterations to a representation which one can
envisage include changes to the basic cntology, to the sorts of entity
to which it refers. The introduction of substances intc a scheme
oriented towards describing individuals is such a change, for example
(see section 6), Minsky and Papert Ilﬁ] give another rather simpler
example: the change from a two-place relation of support between objects
to a support relation between an object and a collection of objects,
needed to describe e.g. an archway or a table. As they remark, this
alteration seems to require a complete rebuilding of all knowledge about
support, for the actual logical grammar of the assertions has changed.
However, in this and similar cases one can see the general outlines of
how it might be done, The fundamental step is to introduce the new notion
of support as a new primitive idea (this is the really 'creative' act),
and then define the old notion in terms of the new one, i.e. regard the
old concept henceforth as an abbreviation for its definition in terms of
the new one. In the example, support (a,b) would be defined as
support (a,{b}). This preserves the old theory of support as a special
case of a new, more general, theory (which is yet to be defined). There
is, however, a strong constraint on the new theory, viz. that it'explains'
meddmmw.TM&SMQMMSMtanthy%RMunﬂneﬂa?
ments of the old theory must be derivable (in the new theory).

This corresponds to the idea that the alteration is somehow a
refinement of, or an improvement upon, the former representation. A
similar change, but in which the new concept completely replaced the
older concept, which was rejected as wrong or unusable, could not be
handled this way.

This whole issue of plasticity in representation is important not
only for learning, but also for everyday program development reasons, and
for debugging. For we must be able to modify and improve the representations
of knowledge in the programs we write, and this is often far from easy.

4, Evidential Reasoning

There is a continual need, especially in percepticn, to represent
information concerned with one belief being evidence for another. It
seems clear that one needs to make reasonings concerning such matters
explicit so that they can be properly related to other reasonings, and
can be adjusted in the light cf experience (see section 3). The problem
is how to adequately express the notion of cne knowledge-fragment (or
collection of fragmentsi being 'good evidence' for another.

There seem to be several notions of good evidence, but all can be
put intc a common framework: A is gocd evidence for B (under assumption
Th, say) if the conjunction (A & not B) is somehow unlikly or implausible
Tor: if this follows from Th)., Thus, for example, if A entails B then A
is ve£¥ good evidence for B, for then (A & not B) is impossible. 1In
Guzman's work [2] back-to~back 'T's are good evidence for occlusion of

71

Patrick J., haves

one body by another, since the former without the latter is an unlikely
coincidence. In a worid where lines of bricks were cemmon, batk-to back
'Tis would be weaker evidence since the conjunction of such an observation
with ¢he hypothesis of a single occluded bedy would be lass implausible:
the possibility of a line of bricks being occluded would be an alternative
explanation of the evidence.

This sort of observation suggests an account of ‘'plausible’ as
follows: {A & not B) is implamsible if B entails A (occluded body entails
back-to-back 'Tis) and no other B of the suitable sort {e.g. no other
hypothesiz about physical arramgements of bodies) entails A, If there
are several such explanations of A then A is evidence that one of them
holds, but it doesn't distinguish which one. This decision has to be made
on some other basis, for exampie by the use of Baye <theorem in a
probabilistic scheme, or by choosing the simplest hypothesis or the one most
compatible with other entrenched beliefs.

An important problem is how to discover the collection of possible
or likely explanations. (This point was emphasised to me by Aaron Sloman).
How many ways can back-to-back 'T's arise? I can think of three; and am
pretty convinced there aren't any more; but I have no idea where that
conviction comes from, or how I would prove it. The 'theory' of lighting
and perspective which is welded into Waltz's program has this nice
exhaustive character, expressed in effect as a collection of explicit
disjunctions. This works up to a point, but how could a program derive these
lists from a description of, for example, the lighting conditions and
geometry of the scene?

Involving the background theory of lighting, etc., in this way is
not just of academic interest. A vision system which could make hypotheses
about the lighting conditions, the sorts of reflectivity in the scene, etc.
would find it necessary to be explicit about the role of such assumptions
in interpreting pictorial phenomena. Thus we might have: if there is
strong unidirectional lighting then shadows have sharp edges and are dark;
so if this is the cormer of a shadow then it will have a dark interior:

Th > (B=>A); from which we may use corners with sharp edges and dark
interiors as evidence for shadows. Reasonings like this will be essential
in any system with the ability to percieve a range of scenes. (Similar
remarks apply to other perceptual situations, e.g. understanding speech,
handwriting, children's stories.)

5. Control

A system which makes inferences to generate new facts must control
its inference-making capabilities in some way. This control itself requires
the storing and using, by the system, of information about the deductive
process. That is: the system must represent and use knowledge about its
own deductive behaviour.

In conventional programming languages this information is sometimes
represented implicitly in, for example, the ordering of statements in the
body of a program (which is a strongly direct representation of the time-
order of control flow, provided jumps are forbidden) and sometimes
explicitly in, for example, the correspondence in names which relates
procedure calls to their corresponding procedure bodies. In PLANNER-like
languages, the latter representation breaks down since 'procedures’ are
called not by name but by pattern matching, and is replaced by the more
flexible device of advice lists. The ordering information is still
represented implicitly, however,

72

How, this metadeductive information needs to be made explicit and
separated from the factual information represented in the scheme, for
reasons of semantic clarity, plasticity and deductive power. For example,
the residue of PLAKNER upon separating out contrcl information is a logic
which resembles intuitionist predicate calculus . FResults like this
are important: they give us an inkling of how a semantic theory might be
put together. (Unfortunately, intuitionist logic itself has-a rather
murky semantics.) The control information which can be represented in
PLANNER is prather limited, as the CONNIVER authors emphasise [23]. Their
solution, to give the user access to the implementation primitives of
PLANNER, is however, something of a retrograde step {what are CONNIVER's
semantics?), although pragmatically useful and important in the short term.
A better soclution is to give the user access to a meaningful set of
primitive control abilities in an explicit representational scheme
concerned with deductive control. This is the basic idea of the GOLUX
project now underway at Essex DI].

The problem is to find a good set of control primitives., What is
control? One answer to this is to pick on a fixed mechanism (the inter-
preter) associated with the language, and to relate control to this
mechanism in, more or less, the way an order code relates to an actual
computer. But this tends to be inflexible and arbitrary. The GOLUX
answer is that control is a description of the behaviour of the interpreter.
The exact nature of the interpreter is not defined, only that it constructs
proofs according to some predefined structural rules. The descriptions in
control assertions constrain its behaviour more or less tightly. It is,

I believe, important that control information be represented in a scheme
compatible with the scheme used for 'factual' information, so that control
can be involved in inferences, added to, and changed.

Control primitives in GOLUX include predicates on, and relations
between, partly constructed proofs in the search space; descriptions of
collections of assertions; and primitives which describe temporal relations
between events such as the achievement of a goal (e.g. the construction of
a proof). The major source of difficulty is the tension between the

ressive power of these primitives and their implementability: it is
important that they be sufficiently simple that their truth can be rapidly
tested against the actual state.

GOLUX is based on recent ideas in computational logic []0,/23.
Other authors have also recently emphasised that computational logic pro-
vides a powerful theoretical framework for problem-solving and computational
processes []4,23,!1], although we are not in complete agreement as to which
is the best framework.

A common area of difficulty both here and in evidential reasoning is

to get a good notion of a 'theory': an organised body of knowledge about
some subject-area.

€. Substances, Parts and Assemblies

Every representational scheme known to me is based ultimately, like
predicate calculus, on the idea of separate individual entities and
relations between them,

But our introspective world-picture also has quite different 'stuff®,
viz. substances: water, clay, snow, steel, wood, Linguistically, these
are meanings of mass terms. Substances are fundamentally very different
frem individuals, and I know of no scheme which seems capable of satisfac~
torily handling them., I became aware of this problem from reading

73

Davidson [?;}.

We often speak 23 though substances were individuals having
properties and relations one to another and to more conventional
individuals: steel is dense, blood is thicker than water, his head is
made of wood. The relation "made of" seems particularly important.
But appearances are deceptive,

Does 'water is wet' mean the same as 'all samples of water are
wet'? I think it does: we certainly want to be able to infer from
'water is wet', that 'this sample of water is wet'. This suggests at
first sight that we should treat pieces of stuff as individuals, which
seems fairly acceptable. But these individuals are also rather strange,
especially for fluids., If you put together two pieces of water you get
one piece, not two: we have to speak of guantity (of stuff) before we
can use arithmetic. (It is significant that, as Piaget has shown,
children properly understand the concept of quantity cnly at quite a late
stage of development.) Moreover, we should distinguish properties which
a piece of stuff has by virtue of its being a piece (size, shape}, from
those which it has by virtue of its being made of stuff (density, hardness,
rigidity): for the former, but not the latter, can be easily altered by
physical manipulations. It really seems that we cannot get away from
substances no matter how hard we try.

Let me emphasise that this problem is not a by-product of a nomin-
list philosophical position, I have no objections to platonic, abstract,
non-physical individuals. That's not the difficulty. The difficulty is
*individuals' which appear and disappear, or merge one with another, at
the slightest provocation: for they play havoc with the model theory.

This seems to me to be one of the most difficult problems in repre-
sentation theory at present. The only way I can imagine handling
substances is by regarding each substance as a (special sort of) indivi-
dual, to which such properties as hardness, density, etc. are attributed.
These individuals can be regarded as platonic ideals, or alternatively as
the physical totality of all samples of the substance: you can take your
nominalism or leave it. We have the nafve axiom

Stuff(x) & madeof(y,x) & z(x). > z(y)
(e.g. : a lump of hard stuff is hard).

which transmits properties from substances to pieces of them, (Care is
needed: steel ships float, for example; a fact which often amazes young
children,) Notice this axiom is first-order (in a sugared syntax).
Quantity is now a function from (pieces)X(stuff) to some scale of measure-
ment, so we can express conservation of quantity through some physical
alteration Q by:

quantity(piece,stuff) = quantity(Q(piece),stuff),

And so on. This works up tc a point, but seems to me to be essentially
unsatisfactory.

There is a close analogy between being made of a substance, and being
made up of a number of parts. And a corresponding analogy between quantity
(of stuff) and number (of parts)., Sand and piles of small pebbles are
intermediate cases: and we often treat an assembly of individuals as a
fluid, e.g. as in "traffic flow", The major difference seems to be that
different scales of measurement are used in common-sense reasoning (but
not in physics, where quantity is number of atoms), as the "paradox of the

i

heap" shows, This runs as folleows: a heap with cne stone in it is small.
If you add just one stone to a small heap, it's still a small heap.

Hence by mathematical induction all heaps are small. The ‘paradox' comes
by switching from the informal quantity scaleof 'small-large’ to the
precise number scale. Induction is not valid in the former, which (for
example) exhibits hysteresis,

Things are often made up of parts joined or related in some way.
Obvious examples are physical objects made of pieces glued or assembled
together: cups, cars, steam engines, animals, But there are others: processes
made up of subprocesses; time-intervals made up of times, The idea of
organised collections of entities being regarded themselves as entities
permeates our thinking,

Now this fact strikes at the root of an 'individual-based' ontology
in the same sort of way that substances do. The only way of handling
collections is to count both the collection and its parts as individuals,
related by some sort of made of or has-as-part relation, But then these
assembled individuals behave in odd ways: they sometimes merge (two heaps
make one heap) like pieces of stuff: sometimes they can be disassembled,
cease to exist for a time and then perhaps be reassembled: is it the same
individual? (Our intuition says: yes, in most cases).

Modal logicians now have very elegant semantic theories which can
accommodate such odd behaviour in individuals, But these allow an
pattern of vanishing, reappearing and changing properties. The point is
to find a way of representing the fact that composite individuals have
this special way of vanishing (being taken apart), and to distinguish, for
example, those composites which cannot be reassembled (animals, cups) from
those that can (cars, steam engines): and to do all this in a framework
which assumes that things, by and large, don't just vanish and reappear
spontaneously., Composites are thus a different sort of individual, in a
very deep sense,

A related issue is how to state criteria upon which we reify a
collection into a composite individual. Physical compactness is sometimes
sufficient (a heap), but not always necessary (the wiring system of a house),
for example, Of course, one does not expect a single general answer, but
I do not know of any reasonable answers at all, even for special cases.

I have already remarked on the similarities between being made of
(stuff) and being made up of (parts). Is this anything more than a facile
analogy? Is there some common framework in which the fundamental ontologi-
cal notion, rather than existence, is space-occupancy? It might be useful
to strive for a representation which allowed the simultaneous expression
in different schemes of both 'existence' and 'space-occupancy'. (The
schemes would, 1 believe, have to be essentially different.) Indeed, in
a crude way one can see how it might be done directly by "arrays of facts":
the array subscripts give one access via spatial relationships to the local
presence of objects, which also partake of relationships (represented by
a network, say) between themselves and other, non-space-filling, indivi-
duals (such as colours)., Decomposability is indicated in the array alsc
by 'break lines' which separate the space into regions: different sorts
of connection could be fairly easily handled (glued, detachable ...).

But this is very crude and has several crucial drawbacks (notably plasticity:
imagine moving an object through the space, preserving its shape.)

-1
o

7. Some non-isaues

t.1L Irrelsvant classifications

#uch heat is generated by disputes based on classificetioms which
do not correspond with the facts, or which at least have outlived their
usefulness. Tow such are the “generality vs. supertise” debate and the
more recent "procedures ve, assertions” debate. Both of these arise from
a revulsion against & particular early naive idea about how to organise
intelligent programs, which ene could (perhaps unfalrly) call the general
problem-solver fallacy. (Seymour Papert calls it, the blinding white
light theory, }

This was the sarly insistence that probiem-solving methods had to
be wrapped up in black boxes called problem-solvers, whose {only} input
was a problem and whose (only) cutput a solution. Problem-solvers were
supposed to be &s powerful amd as general as possible, One had not %o
"cheat® by "giving" the problem~sclver the solution in any sense, e.g.
by reprogramming it or cleverly coding the problem in some way (this is
made explicit in [7), Unfortunately, of course, this collection of
rules means that there is ne way of getting subject-matter-dependent
knowledge into the black box; for it cannot be there a priori (violates
generality), and it cannot be put into the problem (cheating), and there
aren't any other inputs. This is a caricature, but not much of a carica-
ture, Much work in automatic theoremeproving was done with the implicit
idea that the theorem~provers were to be regarded as problem-solvers in
this sense (c.f. the widely felt 'need' for adequate criteria of relative
efficiency of theorem-provers: "my problem-solver is more powerful than
yours". (See [2,10] for a fuller discussion).

The MIT school have now succeeded admirably in destroying this idea,
but unfortunately have gotten it confused with some others. Surely we
need both generality and expertise: the fallacy is not the amphasis on
generality, but the insistence upon the black box and the "no cheating"
rules. The general mechanisms of means-end analysis, heuristic search
and computational logic should not be rejected, but rather incorporated
into more flexible systems, rather than wrapped up in closed ‘prohlem-
solving subroutines! or 'methods' or whatever. Thus, to reject conventional
uniform theorem-proving systems because they work with assertional rather
than 'procedural' languages, is to miss the point. (Whether a language is
considered to be a programming language et not, is largely a matter of
taste, in any case. LISP can be regarded as (an incomplete) higher-order
predicate calculus, or as a first-order applied predicate calculus:
predicate calculus can be regarded as a programming language, although by
itself not a very good one.) The force of the MIT criticism of computa-
tional logic is directed against the 'problem-solver' view and its conse-
quences, especially the lack of any accessible and manipulable {programmable)
control stucture in conventional theorem-proving systems. The GOLUX system
referred to earlier is an attempt to fill this lack directly with an
especially devised control language.

A more recent attack on conventional theorem-procving [jzl is that
it is too concerned with "machine oriented" logic, and not encugh with
“human oriented" logic. I confess to being guite unable to understand
what this could possibly mean.

7.2 Semantics

Some authors, usually concerned with comprehension of natural language,

76

use ‘semantic' as a vague term roughly synonymous with 'to do with
maenings®, whers this means the same as ‘not to do with grammars®.
This follows a long and honourable tradition in linguistics (c.f. the
use of such terms as "semantic markers" and the idea that linguistic
deep structure is semanties).

I wish to emphasise however that this is not the same usage as
that adopted here and in formal logic. And it Is, I believe, very
misleading., It militates against an understanding of the fundamental
point that the meanings of linguistic expressions are ultimately to be
found in extra-linguistic entities: chairs, people, emotions, fluids.....

As a recent example, Wilks' "semantic units" EWH are syntactic
objects in a scheme: nowhere does he tackle the difficult and vital
problem of describing exactly what sorts of extra-linguistic entities
his "semantic units" refer to. It is easy to say: we must have substances
and things and ... ; but what are these? There does seem to be the
beginnings of some sort of sketchy semantic theory behind Wilks' formulae
(actions have agents which are animate, etc.), but it is not articulated:
and if it were, all the problems I have discussed would promptly appear.
Similar remarks apply to Schank's work [20], and others.

I am not arguing that natural language should be given an exten-
sional semantics. I distinguish sharply between a natural language,
which is an informal and probably not even completely defined means of
communication in the real world (is "Eh?" a sentence? Eh?), and a
formal deductive scheme for representing knowledge. (It has been suggested
to me that the distinction may be related to Sassure's distinction between
Langue and Parole, but I have not investigated this.) I suspect that
those who deny the usefulness of extensional semantics would also deny
the validity of this distinction. That is probably a perfectly respectable
philosophical position: but I submit that it is bad engineering.

7.3 Fuzziness and Wooliness

Several authors have recently suggested that more exotic logics,
especially 'fuzzy logic', are necessary in order to capture the essentially
imprecise nature of human deduction, While agreeing that we have to look
beyond first-order logic, I find the usual arguments advanced for the use
of fuzzy logic most unconvincing.

Introspection does not suggest to me that intuitive reasonings are
essentially imprecise; still less that they are precise in terms of a
real-valued truth-value in the unit interval (which is what fuzzy logic
would have us accept). Even ignoring introspection, fuzzy logic does not
seem very useful, for where do all those numbers come from? (This is
McCarthy's point.)

The typical example brought forward to illustrate the need for fuzzy
lcgic concerns the everyday use of such words as 'large', 'small', 'old',
'expensive'. Now it seems to me that, when I say a heap is small, I mean
just that. If asked, "Is what you say true?", I will correctly answer
"yes", and become impatient with the protagonist, These are precise
words but they refer to vague measuring scales. As remarked earlier, for
example, the scale 'small-large' exhibits a different topology from the
integers or from real intervals: it is more like a tolerance space [?7
and it may have hysteresis (an intermediate heap will be considered small
if it began as small and grew, and considered large if it began as large
and shrank), and it may have gaps ki it, The point however is, that wve
should keep the vagueness of the scale localised into it, rather than

77

letting it infect the whols laferential system. This ensbles different
'fuzzy' weasuring scales to ssexist, which is important. We should
investigate what soris of messurement scales are useful for varicus
purposes.

The most drastic alteration to the actual logic which seems to be
needed to handle words like this is to move from a 2-valued to a 3I-valued
logic, and it is not absclutely clear that even this small step is really
necessary. .

The view expressed here is different from the one I held some years
ago, I have become more respectful, since then, of the unexplored
possibilities of predicate lsgic.

Acknowledgements

Many people have helped me with conversations, suggestions and
criticisms. I would like especially to thank John Laski (section 1);
Aaron Sloman (sections 2 and %); Harry Barrow (section 3); Jim Doran
(section 4); Bruce Anderson, Carl Hewitt, Johns Rulifson (section 5);
Seymour Papert, Gerald Sussman, Bruce Anderson (section 7.1). HMore
generally, I owe much to many conversations with Richard Bornat, Mike
Brady, Jim Doran and Bob Kowalski. Alan Bundy, Aaron Sloman and Yorick
Wilks made many useful criticisms on an earlier draft.

References

(1) S. Amarel. More on Representations of the Monkey Problem. Internal
Report, Carnegie-Mellon University (1966)

(2) D.B. Anderson & P.J. Hayes. The Logician's Folly. DCL Memo 5u,
Edinburgh University (1972)

(3) R. Balzer. A global View of Automatic Programming. 3rd IJCAI proc.
Stanford (1973) (see "Problem Acquisition", paragraphs 3&u4)

(4) E. Charniak. Jack & Janet in Search of a Theory of Knowledge. 3rd
IJCAI proc., Stanford University (1973)

(5) D. Davidson. Truth and Meaning. Synthese 17 (1967)

(6) M. van Emden & R. Kowalski. The Semantics of Predicate Logic as a
Programming Language.

(7) G. Ernst & A. Newell. Some Issues of Representation in a General
Problem-Solver. Proc. Spring Joint Comp. Conf. (1967)

(8) A. Guzman., Computer Recognition of Three-Dimensicnal Ubjects in a
Visual Scene. Report MAC-TR-53, MIT (1968)

(39) P.J. Hayes. A Logic of Actions. Machine Intelligence 6, Edinburgh
University Press (1971)

(10) P.J. Hayes. Semantic Trees. Ph.D. thesis, Edinburgh University, (1973)

(11) P.J. Hayes. Computation & Deduction. Proc. MFCS Symposium, Czech.
Academy of Sciences, (1973)

78

P.J. Hayes. Simple and Structural Redundancy in Hendeterministic
Computation. Research memorandum, Essex University (197u)

C, Hewitt. PLANNER, MIT AI Memo 258 (13972)
Loveland. A Hole in Goal Trees. Proc. 3rd IJCAI, Stanford (1373)
Minsky & S. Papert. Progress Report. AI Memo 252, MIT. (1972)

Moore & A. Newell. How can Merlin understand? Internal memo,
Carnegie-Mellon University (1973)

Nevins. A Human Oriented Logic for Automatic Theorem Proving.
MIT AI Lah. Memo 268 (1972)

Rosenfeld. Isotonic Grammars, Machine Intelligence 6, Edinburgh
University Press (1971)

Sandewall. Representing Natural Language Information in Predicate
Calculus. Machine Intelligence 6, Edinburgh (1371)

R. Schank, The Fourteen Primitive Actions and their Inferences,
Stanford AIM-183, Stanford University (1973)

Schank & Colby (eds)., Computer Models of thought and language.
Freeman (1974)

A. Sloman. Interactions between Philosophy and Artificial Intelligence.
Artificial Intelligence 2, (13971)

Sussman & D, McDermott. Why Conniving is Better than Planning,
MIT Al memo 255A, 1972

Wilks. Understanding Without Proofs. Proc, 3rd IJCAI, Stanford
(1973)

Winograd. Understanding Natural Language. Edinburgh University
Press (1371)

Winston. Learning Structural Descriptions from Examples. Ph.D.
Thesis, Report MAC-TR-76, MIT (1973)

Zeeman. Homology of Tolerance Spaces. Warwick University, 1967

. Kowalski. Predicate Calculus as a Programming Language. DCL
Memo 70, Edinburgh University (1973)

Sandewall. The conversion of Predicate~Calculus Axioms, Viewed
as Non-Deterministic Programs, to Corresponding Deterministic
Programs. Proc. 3rd IJCAI, Stanford (1373)

R

" PROGRAMS THAT WRITE PROGRAMS AND KNOW WHAT THEY ARE DOING.

John Knapman, Bicnice Research Laboratory, School of Artificisl
Intelligence, University of Bdinburgh.

Abstract

The concept of run~time structure, expounded by Stansfield(l), is
explored in the light of its use in a computer program currently being
developed that is to acquire a natural lanmguage. Special facilities
have been proVided for programs to modify and extend themselves by
interacting with a record of their behaviour and experience.

Descriptive Terms

Run-time structure, comtrol structure, list programming, procedural
representation, language acquisition.

* * * * ® * * * *

1. Before the programming system is described; a brief outline will be
given of the application for which it is being used. The program is to
acquire a natural language through the medium of a teletypewriter. It
begins with no vocabulary and, on encountering an unfamiliar werd,
synthesises its meaning by examining the situation in which it is found
and comstructing a sub—program. For instance, the word asterisk is
taught by making the program print an asterisk (by enclosing the
instruction in square parentheses) and then supplying the word.

: [PRINT("*%)]

*

: ASTERISK

In this dialogue, lines entered by the human tutor are preceded by a colon;
the others are printed by the program.

As a result of the above sequence, a sub-program is written (the text
appears in section 4 below) and, in future, it will be executed whenever
the word "asterisk" is read, whether alone or as part of a sentence. The
effect of running the sub-program depends on the context. The word
"print" causes "asterisk" to be interpreted in the imperative sense.

It is taught thus.

: PRINT AN ASTERISK [(PRINT(**%)]
*

The teaching of "and", "a" and "you" will not be described here.
Instead, numbers will be introduced since they involve an interesting new
principle.

: PRINT AN ASTERISK AND AN ASTERISK

: TWO ASTERISKS

In the first line, the sub—program for print will itself carry out
the interpretation of "an asterisk"”. The main program will then set in /

80

John Knapman

/in motion the phrase "and an asterisk. In the last line, "two" is a
new word and, after "asterisks" (taken as synonymous with "asterisk")
has been run (it compares the instructions that caused two asterisks to
be printed this time with the original single instruction), "two"
becomes associated with the asterisk left over.

At this stage the command to print two asterisks would be obeyed
correctly but the following incorrect result would also occur.

: PRINT TWO DOTS

¥

A gecond example is necessary to derive the proper meaning.

: PRINT A DOT AND A DOT

: TWO DOTS

A comparison takes place within "two" and out of the conflict between the
given and the expected, its meaning is induced. It takes on the function
of duplicating the object that follows it. Higher numbers are similar.

More details will be given below after an explanation of the
programming system. The working of the following example is also
presented there. The word "did" is introduced to the program in a
question.

: PRINT AN ASTERISK

*

: DID YOU PRINT AN ASTERISK [PRINT('Y®);PRINTC'E');PRINT(’S®)]
YES

"Did" now means: '"Examine the record of the immediate past to see
whether the action performed there matches the meaning of the rest of the
sentence following 'did'". The meaning of "did" can be extended to
reply "no" when the two do not match.

: PRINT A COMMA

: DID YOU PRINT A DOT [PRINT('N*);PRINT('0")]
NC

As presently implemented, the program can also learn to answer
questions like: "What did you print?" and "How many dots did you print?".
It can associate the numerals with strings of appropriate length (e.g. 3
with '£££'), and be taught to perform addition on them. It is hoped to
extend these numerical capabilities and to explore other concepts, such
as that of time and of language as an activity in its own right.

The /

81

John Knapman

/The application program will serve to illustrate some of the uses
to which the programming system can be put. The system will be
described by first showirng how it fits into the historical development
of programming. Then its wnique attributes will be presented.

% & & * * * * *® *

2. "Programs that know what they are doing" is a quotation from
Stansfield (1) revealing the philosophy behind his programming ayatem
PROCESS 1. To have "programs that write programs" is not a new idea.
LISP was invented by McCarthy et al (2) with the express purpose (as
stated in the last paragraph of the introduction to the manual) of
permitting programs to act on programs. Programs in LISP are stored
with each instruction contzining an explicit pointer to the next (i.e. in
a list) so that changes are convenient to make. An equally important
fact about LISP is its functioning as an interpreter; programs are not
converted to another form for execution. This makes it possible for a
program in temporarily interrupted execution to be modified by another
program, or even to modify itself without interruption. Such facilities
are presented below in section 3,

A convenience provided by most programming languages is the
procedure - also known as the sub-program, sub-routine or function. 1In
FORTRAN and similar systems the flow of control through a number of
functions follows a hierarchical discipline. Dissatisfaction with the
rigidity of this kind of control structure has led to the development of
back-tracking (3) and generalized jumps (4). A formulation of
generalized jumps independent of a goal formalism is found in (5). The
intuitive advantages of procedures (functions, etc.) are retained while
some of the flexibility of machine-level programming is restored.

As well as providing such flexibility, Stansfield (1) had the idea
of making available to the program a representation of the control
structure, known as the run~time structure. Now a procedure may inspect
a record of which procedures were previously invoked and are possibly
awaiting a result. The procedure might send a result directly to the
one expecting it, bypassing the intervening hierarchy, or indeed take any
action at all, after obtaining this information. By sending a result,
of course, control is also transferred to the procedure receiving that
result. However, the run-time structure representing the execution of
the lower level procedure is still available and can be stored for a
restart at a possible time in the future. The execution of a procedure
is a process (hence the name PROCESS 1) and the run—time structure that
has been furnished at the time of transfer of control represents a
suspended process. There can be any number of suspended processes saved
by a program. In additiom, there is always one procedure actually being
executed. The execution of this procedure is known as the current
process and it too possesses a run—time structure available for imspection
and modification at any time.

The format of a run—time structure is that it contains one record
for each invocation of a procedure. This means that if a procedure is
called several times, as in recursion, there will be one record (an
"activation record") for eack call. If, however, a process that
suspends itself is later restarted, the same activation record will be
employed again. The record points to the next inmstruction to be
executed in the text of the procedure. These records are chained
together on the run-time structure starting with the most recent
activation in the process that the structure represents and linking back
to the earliest.

82

John Knapman

4 system of levels is introduced and is used here to make these
chains of receords more manageable. Stansfield describes a method of
level numbering which I call "sbsclute". I have implemented PROCESS 1.3
(6) incorporating absolute and relative levels and the discussion below
refers to the latter, since they are the ones used in this application.

4 procedure can be started by being either called or run. If it is
called, its zctivation record sppears in the run—time structure on the
same level az its predecessor; if it is run, a new level is made.

As an exsmple consider the anmalysis of the sentence: 'Print two dots
and a comma”. Two or three procedures are involved in the interpretation
of each word, including at least one that is unique to the word in
question. By the use of run and call, each word’'s processing can be
confined tc a separate level, making possible the kind of communication
between words that will be ocutlined when the examples of "did" and "two"
are explained.

ANALYSE \ 4
\‘iht\

and 3
two \\§> 2
\\izzs Tgi;m 1

Fig. 1 Flow of control in interpreting a sentence.

The levels make it matural to draw the diagram of fig. 1 in which
they are numbered from the point of view of the procedures involved in
“dots" or in "comma". Each downward arrow represents & run to a new
level. Within each level the processing for the word involves calling
appropriate procedures. If the syntax of the word demands the
interpretation of the following word or phrase before processing can be
completed, the procedure for the word will itself contain the necessary
run instruction to bring that about. The verb "print" requires an
object and so it runs the interpretation of the mext phrase. The number
"two" also requires an object on which to perform its duplication function.
"Dots", on the other hand, has no such requirement and returns control
back to "two". It may pass control back to any of the levels by means of
the operation '"rise" (a generalization of "return” in many programming
languages) followed by a number: RRISE 1 will return to the dictionary
procedure (known as FIND) that called '"dots" on the same level, RRISE 2
will return to "two", RRISE 3 to "print" and RRISE 4 to ANALYSE. The
numbers are relative to the current process: after RRISE 2 to "two"
another RRISE 2 goes to "print". In fig. 1 each upward arrow represents
RRISE 2. The total structure that you see never exists at any instant,
although it could be reconstructed automatically. The first branch is
built and destroyed, followed by the second, as the words are being
interpreted.

An interesting property of fig. 1 is that not only does it represent the
flow of control through the preocess of interpretationm but it corresponds
to the syntactic structure of the sentence. It can be viewed as a
parsing tree. According to Halliday (7), grammar imposes a second
dimension on the linear succession of elements that is the substance of
language and it does this by a process of segmentation into units.
Syntax exhibits the shape of the process of comprehension; it is one
aspect of that single process.

83

John Knapmen

Winograd (8) was able tc demonstrate the enormous power and
flexibility gained by his program having a procedure representing the
meaning of each word. His strong arguments for the close interaction
of syntax and semantics carry great conviction and he used the best
programming tools available at that time, i.e. back—tracking,
MICRO-PLANNER (9) and PROGRAMMAR (10) to assist that endeavour. But
his program still possesses & separable syntactic component.

With the concept of rum=~time structure, it has been possible in the
examples considered to incprporate both the syntactic and semantic
aspects of processing for a word into one procedure and the learning
process is greatly simplified by the consequent uniformity as compared
with a program which has a distinct syntactic component. Learning is
further facilitated because in a run—time structure the procedure that
performs the synthesis for a new word has available a representation of
the whole activity in progress, including linguistic activity. The
method has intuitive appeal because, for one thing, the program will
answer a grammatically ill-formed question such as: "What did you printed"
which most English speakers would understand. (YPrinted a dot" would not
be interpreted as a command, however).

* * * * * * * * *

3. Another substantial advance made by high level programming languages
is the convention of naming areas of storage, which are then known as
variables, rather than numbering them. In a procedure, the programmer
declares the names of variables to be used in that procedure. When it
is executed, space for the variables declared is provided in the
activation record and whenever a value is assigned to a variable the
value is put into that space. This kind of variable is local. 1If a
name is mentioned without being declared then it refers to the variable
of another precedure and is termed mon-local. The rule for determining
to which activation record a mon-local variable refers in an ambiguous
case is the binding conventiomn. Dynamic binding has been found the most
suitable when procedures are manipulated as objects. To quote Burstall
et al (11): "It allows functions (i.e. precedures) to be produced as the
results of other functions which is quite impractical with the ALGOL 60
way of handling non-locals. This adds greatly to the power of the
language". This point of view has been borne out in the application
program. The procedures for "what" and "how many" include parts

adapted from the synthesisimg routines. After inclusion their non-local
variables automatically refer to the new environment without the need for
any textual modification. 1Im this respect PROCESS 1.5 differs completely
from PROCESS 1. Dynamic binding is used in LISP and POP-2 (11). A
fuller treatment of this matter (the frame problem) and its extension to
processes as manipulable objects is givem in (6).

A record on the run-time structure in PROCESS 1.5 contains all the

information relevant to performing a process. There is provision for
programs to access and modify, by name, the value of any variable in any
process.

The primitive is VALUE. As an example, the following will
initiate a process by running the function FUN which leads to a rise back
from a subordinate process. The run-time structure for that process is
supplied by the system in a global variable CONTINUE. The value of X
and A will be assigned to Y and B in the subordinate process which will
then be resumed.

84

John Knapmen

RRUNS FUN; VALUE(CONTINUE, [X Al)->VALUE(CONTINUE,[Y BI);
RRUNS CONTINUE;

Thus these objects constitute a highly structured presentation of
the entire state of the machine, since the records also provide access
to the text of the procedures whose execution they governm. It only
remains to describe the form of their text and to present the facilities
for them to generate and manipulate one another. These are new and
experimental facilities and do not appear in the earlier documentation
for the system.

The textual format of a procedure is a sequence of instructions
separated by semicolons. For example:

RRUNS COMPARAND FINDASSOCS;
CALL CHECKASSIGN: ASSIGN DIFFUN1;

As implemented, PROCESS 1.5 will, in addition, accept statements in
an extended POP-2 notation and convert them to the above form. In fact,
the programs for this application are written in a hybrid language. 1In
the basic form (illustrated above) each instruction begins with an
operation (the operations are CALL, RRUNS, RRISE, ASSIGN, NOOP, GOTO,
RUNS and RISE) followed by variable names or actual data. For every
operation except GOTO and ASSIGN, items in the instruction are placed on
a push—-down stack. An assignment removes items from the stack and
places them into the variables specified. In the case of RISE and RRISE,
the last entry on the stack is taken to be the level to which return is
made. For CALL, RRUNS and RUNS, the last entry refers to the procedure
to be invoked. RUNS and RISE perform as in PROCESS 1; RRUNS carries
out the "run" function outlined in section 2. The performance of RRISE
is also set out there. CALL initiates a procedure on the current level.

If we prefix C~ or NC- on to any of these they become conditional
on the outcome of the preceding instruction. For instance, altering
CALL CHECKASSIGN to CCALL CHECKASSIGN would cause the procedure to be
called only if the result from FINDASSOCS was TRUE. Similarly, NCCALL
would mean call only if the result was FALSE. This was devised so that
choices would automatically leave a clear indication on the run-time
structure of the fact that they arose and of which branch was taken. It
was also designed for convenience in making changes to the text
consequent upon the outcome of the conditional. Such amendments are
essential in this application because a procedure will normally be
generated from onme situation and the ability to make later modifications
in the light of new but related experience is of paramount importance.

As a matter of fact, in the present program all the data are
procedures except in the first stage of input from the teletypewriter
and that is soon converted to procedural form. As a result, the only
source of conditionals is the comparing of two procedures. (Comparing
two run—time structures reduces to a series of comparisons between the
procedures to which they refer directly or indirectly).

The program for comparing two procedures is called DIFFERENCE. It
will examine the first procedure to see if it contains the second and it
will return the result TRUE or FALSE, accordingly. In the TRUE case,
it will also yield the difference between them in the form of two more
procedures which will be the extra parts of the first procedure
preceding and following the common portion. There is a special case
of DIFFERENCE known as PEMPTY which simply ascertains whether a /

85

John Kospumen

/a procedure contains any text at all. Such & check is ususlly
necessary at the end of & series of DIFFERENCE operations during which a
procedure has been broken down.

Building procedures up also demands special facilities, as
procedures are scmewhat cumbersome objects to manipulate (mostly because
of the use of varisbles). As with any progremming system, they can be
typed in by the user but the object here is to allow programs to write
them as well. To start a new procedure, a skeleton is first created by
a call to INITPROC, which places the skeleton in a standard global
variable and makes it available to be assigned to a variasble. Additions
can then be made to it using a program called ADD. An example appears
below. Text is supplied by programs in the intermal PROCESS 1.5 form
or in the extended POP-2 form or a mixture of the two. (It is written
in square parentheses [] denoting a POP-2 list). Two procedures can
also be joined to produce a third.

Another use for the program ADD is to insert text into the middle
or at the beginning of a procedure. There is a method for positioning
a pointer to a particular imstruction or part of an instruction before
adding or, alternatively, deleting text. The pointers are set up by
means of the function EDIT. After writing EDIT(ACTION); the procedure
ACTION may be modified by means of various search and delete commands as
well as by use of ADD. There is special provision for doing this in
conjunction with the run—time structure when a procedure has been
executed. If we write EDPOSITION(PFINDRET(1)); then the procedure
that invoked the current one will be prepared for modification with the
pointers positioned at the place in the text where the call was made.
For instance, if a DIFFERENCE test yields an unexpected result and
causes another procedure to be called, the instructions related to the
test (and the values of variables) can be inspected and changed. In
fact, this is the normal way in this application by which procedures
representing the meanings of words are extended after their initial

synthesis. Carroll (12) remarks that the development of a word in
child language is far more complex and interesting a process than its
initial acquisition. This is my justification for seeking a method of

procedural modification that interacts with the record of a process in
the run-time structure.

* * * * * * * * *

4. Two illustrations will be given of these methods at work. The
first involves learning the word "two" and the second is the ''mo" reply
to questions beginning: ''Did you print". The teaching situations were

outlined above and the first to be considered is "two asterisks'.

The text of the procedure (slightly simplified) for the word
"asterisks" is given below. You will recall that the procedure to be
invoked appears at the end of a CALL instruction.

CALL MAKEASTERISK;

CALL REFERENCE RESULT DIFFERENCE; NCCALL XRESOLVE;
ASSIGN DIFF1 DIFF2;

CALL DIFF1 PEMPTY; NCCALL EXRESOLVE;

CALL DIFF2 PEMPTY; NCCALL EXRESOLVE;

86

John Knapman

This procedure was synthesised in an earlier situation, as was
MAKEASTERISK, which consists of the following:

CALL INITPROC; ASSIGN RESULT;

CALL {CALL "*"PRINT] ADD;

The processing for this word is to generate a procedure for printing
an asterisk and to compare that procedure (stored in RESULT) with the
REFERENCE which, by default, has previously been set to the preceding
action in the dialogue (i.e. the printing of two asterisks). After the
comparison, checks are made to ensure there is nothing left over. Each
test is followed by a call to a resolving routine conditional upon the
failure of that test.

In the "two asterisks’” situation, where "two" is an unknown word,
processing commences with a procedure known as SYNTHESISE with the
objective of ascertaining the meaning of the new word. It causes the
word "asterisks" to be interpreted and the code presented above is
executed, resulting in a call to EXRESOLVE because DIFF1 has been left
with the second asterisk. The run—-time structure is illustrated in
fig. 2, where FIND is the procedure that locates the meaning of a word.
EXRESOLVE is able to extract the contents of DIFF1 from the "asterisks"
procedure at level 1 and, detecting the presence of SYNTHESISE at level
2, passes it the information.

FIND-> SYNTHESISE
IND-> "asterisks'" -> EXRESOLVE 1

Fig. 2 Run-time structure for "two asterisks'". The downward arrow
indicates RRUNS, the upward one RRISE 2, and the horizontal
arrows CALL.

After the first example, SYNTHESISE generates a procedure as the
meaning of "two". It is like the one for "asterisks' shown above,
except that MAKEASTERISK is replaced by a procedure that runs the
imperative interpretation of the following word before adding its own
asterisk printing instruction on to RESULT. The imperative is forced
by setting the point of reference to a null value. (Local variables
named REFERENCE are used to eliminate interference of contexts).

When in the second situation two dots are encountered, the
assumption that "two" just means an asterisk in particular circumstances
is violated and the program must seek a different explanation. In terms
of code, that means that the DIFFERENCE comparison in "two' failed to
match a procedure for printing two dots with one for an asterisk and a
dot. Consequently XRESOLVE was called with the task of finding a match
for the alien procedure and it has a number of sources from which to do
this. These include that part of the sentence preceding the word in
question, the word or phrase immediately following, further segments of
a long sentence and actions indicated by the tutor. In the present case,
the imperative interpretation of the following word does yield a match
(in the sense of a successful DIFFERENCE operation) and recursion within
XRESOLVE disposes of the remainder from this comparison. Notice that
XRESOLVE is also involved in the process of imperative interpretation:
if REFERENCE is null it cannot perform its matching operations and
issues RRISE 2, leaving the action in the global variable RESULT.

87

John Knapmean

XRESOLVE now synthesises & new procedure, again like "asterisks",
vherein the equivalent of MAKEASTERISK is a2 run of the imperative
interpretation of the following word and duplication of the result.
HRESOLVE concludes by insertimg a call to the nmew procedurs in place of
the call to XRESOLVE in the original version of "two". (The run—time
structure identifies the location of the instruction to be modified).
“Two" will now behave correctly, using the original portion when
examining asterisks and the new portion in other contexts, including the
imperative.

The second illustration involves learning and extending the word
"did", which has a somewhat more elaborate procedure than "asterisks"
but still contains DIFFERENCE tests, the main one being a comparison
between the point of referenmce (the past action) and the interpretation
of the rest of the sentence. In the "no" situation the result of the
test is negative and a call to XRESOLVE takes place.

In fact, none of the remedies described yields a match. The
intended meaning is, after all, that the program should answer 'no"
when this particular comparison fails. Thus XRESOLVE is once more
required to replace the call to itself. An instruction is substituted
in "did" that will generate a procedure to print "no" when the comparison
fails between the point of reference and the result of the following
clause.

That concludes the examples, which have been intended to illustrate
how the run-time structure presents a record of the behaviour of a
program in a way that is usefully related to the actual procedures that
give rise to that behaviour. This usefulness has two aspects. One is
that a procedure has access to the context in which it is acting. The
other is that the right kind of information is available for a program
to expand and develop itself.

Acknowledgements.

I should like to thank Dr. Howe and my colleagues at the Bionics
Research Laboratory for constructive criticism. Financial support
from IBM United Kingdom Ltd. and from the Science Research Council is
gratefully acknowledged.

88

John Knapman

References

1.

10.

11.

12.

Stansfield, J. L. (1972) '"PROCESS 1: a Generalisation of
Recursive Programming Languages", Bionics Research Reports Fo. 8,
School of Artificial Intelligence, University of Edinburgh.

McCarthy, J., Abrahams, P. W., Edwards, B. J., Hart, T. P. and
Levin, M. I. (1962) "LISP 1.5 Programmer's Manual", M.I.T. Press.

Hewitt, C. (1972) '"Description and Theoretical Analysis (Using
Schemata) of PLANNER: A Language for Proving Theorems and
Manipulating Models in a Robot", AT TR-258 (Ph.D. Thesis)
Artificial Intelligence Laboratory, M.I.T.

Sussman, G. J. and McDermott, D. (1972) "CONNIVER Reference Manual®,
AI Memo No. 259, Artificial Intelligence Laboratory, M.I.T.

Bobrow, D. G. and Wegbreit (1972) "A Model and Stack Implementation
of Multiple Environments', BEN Report No. 2334, Bolt, Beranek and
Newman, Inc., Cambridge, Mass.

Knapman, J. M. (1973) "PROCESS 1.5: Description and User's Guide",
Bionics Research Reports No. 11, School of Artificial Intelligence,
University of Edinburgh.

Halliday, M. A. K. (1961) '"Categories of the Theory of Grammar",
WORD, Vol. 17, No. 3.

Winograd, T. (1972) "Understanding Natural Language", Edinburgh
University Press.

Sussman, G. J., Winograd, T. and Charniak, E. (1970) ""Micro~
Planner Reference Manual", AT Memo 203, Project MAC, M.I.T.

Winograd, T. (1969) "PROGRAMMAR: A Language for Writing Grammars',
AI Memo 181, Project MAC, M.I.T.

Burstall, R. M., Collims, J. S. and Popplestone, R. J. (1971)
"Programming in POP-2", Edinburgh University Press. See
especially page 45.

Carroll, J. B. (1960) "Language Development" in Bar-Adon, A. and
Leopold, W. F. (eds.) '"Child Language: A Book of Readings",
Prentice-Hall, Englewood Cliffs, N. J. (1971) (page 205).

89

DEFINING SOME PRIMITIVES FOR A COMPUTATIONAL MODEL OF
VISUAL MOTION PERCEPTION

C Lamontagne
Bionics Research Laboratory, School of Artificial Intelligence,
University of Edinburgh.

Abstract. Primitive computational concepts, expressed in terms of
neural nets, are created as a basis for a medel of visual motion
perception. These primitives are explicitly derived within the context
of a complete visual system.

1. Introduction

Our current goal is to produce a working model of visual motion
perception, and to use this specific concern as an alley into visual
perception as a whole. The main idea is to approach the problem on very
broad grounds, keeping our motion perception "sub-system" open in the
context of a complete visual system.

We want our model to be a computational one, that is we want it to
be expressed in terms of explicit computations which are detailed enough
to be simulated on some computer or built into hardware. In building
the model we want to use to the fullest possible extent the observations
provided by Physiology and Psychology as basis for induction, and the
general principles of computation offered by Computational Sciences as
basis for deduction. We want our model's achievements to be at a human
level of sophistication and its computational strategies to be as
efficient as possible. It is important to realise that we do not claim
that our model will necessarily be a model of human visual perception,
not any more than we claim that it will necessarily be a model of a
computationally optimum visual system, but we do claim that the model will
be perfectly suitable, at any stage of its construction, as a hypothetical
statement about how the human system could work or about how the optimum
system could work. In fact the model has already shown its power as a
source of hypotheses for Experimental Psychology by providing, at a very
early stage of development, quite a strong theoretical framework for the
prediction of a whole family of new visual phenomena which constitute a
complete experimental paradigm for a part of the human visual system (1),

Now to represent computations, that is to talk about our model, we
needed to choose a language. As primary language, i.e. the language
which is used to express the model itself, we chose the language of neural
nets; the reasons behind this choice are that first we consider neural
nets as very suitable tools for "visual thinking" (i.e. they are easy to
manipulate in one's head), and that secondly (and most importantly) we
consider them as very suitable tools for talking about parallel prcocessing
as well as for talking about serial processing. As secondary language,
i.e. the language of simulation for the neural nets, we chose POP-2 (for
purely accidental reasons), but only a very small part of the model as it
stands /

(1) See Lamontagne, C., 1973, "A new experimental paradigm for the
investigation of the secondary system of human visual motion
perception", Perception, 2, 167-180.

90

€. Lamontagne

/staends at present has been simulated; most of it is still only
expressed in terms of the primary language, that is neural nets. This
brings us to talk briefly about the stage which our model has reached,
and to outline which part of it will be described in this paper.

After two and a half years of work along the lines sketched in the
above paragraphs we have got to the stage where the model can detect tem
different types of motiom, and track objects involved in translatory
motion relative to its retina. All ten types of motion are essentially
interpreted as two-dimensional ones but we are in the process of
developing a learning scheme to raise the level of interpretation to three
dimensions. The two restrictions imposed on the system from the very
beginning of the research are still holding; the model has a single eye
(i.e. we are developing a monocular system), and the eye's retina is
homogeneous (i.e. there is no duality in its receptors' structure). A
most important point is that as it stands now the model is highly
homogeneous, being almost entirely built out of similar atomic processing
structures, or primitives, combined and re-combined in all sorts of ways
in order to reach the desired computational specificity; furthermore
the planned extemsion of the model into the three-dimensionality involves
using these same primitives as building blocks. The present paper will
be exclusively devoted to the detailed description of these primitives,
and this will be done in the explicit context of a complete visual system.

2. Preliminaries.
2.1 Input device: structurally detected features

We should start by choosing as our input device a single homogereous
two—dimensional array of receptors sensitive to different light
intensities, where a signal fired by any receptor would qualitatively
represent a specific position (by construction, or structure, of the
retina) and would quantitatively represent a specific intensity. This
input device would allow us to work directly on "real world" visual
stimuli.

We will however adopt a slightly modified version of input device
which is in every point similar to the one we just described but for the
fact that it will not detect different intensities, being restricted to
"all-or-none' responses to light intensities; moreover we will restrict
the valid input stimuli to the class of bright line drawings on dark
backgrounds. This modification is far from being as drastic as it might
seem; we see it as equivalent to brimgingthe different intensities
detected by the original input device down to 1's and 0's according to
whether or not they reach a certain difference threshold when compared
with their immediate neighbours. This computation would in fact bring
out the contrasting elements in the picture, and this is exactly what we
are doing by restricting the input stimuli to line drawings and bringing
the intensity discrimination to an "all-or-none" mode. Since the
problem of going from our simplified version of the input device to the
originally desired one is well defined and since cur simplified version
is easier to handle in the process of building the visual system, we
decided that we could wait until more important questions have been
tackled before lifting the "line drawings' ccnstraint on the input device.

So /

C. Lamontagne

/So let us go zhead with the simplified version of the input device,
calling “primitive array” or "retina” its array of receptors, and calling
"primitive objects"” the informational entities created by the specific
retinal positions detected at this level. It should be stresgsed here
that since our inmput device reascts in an all-or—none manner to light
intensities falling on its different receptors {or positions) we are left
with the very general piece of information 'there is light", which is of
little help when we are figuring out the physical comstraints around us,
and the more helpful although rather primitive information about where
this light falls on our retima. The important point to nectice here is
that however primitive this basic information might seem, it is potentially
very rich in the sense that the detected feature "retinal position' has
a repertoire of values (i.e. '"retinal position" is a multi-valued
feature), each receptor on the retina representing one "value" of this
feature. By combining these values in different ways we can get at new
features with their own sets of values which can themselves be combined
into still higher level features with their own sets of values, and sc on.
We therefore conmsider the main task of any visual system as being one of
deriving features by grouping and re-grouping values of other features
under some criterion or other, and consequently we consider the task of
defining a visual system as being one of finding the adequate criteria
under which the grouping should occur, i.e. under which new features
should be derived.

2.2 What is meant by "motion": main types of derivable features

We can see two main types of strategy for deriving new features:
analysing the values of a feature as they stand in one given moment, or
as they stand in successive moments. On. this basis we will make the
distinction between two types of derivable features: frozen features
which are derived from different values of some feature detected in one
processing moment, and running features which are derived from different
values of some feature detected in successive processing moments.

For instance let us consider the case where a straight line covering
nine retinal receptors is used as stimulus and is actually projected on
to the retina at moment 1. Then at this moment 1 we have nine receptors
firing together, specifying nine different retinal positions. Since
these retinal positions are directly provided (or detected) by the input
device within but a single moment we say that retinal position is a
frozen feature. Now we go on to say that any higher level feature
derived from some or all of those retinal positions alone (i.e. the
retinal positions worked out in a single moment) will itself be a frozen
feature. For instance finding out that the "occupied" positions on the
retina are adjacent, in a straight line, in a given orientation, and that
there are nine of them éreates as many new frozen features.

Now if on the other hand we concentrate on analysing values of
features detected through successive moments we can derive a rather
different type of feature. For instance let us consider the case where
we have the same straight line as before (with orientation X, and size 9)
projected on to the retina at moment 1 but where, at moment O (i.e. the
moment just before moment 1), we had the line in a different orientation
and with a different size (let us say orientation Y and size 6). We can
then say a few more things about our line at moment 1, for instance we
can say that (orientation) X and (size) 9 are values of features which
the /

92

C. Lamontagne

/the line possesses at moment 1 after not possessing them the moment
before, and similarly we can say that (orientation) Y and (size) 6 are
values of features which the line does not possess at moment 1 after
possessing them the moment before. Furthermore we can go on deriving
more features by relating the actual values which have undergone "death"
or "birth" from moment O to moment 1, deriving new multi-valued features
which can themselves be analysed through time. The main point here is
that all these new features are essentially derived by comparing values
of features as they "flow" through successive moments, and this is why
we group all these features under the general label "running feature'.
We expect it to be clear by now that computing running features is what
motion perception is all about, and that it is our criterion for defining
the boundaries of motion detection as a specific ability within the
context of a complete visual system.

3. Primitive and quasi-primitive running features

In the case of frozen features it is easy to grasp the fact that
retinal position is a primitive feature in the sense that it is just about
the most basic piece of information detected by the system, and that it
serves as a basis for deriving all other frozen features detected by the
system. The question which we are asking now is: can we find a primitive
running feature which constitutes the basis for deriving any other runming
feature? ’

The most primitive running feature which we found seems to fit quite
well the concept of a primitive feature, although it must be appreciated
that a running feature, since it necessarily rests on the temporal
analysis of the values of some other feature, cannot be considered as
being "completely" primitive. Our primitive running feature however rests
on a frozen feature which is even more primitive than retinal position,
although any detected value of retinal position necessarily specifies it,
and this frozen feature is the existence state of some value of some
feature. This rather trivial feature (i.e. existence state) has two
possible values: 1 or O (existing or not existing). Since the value of
this feature is directly available at any moment from the signal that
represents any value of any other feature, we did not bother to talk about
its detection as a separate frozen feature; but now it turns out that
considering existence states is necessary in order to compute the primitive
running feature which we are looking for. This desired primitive running
feature will in fact characterize the type of change of existence state
for any value of any feature from moment to moment, and we will call it
the "transistence state" ("transistence' meaning "existence through time')
of the value considered.

In order to understand what all this means in concrete terms we must
first realize that any ''motion' involves some change in the values of
some feature - e.g. a translation involves changes in values of the
feature "position', a rotation involves changes in values of the feature
"orientation', an expansion (or a contraction) involves changes in values
of the feature "size'", and an acceleration (or a deceleration) involves
changes in the values of the feature ''speed’. It follows that in order
to analyse any motion the lowest level essential task is to keep track of
what happens to each possible value of the feature concerned so that at
every moment we are aware of which values come to existence and which
values lose it. This is where we need transistence states.

= S £ ¥ = =
S R S

. Lamontagne

As we said hefore, the sxistence state of any value of some festure
at any moment is either 1 or 0, and is directly available from the signal
that represents the value itself. The transistence state of a value is
then worked out by pairing the existence state of this value at any
moment with its existence state the moment before; we therefore have four
possible transistence states: O-0 or the "still absent” state, O-1 or
the "on" state, 1-0 or the "off" state, and 1-1 or the "still present”
state.

In the case of a single-valued feature (e.g. straightness of a line,
coneavity or convexity, connectedness, ‘'squareness’, etc...etc...), the
single value's transistence state has a “global” significance which in
fact makes motion impossible within the feature itszelf (i.e. "sguareness"”
cannot possibly move); but in the case of a multi-valued feature (e.g.
position) the transistence state of each value only has a "local"
significance. This local character of transistence states in the context
of multi-valued features opens up a door for further running (and frozen)
feature computing. What we mean by "local character" of transistence
states is that they only refer to particular values, and that they do not
convey any information about what is happening 'globally" (through time)
in the "pool" of values which belong to the feature concerned. Such
global events can only be grasped by grouping the different values in the
"pool" under transistence states as criteria. This is in fact the way
to get at motion itself, by comparing "off" values with "on" values ("off"
and "on" being the criteria for comparing such and such values) and
deriving from this comparison what we will call the two quasi-primitive
running features: direction and speed (or type of change in value and
rate of change in value). It is indeed the case that when some motion
occurs different values of the feature involved succeed each other, that
is one value goes "off" and another one goes "on" and diréction and speed
can only be derived by comparing the values which behave in this way.

For instance if we consider the feature "orientation" with values
ranging from 1 to 180, a motion within this feature (i.e. a rotation)
could be something like this: at moment 1 orientation 45 turns "off"
and orientation 46 turns ''on'", at moment 2 orientation 46 turns "off"
and orientation 47 turns "on'", at moment 3 orientation 47 turns "off"
and orientation 48 turns "on", etc...etc.. Computing motion in such a
case consists in identifying which value goes "off" and which value goes
"on" and in deriving from them the fact that nothing has "globally"
disappeared or appeared but that "something' has moved clockwise at a
rate of one unit of resolution per unit of time.

Now to combine the actual values going "off" and "on" in order to get
at direction and speed one needs to consider quite closely the actual
feature involved, because there is no reason to believe that the same
number and the same type of possible directions will have to be dealt with
whatever feature happens to be considered, no more than we have reason to
believe that the requirements for working out the rate of change will be
uniform for all. We will not discuss the details of this just now, but
will restrict the present discussion to acknowledging the completely
general principles of velocity detection and then concentrate on finding
precise computational tools to suit them.

The general principles of velocity detection (or of quasi-primitive
running features computation) are on the one hand the analysis of the

type /

¢. Lamontagne

/type of difference (or "qualitative” difference} between "off" and “on"
values of some given feature, and on the other hand the analysis of the
emount of difference (or “quantitative" difference) between the same
{"off" and "om") values. The former type of analysis yields direction
and the latter type yields speed.

4, Computational concepts to deal with the primitive and the
quasi-primitive running features

What we want to do in this section is describe effective decision
procedures which will act as precise computational concepts to represent
the deriving of the primitive and the quasi-primitive running features.

We want these computational concepts to be simple enough to allow us to
use them with complete control over their significance as we proceed from
the embrionic state which our visual system is in at the moment up to the
most sophisticated level which we wish the system to reach; and we want
these concepts to be precise enough to allow us to build (explicitly in
hardware or implicitly through simulation) actual systems which will carry
out the type of computation which the concepts are meant to cover.

4,1 Computing the primitive rumning feature (or transistence state):
ChU's .

From what we have said in section 3, detecting the transistence state
of some value of some feature involves a procedure which takes as input
the existence state (either 1 or 0) of the value at some given moment, and,
by pairing this existence state with the one detected the moment before,
produces as output one of the four possible transistence states. An
effective procedure which does just this is expressed by the network shown
in Fig. 1.

inpdT

line

son” fine

stifl line

= “off” line

Note: The signal Travels
The disTance beTween
Two “nodes” in one

memenr. |} ===-- —3» : acTivation”

———————4} : YinhibiTion”
@ : "Threshold of lue N "

95

€. Lamontagne

Fig. 2 shows a precise situvation where the network sctually computes
transistence states: at mowent 1 the value which this particular network
happens to be set on is absent, i.e. its existence state is 0 (and there
is no signal already rupning in the network}; at moment 2 the value is
present (it turms "on"); at moment 3 the value is present again (it
remains “stilil"), and at moment 4 the velue is absent (it turns "off").

tapuT= 4. inpiT= 4 ~
MomenT 4 MmomentT 2 ViomentT™ 3

Momeant 4 momenT 5 MomenT &

We can see from this example that each possible matching (of the
input at one moment with the input at the moment before) is represented by
a specific outcome in the network:- O-1 (the "on" state) is specified by a
signal in the upper output line, 1-1 (the "still present" ptate) by a
signal in the middle output line, 1-0 (the "off" state) by a signal in the
lower output line, and 0-0 (the "still absent" state) by "none of these
signals". Obviously one and only one of these possibilities is activated
at any moment. The computation is achieved by using a delay loop to keep
in the network the input received the moment before (memory requirement),
and by a combination of activating and inhibiting signals controlled by
thresholds at particular junction points to carry out the matching process
and generate the specific output. This procedure is precise enough to be
actualized in electronic hardware or simulated on a digital computer
(using for instance straightforward Boolean functions) and is simple enough
to be grasped in a single "glimpse" whenever needed. We will hereafter
refer to it as the Change Detection Unit (CDU).

Before turning to the precise characterization of computing direction
and speed, the quasi-primitive running features, we feel that we should
make the following remarks concerning the CDU.

First we want to stress the fact that since the CDU is designed to
compute the transistence state of particular values of a given feature, if
we want to keep an eye on every possible value of the feature then we have
the choice between considering ome single CDU as a "sub-routine" which is
called to compute the transistence state of each value as the system
exhaustively /

96

{.Lamontagne

/exhaustively goes from one to the next, or considering an individual CDU
for each posgible value, thereby making parallel processing possible.

The simplicity of the CDU allowed us to choose the much more satisfying
parallel setup, which means that if the feature considered has W possible
different values there will exist N differemt CDU's, each specifically
linked to one particular value.

Secondly we want to emphasise the general purpose character of the
CDU. We tried to convey this characteristic by saying that the CDU
could compute the tzansistence state of any detected value of any detected
feature, including of course transistence states themselves as detected
values of a detected feature. Right now it might be obvious that the
nature of the feature whose values are analysed through time interferes in
no way with the analysis as such; but later on, when we start talking
mostly about particular cases, it might happen that the general purpose
character of the CDU drowns in the specificity of the context, and this
could create undesirable misunderstandings.

And thirdly we want to make it clear that we do not propose the CDU
as an anatomical unit that will be found in actual nervous systems. The
network which we are proposing is exclusively intended to be a conceptual
tool to tackle the problem of motion perception. In other words any
resemblance with any existing natural anatomical network is a pure
coincidence.

4.2 Computing the quasi-primitive running features (or direction and
speed): VDU's

We saw in section 3 that the detection of speed and direction of
motion is achieved by comparing the actual values which go "off'" and "on"
from moment to moment. What we want to discuss in this section is a
precise scheme to carry out explicitly this comparison process.

Since some transistence states (namely "off" and "on" states) are
needed as criteria for choosing the relevant values for comparison, we
clearly want to use the output from the CDU's as a starting point.
Knowing which values ought to be compared we then want to carry out a
comparison which will yield the type of difference (or direction of
motion) and the amount of difference (or speed of motion) between the
values. What we therefore propose is a network where "off" signals
originating from our value-specific CDU's (remember that we decided to
link a CDU to every value of each detected feature) will "travel" along
lines projecting in all possible directions through every feature's pool
of value-specific CDU's in search for "on" signals which will in fact be
made to 'cross" the'travelling off" lines at points which are specific
to the respective values which they characterize; the "off" signals will
keep track of the distance travelled by adding 1 to their quantitative
content every time they meet an intersection with "on" lines where there
is no "on" signal. So when an "off" signal meets an "on" signal at one
of these intersections a velocity signal is triggered, the distance
travelled by the "off" signal along the particular line specifying the
speed of motion (i.e. the amount of difference between the "off" value
and the "on" value), and the actual line which led the "off" signal to
the "on" signal specifying the direction of motion (i.e. the type of
difference between the "off" value and the "on" value).

Such /

£, Lemontagng

/Such a scheme cbviously reguires a careful arvangement of the (DU's
within every feature’s poel of values, CDU's having to be set in a highly
ordered way in order to allow the "off" signals to "spread ocut” in an
adequate way. Let us then see in more concrete terms how all this is
achieved. Fig. 3 shows what the network would look like for a single
direction and from a single CPU's point of view (i.e. only one CDU's "off"
signal can travel along the line inm search for an "on").

CBU’s
“on” “on® o . s Yon” omn"
KA S N A e G A (TN ilm"e
OFF"
ing
b erc...etc...
YDy
+1 +1 +4 +1 X A ?}
RelRaN ke NkeNke! o Teasslling
> B
o - 1y
g:.v'.(-a-rr?e‘,.feJ o~ ~3 X 4 J & &
MmeeTing of
“ofF“and “on’

Signals ‘

PoTenTial velociTy sianals
t 1 4

-

vre

Fig. 4 shows an example of how this Velocity Detection Unit (¥DU)
would work for the case of an "off" signal computed by the first CDU and
an "on" signal computed by the fifth CDU.

}.l ;‘/.\{
;s'g‘ﬂf
etc...etc...
Travelli
“on" Signal /,-2 e "
\ esTakliZhing e
conAecTion

Velocity sianal
 wirh dmgide o

Ff(}ur'e l)‘

98

C. Lamontagne

By choosing a particular feature, let us say "orientation”, and
following it through the network let us now try to-clarify how this
network leads the system to compute speed and direction efficiently and
fast. 1In the case of orientation let us remind ourselves that we have a
CDU to represent each particular orientation (i.e. each value of the
feature orientation) which can be detected. All these CDU's are ordered
in a single line, as in figures 3 and 4; the order according to which
they are set should make the distance between any two of them correspond
to the difference in amount between the values which they specify. In
this way we make it possible to derive speed by computing the actual
distance between the "off" value and the "on" value over a unit of time.
Now as far as the direction of motion is concerned we have to realise
first that in the case of orientation there are only two possible
directions: clockwise and anti-clockwise (this is in fact the reason why
we decided to put the CDU's along a single line); these two directions
can be accounted for by having two "travelling off" lines linked to our
line of CDU's, one going from left to right and the other one going from
right to left. 1In fact what we would really need is a ring of CDU's
linked to two circular "travelling off" lines, but there is no need to go
into that for the moment since the general idea can be grasped quite
adequately from considering a "straight line" network. Fig. 5 shows how
the system would work for two CDU's only, an "off" signal being detected
at 5 and an "on" signal at 10 .

.. @rc...

Clockwise “ronning ofF* line

{ cre:Te&
(o:-
s s aniti- clockwisa P se

- runﬂ.‘“‘) off* line

F—itjure 5

We will call VDU (Velocity Detention Unit) of a given feature the
"travelling off" lines setup for this feature. We hope that it is now
clear that VDU's can vary quite a lot from one multi-valued feature to
another. For instance, since a much greater number of directions of
motion have to be accounted for, the VDU required by the feature "position
on the retina" will be very different from the one we just saw for

orientation. Thinking about other possible multi-valued features like
size or even speed and direction themselves should bring enough evidence
to convince anyone of the need fer different types of VDU's. However we/

99

C. Lamontagne

/we want to stress that the gemeral computing principles of a VDU as
discussed in the above paragresphs remain completely gemeral whatever
feature they happen to be applied to. Another impertant point about VDU's
is that their relative complexity does not allcow them to process many
velocities at the same time; a much too complex control system would be
required to make this possible. In fact each VDU will be allowed to work
on one velocity only at a time, but we will have many VDU's working in
parallel, each one computing velocity for its particular multi-valued
feature.

What comes out of all this is that every multi-valued feature for
which we want to compute motion will have to be given its own set of CDU's
(the number of CDU's in the set depending on the number of different values
the particular feature allows) and its own VDU (the number and the lay-out
of'"travelling off" lines depending on the particular feature). 1In order
to underline the unity inherent to this "pairing" of a set of CDU's with a
particular VDU whenever we decide to compute motion for some multi-valued
feature, we found a single label to cover it: Motion Detection Unit (MDU).
An MDU therefore is this two-storey network (CDU's over VDU) which we stick
under the set of values of each multi-valued feature for which we want to
compute motion.

5. Conclusion: a glimpse at the rest of the story

Reaching the level of MDU's was the final step in defining primitives
for motion perception. However we are very well aware of the fact that
the power of any system:rests as much on the way primitives are used as it
rests on the primitives themselves. This is why we want to conclude this
paper by at least hinting at how the simple primitives which we just
described will be used to create a powerful visual system.

We said in section 2.1 that for us the task of defining a visual
system is one of finding the adequate criteria for grouping different
values of different features into new values of new features. Since these
criteria are always themselves abstracted from values of features we can
say that values can be used either as criterion for grouping or as element
for grouping. In the context of a whole visual system this means for
instance that frozen features can be derived by using some value(s) of a
running feature as grouping criterion ("frozen" meaning only that the
actual values grouped together are all detected within the same processing
moment) . For example, a set of positions could be analysed as a line
using as criterion for choosing these particular positions the fact that
they are all moving in an identical way. This gives an idea of how
running features can get entangled in matters other than straightforward
motion detection, and of how intertwined frozen and running features can
become. But there is more to it; even when we stick to our standard
MDU's we can get quite a lot done by applying them to the right multi-
valued features (by the way we hope it is clear that MDU's can be, and
will be, applied to running multi-valued features as well as to frozen
ones) . To realise this let us consider sticking an MDU to the set of
values specified by our primitive frozen feature '"retinal position';
this MDU would compute translation of 'dots" relative to the retina, but
would do it for one "dot" only at a time. If we want to see a line
(i.e. a set of "dots") rotating we could then provide our system with as
many MDU's as there are dots in the line, and relate their respective
outputs in a way which is specific to rotatioms. But much more simply /

100

C. Lamontagne

/simply we could go up ome level by computing a single frozen feature,
namely orientation, which could then be linked to a single MDU (the
general purpose character of CDU's and VDU's msking this perfectly
legitimate) which would then compute rotation without problem. If ome
now tries to generalise this type of strategy to much more complex types
of motions (going right up to three-dimensional motion) one can get a
feel for what can be achieved by putting such simple structures as MDU's
in the right places.

Finding the adequate features for wunning feature computing, and
discussing their relevance as criteria for deriving other types of
required features constitute our two main preoccupations for the last
eighteen months or so, but we won't go any deeper into this for the
moment, the scope of the present paper having already been outranged
sufficiently.

101

AUTOMATIC GENERATION OF PROGRAMS

CONTAINING CONDITIONAL STATEMENTS

by

David C. Luckham
Artificial Intelligence Laboratory
Stenford University

and

Jeck R. Buchanan
Department of Computer Science
Carnegie-Mellon University

March 1974

ABSTRACT

An experimental system for automatically generating certain simple kinds of programs
is described. The programs constructed are expressed in a subset of ALGOL
containing assignments, function calls, conditional statements, while loops, and non-
recursive procedure calls. The system has been used to generate programs for
symbolic manipulation, robot control, every day planning, and computing arithmetical
functions. This system has previously been described in [Buchanan and Luckham
1974] The present report focuses on the generation of conditional statements and
describes applications to mechanical assembly and symbolic manipulation problems.

This research was supported in part by the Advanced Research Projects Agency of the
Office of the Secretary of Defense under contracts [DAHC15-73-C-0435] and
[F44620-73-C-0074]

102

1. INTRODUCTION

A potentially useful area of application for automatic program generation Is the class
of problem domeins in which the solutions usually have the form of programs or plans
containing alternative paths for processing various cases but very little looping
structure or recursion. Let us say that the main complexily in the planning is the
contingency or conditional branch, although some loops may occur. Such problem
domains include scheduling (travel itineries, office procedures) medical diagnosis, and
machinery repair procedures. Certainly, the problem of automatically generating
simple contingency plans correctly is important, and it is not an entirely
straightforward business.

In this paper we describe some methods for constructing contingency programs that
have been implemented in our system [Buchanan ‘and Luckham 1974] We give
examples within some possible areas of application, of the sort of conditional branching
procedures that are generated by the system. In addition, example 1 dealing with the
generation of assembly and repair procedures for very simple machinery, seems to
present a potentially practical context requiring much further research into such
questions as differentiating the functions of various kinds of knowledge, and
developing languages for describing those functions. The present system provides an
experimental tool for such research.

The system requires as input a programming environment (called a FRAME) consisting
mainly of primitive procedures and rules of composition (i.e., programming methods). A
programming environment is defined using a declarative language, the FRAME language.
The rules of inference, axioms and other logical facts expressed in this language are
translated into a backtrack problem reduction system augmented by special search
procedures. This system, which does most of the searching, recursively applies to a
given goal the primitives and rules of the programming environment to generate
subgoals whose solution will imply a solution to the goal. The basis of the Frame
language is a free variable first order logic in which statements may have one of three
truth values (TRUE, FALSE, or UNDETERMINED).

When the system has generated a program satisfying the given input-output
conditions, the user may incrementally extend the program by asking for another
program which takes the output conditions of the first program as its input conditions.
He can choose to have the solution program optimized according to some simple
criteria, or generalized and placed on a library of non-primitive procedures. If the
program contains conditional branches calling other procedures, he can choose to have
those secondary procedures constructed. Figure | shows the main components of the
system and how they interact. The system is implemented in LISP using primitives and
backtracking facilities of Micro-Planner [Hewitt 1971, Sussman and Winograd 1972}

The forms of the definitions of the elements of the programming enviornment, i.e.
primitive procedures and rules of composition, correspond to axioms and rules of
inference in a logic of programs currently used to define the semantics of the
programming language PASCAL [Hoare 1969, Hoare and Wirth 1972; see alsc lgarashi,
London, Luckham 1973] The contents of these definitions vary with the actual
environment. Problems to be solved are stated as pairs of conditions, the initial input

AUTOMATIC PROGRAW GENERATION

condition and the goal oulput condition which may be regerded es the input-oulput
assertions of formules in the logic of programs. The consiruction of o solution program
may therefore be viewed as & search for & proof in the logic of programs that the
generated program satisfies the given input-output assarlions. Under certain sufficient
conditions this approsch snables us {o prove thet ihe system will construct zorrect
programs.

In the remainder of this section the logical basis and the formalism used to describe

the programming environment will be summarized.

FRAME ,
PROBLEM,
ADVICE,

LIBRARY

A

TRANSLATOR

INPUT

Figure 1,

)

BACKTRACK
PROBLEM
SOLVER

™

PROGRAM
ASSEMBLER

QUTPUT
PROGRAM

STACK OF
SUB~
PROCEDURE
PROBLEMS

104

Main System Components

k4
OUTPUT

AUTOMATIC PROGRAM GENERATION

1.1 LOGIC OF PROGRAMS
We review briefly the elements of an inference system for proving properties of
programs [Hosre 1969} Further details may be found in [Igarashi, London, Luckham
1973}
NOTATION: X,y:2,U,v,W..variables,

f.g.h.. functions,

[functional terms,

G,P,QR,S,.. Boolean expressions (essentially
formulas of first order logic with standard functions and predicates
for equality, numbers, lists and other data types),

ABC,.. programs and program parts in our
Algol-like plan language,

p,a, procedure names,

o, B, substitutions of terms for variables, also
denoted by (<x«t>).

P(t) denotes the result of réplacing x by t everywhere in
P(x).

«f8 denotes the COMPOSITION of ec'and £; Exf8 =(Ec¢)f for all
expressions E

STATEMENTS of the logic are of three kinds.
(i) Boolean expressions, (henceforth often called ASSERTIONS)

(i) statements of the form P{A}Q where P,Q are Boolean expressions and A is a
program or program part.)

P{A}Q means "if P is true of the input state and A halts (or halts normally in the case
that A contains a GO TO to a label not in A) then Q is true of the output state®.

(iii) Procedure declarations, p PROC K where p is a procedure name and K is a program
(the body of p).

A RULE OF INFERENCE is a transformation rule from the conjunction of a set of
statements (premisses, say Hj ,..H,) to a statement (conclusion, say K) of kind (ii).

Such rules are denoted by

105

AUTCMATIC PROGRAM GENERATION

The concept of PROOF In the logic of programs is defined in the usual way as @
seguence of statements ihat are sither exioms or oblained from pravious members of
the sequence by e rule. A proof seguence Is 2 proof of its end statement.

NOTATION: We use H |- K to densle thet K cen be proved by assuming H H | K
denotes the same thing for first crder logic. Problems for the program generator fo

solve are denoted by P{¥}(QuUFoR denotes thal R is e first order consaguence of Q
arkl the the axioms of F.

The logical rules used in the system are:

R1. Rule of Consequence: P>QQ{AJR P{A}Q,Q=R

P{AR P{A)JR
R2. Rule of Concatenation: P{A}Q,Q{BIR

R3. Rule of Invariance: if P{A}Q and IuFoP then HAIP
where I'=QA{R:ReIN-{QUF2-R)}
R4. Change of Variables: P(x){A(x)}Q(x)
Py Aly)IQ(Y)
RS. Conditional: PAQ{A]R, PA-Q{B]R

P{IF Q THEN A ELSE BJR

R6. Undetermined Values: if I'{?}G cannot be solved and
~(PuF>-G) then G is UNDETERMINED in T’

R7. Primitive Procedures: The rule defining p is an axiom of the form P{p}Q.

R8. Iterative Rules: An iterative rule definition containing the Boolean
expressions P(basis},Q{loop invariant),R(iteration step goal),L(control test)
and G(rule goal) is = rule of inference of form:

P,I-QQALETIR, R{??JQv-L

P{WHILE L DO %??)G
where the free variables of R occur in Q and 7? is restricted to be a sequence
of assignment statemsants.

R9. Definitions: A definition of G in terms of P is a logical
equivalence |-PsG.

R10. Axioms: A axiom P is » logical axiom [-P.

106

AUTOMATIC PROGRAM GENERATION

In the definition of & Frame F provided by the user; instances of rules R7-R10 may be
given whereas rules R1-R6 are built into the program construction system. A problem
is represented as the formula I{?}G, where 1 is en input assertion or initial stete and G
is an output assertion or goal and the objective is to genorato s solution program for ?
that transforms 1 into G using the rules of F.

The above summary does not include system rules for conditional assignments used in
constructing loops, nor the strongest form of the rule of invariance [Buchanan snd
Luckham 1974}

1.2 FRAME LANGUAGE
The Frame language consists of the foliowing elements:

1.2.1 ASSERTIONS: Boolean expressions are used as conditions in rules, axiorﬁs and
problem representations.

1.2.2 INPUT CONDITIONS: In specifying a problem I{?}G, the input condition (initial
state) I is given by a conjunction of literals.

1.2.3 AXIOMS: Axioms are stated in either of the forms P>Q or P, where P and Q are
assertions. They hold in all states and are used to complete a given state description
by deduction of other elements of a state from those given.

1.2.4 RULES: There are three types of rules: primitive procedures, definitions, and
iterative rules.

(a) A primitive procedure is specified by a name, an argument list, and its pre and post
- conditions, i.e.
P {f(x; ,.,Xx)}Q where P and Q are assertions in

which xj,..,%x are free, and f is the procedure name.
The variables are -formal parameters of the procedure. They may be "bound” by
substitution of actual parameters when the procedure is applied to a state.

When a primitive procedure is defined it may be declared to be an ASSUMPTION. If it
is used in a successful program construction, then the user is informed and is given the
opportunity to carry out a structured program development of this non-primitive
operation. This is described in [Buchanan and Luckham 1974}

(b) A definitional rule is of the form RaS where R and S are assertions. The relation, S,
is given as the post-condition of the rule. The meaning of a definition is that
whenever it is desired that S be true it is equivalent to establish the truth of R. A
definition is often used to shorten assertions in rules by defining a single relation as
equivalent to an often used condition,

(c) Iterative rules specify conditions that if satisfied justify the assembly of a "while”

Ioop to achieve the associated goal. They are instances of the iterative rule R8, and
#r defined by giving:

107

AUTOMATIC PROGRAM GENERATION

(i) A name, e.g. TLOCP, (without parameters).
(ii) A basis condition B,
(iii) A loop invariant condition Q that spscifies relations that
must be true in the state prior to each iteration.
(iv) An iteration step condition R that specifies the goals to be
achieved during an execution of the loop body.
(v) An iterative goal G, the condition considered achievable by
- the iterative process.
(vi) A loop control test and an output assertion may be specifed.

1.2.5 SPECIAL AXIOMS: After the rules and initial state have been defined the system
requests the foliowing information for each predicate symbol P that has been
mentioned.

a) "Is P a function of the state?” The intent of this classification is to
separate those relations whose truth value may be affected by a state
transformation, i.e., a FLUENT relation, from those whose truth value is
constant over all achievable worlds, i.e., NON-FLUENT relations such as
*ROBOT(X)", "INTEGER(Y)".

b) "Is knowledge represented using P partial?® A partial relation may have
truth values TRUE, FALSE, or UNDETERMINED. Partial relations may be used
to represent incomplete knowledge of the world which may cause conditional
statements to be generated as explained in Section 2. A relation may be
declared UNCERTAIN which implies an absence of knowledge about it so that
it is assigned a truth value of undetermined a priori. If P is not PARTIAL it
is TOTAL and can only have truth values of either true or false. Thus rule
R6 applies to partial predicates only.

c) "Does P have a uniqueness property in certain argument positions?” A
“yes" answer indicates that P cannot be true for two sequences of argument
values that differ only at one of those positions that are unique. The unique
positions are given using the notation, (X1,2X3,s,..Xn), for example, io
designate the second and fourth argument positions. For each unique
argument position in relation P(al,..,an), an axiom is "built-in" from which a
contradiction may be established with P(bl,..bn) that differs in a unique
position and matches elsewhere. For example the statement, "an object can
only be in one place at one time",is expressed by, AT(X1,2). If we add, "and
only one object can be at any place”, then we use AT(z,2).

Conditional statements are generated when the problem solver encounters states in
which it cannot determine the truth value of its current subgoal. This can happen
either in situations where the rule of undetermined values applies or when the
outcome of a primitive procedure is uncertain. In the next sections the system
methods for constructing conditionals will be described, examples given and program
correctness considered.

AUTOMATIC PROGRAM GENERATION

2. CONDITIONAL STATEMENTS

As previously mentioned, relations involving pertial predicates may have truth values
of TRUE, FALSE, or UNDETERMINED, whereas all other relations must be sither TRUE or
FALSE. Durlng progrem generation, knowledge may be incomplete, for example
properties of the value currently held by 2 program variable, eg. C{Y)AZEROR(Y),
mey not be known, or it probably would nol be known whether or not e traffic light
would be gresn when a robot vehicle approached an intersection while following 2
generated procedure. However it is assumed that when the program is executed there
will be a recursive test yielding TRUE or FALSE for all conditions.

2.1 UNDETERMINED VALUES. During the generation of a program, uncertainty may
arise when s pre~condition for the spplication of a rule is UNDETERMINED with respect
to the current state. The implementation of the rule R6 is described by the following
definitions.

DEFINITION. A literal | is UNDETERMINED in a state § if the following conditions hold:
(i} pred(l) is partial,

end (i} | cannot be achieved from §,

and (iit) ~ cannot be proved in 8.

Condition (ii) means that ! is not true in $ nor can S be transformed into a stste in
which | is true. If condition (if) is true and ~l is true in § then | must retain & truth
value of FALSE and the precondition subgoal | must fail. Failure to find < in §
establishes a truth value of UNDETERMINED for | with respect to . This definition
applies to fluent and nonfluent literals but since the truth value of 2 "nonfluent” cennot
be changed by 2 state transformation, for them, it is sufficlent to use only the logicsal
axioms in deciding condition (ii).

For the more general case in which the uncertainty may be a disjunction of literals we
have the definition,

DEFINITION A disjunction of literals {I;}m is UNDETERMINED in & state S if at least
one literal is UNDETERMINED and no literal can be achieved from S.

2.2 CONDITIONAL STATEMENTS: When a pre-condition P is UNDETERMINED in 2 state §,
a conditional branch is inserted in the solution program. If P is a single literal |, then
program generation may continue either along the path in which | is assumed {0 be
TRUE and in which future goals are sttempted with respect to stale S A {I}, or along
the path in which ~f is assumed to be TRUE using state S a{-l}. The system conventicn
has been io generate a call to a yel ungenerated procedure for the latter case. The
tasks of generating such contingency programs are placed in a2 stack for later
attention. The structure and use of this steck is described in Section 2.5. Program
generation continues, by convention, along the path using state § a{l}. This path is
referred to as the “trunk” progrem of the tree of conlingency programs generated
while attempting to achieve the main goal.

The path selection at prasent is rather ad hoc since no assignments of probability ere

109

AUTOMATIC PROGRAM GENERATION

made at the points of uncertainly and no path is considered more liksly to be
successful in general.

n
If en undetermined disjunctive precondition {I; };=; occurs in which literals {i;};=; msn,
are UNDETERMINED in G, then a nested conditione! statement of the following form wiil
be generated:

if 4y then

if 42 then

if ~ then py
glse Pe"1

else p;
else pg

where each p; is a call to a program to achieve a selected goal G from state §; = S A
{li :i=j+1 & i<m } A {-l; : 1sisj} } and pg is the trunk program segment which satisfies
SAli{pe]G and forms the eise-statement in the main-clause of the conditional. Each
member of the set of triples {(p; , S;,G):1sjsm} is placed in the stack of contingencies
and program generation continues for pg The assumed literal,l;, is removed from the
state following the generation of the ELSE clause in the trunk program. This is the
point in the trunk program where the contingency programs rejoin and the assumption
| is not valid for all computation paths leading there.

2.3 SELECTION OF CONTINGENCY GOAL: The goal G to be achieved by the contingency
programs is selected from the set of goals in the subgoal tree that are giobal to the
undetermined precondition. Let us refer to the set of goals which are below G in the
subgoal tree, as the SCOPE of G.

The particular G chosen and its associated scope affect the length of pg , duplication
among contingency programs, degree of difficulty in generating contingency programs
and validity of their use. If the structure of the trunk program is to remain fixed
during contingency program generation then the choice of G cannot be deferred. The
block structure of our program language imposes the restriction that for any
conditionals in pg , a contingency goal G’ must not have a greater scope than G There
is also the problem that if G is not fully instantiated then inconsistent instantiations
may occur in different contingency programs which must validly rejoin the main
program following the ELSE clause. The present system selects the least global fully
instantiated goal thereby satisfying the block nesting constraint and minimizing the
scope while avoiding the problem of handling deferred instantiation. This selection
process is always effective in the present system since the top level goal is fully
instantiated (i.e. all of its variables occur in the initial state).

110

AUTOMATIC PROGRAM GENERATION

2.4 REJOIN CONDITIONS When a contingency program is generated its output state
must satisfy certain conditions, hereafter called the rejoin condition, for return of
control to the trunk program o be correct. Consider the case of an undetermined goal
L in state S and e contingency goal G in Figure 8 . Let A and B be program segments
that satisfy S A L{A}G and S A -L[B)G snd let C be the rest of the trunk program.

¥
Q___"?___, .
\LYES

A‘.

l(

c

Figure 2

Let R be the total output state of B, ie. S A -L { B } Rwhere R>G. Let Q be a
sufficient input assertion computed for C. Then the REJOIN CONDITIONS for p(B) is, R
> Q. A contingency program is said to have SIDE EFFECTS when its execution results
in state changes in addition to the achievement of G. The difficulty in satisfying a
rejoin condition occurs when B has had side effects resuiting in an output state from
which Q cannot be proven. The implication for program correctness of satisfying
rejoin conditions is obvious.

25 SUBPROBLEM STACK OF CONTINGENCIES The task of generating a conlfingency
procedure is specified by the quadruple:

(<procname> <state> <goal> <rejoincond>)
where,

<procname> is the name of the yet ungenerated procedure that must

satisfy <state>{<procname>}<goal> A <rejoincond>.

At the point in the planning when the uncertainty is encountered, the first three
elements of the quadruple are placed in a stack as explained previously. The rejoin
conditions are not known at this time since it involves the input assertion for the trunk
procedure segment foliowing the point where control returns from the contingency
plan to the trunk plan. After this segment is generated, the rejoin condition is
computed and stored as the fourth element of the quadruple.

111

AUTOMATIC PROGRAM GENERATION

When planning has been compleled for some frunk procedurs, if the contingency steck
is not empty then conlingency pleaning may be dons by removing e guadruple from
the list and posing this as » progrem generation tssk The slale of the syslem is
initislized to the specified contingency state snd the subgosling system is given <goal>
as its main goal. I il is successful in achieving 2 slale In which the main gosl is true
then a test is made to see if the rejoin condition is true in thel stale. I it is then the
procedure declaration is adjoined to s trunk program. I the condition is false then
the system sliows the user two aiternatives, Le.

(i) Mark the call io the program as an error exit in the trunk program, or (i) "Fit" the
program o the trunk program by posing currently unlrue rejoln condillons as goels
and constructing 2 new progrem segment that achieves them and sppending it lo ths
and of the contingency program,

This process of generating 2 trunk procedurs which may creste new contingency tasks
then generating contingency procedures as direcled by the user may continue until all
contingencies have been processed and the siack is exhausted.

2.6 COMPUTATION OF INPUT/OUTPUT ASSERTIONS. In Section 1 primitive procedures
were viewed as Frame rules of the form P{p}Q, where P and are the pre snd
postconditions for p. The conditions P and () may also be viewed as the minimal input
and cutput assertions for p , that must be satisfied by the actus! parameters of p.

For any generated program segmeni A, the input asserlion I, is compuled ss the
conjunction of all literals, |, from 2 siste thal were wused in achieving subgosls
encountered during the generation of A and did not ocour in thet state as & result of &
postcondition of a procedure whose generstion in A precsded the addition of io I, .
The output assertion O, is the comiunclion of literals added to & siste during the
generation of A that are true in the final state.

The computation of input/foutput assertions for programs consisting of compositions of
primitive procedures is straightforward as described above, however the uncertainty
as to which path computation will follow in 2 program containing conditional statemenis
complicates these assertions. The input/output asserlions in this case must be
computed incrementally as each contingency program is generated.

In the conditional statement shown in Figure 2, suppose we know the minimal input and
output assertions for A and B, say P{A}Q and R{B}S. then the input and output
assertions for the conditional statement are

(LAP)vV (-L AR)if L then Aeise BIQVv S.

To reduce computation, We use the simpler sufficient conditions, PAR, for input
assertions.

The conditional statement may be correctly executed in any stale in which P A R is
true. There doesn’t appear to be a simplifying approximation for output assertions
unless on the assumption of no side effects in the contingency program B, i.e. QuS, we
take Q as the output assertion.

112

AUTOMATIC PROGRAM GENERATION

It can be shown by induction that if the computation of input/output assertions is
correct for atomic program construcls, ie. primitive procedures and while statements
then using the the composition rule, the computation of input/outputl assertions for
generated programs is correct.

2.7 UNCERTAIN PRIMITIVE PROCEDURES A primitive procedure g defined by P{q}Q has
an uncertain outcome if Q is a disjunction. In the present system, disjunctive post-
conditions uss the exclusive OR connective, "¢". This allows us to define frame
procedures that have an intended result but may be unreliable. It is assumed that
exactly ons of the pessible outcomes will be true in the output state and that none of
them are true in the input state. At the point where an uncertain operator is applied,
the problem solver has no knowledge of what the outcome will be and a conditional
statement must be generated. Let Q be the disjunction of literals {l; };=; . The first
outcome |; is considered fo be the normal resuft of executing q. Following the
inclusion of q in the program in state S, a conditional statement of the following form is
generated.
if-1p Alz2 A~lz3 ALAST, then p2

else if ~lj A-lp Alz A~ly ALA-L, then p3

else if -1} A-lp AuA-l,y Al thenp,

else pn 3

where each p;, 2 < j < n,is a call to a program to achieve |; from state S, =S U {I; }
Uf-h:iAdj&1lsisn}

The contingency states will correspond to the n ways of assigning exactly cne literal
true and the remaining literals false.

2.8 CORRECTNESS Conditional statements will be correctly generated if the system
methods are an accurate implementation of the conditional rule, RS, presented in
Section 1. Referring to Figure 2 in section 2.4, if we let S be the output state of C
then by construction and by verifying the rejoin conditions we have,

(1) IAL{AJGAQ,

(2) 1A-L{B]JGAR,

(3) QiCls,

(4) |- R > Q, (rejoin condition verification)

and the correctness proof may then be completed as foliows,
(5) IA-L{B}GAQ (24 cnsequence Rule)
(6) I{if L then A else B}G A Q, (15,Cunditional Rule)
(7) Hif L then A =ise BC}S, (3,6,Composition Ruie).

It should be noted, however, that if conditional statements occur in B then R may only

113

AUTOMATIC PROGRAM GEMERATION

be an approximation of the true output state resulting from executing B as discussed
in Section 2.6. Similarly Q may be only an approximation of the trus input assertion for
the remainder of the program. In these cases an incorrect program may result.

3. EXAMPLES
3.1 Assembly and Repair of a Model T Ford Water Pump.

The problem is to make a water pump given the various parts placed at locations on a
pallet. This task is actually accompiished by a mechanical hand controlled by programs
written in a specially developed Hand Language [R Bolles and R. Paul, 1973} Thers
are three major parts, a casing {or pump base), a gasket, and a top assembly, and
these must be fastened together by screws. The pallet may contain more than the
minimum quantity of parts. The frame consists of simple idealized Hand Language
operations and definitions of concepts dealing with the assembly world of the
mechanical hand, such as ALIGN, ASSEMBLY, POSITION, and FASTEN. There is a specific
order in which most of the building operations must take place; in particular, the
problem of lining up holes in the pump casing with holes in the gasket and top requires
the use of auxiliary tools called PINS. Pins must be placed in holes in the casing, and
other parts slipped over the pins, and then some free holes must be fastened (to
prevent slipping and misalignment) before the pins are finally removed . This assembly
order can be represented graphically, but is in fact encoded by the way definitions are
built up from other definitions in the frame. The reader will see the sequence in
PROC1 below.

The frame also contains a simple scheme of definitions dealing with diagnosing faults
and repairing them. At the top level, the concept DIAGNS is defined simply as an OR of
possible faults. If a new fault is discovered it can be added (by extending the
disjunction for DIAGNS). Each fault is defined as an OR of pairs of the form
CAUSENAFIXn, where CAUSEn is the nth possible cause of the fault and FIXn is the
definition of what must be done to fix that cause. As more causes or repair
procedures are discovered they may be added. So the diagnostic definitions are easily
extended to encompass new situations. A repair procedure for CAUSEn is the positive
branch on the test "is CAUSEn true® of the complete program to achieve the goal
“diagnose the fault®. It will be generated as the nth contingency plan, PROCN;the user
may choose to have it generated before any other sub-procedures, if for example he
believes CAUSEn to be the problem. The generation of repair procedures involves
repeatedly dismantling the pump and rebuilding it, and is a good test of the updating
algorithms of the system (implementation of R3).

Definitions of concepts such as ASSEMBLY, ALIGNMENT, FAULT, CAUSE, REMEDY in this
example are, to say the least, unsatisfactory. Intuitively, these are “general” concepts,
where we might, with a little good will, interpret "general” to mean that more accurate
definitions of these concepts ought to be part of FRAMES for assembling a wide
variety of different machinery. In other words, we should be able to put our words
into other worlds! The definitions given here are clearly not general enough. This is
not a fault of the system but of our lack of analysis of the concepts. The definitions
here are directly functional in the sense that the bodies of the definitions state exactly
what to do with the parts of the water pump instead of how to reason or deduce what
to do. The example is in the nature of a feasibility study.

114

AUTOMATIC PROGRAM GENERATION

RELATIONS USED IN THE FRAME DEFINITION:

RELATION INTERPRETATION FLUENT PARTIAL UNIQUENESS
AT{X,Y) “Xis at ¥* ~ TRUE FALSE AT(X,5)
=(X,Y) "X is equal to Y" FALSE FALSE FALSE
ISPIN(X) "X is a pin” FALSE FALSE FALSE
ISHOLE(X) "X is a hole” FALSE FALSE FALSE
IN(X,Y) "Xis in Y" TRUE FALSE IN(X,*)
ISFDR(X) "X is the feeder” FALSE FALSE FALSE
ISGASK(X) "X is a gasket” TRUE FALSE FALSE
ISCASE(X) "X is a casing” FALSE FALSE FALSE
ALIGN(X,Y) “X is aligned with Y" TRUE FALSE FALSE
ISCREW(X) "X is a screw” FALSE FALSE FALSE
FASTND(X,Y,2) "K,Y,Z are rigidly fastened” TRUE FALSE FALSE
ISTOP(X) "X is a top unit" FALSE FALSE FALSE
EMPTY(X) "% is empty" TRUE FALSE FALSE
POSITN(X,Y,2) "X,Y,Z are correctly positioned” TRUE FALSE FALSE
PINNED(X,Y,Z) "X,Y,Z are pinned together™ TRUE FALSE FALSE
UNPNNED(X,Y,Z) "X,Y,Z are unpinned” TRUE FALSE FALSE
MAKE(X) "X is to be made” TRUE FALSE FALSE
ISLOC(X) "X is a location on the pallet” FALSE FALSE FALSE
ISPUMP(X) "X is a pump” FALSE FALSE FALSE
ASSMBL(X,Y,Z) "X,Y,Z are assembled” TRUE FALSE FALSE
UNDUN(X) “X is not rigidly fastened” - TRUE FALSE FALSE
DSMNTL(X) "X is disassembled” TRUE FALSE FALSE
LOOSE(X) "X is loose” TRUE TRUE FALSE
FAULT1(X) "X is a fault of type 1" TRUE FALSE FALSE
FIX1(X) "X is a remedy for fauitl” TRUE FALSE FALSE
FAULT2(X) "X is a fault of type 2° TRUE FALSE FALSE
FIX2(X) "X is a remedy for fault2” TRUE FALSE FALSE
BROKEN(X) "X is a broken part” TRUE TRUE FALSE
RJICT(X) “X is rejected” TRUE FALSE FALSE
ISNEW(X) "X is a new part” FALSE FALSE FALSE
ISLEAK(X) "% is a leak"” TRUE FALSE FALSE
DILEAK(X) "X is a diagnostic for leaks” TRUE FALSE FALSE
DINFLW(X) "X is a diagnostic for bad pressure"TRUE FALSE FALSE

DIAGNS(X) "X is a fault diagnosis® TRUE FALSE FALSE

AUTOMATIC PROGRAM GENERATION

PRIMITIVE PROCEDURE PRE-CONDITIONS POST-CONDITIONS
move(X,Y) ISCASE(X) A AT(X,2) ATY)

“move X to Y*

pin{X,Y) ISPIN(GO A ISHOLE(Y) A EWW(Y) IN(X,Y) A -EMPTY(Y)
"put pin X in hole Y" A IN(X,PRPLCE)

putgsk(X,Y) ISGASKEX) A ISCASE(Y) A AT(X,Z) ALIGN(X,Y) A ~AT(X,Z)
“put gasket X on

casing Y"

putop(X,Y) ISTOP(X) A ISGASK(Y) A ISCASE(Z) ALIGM(X,Z) A ~AT(X,V)

"align top assembly”

screwd(X,Y)
“put screw X into
hole Y”

unpin(X,Y)
"remove pin X from
hole Y"

unscrew(X,Y)
"remove screw X from
hole Y*

reject(X)
“reject gasket X”

remove(X,Y,Z)

“disassemble top of
gasket”

DEFINITIONS:

BODY OF DEFINITION

A ALIGNLY,Z) A AT(X,V)

ISFDR(W} A ISCREW(X) A ISHOLE(Y)
A EMPTY(Y) A AT(X W)

ISPINCX) A ISPPLC(V)
A REQUEST(INGX,Y))

ISCREW(X) A ISHOLE(Y)
A REQUEST(IN(X,Y)) A ISFDR(V}

ISGASKET(X)

(ISTOP(X) v ISGASK(X))
A REQUEST(ALIGN(X,Y)) A I1SLOC(Z)

INCX,Y) A =EMPTY(Y) A
~AT(X,W)

EMPTY(Y) A IN(X,V)

EMPTY(Y) A AT(LV) A
*‘MX)Y)

RICT(X) A ~ISGASK(X)

AT(X,2) A -ALIGN(X,Y)

RELATION DEFINED

PINNED(T1,G1,C1)AALIGN(G1,C1)AALIGN(T1,C1)

ISHOLE(H1)AISHOLE(H2)A~=(H1,H2)AISPIN(X 1)A
~=(X1,X2)AISPIN{X2)AIN(X2,H2)

ISHOLE(H1)AISHOLE(H2)AISHOLE(H3)A=~=(H1,H2,)A

~=(H2,H3)A~=(H3,H1)A

ISPIN(P1)AISPIN(P2)AREQUES T(IN(P1,H2))A

REQUEST(IN(P2,H3))A

ISCREW(S)AIN(S 1,HI)AEMPTY(H2)AEMPTY(H3) -

116

POSITMT1,G1,C1)

PINNED(T1,G1,C1)

UNPNND(T2,G2,C2)

AUTOMATIC PROGRAM GENERATION

ISHOLE(H1)AISHOLE(H2)AISHOLE(H3)A~(H1 H2)A

~=(H2,H3)A~=(H3,H1)A

ISCREW(P1)AISCREW(P2)A-~=(P1,P2)AISCREW(P3)A

~=(P1,P3)A-=(P2,P3)AIN(P1 H1)A »
IN(P2,H2)AIN(P3,H3) FASTNID(T1,G1,C1)

ISCASE(C3)AISLOC(LOCIAAT(C3,LOCIAISGASK(G3)A ' :
ISTOP(T3)AASSMBL(T3,G3,C3) : MAKE(PUMP)

ISTOP(T2)AISGASK(G2)AISCASE(C2)A
POSITN(T2,G2,C2)AUNPNND(T2,G2,C2)A
FASTNIX(T2,G2,C2) ASSMBL(T2,G2,C2)

ISHOLE(H1)AISHOLE(H2)AISHOLE(H3)A~=(H1,H2)A
~=(H2,H3)A-~=(H3,H1 JAEMPTY(H1)AEMPTY(H2)A
EMPTY(H3) UNDUN(P)

ISPUMP(PUMP)AISGASK(G 1)AISTOP(T 1)AISCASE(C1)A
REQUEST(ALIGN(G1,C1)AREQUEST(ALIGN{T1,C1))A

UNDUN(PUMP)AAT(CI,P3) DSMNTL(PUMP)
DILEAK(ZIWDINFLW(W1) DIAGNS(X1)
(FAULTLOYDAFIX L(Y D)V(FAULT2(Y 1)AFIX2(Y1)) DILEAK(Y1)
ISPUMP(P1)ALOOSE(P1)AISLEAK(Y1) FAULT1(Y1)
ISTOP(T1)AISGASK(G1)AISCASE(CAISPUMPP1)A v
UNDUN(P1)AFASTND(T1,G1,C1) FIX1(Y1)
REQUEST(ALIGN(G1,C1))ABROKEN(G1)AISLEAK(Y1) FAULT2(Y1)

ISPUMP(P 1)AREQUEST(ALIGN(G1,C1))ADSMNTL(P1)A
ISGASK(G2)A~=(G1,G2)ARJCT(G1)AMAKE(P1) FIx2(Y1)

INITIAL STATE:

ISGASK(GSKT 1)AAT(GSKT 1,P1)AISLEAK(LEAK)AISNEW(NEWGSK)AISLOC(P1)A
ISLOC(P2)AISCASE(CASE)AISGASK(GSKT2)AISTOP(TOP)AISLOCILOC)A
1SHOLE(HOLE 1)AISHOLE(HOLE2)AISHOLE(HOLE)AAT(CASE,P1)AAT(GSKT2,P2)A
ISPPLC(PNPLCE)AAT(TOP,P3)AISPIN(PINI)AISPIN(PINZ)AIN(PINI PNPLCE)A
IN(PIN2,PNPLCE)AISCREW(SCREW 1 JAISCREW(SCREW2)AISCREW(SCREW3)A
AT(SCREW1,FEEDER)AAT(SCREW2,FEEDER)AAT(SCREWS,FEEDER)AEMPTY(HOLEL)A
EMPTY(HOLE2)AEMPTY(HOLES)A ISFDR(FEEDERAISPUMP(PUMP)

THE_GCAL__ (MAKE PUMP)_JS_ATTAINABLE_BY_ THE_FOLLOWING __PROGRAM:

117

AUTOMATIC PROGRAM GENERATION

PROC! (PUMP)
BEGIN
MOVE(CASE LOC)
PIN(PIN2 HOLE3);
PIN(PIN1 HOLE2);
PUTGSK(GSKT2 CASE);
PUTTOP(TOP GSKT2)
SCREWD(SCREW3 HOLEL)
UNPIN(PIN2 HOLE3);
UNPIN(PIN1 HOLE2)
SCREWD{SCREW2 HOLE3);
SCREWD(SCREW1 HOLE2);
END

56 ___RULES__ENTERED
21 ___RULES__SUCCESSFUL

REMARKS:

The order in which some operations
are done is crucial; the order
structure is encoded by layered
definitions. Thus it doesn’t

matter which pins go in which holes,
but it is crucial that one hole is
fastened before the pins are removed.

THE_GOAL __ (DIAGNS LEAK)__IS_ATTAINABLE_BY._THE__FOLLOWING__PROGRAM:

PROC2 (LEAK)
COMMENT
PROC3 ATTEMPTS_TO_ACHIEVE_(DIAGNS LEAK);
BEGIN
MOVE(CASE LOC)
PIN(PIN2 HOLE3);
PIN(PIN1 HOLE2);
PUTGSK(GSKT2 CASE);
PUTTOP(TOP GSKT2);
SCREWD(SCREWS3 HOLEL);
UNPIN(PIN2 HOLE3);
UNPIN(PIN1 HOLE2);
SCREWD(SCREW2 HOLE3);
SCREWD(SCREW1 HOLE2);
IF ~LOOSE(PUMP) THEN
PROC3(LEAK) ~
ELSE
BEGIN
UNSCRW(SCREW2 HOLE3);
UNSCRW(SCREW1 HOLE2);
UNSCRW(SCREWS3 HOLE1);
SCREWD(SCREW3 HOLE3)
SCREWD(SCREW2 HOLE2);
SCREWD(SCREW1 HOLE1);
END
END

118

———— —— e e —— — —— ————— — . G o S

REMARKS:

PROCR is actually added
onto PROC1 since the
problem of diagnosing a
leak is posed from a
state in which the pump
has been made. PROC2
repairs the pump in the
case that the gasket is
loose.

AUTOMATIC PROGRAM GENERATION

14 __RULES_ENTERED
14 __ RULES_ SUCCESSFUL

THE_GOAL_ (DIAGNS LEAK)_IS_ATTAINABLE,_BY ;THE_FOLLOWING_PROGRAM:

PROC3 (LEAK)
COMMENT
PRCCA ATTEMPTS__TO. _ACHIEVE_((DIAGNS LEAK);

REMARKS:
PROC3 repairs the

BEGIN

IF ~BROKEN(GSKT2) THEN
PROCA(LEAK)

ELSE
BEGIN
UNSCRW(SCREWS3 HOLE1);

leaky pump in the
event that the
gasket Is broken.
It is the first
contingency plan

i
i
|
|
|
|
|
| co
| in this example.
UNSCRW(SCREW1 HOLE2); | :
UNSCRW(SCREW2 HOLE3); |
. REMOVE(TOP CASE); |
REMOVE(GSKT2 CASE); |
REJECT(GSKT2); : I
MOVE(CASE P1); : -
PIN(PIN1 HOLE1); |
PIN(PIN2 HOLE2); j
PUTGSK(GSKT1 CASE); |
PUTTOP(TOP GSKT1);]
SCREWD(SCREW1 HOLE3); |
UNPIM(PINI HOLEL); - |
UNPIN(PIN2 HOLE2); |
SCREWD(SCREW2 HOLE1); |
SCREWD(SCREW3 HOLE2); |
END |
END i

73 ___RULES_ENTERED
35 ___RULES__SUCCESSFUL

118

AUTOMATIC PROGRAM GENERATION

3.2 A Simple Translator from Infix o Polish Notation

This example illustrates the genmsration of conditional branches within lcops in a
program to convert sirings of symbols in infix form into sirings in polish form, le.
"(X+Y#2)" converts to "KYZ2+". This is @ common symbol manipulation task in a compiler.
The example shows how the system cen be used fo progrem in & structured “lop
down" manner.

A fully parenthesized, syntactically correct infix expression of a specified length is
given as input and on output a result stack S contains the Polish string. A working
stack R is used during the translation. We may consider the basic data structures
{stacks)i.e. variables, constructorsfe.g. push) and selectors (e.g. pop)),and the primitive
operators as given. Then,in this caseithe user proceeded in.the foliowing steps.

(1)First the actions of the top level of the program were described by declarative
statements (i.e. the definitions of RECOGNIZED and PROCESSYM in terms of basic
concepts such as "X is a2 left parenthesis”, and intermediate concepts such as “pop -
operators from stack X and push them onto stack Y*.

(2) Then at the second level, Rules - in this case iterative rules -~ were given for
writing loops that implement the intermediate concepts. In doing this,the user specitied
the major characteristics of a loop and left the system with the details of deciding
whether to write such a loop,and if so, with the choice of local variables,the actual
operations in the loop body and their order(in so far as that was not specified } and
with looking after the updating of the local variables. Thus in order to write the top
level ioop, TSLOOP, to achieve TSL(T,UV), the user must have “"thought out® an
invariant relation betwesn the elements manipulated by the ioop body and what the
goals of the loop body were (in this case one of the goals is a top level concept,
RECOGNIZED(X,Y,Z)). The system, if it uses this rule in constructing the output, will
construct a loop body including update assignments, and assemble it into a WHILE
statement. Similary, in this example the user has supplied iterative rules for POPOPS
and POPHOPS.

The output program consists of a main program, i.e. PROCI, containing a compound
conditional statement which splits up the cases for processing as a function of the
input symbol. Each allowable input symbol must be either of type variable, operator,
left parenthesis, or right parenthesis. The main program processes the case in which
the input symbol is an operator and generates calls to contingency programs, PROC3,
PROC4, & PROCS, to be generated for the other three alternatives. The procedure
calls PROC2, PROCS6, & PROC7 result in error exits.

The various parts of the Frame definition will be given below followed by the
generated programs.

120

AUTOMATIC PROGRAM GENERATION

RELATIONS USED IN THE FRAME DEFINITION:

RELATION INTERPRETATION UNIQUENESS

C(X,Y) “Contents of X is Y" ' C(X#)
INTEGER(X) "X is an integer” FALSE
VAR(X) "X is a variable” FALSE
LP(X) "X is a left paren” FALSE
RP(X) "X is & right paren” FALSE
OP(X) "X is an operator” . FALSE

ISVAR(X) "X is a program var- FALSE
iable”

NEXTSYM(X) “A value for X is FALSE
input”

RECOGNIZED(X,Y,Z) "Symbol X is recog- FALSE
nized wrt stacks Y & Z"

PROCESSYM(X) "Symbol X is i FALSE
processed”)

>(X,Y) “X is greater than FALSE
Yl

<(X,Y) "X is less than Y* FALSE

POLISH(X) "X contains a Polish FALSE
sequence”

POLTSL(X,Y,2) "Translate an infix FALSE
string x symbols
long to Polish
using stacks
Y and 2"

=(X,Y) "X is equal to Y FALSE

PUSHED(X,Y) "X is pushed onto Y FALSE
POPPED(X) "X is popped"” 2 FALSE
TOPPED(X,Y,Z) “The top symbol of 3 TOPPED(X,Y,s)

b

AUTOMATIC PROGRAM GENERATION

stack Y of size
Z is assigned to X"

POPOPS(X,Y) "Pop operators from TRUE FALSE FALSE
X and push onto Y"
POPHOPS(X,Y,Z) "Pop operators from TRUE FALSE FALSE
Y that have greater .
priority than X and
push onto Z"
STACKSIZE(X,Y) "Size of stack X is TRUE FALSE STACKSIZE(X,)
Y-
STACK(X) "X is a stack” FALSE FALSE FALSE
EMPTY(X) "Stack X is empty" FALSE TRUE FALSE

ITERATIVE RULES:

NAME: TSLOOP

BASIS: NEWVAR(X,Y) A C(X,0)

INVARIANT: C(X,W) A INTEGER(W) A STACK(V) A STACK(U) A ISVAR(Y)
ITERATION STEP: C(X,(ADD1 W)) A NEXTSYM(Y) A RECOGNIZED(Y,U,V)

CONTROL TEST: >(%,T) :

OUTPUT ASSERTION: POLISH(V)

GOAL: POLTSL(T,U,V)

NAME: RLOOP

BASIS: NEWVAR(X) A STACKSIZE(U,Z) A TOPPED(X,U,2)

INVARIANT: C(X,Y) A =(Y,(TOP U)) A STACK(U) A STACK(V) A STACKSIZE(UW)
ITERATION STEP: PUSHED(X,V) A POPPED(U) A TOPPED(X,U,W)

CONTROL TEST: -OP(X)

OUTPUT ASSERTION: POPOPS(U,V)

GOAL: POPOPS(U,V)

NAME: oLoopP

BASIS: NEWVAR(X) A STACKSIZE(U,T) A TOPPED(X,U,T)

INVARIANT: C(X,Y) A =(Y,(TOP U)) A STACK(U) A STACK(Y) A STACKSIZE(U,W)

ITERATION STEP:
CONTROL TEST:
OUTPUT ASSERTION:
GOAL:

PUSHED(X,V) A POPPED(U) A TOPPED(X,U,W)
-OP(X) v <((PRICRITY XXPRIORITY Z))
POPHOPS(Z,U,V)

POPHOPS(Z,U,V)

122

AUTOMATIC PROGRAM GENERATION

PRIMITIVE PROCEDURE ‘ PRE-CONDITIONS
push(X,Y) ISVAR(X) A STACK(Y) PUSHED(X,Y)

A STACKSIZE(Y,2) A STACKSIZE(X,(SUB1 Y))
"Push symbol X
onto stack Y
pop(X) STACK(X) A STACKSIZE(X,Y) POPPED(X)
“Pop stack X" : A STACKSIZE(X,(SUBL Y))
getnext(X) ISVAR(X) NEXTSYM(X)
"Get next symbol”
«(X,Y) ISVAR(X) CX,")
"Assign Y to X"
top(X,Y) ISVAR(X) A STACK(Y) TOPPEDXX,Y,Z)
"Put top of stack _ A STACKSIZE(Y,Z) A CX,(TOP Y))
Y in X"
DEFINITIONS:
BODY OF DEFINITION RELATION DEFINED
(VAR(X) v LP(X) v RP(X) v OP(X)) A PROCESSYM(X,Y,Z) RECOGNIZED(X,Y,Z)
VAR(X) A PUSHED(X,Z) PROCESSYM(X,Y,Z)
LP(X) A PUSHED(X,Y) PROCESSYM(X,Y,Z)
RP(X) A POPOPS(Y,Z) A POPPELXY) PROCESSYM(X,Y,Z)
OP(X) A POPHOPS(X,Y,Z) A PUSHED(X,Y) PROCESSYM(X,Y,Z)
=(X,0) v INTEGER((SUB! X)) INTEGER(X)

INITIAL STATE:

STACK(S) A STACK(R) A STACKSIZE(S,]) A STACKSIZE(R,J)

ALGEBRAIC SIMPLIFICATION: (SUB1(ADD1 X)) » X

123

AUTOMATIC PROGRAM GENERATION

PROCI (NR S)
ISVAR(KE BISVAR(X2}ISVARXBESTACK(S)STACK(RY,
COMMENT
INPUT-.CONDITIONS:
STACKSIZE(R JIASTACKSIZE(S I}
OUTPUT:CONDITIONS:
POLISH(S);
COMMENT .
PROC6 ATTEMPTS:TO:ACHIEVE: (POPPED R)
PROCS ATTEMPTS:TO:ACHIEVE: (PROCESS X2 R 5)
PROC4 ATTEMPTS:TO:ACHIEVE: {(PROCESS X2 R S)
PROC3 ATTEMPTS:TO:ACHIEVE: (PROCESS X2 R S)
PROC2 ATTEMPTS:TO:ACHIEVE: (PROCESS X2 R S) ;
BEGIN
X1 « 0;
WHILE -=>(X1 N) DO
BEGIN -
Z1 « (X1+1)
GETNEXT(X2)
IF ~OP(X2) THEN
IF -RP(X2) THEN
IF -VAR(X2) THEN
IF -LP(X2) THEN
PROC2(X2 R S) -
ELSE PROC3(X2 R S)
ELSE PROC4(X2 R S)
ELSE PROC5(X2 R S)
ELSE
BEGIN
TOP(X3 R);
WHILE OP(X3) A ~<((PRIORITY X3XPRIORITYX2)) DO
BEGIN
PUSH(X2 S)
IF EMPTY(R) THEN
PROC6(R)
ELSE
BEGIN
POP(R);

PROC3 (X2 R S)
ISVAR(X2);STACK(R);

124

AUTOMATIC PROGRAM GENERATION

COMMENT

INPUT:CONDITIONS:

STACKSIZE(R 1)

OUTPUT:CONDITIONS:

STACKSIZE(R (ADD1 I))APUSHED(X2 R);
BEGIN
PUSH(X2 R}
END

PROCA (X2 R S)
ISVAR(X2)STACK(S);
COMMENT
INPUT:CONDITIONS:
STACKSIZE(S I)
OUTPUT:CONDITIONS:
STACKSIZE(S (ADD1 I)APUSHED(X2 S)
BEGIN
PUSH(X2 S);
END

PROC5 (X2 R)
ISVAR(X4);STACK(S);STACK(R);
COMMENT
INPUT:CONDITIONS:
STACKSIZE(R JASTACKSIZE(S I)
OUTPUT:CONDITIONS:
POPOPS(R S)
COMMENT
PROC7 ATTEMPTS:TO:ACHIEVE: (POPPED R) ;
BEGIN
TOP(X4 R)
WHILE OP(X4) DO
BEGIN
PUSH(X4 S}
IF EMPTY(R) THEN
PROC7(R)
ELSE
BEGIN
POP(R);
END
TOP(X4 R)
-END
IF EMPTY(R) THEN
PROCS(R)
ELSE
BEGIN
POP(R);
END
END

125

AUTOMATIC PROGRAM GENERATION

REFERENCES

Bolles, R,Paul, P., "The Use of Sensory Feedback in a Programmeble Assembly System”,
Stanford AIM-220, Octobsr 1973

Buchanan, JR, Luckham, D.C.,"On Automating The Construction of Programs,” Stanford
Al Project Memo, Stanford University, 1974,

Buchanan, JR,"A Study in Automatic Programming,” Ph.D. Thesis, Stanford University,
1974,

Hewitt, C. 1971. “Description and Theoretical Analysis of Planner” Ph.D. Thesis, M.LT,,
1971.

Hoare, C.AR. 1969. An axiomatic basis for computer programming, Comm. ACM, 12, 10,
October 1969, 576-580, 583.

Hoare, CARR; and Wirth, N. 1972. An axiomatic definition of the programming language
Pascal, Berichte der Fachgruppe Computer-Wissenschaften 6, ETH, Zurich,
November 1972,

Igarashi, S; London, RL; Luckham, D.C. 1973. "Automatic Program Verification I: A
Logical Basis and Implementation”, Stanford AIM 200, May 1973.

Sussman, J; Winograd, T. 1972. "Micro Planner Reference Manual”, MLT. Project MAC
Report 1972.

126

USING MODELS TO SEE
Alan K. Hackworth

University of Susgex®

Abstract

Scene analysis programs offer the hope of providing a more adequate
account of human competence in interpreting line drawings as polyhedra
than do the current psychological theories, This thesis has several
aspects, The aspect concentrated on here is that those programs have
explored a variety of methods of incorporating a priori kmowledge of
objects through the use of models., After outlining the range of models
used and sketching some psychological theories, the various proposals are
cantrasted. 7This discussion leads to two new proposals for exploiting

model information that involve elaborations of an existing program, POLY.

1. Introduction,

In one of its many roles, artificial intelligence is cast as the
vanguard of an army of psychologists who seek a new paradigm for cognitive
and perceptual prbcesses. Despite several clarion calls to this effect
(M insky and Papert, 1972; Clowes, 1972; Sutherland, 1973) AI may well be
a vanguard without an army. This paper attempts to show that a small part
of the scouted territory is ripe for capture.

The interpretation of line drawings as polyhedral scenes has been the
focus of most attempts to build Al vision systems. As it is a natural human
task, several psychologists have also studied it. In sketching and contrasting
various resultant theories, we will concentrate on how they represent the
a priori knowledge of the objects that exist in the world. Of necessity,
other essential themes such as non-model knowledge of the world (for example,
support and the picture~formation process itself) or the use of picture cues
to access the models are slighted.

Sections 2 and 3 of the paper sketch the use of models in several Al
ard human visiocn proposals., Section 4 briefly contrasts them using a few

examples. SoRe of the wealnesses exposed lead to two proposals in section 5.

2a liodels in Machine Vision.

Roberts (1965) used the three simple models of Fig.,1. These can be

expanded along each of their coordinate axes. Compound objects are created

*Now at Department of Computer Science,
University of British Columhia,
Vancouver 8, B,C, (Canada.

127

A

A. Hackworth

Figure 1. Roberts' simple object models

by abutting simple ones. Falk's (1972) recent state-of-the-art scene
analysis system expected its visual woirld to be composed of instances of

the nine polyhedral prototypes of specified dimensions shown in Fig.2.

Fiqure 2, Talk's »bject prototypes

128

A, Mackworth

The size-specificity of the protcotypes was exploited by the object
recognition phase of the progras in its use of the actual heights of
the blocks and the lengths of their base edges.

At the other end of the size and shape specificity spectra for
models are the edge-labelling procedures, Theze originated in Guzman's
SEE (1968) which produces surface groupings corresponding to objects.

Huffman (1971) and Clowes (1971) developed a procedure that relies on four
prototype corners: the trihedral corners in which the object occupies 1,

3, 5 or 7 'octants'; the corners have no further shape-specificity. The
corner models are accessed by the shape of the picture junctions. For each
of four picture junction classes (L, FORK, ARROW, T), there is a list of
possible corner/viewpoint configurations. These lists are used to label the
edges depicted as convex or concave. The convex category is subdivided into
three according to the viewpoint: either both surfaces depicted at the

edge belong to it or the surface on the right, which does, is partially
occluding the one on the left which doesn't or vice versa.

It has been shown (Mackworth, 1974) that SEE implicitly uses a single
prototype corner: the one in which the object occupies only one 'octant!;
whereas, Waltz (1972) has expanded the range of corner prototypes far beyond
those of Huffman-Clowes.

The model information embedded in POLY (Mackworth, 1973) is minimal,
confined as it is to a requirement that surfaces be planar and edges be
occluding or connect (non-occluding); however, there is a marked preference
for cornect edges. With this apparatus somewhat augmented, POLY interacts
with a representation called the gradient configuration (originally suggested by
Huffman (1971))to produce a labelled interpretation. (The gradient of an edge is
vector in a 2D gradient space whose direction is that of the corresponding
picture line. Its length is the tangent of the angle between the edge and the
picture plane. The gradient of a surface is in the direction of steepest
descent in the surface away from the picture plane; the magnitude of the
gradient is the tangent of the dihedral angle between the surface and the
picture plane,) The final gradient configuration needs only the origin and
scale of the gradient space defined before it represents the absolute
orientations of the object surfaces, (POLY assumes orthographic projection;

see (Mackworth, 1974) for the perspective case,)

3. Sowe Psychological Theories,

Attempts to provide psychological theories of the interpretation of line
drawings have not usually provided an algorithm by which interpretation may

129

Ao Hmckworth

procead though, wesumably, the nsual monsoular depth cues are thoughi
to be relevant, Rather, asuch theories cenn to aasume the existence af such
an algorithm and concentrate un the tension set up between the 3D { scena)
and 2D (picture) organizations, Xopfermann {163n) held that the impression
of tridimensionaiity varies with the degree to which the szcens organization
is simpler thsn that of the plcture, In extending that theory Hochberg and
Brooks (1960) provided a quantified weasure of simplicity as the sum of the
number of linee, the mumber of angles and the number of angles differing in
magnitude. Attneave and Frost {1968) presented a similar theory in which
the competition between the &cene and the picture is resolved by figural
simplicity criteria,

Finally Hochberg (1968) almost anticipated the Huffman-Clowes
algorithm as he demonstrated, with an ingenious experiment, that junctions

act as 'local depth cues'.

4, Some Examples,

The discussion of this section uses, as examples, the two pictures in

Fig. 3, which the reader should look at without reading further., The usual

(a) (b)

Figure 3, Two examples

130

TeT

§300[(QU JETNSURIOBI SABDULD CML °*p oInfirjg

(4) (&)

=y *8T4 uy s3oafqo
oml d8y3 joxdrajur ArIsrluls ‘ucri®loadx® o3 Axvajucd ‘jouusdo weaSoud 3wyl
‘I9A0MOH *(AT9ATz0adsed ‘anoj pue o}) SPIOQNO gogy dpwvm §308fqo punodmoo
ge weadoad ,s340qoy Aq pajraxdadjur 8l (q)E °814 pue (®). °3IT4 yzog
4(q)e °31d ur pajordep ouo oyl weyi PIIOs S8OT Aue 308fqo 3IBY3 ST ((IL61)
J97Z3eK Pue predeyS £q pesn saun3oTd WOJJ POATISP ST 3T YSNoyiIs) Japeal ayj
03 JBIITUBJUN AT84ns ST YOTya (B)c °*8td 3® WLY) ool °s308fqo adLjojoad
Jufu S3Y Jo Suo B} wWweq-] 8y} :s3eaddns weiBoud s,x1BJ 8 L3TIEITTUE]
€317 WOIJ SBATIIP (G)E °31J Jo moryezeadaajuy sueos eyj sdsyaeg
*308fqo auy
932[dwod 03 SVOETINS UIPPTY S9IYY BIINbex suoTIwvILasdILIUT Yj0q puB TBIPIYTI]
IIe 8J® SJ2UIOD 3yl °9sed Tenbd YilIa PIITeqe] A[TNFE£800Ns oJ8 s8.n3afd
3yl °uofjeuBidxe® eyl JII33JO 30U OP BEWYITJICS[EB SSMO[D=-UBWIINY OYL
*uoyjvusTdxe Juriynbax jouvy yeuswcueyd w ST vwapeydiod Jo suorjzoydep
MJyileF ATTenbe eaw yicq yfnoyl wWBAd SPIOY YOTYs BOUSISFJIP Jofwwm STUJL
*aouvuseedds [VUCTEUSWIP-SRIYI “PITOF W §BY (q)f *F1d (d) *I1d ojuy
a8an3oyd 8yj JUTWJIOISUBLY AQDIBQI BY 3wyl 2uo sgouly 03 puw pejojdep
jou 81 3wyj odpe uv I@s 03 LduApudl ey3 ssesddns uwd suo pepracad)
a8wd 8y} uo 3uVIJ AT93BUTISQC SUTEWSS 3T IWMZ ST (B)g "FT4 4q ueard uorssoaduy

U3 ioaqowy *y

CET

820BJINS TBJI2A8S OF jUSTPRIS oy3 .z.o; santeA 97qrsscd @aayjl ATuo aIle axayL
(q)c *314 ur arduerd} ' st sazedde 1wyl uUOTIEMITJUOD jusTPBI3 8Yyj saonpoad

XT0d 10efqo sTy3 J04 °(®)s *SF4 jo 3vafqo gendueloss Y3} JIIPISUOD
A TieInbueiody 1S

*sgodo0xd uoyjeloxdrsjur
ay3 ojur sadAjojoad jo osn ayl Juyjealdejur sisadins 37 3BY] UT UOTSUDIXD ue
usy3 [vABSYdn TeEIjUE}SHNS B JO dJou ST [BSodoad puodds Iyl °*SINIBVIF 3BUZ
3TOoTdX® uUBO XI0d O3 UCTISUDIXS PIBAIOFIYITBILS B a0y smoys [esodoad 3ISITJ ayl
*SSATOSINO JOF PIING da SPTJOA 3y} JO danjeey Jofww © udjjo 81 A3ra8niusioady
*pajuosaxd aJB SUOTBU3IXd YONS O] SJ9H *SI3pow s8 s30deFINS Jo sadeys
8y3 osn 31B8Yl X104 O3 SUOISuUdIX® sisaidns uorreumidxe syyl °o1qrssod jou sTY
jey) Je338T 9y} UT sedJeys (JBTNIuBlOdI ‘9sed 8Ty} ur) odBys JETTTUBY AJOA
Jo saovyrams Jo dn 3pew s8 USSS 9 UBD UOTIBIB3dduadur uospeydtod 3 ‘sesed
Jo9UI0J 8Y3} Ul BMOTT07 €® paurerdxe ¥q uwso (ev)e °*8yd jo @ouvawadde ,3VLJ,
8yl Y3IA PI3SBIFUOD 88 (B)G °314 pue (4)g *37d 7o L3TPTios 8Yj Afaang
“STes0doid OML °G

*eni3 jou

8T 3Byl USTYA JOJ PIIONIISUOD g usd s1oqe[&dpe esoyl pue ddueavadds 3wyl

y3ia uoapeudiod Ageurpio ue ‘ST 3BYF {7 JISUIOD WE] JIPAJIOEQO &Y} O3} JSSOID ST

1 JOUJOD 1BY] S0USPIAS Ou [ITI3E BT ©JI8YI JUIPNTOSC JO SABOUOD ‘XSAUOD PITTIYBT

A1e@jeradoadde are (B)g °3ITJ Jo saSpe 8yl JI UGAZ °uoIENOo0 TeIjJed Jo and yjdeop

TBUOTITPBI} 8Yy3 ST 38y} {sa3pe Suipniooo oy3 Aq pepyacxd sT Jurrieqsy adpa £q

U®A}S eouapTA® yzdep Ajuo 8yl °*Injiamod LIea jou 87 ,8end yidep [wool, se 3dE
suoT3BINTIuU0d woFjounf eyl 3eyu3l (8psl) Wielo §,8ue8quooH ‘pusy Isylo 33} UO

® Lxo3ysy

J217I89 STU JO TBIINQOJI JUSTLIOXS UB POPFAOLL S8y (8960) SIaqudoy ¢aov1d

184 &3 UT SuoTl1w3;aldiajul eueds 8soyj} peonpoud sWBTUBYOSW VY °Je AJea sn

eNu} 3,ussop 3By} ‘3ed puy *((u)f °*371d ur 3Ly} uwyy soydufs Arreurdisu isnl ST

(@) *B1d ur euevs oyj OTTys A3yxeydmod Tenbe sawy sem3oyd Sy) ‘UOTISITJIO 3By}
4g) cuouswmousyd SUY} ILTPLAIUNO 3 ,USSOP UOTJISITJIO SyoOIg-FI9qUOoy SYL

°7 JBWIOYD UBYZ JBAJIBNGO @Y} JaImeu ATIesIo ST

i geuaod ‘ordusxe 40X (¥ °37g uy 183 ITIw 1w seno yjdep [BUOYITPBJIL ou

asr ea8y3 ((2)5 (a¥ “(q) (v ce¥ig) seanoyd eyy Jo .mog d9p *Aes 03
Sujyaron eny uworswijesdiesur esnioid o Laosyy wne yidep 1BUCTIIIPBAT BYL

YIS0aNOUR Y

A. Hackworth

(b)

Figure *, A rectangular object and its gradient space configuration

are superizposed at each position, This obscures the fact that the

configuration is intricately connected: each pair of surfaces meeting in

a connect edge is joined by a line perpendicular to the picture line showing
that edge. Neither the position of the origin nor the size of the triangle

is yet specified but note that E and A are ordered in the gradient

133

B

hs Mookworth

corfiguration just as they are mcross thelr common adge in tlw pioture so
that edge is convex whereas the releative positicns of B and C are reversed
in the picture and gradient spaces so that odge 1-2 is concave; howvaver,
as the actual values of the gradients are not determined, we &till cammot
say that cormer [is closer than 2,

At any correr such as corner 1 in Fig, 6(a) there are three edges
(which may not all be visiblidg., Each pair of edges defines a surface at
that corner. Each edge is normal to the surface dsfined by the other two.
Since the direction of the gradient vector is the dirsction in the picture
in which the normal appears to point, the direction of the gradient of each
surface at the corner is given by the edge thet does not belong tc it. Thus
gradient A must be in the direction of picture line 2-1. Since the vector
difference between gradients B and C is required to be perpendicular to
picture line 2-1, the origin must be on a perpendicular dropped from gradient A
to the opposite side of the gradient triangle. Hence the origin must be at
0 shown in Fjg. 5(b). The scale is immediately determined by the requirement
that the product of the magnitudes of the gradient of A and the gradient of
edge 1-2, G1_2, must be unity. Now that the orientations of all the surfaces
and edges are defined it is ar obvious consequence that corner 2 is further
from the picture plane than corner 1; that is shown by the fact that Gl-
points up to the left (not down to the right),

2

542 Using prototype surfaces,

The idea of using specific prototypes is attractive but as suggested in
Section 4 complete polyhedral prototypes are, in a sense, too momolithic. Imn
this section we show how the use of prototype surfaces can be iiategrated
directly into the POLY interpretation process.

Consider Falk's list of nine prototype objects. They have in all
Tifty-four separate faces; yet those faces have only fourteen distinct polygonal
shapes. The size-specificity of these shapes will be dropped for the sake of
this argument although it could be retained. Dropping size-specificity (so
that a 1 x 2 rectangle represents itself and the 2 x 4 rectangle etc.) leaves
a total of twelve distinct surface shapes,

First, a geometrical fact must be stated (Mackworth, 1974). Suppose one
is given the true shape of a surface in the form of a polygon { where the
dimensions may be uniformly scaled up or down by a factor, k), the projected
shape of that surface and three or more pairs of non-collinear points on the

tre and projected shapes that correspond. From this information it is easy to

18y

A, Mackworth

compute whether the true shape could produce the projected shape and, 1f
it does, the value of k and the gradient of the surface.

For each picture region, by considering the topologically identical
surfaces, a set of possible surfaces each with a corresponding k and gradient
could be computed. If that set is empty then the region depicts a partially
occluded surface.

This is now a labelling situation comparable to the corner labelling
algorithms of Huffman, Clowes and Waltz. In those algorithms each junction
has associated with it a set of possible corners; the aim of the
interpretation is to discover a unique corner corresponding to each junction.
Here, besides labelling each edge, the aim is to assign a unique surface to
each region., Agreement between the interpretations of adjacent regions is
necessary if the edge is taken to be connect. The agreement takes two
distinct forms. First, the POLY coherence rules must be satisfied and
second, model-based coherence rules must be used. Such model-based rules
would, at the lowest level, be of the form: Are there two such surfaces
meeting at an edge in the set of prototypes? If so, do those surfaces meet
at this dihedral angle? Do they agree on the scale factor? Higher levels
would also be required: Are there three such surfaces meeting at a corner?

Procedurally, this approach need not be implemented in a depth or breadth-
first fashion, It is amenable to the two-stage Waltz search procedure which
would first weed out the lists of possible surfaces (Jjust as Waltz weeded
the lists of possible corners) based on consideration of the mutual inter-
pretation of each pair of adjacent regions and only then try to build complete
coherent interpretations.

6o Conclusion,

World knowledge of the type incorporated as models in scene analysis
prograns is an essential feature of any psychological theory that attempts to
explain human competence in interpreting line drawings as polyhedra, Further-
more, in those programs that knowledge is used in a procedural fashion; they
demonstrate, at the very least, how a scene interpretation can be achieved.

The discussion of Section 4 has pointed out some of the wavs in which the
available range of models is deficient for purposes of psychological explanation,
The two proposals of Section 5 are designed to provide mechanisms that reflect
particular human competence in this task domain.

135

4. Mackworth

Acknowledgements

The author is grateful to Max Clowes, Roddie (owie, Frank O'Gorman
and Aaron Slioman for discussion and criticism.
The research reported iz part of a project supported by the Science

Research Council.

Bibliography

Attneave, F. and Frost, R, (1969) The determination of perceived tridimensional
orientation by minimum criteria., Perception & Psychophysics 6, 391-3926.

Clowes, M.B. (1971) On seeing things. Artificial Intelligence 2,1, 79-112.

Clowes, M,B, (1972) Artificial intelligence as psychology. AlSB Bulletin,
November, 1872,

Falk, G. (1972) Interpretation of imperfect data as a tlree dimensional scene.
Artificial Intelligence 3, 2, 101-144,

Guzman, A, (1968) DecompoBition of a visual scene into three-dimensional bodies.
AFIPS Proc. Fall Joint Comp. Conf., Vol, 33, pp.291-304.

Hochberg, J. and Brooks, V. (1960). The Psychophysics of form: reversible-
perspective drawings of spatial objects., Amer. J, Psychol. 73, 337-354.

Hochberg, J. (1968) In the mind's eye. Contemporary Theory and Research in
Visual Perception iaber, R,N. (Ed.), Holt, Rinehart and Winston, N.Y.,
pPP. 309-331,

Iuffman, D,A., (1971) Impossible objects as nonsense sentences, }Machine
Intelligence 6 Meltzer, B, and Michie, D. (BEds.), Edinburgh University
Press, Edinburgh, pp.255-323,

Kopfermann, H, (1930) Psychologische Untersuchungen uber die Wirkung
zweidimensionaler Darstellungenkorperiicher Gebilde. Psychol., Forsch., 13,
293-364.

Mackworth, A.,K., (1973) Interpreting pictures of polyhedral scenes,
Artificial Intelligence, 4, 2, 121-137,

Mackworth, A.K. (1974) On the interpretation of drawings as three-dimensional
scenes, D.Phil. thesis, Laboratory of Experimental Psychology, University
of Sussex.

Minsky, M. and Papert, S. (1972) Progress Report Memo. No. 252. Artificial
Intelligence Lab,, MMass, Inst, of Technol,, Cambridge, Mass,

Roberts, LeG, (1965) Machine perception of three-dimensional objects. Optical
and Electro-Optical Information Processing Tippett, et al (Eds.),

MIT Press, Cambridge, Mass., pp. 159-197.

A, Mackworth

Bibliography

Shepard, R.N. and Metzler, J. (1971) Mental rotation of three-dimensicnal
objects, Science 171, 701-703,

Sutherland, N,S, (1973) Some comments on the Lighthill report and on
Artificial Intelligence., Artificial Intelliience: a paper symposium
Science Research Counecil, London, pp. 22-31,

Waltz, D.L. (1972) Generating semantic descriptions from drawings of scenes
with shadows, AI TR-271(Thesis), MIT, Cambridge, Mass,

137

A theory of evaluetive commente in chess,

by

Donald lichie

Abstraci

Classical game theory partitions the set of legal chess
positions into only three evaluative categories: won, drawun
and lost. Yet chess players employ a wide variety of
evaluative terms, distingsuishing (for example) a "drawn"
from a "balanced" position, a "decisive" from a "slight"

advantage, and a2 "blunder" from a "mistake".

As an extension of the classical theory, a model of
fallible play is developed. Using this, two quantities can
in principle be associated with each position, its "game-
theoretic value" 2nd its "expected utility™. A function of
these two variables can be found which yields interpretations

of many evaluative terms used by chess commentators.

138

A theory of evaluzative commenis in chess

Introduction

The game tree of chess contains about 1046 positions (Good,
1968) 2 substantial proportion of which are terminal. The rules
of the game assign a value to every terminal position, +1, O or
-1 according as the position is won, drawn or -lost for White.
These values can be backed up the game tree using the minimax
rule, so that in principle every position can be given a value,
including the initial position. This last is known as "the value
of the game", and is widely conjectured to be O for chess. If
this conjecture is correct, and if both sides play faultlessly,
i.e. only execute value-preserving moves (it follows from the
"back-up" method of assigning values that there is at least one
such move available from every non-terminal position), then the
game must end in 2 draw. A frﬁgment of a hypothetical game tree
igs depicted in Figure 1. In Figure 2 the method of attaching

game-theoretic values to positions is illustrated.

An evaluation function could in principle map board positions
into a2 larger set of values, making it possible to express a
distinction between positions which are "marginally" won and posi-
tions which are "overwhelmingly" or "obviously" won, or between
drawn positions in which White, or Black, "has the edge" and
drawn positions wh?ch are hequally balanced", and so forth. Two
circumstances suggest that a useful purpose might be served by

multi-valued functions.

(i) Chess Masters and commentators have developed a rich

descriptive language for the expresﬁion of such distinc-

tions.

(ii) Computer chess programs emplox{a:iti—valued functions
for evaluating terminal positions, not of the game tree
which is too large, but of the lookahead tree. Values
backed up according ito the minimax rule are used to
select the next move. It would be nice to have a
theory/

139

theory which zllowed uz to aszign some definite inter-

pretation to mach volues.

There is thus 2 primz facie need for a2 sirenger theory of
position-~evaluation. This paper discusses chess, but the treatment
is general zndé covers all fwo-person zero-sum games of perfect

information without chance moves.

Reouirements of a theory

A good theory should explicate 2 wide variety of commentators®
concepis. The following is a2 representative list. Where a con-

ventional symbol is available it precedes the verbal comment.

(1) A dead draw (nothing that either player can do can avert
2 draw).

(2) A complicated position.
(3) =, a balanced position.
(4) %, White has a slight advantage.
(5) %, White has 2 clear advantage.
(6) +-, White has a decisive advantage.
(7) A certain win for White.
(8) A difficult position for White.
(9) & losing move.
(10) An inaccurate move: White weakens his position. -
(11) White strengthens his position.
(12) 2, a mistake.
(13) 2?2, a blunder.
(14) ¢, a strong move.
(15) t't, a very strong or brilliani move.
(16) t?, a brilliant but unsound move,
(17) Best move.
(18) (1), best move in difficult circumstances.
(19) A safe move.
(20) Wnhite should press home his 2&vantage.
(21) Black should play for time.

Mai

140

Hain features of the theory

The game-theoretic model pre-supposes perfect play, whereas
in the real-life game of chess {whether human or computer) both
sides are susceptible to error. Our theory is based on this dis-
tinction, and presents the following main features:

(1) We follow I.J. Good (1968) and interpret the values of
terminal positions as utilities as though the game were
played for a unit stake. Values for pre-~terminal posi-

tions are then calculated as expected utilities. 1In

order to avoid confusion we shall refer to these through-
out as "expected utilities", never as "values", reserv-

ing the latter term for game-theoretic values.

(2) A model of imperfect but skilled play is developed.
Chess skill appears in this model as an adjustable
parameter running from 0 (random play) to 00 (perfect
play).

(3) In the new model %ihe classical game-theoretic treatment

appears as a special case.

The calculation of expected utilities

Congider a state, 843 from which transitions to successor
states Syy Sp 53, cess S, Can occur with respective probabilities
Pys Pps Pyy eeoe P,- Let us suppose that these successor states
have associated utilities Uy Upy Uy ceee u. Then the expected

utility associated with s, is ﬁ p;u;- It follows trivially

i=l
that if we interpret as utilities the values attached by the rules
of chess to the terminal positions then the values assigned to the
non~terminal positions by minimaxing can be interpreted as expected
utilities, In this special case the p's associated with those
arcs of the game tree which carry a change of game-theoretic value
are all O, Consequently the evaluation of :%a Pyus at each node

i=l

reduces to obtaining the min or the max of the successor-values

according/

141

according as While or 3Black has the move. The above specification
is ambiguous in the case when two 2 more of the moves applicadble

to a given board posiiion ars value-preserving., He can either
select cne of these at random ard assign a probability of unity

to it and zero probabilities %o the rest, or we can divide the

unit probability equally anmong them. In the case of error-free
play calculation of expected utilities according to either procedure
leads to the same resuli. As the basis of a2 model of actual play
we shall adopt the gecond a2lternative, which ie illusirated in
Figure 2.

We now relax the game~theoretic condiiion that at each choice-
point on the tree there is probabiliiy 1 that a value-preserving
move ("sound" or "correct" move) is chosen, and we introduce the
possibility of error. 1In constructizg a model of error, we ex-
press the relative probabilities of mzking alternative moves from
a given position as a monotonic increasing function {decreasing
function for Black, since all utilities are expressed from White's
standpoint) of the expected utilities of the corresponding successor
positions. Thus the move leading to %the highest expected utility
will be chosen with highest probabiliiy (but not with probability 1
as in the game~theoretic, errcr-free, model), the move leading to
the next highest expected utility with next highest probabilitj,
and so on. We thus envisage an idealised player whose statistical
behaviour reflects the rank-ordering of the expected utilities of
chess positions. Using such a model it is again possible to label
2ll the nodes of the tree, working wpwards from the terminal nodes,

but by 2 procedure which differs frem the minimax method.

The notion of discernibility

In order to carry out some illusirative computations based
on this idea, we now choose an actuzl monotonic function. No
significance is claimed for the parfiicular choice, since the
points which we seek to establish are zuzalitative rather than
quantitati&e. Certain ideas must, Zowever, be reflected in
any such function. A central ome iz that of discernibility. We

conceive the player as standing upozx = given node of the game-~tree

and/

1u2

and looling touvards its successors., These are labelled with their
expected utilitics; but the labels are not fully disceraible to
him. Discernibility is directly related to the strength of the
player (the labels are fully discernible %o an infinitely strong
player) and inversely related to the number of moves separating
the node from the end of the game: next-move mates and stelemates
are fully discernible even to the beginner, but next-move expectied
utilities obtained by backing up are less so., Reflecting these
considerations; we shall define the discernibility from a board

state sy of the expected utility of a given successor state s, as:

di=Me)) ™ W

where M is the merit of the player in kilo-points of the U,S. Chess
Federation scale, so that 0€1!, and r is the number of moves that
the value associated with 85 has been backed up. The symbol
denotes an arbitrarily small quantity introduced to avoid the
expression becoming infinite for rj = 0. »

Qhe expected utilities themselves are real numbers lying in the
range from -1 through 0 to +1. They are'interpreted as being in
logarithmic measure, to base d. Using this base, we take the anti-
logarithms of the expected utilities associated with the n successors

of a given position as giving the relative probabilities with which

.a player of merit M who has reached s, selects the corresponding

moves, Thus; for the transition So=? sj,

u.

psoc a7 : (2)
Normalising these so as to obtain actual probabilities, pl, Ppy eees

n

Pn, the expected utility of a position is evaluated as 55; piul,
where uy is the expected utility of the position generated by the
i-th member of the set of available moves. Starting at the terminzal
positions, this gives 2 method for assigning expected utilities to
successively hisher levels of the game tree until every position has
‘been labelled,

A samnple comnutation

Consider the terminal fragment of game-tree shown in Figure 1.
We shall illustrate step by step the calculation of expected wtilities

80 75 to label every node in the diagram, Tirst we make assumptions
for

143 -

Wz very lou. Let us sei I, = 9.2 and U, = 1.4: Uhite iz o
e -
a

ad Black 2 weak tournament player, In our molcl
I = 0 implies random play. The noiation u(s) denotes the expected

utility of position s.

H4: A11 successors have the same value, +1. u(H4) = +1.
HS: There is only one successor, so the move-probability is unity.

u(HS) = +1.

Gl: Unique successor. u(Gl) = 0.
§2: EBouivalued successors. u(Gz) = -1,
G3: BSquivalued successors. u(G3) = +1,
F9: Trom (2) we have
Tove to G1: d° = 1 = relative probability.

Yove to G2: r = 1, so, from (1), d = 1.212 = 8.915. Rel. prob.
1/8.915 = 0.1121.

Yove to G3: r =2, so d = 1.27'5 = 3.925 = rel. prob.
Normalized probabilities: G, 0.1985

GZ 0.0222
Gy 0.7792
u(F9) = 0.1985 x 0 + 0.0222 x -1 + 0.7792 x +1 = +0.757
El: Equivalued successors. u(El) = -1,
E2: r =0. u(E,) = -1, and similarly for u(E3) and u(E4).
E5: Unigue successor. u(Z_) = 0.757.
D9: love to Bl: r=1. d 2 1.2'2.° Rel. prob. = 1/8.915 = 0.112,

Similarly for moves to E2, E3, and EA'
Move to B6: Rel, prob., = 1, and similarly for move to &_.
ove t0 B5: T = 4. d = 1.272D. 2,604. Rel. prob. = 2.0640.

0.025

0.025

0.025

0.025

0.457

0.222

0.222

1.001
u(Dg) = 0.457 x 0.757 - 0.100 = 0.246

c1:/ -

Normalised probabilitiess

b‘lt‘it’-ﬂt‘-ﬁt’ll‘)k}ij
n

~_ 0N B Ww

¢l: r = 0. u(Cl) = -1, and similarly fer u(cz), u(Cs) and u(Cﬁ).

€5: Unicue successor. u(Cg) = 0.246. '

C6: Douwivelued successors. u(Cé) = 0, and similarly; for u(CY)
ané u(CS).

Bl: love 4o Cl: r=1. d=1.22, Rel. prob. = 1/8.915 = 0.112

ané similerly ior moves to CE’ 03, anﬂ.c4.

Tove t0 C5: r = 6. d = 1.2%°7 . 2.272. Rel. prob. = 1.2240.
Normalised probabilities: 0.06703

0.06703

0.06703

0.06703

0.73130

1.00002
u(By) = 0.7319 x 0.246 - 0.2681 = -0,088.
) = 0.
: llove 40 Bl: r=17.4d= 2.42'286. Rel.prob. = 1.391.
love to B2: Rel. prob. = do =1,
Normelised probabilitiess B1 0,582

32 0.218

u(A)= 0.582 x -0.088 + 0.418 x 0 = -0.051.

c
C
c
c
c

W oA W N

B2: Equivalued successors. u(B

In Figure 3 the iree of Figure 1 is shown with expected
utilities, calculated 2s above, attached to the nodes. The
expected utility of the root node, A, turns out to be one
twentieth of 2 unit in Black'!s favour, - a "slight plus" for
Black. The analysis of Black's "plus" is worth pursuing, for
it illustrates certain fundamental concepts to which our theory
is directed, in particular the idea that a losinz move (in the
game-theoretic sense of a transition for White to value -1 or for
Black to value +1) can also be the "best" move against a fallible

opponent.

lote that Blaclk can secure a certain draw by moving to

32. Note also that the move to Bl is 2 losing move in the
gane-theoretic sensc, for Yhite can then win by the sequence

Bl-) 05439—)35—b:--9'3-, 25 shown by the heavy line in Fig. 2.

Yet the c-pected utilii-r of ihe move, -0.088, is marginzlly betier for

Black then that of the "correct" move (expected utilitiy = 0), and our
model of Blaclk, poscessed of a weak tournament player's discernment,

shows/ T

u5

shows a 5& preference for the move. The statistical adventage
arises, as can be secn by inspecting the dicgram, from the fact
that play is switched into 2 subiree where the error-prone Yhite
has numercus opportunities for error presented to him. He has

to find the needle of sound play in a haystack of hazards. In such
2 situation we sometimes say that Black sets "traps" for his
opponernt. If the aesthetic features of the move to B, appeal to
the ccmmentator, he may even use the annotation "!?", which we take
to mean "brilliant but unsound™. A sufficient increase in the
strength of White could give cause to remove the "1!" or even to
convert it into a second "?". To illustrate this point we have
re-calculated the entire diagram after setting My = Mg = 1.4, shown
in Figure 4. Here the move to Bl does not appear as "best", nor
even as a mistake, but as a blunder, and correspondingly our model

of Black shows 2 preference of approximately 40:1 for B,.

Returning to the list of specimen evaluative comments intro-
duced earlier, we can now derive explications for them. Wherever
possible, an explication is expressed in terms of two functions of
a board position, namely its gamé-theoretic value v and its expected
utility u. Where a move, rather than a position, is described, we
use the notation Ay amd Au to denote the changes in the correspond-
ing quantities effected by the move. We denote by 8, the position
from which the move is made and by 32 the position which it generates.
Some items of the original list have for completeness been differ-
entiated into sub-concepts. Some of these would never appear in a
chess book although under assumptions of very low playing strength
they are generated by our model. Case 2 of () is an example of
this: a "decisive advantage" of this kind would arise, for example,

in the initial position if Bobby Fischer gave Queen odds to a

beginner.
Comnent Explication

(1) A& dead draw. v=0a3andu-=0.

(2) 8 is complicated. the first few levels
of the tree rooted
in B have high
branching ratios.

(3) =, 8 is balanced. v =0zand u=0.

Case 1:/

1u6

Commant

Explication

(4)

(5)
(6)

(7
(8)

(9

(20)

(11)
(12)

(13)
(14)

(15)
(16)
(a7)
(18)

(19)

(20)/

Coge 1: § is lifeless
Case 2: 3B has high tension
f, White has a slight advantage.

%, White has a clear advantage {good
winning chances).

+=, White has a decisive advantage.

Case 1s White has excellent winning
chances.

Case 2: Although White!s game is
theoretically lost, he is
almost bound to win.

Cage 33 An easy win for White.

A certain win for White.

8 is difficult.

Case 1: White needs accuracy to
secure the draw.

Case 2: White needs accuracy to
secure the win.

Case 3: Although theoretically won,

White's position is so
difficult for him that he
should offer a draw.

A losing move,

An inaccuracy:
position.

White's move weakens his

White's move strengthens his position
?, a mistake.

??, a blunder.

{, a strong move.

11, a very strong or brilliant move.
1?, a brilliant but unsound move.

Best move.

(1), best move in difficult circumstances.

3

A safe move.

1%

var(vy) T 0) - see
var(v,)>> 0 ext

v=0gand u>0.
v = 0 and udd 0.
u =4l

v =0 and u™ 41,

v = -1 2and u = +1.

v = +1 and u ¥ 41,

v =4+12and u = +1.

v u.

v = 0 and u<k 0.

v = +1 and 04 u«kl.
v = +1 2nd u<0.
v(8,) ='~1 and

v(S]);_-l .

Av = 0 and Bu 40.

Av =0and Au>O0.

AV = =1 and’
not (Au<<0).

Av <0 and Au<<0.

AHv=02andAud0
and 31 is difficult.

Av a0 and Aud0.
Av<0 and Aud> 0.
Au is max.

Au is mex and
31 ig difficult.

Av = 0 and
8, is lifeless.

Comment

{20) "White should precs home his advaniags." The rationale
for trying to shorten the zame when ehead can be under—
stood by noting in Figure 3 how the advaniage decays as
we move backwards from the terminal positions. In Pigure
5 White, in moving from B, , has been given an additional
option in the form of a ~ move to C s from vhich Black
is forced to move directly to F (siéﬁaped arc in Fig. 5).
Game~theoretically the choice begween moving to C. and
moving to C 1 is egually balanced since they are”both
"won" positidiis for White. But the expected utilities,
+0.246 against +0,757, tell the true story, that if he
incurs needless delay in a won position, especially if

it is a complicated position (high branching ratio of
immediately depcndent tree), he rmultiplies his chances

of error. Our model selects the move to C with 1.7
times the frequency of 05, with a correspogd}ng increase

of u(B;) (see Figz. 5).
(21) "Black should play for time" is the complementary advice
: one should give to the other player in the foregoing

gituation. If our hypothetical node C 1 had a second

branch leading to D shown as a brokeg' line in Fig.5),

then Black should prefer it to F9- .

We exhibit systematically in Table 1 various combinations of

.¥ and u, entering in each case the evaluative comment which seems

most appropriate.
"Pension"

The minimax value of s can be regarded as in some sense
summarising the values of the terminal nodes of the itree rooted
in s. More obviously, the expected utility of s, which has the
forn of a weighted mean, constitutes a summary of a different kind
of this same set of quantities. It seems natural to-proceed to
statistics of higher order, i.e. from representative values and
means to variances., Might swuch second-moment statistics also
possess recognisable meaning in terms of the chess commentator's
vogabulary?

I.J. Good (lgg. gii.) discusscs a property of chess positions
which he calls "agitation". He defines it by considering how
sharply the estimated utility of a position is changed by investing

a further unit of work in deepening the forward analysis. This

quantity/

quaentity will necessarily be posi%tively related to ithe variance

of the disiribuiion of u-values over the dependent sub-tree, and
hence to the measurs which we develop below for the "tension" of

; position. The former British Champion, C.H.0'D. Alexander, uses
this term in an introductory chapter to "Fischer v. Spassky »
Reykjavik 19727, He urites (see Pigure 6) v

"Let me illustrate {a little crudely) this question of
tension by comparing two openings:

A. (Givoco Pianissimo) 1. P-K4, P-K4; 2. Kt-KB3, Kt-QB3;
3. B-B4, B-B4; 4. P-Q3, P-Q3; 5. Kt-B3, Kt-B3.

B. (Oruenfeld Defence: sgee the Siegen game Spassky v.

Fischer) 1. P-Q4, Kt-KB3; 2. P-QB4, P-KKt3; 3. Kt-QB3, P-Q4;
4. P x P, Kt xP; 5. P-K4, Kt x K¥t; 6. P x Kt, B-Ki2;

7. B-QB4, P-QB4. The moves in example A are perfectly correct -
but after five moves the game is as dead as mutton; it is too
simple, too balanced, and is almost certain to lead to an early
and dull draw. The moves in example B are objectiively no better -
but the position is full of tension; White has a powerful Pawn
centre but Black can exert pressure on it and, if he survives
-the middle game, may stand better in the ending - the players
are already committed to a difficult and complex struggle in
which a draw is not very likely."

;
A simple way of capturing the spirit of Alexander's definition
within the framework of our theory is to use the weighted mean

sguare of the teuinal values of the tree rooted in 3, i.e.

vo-r ("e) = Pe "ez
teT

where T is the set of terminal positions and P, is the probability
of arriving at the i-th member of this set starting at 8. A value
of unity corresponds to maximal tension and 2 zero value to minimal
tension (the latter can only be attained by a "dead draw"). The
tension of the root node of Figure 3 is estimated by this method
aslm Referring to comment no.(3) above we assign this

root node to Case 2 rather than to Case § of the category "balanced".
Note that although "iension" is calculated from game-theoretic
values, vy» use is made of the ut's in the calculation of the

probabilities/

lug

probabilities, pi, and hence the measure iz affected by variation
of the merit porenmecters 31‘{ and I-EB, Ac moon as we posinlate
sreater playing streprth on the part of Yhite some of the tenasion
of the position is reduced. The tension of node 4 in FTigure 4

is only .024 refleciing the fact that the Black ie almost certain
to steer play into the "dezd dreau®™ sub-irese. t

Tote that é'l' Pt’ftz is ecual simply to the probability
of a non~drawvn outcome. But we have preferred to formulaie the
erpression explicitly as a variance, since in realistic cases
game-theoretic values are not likely to be available, or caleculable

in practice. The approximating formula 2, Ptutz may then prove
. kel

useful, where the ut's have been assigned by some evaluation
function (or by human intuition) to the members of u s the set
of states on the lookahead horizon.

Concluding remarks

Qur object has been to extend the sirict game~theoreiic model
of chess, vhich assigns o board positions only three wvalues: +1,
0 and -1. A good model should do justice to the profusion of chess
commentators' evaluations. Specimen evaluaiive comments have been
displayed 2s bench-marks against which the exiended theory may be
assessed, We have illustrated with worked examples a simple model
based on the notions of utility and statistical expectation. Our
model finds no particular difficulty in explicating the specimen
evaluative comments. It also reduces to the game-theoretic model

in the special case of perfect play.

Chess programs might benefit from using such a model, rather
than the minimax model. The point could be tested experimentally.
Another worth-while study would be to explore parts of a non-trivial
sub-game of chess of which virtually complete game-theoretic ‘
knowledge exists (as in S. Tan's (1974) program for K + B versus
K + P end-games) in search of illustrative tree fragments to Treplace
our concocted examples., The numerical explicéation of concepts could
then be used to make the pfogram print out its own commentis on
sample_ end-game play. These could be compared with the intuitions
‘of experienced players.

References

Alexander, C.,H.0'D. Fischer v. Spassky Reykjavik 1372.
Penguin.

Good, I.J. (1968) A five-year plan for automatic chess.
Machine Intellizence 2 pp. 89-118 (eds. E. Dale and
D, Michie). Sdinburgh: Edinburgh University Press.

Pan, S.T. (13974) KXings, pawn and bishop. Research
emorancum IP-R-108. Edinburgh: Department of
lachine Intelligence.

Acknowledrenent

This work was done during two months' study leave granted
me by the University of Edinburgh.

151

w o= O U s =] % o= 41 w o=

s is virtuzlly 5 is a s is Hhite hac er-
impossible ceriain win impossible. cellent Jrov-
vl (because of the for Black. ing chances.
N unlikelihood -
34 €
that u should be Black neec
identically m:ﬁ“ aey o
zero). make sure of
his win.
s is a certain s is s is s is 2
draw (M deow ") impossibdle. impossible. balanced
. position.
v=0
s is virtually 8 is s is a Black hzs ex-—
impossible impossible. certain win cellent drau-
(because of the for White. ing chances.
v =+l unlikelihood White needs
that u should be accuracy to
identically 7
make sure of
zero). o
his win.
1 2 3 4
Table 1. Evaluative commenis on positions (comments cn moves are not

shown here) corresponding to various combinaiions of game-—
theoretic value, v, and expected utility, u.

152

=Ll ~1<<u<g +1>>uz0C ~l<u<<0 +1>u>>0
An easy win Black has 2 Blach has a Black neeéds Blaclt has Black has a2
for 3lack theoretical mildly extreme ac- 2 clear thecretical
{decisive win but is éifficult curacy to advantage. win but is
adventage). almost bound win, make sure likely to
to lcse. of his win lose.
(a very aif-
) ficult win
for Black).
Black has ex- Yhite has Black has Yhite hes Black has White has
cellent win- excellent a2 slight a slight good win- good winning
ning chances. winning advantage. advantage. ning chances, chances.
White needs chances. White needs Black needs lThite needs Black needs
great accu— Black needs care to care to accuracy to accuracy to
racy to make great accu- make sure maxe sure of make sure of make sure of
sure of the racy to of the the draw. the draw. the drav.
draw, make sure draw,
of the draw.

White has a An easy win White needs White has White has a White has
theoretical for White. extreme ac- a mildly theoretical a clear
win but is (decisive curacy to difficult win but is advantage.
almost bound advantage). make sure of win, likely to
to lose. his win (a lose.

very diffi-

cult win for

White).

5 6 7 8 9 10

153

cure 1.

keh

2]

A game tree with its terminal nodes
(shoun as scueres) labelled with

outcone values talzen from the set

{+1, 0, -1%. Shading of the L)
remzining nodes (circles))
indicates which pleyer has the

nove. .

15%

-1

7i~ure 2,

|

he rame tree of FPiz. 1 with its non-
mircal nodes latelled {underlined
wes) by minimex Tack-up. hitels
4 strategy from 21 is draim with
heavy line, Arce 2re mariec with

+ne conditional mcve-probabi

o -3

.

O o
0

g

say
riies

csrresnonding to perfect play:
since she game-intsredie value
31 is 41, BZlzcii chooses with
zbility 1 o move te 32.

3
e
[}
et

158

ce of Pigures 1 and 2
tabelled -rith expected uiilities
salculated from a =odel of fallidble
play. Thite hos deen credited with
playing sirengil 21 = 3.2 and 3Blacl

125 lig = 1.4, Conditional move-
praba§1litlc: generated by this model
are extered csainsi ilhe corresponding
arcs 2aé 2 =3 o "oaclz ud”
expected i %2> successively
Aigher lev vefcre, vaclzed up
ralues ined.

156

5 4
2LEUIC e
2-mect2d uwtilities vaclzed up the
=ame iTre 2 different
ascumnil the strengihs of
+he play ol Eq = FB = 1,2
i.e. boil s are of veall

t siz The expecied utili

]

11 ek
(21

0

he root node moOU
the model of

°
v

ity

2 £0:1 prelerance
int for the "gale

157

Figure 5.

A nodified version of Fizure 3 in
+wthich 2 zeir node, C5.1, has been
added leading to F) (t:e broken
lire represents a hynothetical
delaying nmove for 3lacl, see text).
Althouzh without ceffect on the same-
theoretic values of zocdes lying
a2bove it in the iree, iniernolziion
of thig short-cut ontion tips the
talance of expected utilities, so
thet 2t the root tlhie move to 32
btecones "vest".

158

G1

DT

<
-

Figure 6.

Two chess positions illustrating the
concept of "iension" (from Alexander,
1972). The upper position has low
tension, and the lower has high
tension (see text).

159

CORTICAL EMBODIMENT OF PROCEDURES

P. D. SCoOTT,
DEPT. EXPERIMENTAL PSYCHOLOGY
UNIVERSITY OF SUSSEX.

160

Introduction.

Those of us who work on neural nets can hardly fail to
be aware that many workers in other branches of artificial
intelligence tend to regard such models as uninteresting, on
two counts - They have very limited capabilities and, even if
one were built which performed a complex task, it would not
be clear how it did so. The present paper proposes a model
of the structure of cerebral cortex which it is believed
removes both of these objections. In addition the model
retains one of the most important characteristics of earlier
neural nets - it learns to do whatever it does.

The current lack of interest in neural nets is largely a
reaction against the extravagant claims made about the
potential of passive hierarchical networks (Fig 1) such as
the Perception by some workers in this area. Such networks
do perform certain tasks very well and furthermore they will
learn to perform them. Other work has developed these
capabilities to the maximum without claiming that they
provided a complete model of the whole of perception (Uttley,
1,2). Minsky and Papert have pointed out the limitations
inherent in all systems of this type (Minsky and Papert 3).
If we wish to build models capable of more complex behaviour
we must therefore either abandon neural nets altogether or
else find some system more powerful than a passive hierarchy.
Most workers chose the former course. I opted for the
latter, partly because the former means abandoning the
learning capabilities of neural networks but also because it
seems reasonable to believe that the neurone is the function-
al sub-unit on which the brain is based.

Measuring Computational Power.

One way of deciding what the computational limitations
of a device are is to demonstrate its equivalence to a
specific class of automata. For example, one might prove a
device is equivalent to a Turing machine and is thus able to
perform any computation that any machine can. Alternatively
one could demonstrate directly that certain classes of com-
putation are outside the capabilities of the device. Both
methods put rigorous limits on the range of things that can
be done. Unfortunately they tell us very little about how

161

P.D. Scobt
easily these things are done. Even the most persuasive of
computer salesmen would have to buy many rounds before he
could sell a machine as "capable of anything" on the grounds
that it is equivalent to a Turing machine. He is much more
likely to try and show that his machine is better than an
existing machine whose ‘power' is known to his potential
customer. Similarly one almost always discusses the 'power'’
of a programming language by comparing its features with
those of other languages. I propose to extend this idea and
discuss neural nets in terms of what they have in common with
programming languages. Certain difficulties will arise
because neural nets operate in parallel while the programming
languages considered operate sequentially. Nevertheless I
think the comparison will be useful.

Neural Nets Compared With Other Programming Languages.

The instructions in the assembler language of any com-
puter may conveniently be classified into three principal
categories

l. Information-moving instructions

2. Transformational instructions

3. Control transfer instructioens.

Suppose we were to try and write a program in such a language
without using any of the instructions in category 3. This
means we would not be allowed any form of jumping. Control
would always pass to the next instruction in sequence. This
is just the situation we find in the passive hierarchical
neural net if we liken the computation of each layer to
categories 1 and 2. Incoming patterns are processed by each
layer in turn. There is no facilit¥ enabling control to be
transferred elsewhere. We do not usually apply the term
computer to a machine so limited. Indeed Babbage is
credited with the invention of the computer largely because
he appreciated the necessity of control transfer instructions
and so introduced what we call a conditional jump. This
means that control need not simply pass to the next instruc-
tion but may be transferred elsewhere depending on the
outcome of a particular test. It would seem reasonable if
we are to build more powerful neural nets to look for a way
to introduce such conditional branching.

162

P.D. Beott

Control Transfer In A Neural Net.

A conditicnal branch instruction tests a specified
predicate then transfers control to one place if it is true
and to another if it is false. Our neural equivalent must
incorporate these essential features. Since two distinct
outputs will be required it will consist of at least two
neurones. It will also require at least two inputs, one
which transfers control to it and one which transmits the
appropriate predicate. Such a unit is shown in Fig. 2.

The neurone labelled 'Do cell’' output has a threshold
level such that it acts as an 'and' gate on its inputs from
the 'Try cell' and the predicate. The 'Do cell' output
powerfully inhibits the 'Try cell'. If the predicate is
true then control is transferred along output 1. If on the

other hand it is false then control is transferred along
output 2. The reasons for choosing this particular two-
state structure will be demonstrated below. The whole is
referred to as a 'Try-Do' unit.

It is unlikely that a programmer will be satisfied with
the straightforward conditional branching capabilities. He
will probably wish to write sub-routines. This means he will
want not only to transfer control to another piece of the
program but also to transfer it back again to the calling
point when that piece has been executed. How would it be
possible to incorporate such procedure calling facilities
into the neural net?

Consider what happens to the Try-Do unit if the
predicate is initially false but later becomes true. Control
will then be transferred from output 2 to output 1. Thus if
in some way the predicate indicated that the relevant 'pro-
cedure' had been completed the 'Try-Do' unit would provide a
convenient procedure calling facility.

Some Examples Of Control Transfer Motor Control Networks

To demonstrate the power of the system we shall consider

Try-Do units located in motor cortex. Output 1 of each unit

will result in the animal performing a specific action.

In the first examples we shall consider a new born
baby's behaviour at the breast (Piaget 4). Fig. 3A
illustrates a single unit which exhibits a baby's behaviour

163

P.D. Bcott

immediately after birth. It also introduces the graphical
symbol for a Try-Do unit. The action caused by an output
from the Do cell is sucking. The predicate which must be
true before it can be done is the simple tactile sense of the
nipple in the mouth. The unit is activated by the infant's
hunger drive. There is no second output so if the nipple is
absent the child has no way to remedy this.

The next example (Fig 3B) provides a solution. We have
added another Try-Do unit which controls the action crying.
In this case the child will cry in the absence of the nipple
so that his mother may remedy this. It may incidentally
appear that he will cry briefly anyway. However if try
cells require the temporal summation of several input signals
before they fire this will not occur. Notice that we
transfer control to the crying unit if the nipple is absent
and return control to the sucking unit when it is presented.

Fig. 3C illustrates another possible alternative. Here
we introduce two Try-Do units controlling head movements to
right and left. If the baby is at the breast but the nipple
absent then he will call both head moving procedures but only
the appropriate one will result in an action. Of course if
the baby is not at the breast he must resort to crying again
(Fig 3D).

A Try-Do unit may thus be viewed as a procedure. This
procedure is called either by a basic drive or by one or more
other Try-Do units. It can itself call one or more other
units and also initiate a specific action. Obviously vastly
more complex pieces of behaviour could be programmed in such
a way. Another way of looking at such devices is to view
them as machines which traverse directed graphs of sub-goals
to reach a particular goal state i.e. a reduced basic drive.
The directed graphs of examples 3A - 3D are all cycle free.
Fig. 4 shows a network which attempts to cope with the "Hole-
in the bucket" dilemma. The directed sub-goal graph of this
is a cycle which can only be traversed if one of the goals is
already satisfied. The network in Fig. 4 will do nothing if
this is not so. As soon as it is it will execute Jjust those
actions needed to mend the bucket.

Since the examples shown have included diverging and

164

P.D. Scott

converging paths as well as a cycle we can clearly build a
machine which will traverse any particular directed graph of
subgoals. Notice incidentally that no actions are performed
until a path has been found. In fact provided we have
enough paper one can very easily build a Turing machine out
of Try-Do units.

Try-Do Units In Perception.

So far we have considered the Try-Do unit as a
functional unit of motor cortex. The cerebral neocortex
however has a suggestive structural uniformity which leads us
to the possibility that the same functional sub-unit might
find equal application in sensory and cognitive processing.
Lashley (11) has argued that the problem of serial order is
central to the understanding of complex behaviour. In
recent years psychologists have come to view perception not
as a passive response taking its organisation from the
external stimuli but as an active constructive and inferential
process (e.g. Neisser (7), Bartlett (8)). A full discussion
of the structural and functional evidence for Try-Do units
will be found in Scott (9).

These facts suggest that it might be fruitful to apply
the Try-Do units to perceptual tasks. To do this we add an
additional cell which indicates if the Do output has just
fired (Fig 5). This was not necessary in the examples of
motor control because the consequences of an action on the
world served such a role. (Nevertheless such additional
cells may be useful in motor cortex to provide smoothly
integrated movements). Fig. © shows a network for finding
right angles of a certain orientation. learly such a
procedure could be called by several higher procedures whch
found for example squares or right-angled triangles. Notice
that the procedure has one input and one output. We could
conceptually replace it with any procedure which finds right
angles. Thus although the network to recognise a complex
object might involve a great number of units it will always
be possible to reduce it to relatively simple functional com-
ponents which we may regard as procedures performing specific
tasks.

165

-

P.D. Beott

Learning In Try-Do Networks.

Learning has gone out of fashion in A.T. In the first
decade or so, the ghost of Lady Lovelace haunted all those
whose programs only did what the programmer told them to so
that learning was considered a measure of intelligence. In
these days of metrication we use a new yardstick - how far
the machine exploits knowledge of the world. With few
exceptions A.I. workers seem to have shelved the learning
issue. It is a problem to be tackled later.

My conviction is that you cannot fully understand how we
do something until you understand how we come to do it.
Neural nets models have often exploited the mechanism of
varying synaptic weight in order to alter the net's structure
as a consequence of experience. The procedural nets
described above retain this feature in the following way.

A machine consists of a set of sensory predicate cells,
a set of drives and a set of Try-Do units associated with
specific actions. The pathways coupling Try and Do units
are fixed. The others are adaptive and fall into two groups.
The first consists of paths from all the drives to all the
Try cells and paths from all the Try cells to all the other Try
cells. These are the pathways along which control is trans-
ferred to sub-goal seeking procedures. The weight of such a
pathway is made proportional to the Shannon mutual informa-
tion between performance of the action and reduction of the
drive. Thus in Fig. 3B the path between Try Suck and Try
Cry is rewarded because crying results in nipple presentation
whch switches the Suck unit into state 'Do' and the output
from 'Try Suck' is thus reduced. The other group of
adaptive ,pathways are those from all the senses to all the Do
cells. These are rewarded when a reduction in the input to
the Try-Do unit correlates with activity in the Sense - Do
pathway. Detailed discussion of the learning equations
appears in Scott (9).

In this way a device whose behaviour is initially random
gradually programs itself into a network of neural procedures.
Implementation.

Both fixed and adaptive pathway versions of several Try-
Do networks have been demonstrated by simulation in Algol 68

166

P.ll. Scott

on an ICL 1904 computer (Scott (9)).
¥urther Comparison With Programming Languages.

We now return to the comparison of neural nets with
programming languages. The level we have brought neural
nets up to is that of an assembler code with subroutine call
facilities. There is still a long way to go before the
exalted heights of Planner or Algol 68 and yet in certain
ways we may be further on.

Many of the advances in programming languages since
assembler code can be placed into two categories. The
first, usually termed 'syntactic sugar', consists of more
natural syntax in which to write programs. We have to
sacrifice this facility and stay at the 'machine-code' level
if we wish to study learning. Since we are repaid by having
our programs self-writing this seems a reasonable bargain.

If we abandon learning it is a relatively easy thing to
provide 'syntactic sugar' in much the same way as Fortran
does for assembler code. The other category of programming
advance consists of enhancements of data structuring
facilites. Here the analogy breaks down because the
distinction between data and procedure is not clear in a
neural net. The knowledge that any neural net has is
embodied in the form of connections between units. In the
examples we have discussed this has amounted to storing which
procedures to call in a particular situation. This is of
course a simplistic statement of the 'thesis of procedural
embedding' (Hewitt (10)). It was to make possible such
procedural embedding of knowledge that the language Planner
was developed.

This is not the only resemblance between the proposed
neural network and Flanner. The control structure has the
same power as that of a highly multi-processed FPlanner
implementation. Consider for example, the 'Hole in the
bucket' problem. If while seeking a stone we happen to find
a straw of the right length we immediately backtrack and mend
the bucket. There are however marked differences. In
particular Planner possesses a data base of declarations and
imperatives. Much of Planner is built around operations on
this data base. Probably the fairest comparison would be to
liken the Try-Do network to a machine on which the procedural

167

P.l. Beott

component of Flanner could very easily be implemented.
Summary.

The computational power of neural networks has been
measured by comparing them with programming languages. In
the light of these comparisons a two-state neural unit has
been proposed as a building block for cerebral cortex. It
is argued that such units dlow the cortical implementation of
procedure calls. The resulting networks are self-programming.

This work forms part of a D.FPhil. thesis to be submitted
in 1974. It was carried out with the supervision of
Professor A. M. Uttley, University of Sussex and the
financial support of the S.R.C.

References

1. Uttley, A.M. 1966 Brain Research 2, 21.

2. Uttley, A.M. 1970 Journ. Theor. Biol. 27, 31.

3. Minsky, M. and Papert, S. 1969 Perceptrons.

4, Piaget, J. The Origins of Intelligence in Children.
7. DNeisser, U. Cognitive Psychology.

8. Bartlett, F. 19%2 Remembering.

9. BScott, P.D. Doctoral thesis to be submitted Summer 1974,
University of Sussex.

10. Hewitt, C. Proc. 2nd International Joint Conference on
Artificial Intelligence 1971, p. 167.

11. Lashley, K. The Problem of Serial Order in Behaviour
Hixon Symposium, 1951.

168

P.ll.Sectt

Fie |

OuTPuT Prep, CATE

OuTPuUT
!

CALLING

e File L

169

D

HUNGER

NIPPLE IN
MOVUTH

CRY e
| PRESSURE
{ < {1 2%
CHEEK,
MovE -
RIGHT
| PRESSURE
LEFT
CHEER
o <t
NIPPLE
N N
MoUTH
SUCK

170

P.D.Seott

» HNTRCLT
J » BUCKET
[FETCH
WATER
WATER
< PRESENT
" WET
STong ‘
STONE
WET
v
 KNIFE
SHARP
: SUlTﬁBLE
, LENGTH
m -

"Ber n&nnmo— F-i G. L""

DRive

171

B.D.Sentd

PREDICATE]

TRY ><PO P

. Fie5

ﬂom'rl&“'ﬂn L CELL

INDICATING THAT ‘Do’ ceLL
HAS JIusT FIRED

Fie. 6

P ro0-Jam<]

HoRI1ZONTAL BAR]

OoutTPur INDICATES

E:.l RIGHT ANGLE oF

SeEQIFIC ORIENTAT 10N
CAWING INPUT HAS Been FounD

172

ON LEARNING ABOUT NUMBERS
{Some problems and speculations.)

By Aaron Slomen, School of Social Sciences, University of Sussex.
Abstract

The aim of this paper 1s methodological and tutorial. It uses elementary
number competence to show how reflection on the fine structure of familiar
human abilities generates requirements exposing the inadequacy of initially
plausible explenations. We have to learn how to organise our common sense
knowledge and make it explicit, and we don't need experimental data so mach
as we need to extend our model-building know-how.

0000000000
Introduction

Work in A.I. needs to be informed by accurate analysis of real human
abilities if it is to avoid exaggerated claims, and excessive concern with
toy projects. The reflective method advocated here has much in common with
the approach of some linguists and with philosophical analysis of things we
all know, as practised by Frege, Ryle, Austin, Wittgenstein and others.
Philosophers' analyses are distorted by their preoccupation with old puzzles
and paradoxes, and by their failure to think about the problems of designing
symbol-manipulating (information processing) mechanisms. Psychologists,
with a few exceptions (e.g. Piaget, Wertheimer, Heider) miss out on the
analysis altogether, partly because they confuse it with introspection,
partly because they are driven by the myth that to be a scientist is to
collect new data, and partly because the technique is hard to learn and teach.

The analysis of elementary number competence, given below, is mixed up
with speculation about mechanisms. A metaphor now taken for granted, though
perhaps one day it will have to be abandoned, is that acquiring and using
knowledge requires a memory containing vast numbers of "locations" at which
symbols of some kind can be stored. They need not be spatial locations,
since points in any symbolic space will do, such as frequencies of radio
waves, or structures of molecules. So my remarks below about locations and
addresses which identify them make no assumptions about the medium used,
except that it provides enough locations at which symbols can be stored,
including symbols which identify locations in memory, i.e. "pointers". I
make no assumptions about the mechanisms making addressing possible except
that explicit addressing takes a negligible amount of time. It makes no
difference for present purposes whether the locations are brain cells,
molecules, frequencies of brain waves, or parts of some spiritual mechanism.
Physiology is irrelevant to many problems about the structures and functions
of mental mechanisms.

The main problem to be discussed here is: What is elementary number
competence and how is it possible? The first task is to make explicit our
common sense knowledge about what sorts of things are possible. (Not laws
of behaviour, but possibilities are what we first need to explain. There
are very few laws of human behaviour, but very many possibilities.) By
thinking about the mechanisms required to explain these possibilities we
begin to reveal the poverty of most philosophical and psychological theories
about the nature of mathematical concepts and knowledge: they hardly begin
to get to grips with the details we all kuow.

Number concepts aren't simple things you either get or don't get, but
complex extendable structures built up graduslly. Reflecting on even the

173

Sloman

simplest things we koow children can lesyn, shows thet children somshow
cope with gquite complex compubationsl probleme. Some of these problems ere
comton to many forms of learning, others psculisr to numbers and counting.
For any small subset of the problems, sny compelent programmer could suggest
several possible explanstory mecheniems, The dlfficulty lies in understend-
ing what sorts of mechanisms might not cnly solve a few specific problems,
but could form part of a larger mechanism expleining much more. There is 2
serious need to extend our knowledge of varieties of possible computetional
mechanisms.

The particular problems to be discussed here are concerned with
knowing mumber words, knowing action sequences (1like counting), and
enriching one's understanding of a previously learnt sequence. Many more
questions will be asked than answered.

Knowing number words

A child learns to recogmise sounds like "one", %two", "number" and
tcount". An untutored view is that repeated exposure causes the sound to be
stored, so that new occurrences can be recognised by matching. Immediately
all sorts of questions can be asked. In what form is the sound represented -
is it analysed into recognisable fragments, such as phonemes? How are
experiences selected as worth storing? How is a matching item found in the
vast store of memories when a word is recognised? Is an index used for
finding items, and if so how does a child know about index construction?

How is the matching between perceived and stored items done? Are variations
coped with by storing variant forms or by using a flexible matching
procedure or both? In the first case, how is the equivalence of stored
variants represented? Why is repeated hearing sometimes needed for learning -
is it because the child needs to experiment with different modes of analysis,
representation and matching, in order to find a good way of dealing with
variations? If so, how arethe experiments managed? Why is repetition some-
times not needed for learnming? When a new word is learnt how is new storage
space allocated? How is the ability to say the word represented? Is output
controlled by the same representation as recognition? How are different
output styles associated with the same item, such as English and French
number names, A.}:g.gs ggd Roman numerals? Does being able to count in
different languages/explicit storage of different sequences, or is the same
sequence used with a decision about output style at each step? Or can both
methods be used?

Using only 26 letters we can comstruct thousands of words. A
frequently used principle of computation is that if a small set of symbols
is available and quickly recognisable (e.g. because the set is small end
the matching simple), then a very much larger efficiently usable set of
symbols can be made available, each consisting of same combination of
symbols from the small set. By imposing an arbitrary order on the original
set of symbols, we can make processes of storing and retrieving large
numbers of the new symbols look like fast parallel searches, for instance
in the way we use alphabetical order to find a name in a directory without
exhaustive search. Alternatively, recognition of a complex item may take
the form of computing a description, using recognition of the components, as
in parsing a sntence or finding the average of a set of numbers (constructive
recognition). So perhaps analysis of words into syllables, phonemes, or
other sub-structures is used by children to facilitate storege and recogni-
tion of the thousands of words they learn. This attributes to toddlers
sophisticated but unconscious computational abilities (e.g. the construction
and use of indexes, decision trees, parsers). What do we know about
possible mechanisms?

174

Sloman

It is often suggested that some of the remarkable efficiency of human
memory could be explained by a content-addressable store, i.e. a large
collection of storage units each capable of comparing its contents with a
broadcast pattern, and shouting "Here it is™ to a central processor.
However, this leaves problems gbout explaining cur ability to cope with
items varying enormously in sise and complexity, such as letters, words,
phrases, sentences, poems, plays, the mumber sequence, etc., and our ability
to retrieve on the basis of elaborate inferences rether than simple matches:
e.g. tts the smallest three-digit number which rhymes with 'heaven' and
contains/repeated digit?". The central processor would need to be able to
transform questions into forms likely to produce responses fram relevant
storage units. This requires some kind of index or catalogue of the
contents of those units, which would make their content-addressability
redundant! Most of this paper is concerned with problems of indexing.

Associations between learnt items

Merely being able to tell whether an item has been met before is not
of much use. More must be known about it: such as how to produce it, in
what forms it may be experienced, that it is a word, that it belongs
to a certain syntactic class, that it has certain uses, that it is one of
a group of words with related meanings or uses (a semantic field), that
various objects and procedures are associated with it, and so on.
Associationist psychologists and empiricist philosophers are obviously
right in claiming that much knowledge depends on learnt associations. But
they have been so concerned with the external conditions for establishing
such associations that they have hardly begun to think about the problems
of how such knowledge might be represented, stored and manipulated so as to
be accessible, usable, and if necessary modifiable. (Explanations which
convince one's colleagues are sometimes seen to be inadequate only as a
result of attempting to design a mechanism actually able to do these things.)

Any one item may have to be associated with very many others. The
word "word" is somehow linked to thousands of instances, and the item
representing one's home town linked to very many facts known about that
town. Similarly, we expect children to pick up many facts about an
individual number, such as thet it is a number, that it is used in counting,
what its successor is, what its predecessor is, whether it is odd or even,
whether it is prime and if not then what its factors are, which pairs of
numbers add up to it, the result of adding or multiplying it with various
others, how to say it, how to write it, how to recognise it when said or
written in various styles, how to bypass coumting by recognising spatial
patterns corresponding to it, what it can be used for, how to count forwards
from it, how to count backwards from it, where it lies in relation to
various "landmarks™ in the number sequence, and so on. (See figure 1.) Why
should we expect children to pick up so many associstions? The process of
building up those associations is a long one and involves many mistakes
which get corrected. An explanatory theory must specify a mechanism which
is not merely able to hold the finished structure in an efficiently access-=
ible form, but is alsc capable of explaining how such structures can be
built up, how they are modified, how they are used, etc. I do not believe
educational psychologists have the foggiest notion of what such a mechanism
might be like. Yet gifted teachers have some intuitive grasp of how it
works.

Take the question "What's after three?". The problem is not merely
to find something associated with "three" and "after". Besides "four®,
"two" will be associated with them, and so may lots of pairs of numbers be,
e.g. pairs N and K for which it is known that X is K after three: five is

1735

Slomen

two after three. So getting to the reguired assocletion requires the
ability to anslyse the question (which may be amblgucus) and use the
analysis to control the search for relevant links in the store of associa-
tions. (E.g. in figure 1, find the node representing three then search for
a link from it labelled "successor®. Do children lesrn to translate the
original question intc this kind of intermal procedure? How?)

There are many ways in which associations can be stored, aud different
structures require different procedures for their use. A common method in
computing is to use "property-lists" or Passociation-lists", as in figure 2,
which shows a chain of links where each link contains two storage cells
treated as an association by the memory mechanism. A chain may be attached
to some item, e.g. to the conpept "numbers®, and related items sre "hung"
from the chain by means of pointers giving their addresses. As figure 3
shows, the items hung from the chain may themselves be associations,
corresponding to the labelled links of figure 1. Thus in the context of
the chain attached to "three®, there is an association between "predecessor®
and "two", whereas in a chain attached to "four? (not shown) there would be
an association between "predecessor" and "three". Associations ere relative
to context.

Stored structures are not enough. Procedures are required for
creating and finding associations in them. For instance, the following
procedure will generate a search down a chain starting at LINK, looking for
an association of type LABEL, in a structure like figure 3, and will return
the associated item as its result.

PROCEDURE FINDASSOC (LINK,LABEL);
WHILE (HD(HD(LINK)) # LABEL) REPEAT
(ASSIGN TL(LINK) TO LINK);
ENDRETURN(TL(HD(LDIK)));

So FINDASSOC(THREE, TYPE), yields a pointer to NUMBER as its result, in
figure 3. A more camplex procedure is required for adding a new associationg
it will have to get a free link (how?) and insert it at a suitable place in
the chain, with its HD pointing to the new association and its TL pointing
to the next link in the chain, if any. If children do anything like this to
store and use associations, then how do they build up such chains, and how
do they come to know the procedures for finding required associatiocns? Are
these inborn mechanisms? Clearly not all procedures for getting at stored
information are innate. For instance, children have to learn how to count
backwards or answer "What'!s before 'four'?" even though they may already
know the order of the numbers. More on this later.

Learning a sequence

In this paper I shall not consider the more advanced stage where a
child grasps a rule for generating indefinitely many number names, e.g.
using decimal notation. An earlier stage involves learning to recognise
not only isolated words, but also a sequence "one", "two", "three", etc.
This is common to many things children learn. Some learnt sequences are
made up of already meaningful parts which combine (how?) to form a new
meanin, whole, like "Mary had a little lamb...", whereas other sequences,
like the alphabet and numbers used in early counting games, are arbitrary,
when first learnt. Sequences with varying amounts of significant structure
include: the days of the week, the letters used to spell a word, the sounds
in a spoken word, the sequence of intervals in a song, the steps required
to assemble a toy, routes frequently travelled, recipes, and various games
and rituals. An adequate explanation of how the simple and arbitrary

176

Slomen

sequences are learnt, or stored or produced should also be part of an
explanation of ths ability to cope with more complex structures containing
simple sequences as parts, such as nursery rhymes which have many levels
of structure, and action procedures which, besides simple sequences, alsc
contain loops, conditional branches, sub-procedures, gaps to be filled by
decigicon-making at execution time, and other forms of organisation.

411 this points to the old idea (compere Miller, et al.) that human
abilities have much in common with computer programs. But further
reflection on familiar facts shows that programs in the most common program-
ming languages dontt provide a rich enough basis for turning this from a
thin metaphor into an explanatory theory. For instance, pecple can excute
unrelated actions in parallel. Moreover, they epparently don't require
their procedures to have built-in tests to ensure that conditions for their
operation contime to be satisfied, with explicit imstructions about what
to do otherwise, like instructions for dealing with the end of a list. 411
sorts of unpredictable things can halt a human action at sny stage (like
learning onets house is on fire) and a decision about what to do can be
taken when the interruption occurs, even if no explicit provision for such
a possibility is built into the plan or procedure being executed. These
points suggest that models of human competence will have to use mechanisms
similar to operating systems for mulii-programmed computers. For instance,
an operating system can run a program, then interrupt it when some event
occurs even if the program makes no provision for interruption. Similarly,
if something goes wrong with the running of the program, like an attempt to
go beyond the end of a list, the program breaks down, but the operating
system or interpreter which runs the program can decide what to so, e.g.
send a message to the programmer, so that there is not a total breskdown.
Of course, the operating system is just another program. So the point is
simply that to make the program metaphor fit human abilities, we must allow
not merely that one program can use another as a subroutine, but that some
programs can execute others and control their execution, in a parallel
rather than a hierarchic fashion. (These arguments are familiar to many
people in A.I.)

In counting objects, a child has to be able to generate different
action sequences in parallel, keeping them in phase. Thus the process of
saying number names, controlled by an internal structure, and the process
of pointing in turn at objects in some group, controlled by the external
structure, have to be kept in phase. 1In a suitable programming language
one could keep two processes in phase by means of a procedure something
like

PROCEDURE COEXECUTE (PROCESS1, PROCESS2, STOPPING-CONDITION);
START:

STEP(PROCESS1);

STEF(PROCESS?)3

IF NOT{STOPPING-CONDITION) THEN GOTO START;
END

Unfortunately, this is not an acceptable model in view of the familiar fact
that children (and adults doing things in parallel) sometimes get ocut of
phase when counting and (sometimes) stop and correct themselves. This
suggests that keeping the two sequences in phase is done by a third process
something like an operating system which starts the processes at specified
speeds, but monitors their perfermance and modifies the speeds if necessary,
interrupting and perhaps restarting if the sequences get out of phase, which
would be impossible with the procedure COEXECUTE. It is as if we could
write programs something like:

177

PROCEDURE RUKINPHASE(PROCESS1, FROCESS2):
DO IN PARALLEL (a) to (&):
(a) RUN PROCESS1;
(b) RUN PROCESSZ2;
(c) IF PROCESS1 AMD PROCESS2 BEGIN TO GET OUT OF PHASE THEW
MODIFY SPEED OF PROCESS! OR FRCCESS2 TO KEEP IN PHASE;
(d) IF PROCESST AND PROCESS2 GET OUT OF PHASE THEN RESTART THEN;
END

The computational facilities required for this kind of thing are much more
sophisticated than in COEXECUTE and are not provided in familiar prograrming
languages. (Monitoring interactions between asynchronous parallel processes
may be an important source of accidental discoveries (creativity) in
children and adults.)

Further, the child has to be able to apply different stopping condi-
tions for this complex parallel process, depending on what the task is. So
it should be possible for yet another process to run the procedure RUNINPHASE,
watching out for appropriate stopping conditions. For instance, when the
question is "How many buttons are there?" use "No more buttons" as main
stopping condition, whereas in response to a request "Give me five buttons",
use "Number five reached" as main stopping condition. I say main stopping
condition, because other conditions may force a halt, such as getting out
of phase or rumming out of numbers or (in the second case) running out of
buttons. How do children learn to apply the same process with different
stopping conditions for different purposes? How is the intended stopping
condition plugged into the process? This would be trivial for a programmer
using a high-level language in which a procedure (to test for the stopping
condition) can be given as a parameter to another procedure - but do
children have such facilities, or do they use mechanisms more like the
parallel processes with interrupt facilities described here? These parallel
mechanisms might also explain the ability to learn to watch out for new kinds
of errors. E. g. having learnt to count stairs where there is no possibility
of counting an item twice, learming to count buttons or dots requires
learning to monitor for repetition and omission. There are many ways this
could be organised.

If we consider what happens when a child learns to count beyond twenty,
we find that a different kind of co-ordination between two sequences is
required, namely the sequence "one, two, three ... nine" and the sequence
"twenty, thirty, ... ninety". Each time one gets round to "nine" in the
first sequence one has to find one's place in the second sequence so as to
locate the next item. A programmer would find this trivial, but how does a
child create this kind of interleaving in his mind? And why is there some-
times difficulty over keeping track of position in the second sequence
"... fifty eight, fifty nine, ... um .. er, thirty, thirty ome..."? C(Clearly
this is not a problem unique to children: we all have trouble at times with
this sort of book keeping. But how is it done when successful? And what
kind of mechanism could be successful sometimes yet unsuccessful at others?
My guess is that human fallibility has nothing to do with differences between
brains and computers as is often supposed, but is a direct consequence of the
sheer complexity and flexibility of human abilities and knowledge, so that
for example there are always toc many plausible but false trails to follow.
When computers are programmed to know so much they will be just as fallible,
and they'll have to improve themselves by the same painful and playful
processes we use.

We have noted a number of familiar aspects of counting and other
actions which suggest that compiled programs in commonly used programming

178

Sloman

lsnguages don't provide & good model for humen sbllities. A further point
to notice is that we not only execute our procedures or programs, we alsc
build them up in a piecemeal fashion (as in learning to count), modify them
W y seem inadequate, and examine them in order to anticipate their
effects without execution. We can decide that old procedures may be
relevant to new problems, we can select subsections for use in isolation
from the rest, and we may even learn tc run them backwards (like learning to
count backwards). This requires that besides having names and sets of
instructions, procedures need to be associated with specifications of what
they are for, the conditions under which they work, information about
likely side-effects, etc. The child must build up a catalo of his own
rescurces. Further, the instructions need to be stored in a %orm which is
accessible not only for execution but alsc for analysis and modificationm,
like inserting new steps, deleting old omnes, or perhaps modifying the order
of the steps. Such examination and editing cannot be done to programs as
they are usually stored.

List structures in which the order of instructions is represented by
labelled links rather than implicitly by position in memory would provide
a form of representation meeting some of these requirements (and are already
used in some programming languages). Thus, figure 2 can be thought of either
as a structure storing information about number names (an analogical
representation of their order), or else as a program for counting. The
distinction between data structures and programs has to be rejected in a
system which can treat program steps as objects which are related to one
another and can be changed. We explore some consequences of this using
counting as an example.

Learning to treat mumbers as objects with relationships

There are several ways in which understanding of a familiar action
sequence may be deficient, and may improve. One may know a sequence very
well, like a poem, telephone mumber, the spelling of a word, or the alphabet,
yet have trouble reciting it backwards. One may find it hard to start from
an arbitrary position in a sequence one knows well, like saying what comes
after "K" in the alphabet, or starting a piano piece in the middle. But
performance can improve. A child who counts well may be unable easily to
answer "What comes after five?". ILater, he may be able to answer that
question, but fail on "What comes before six?", "Does eight come earlier or
later than five?" and "Is three between five and eight?". He doesn't know
his way about the number sequence in his head, though he knows the sequence.
Further, he may understand the questions well enough to answer when the
numbers have been written down before him, or can be seen on a clock.

(There are problems about how this is learnt, but I'll not go into them.)
Later, the child may learn to answer such questions in his head, and even

to count backwards quickly from any position in the sequence he has memorised.
How? To say the child "internalises" his external actions is merely to label
the problem: moving back and forth along a chain of stored associations is
quite a differenmt matter from moving up and down staircases or moving one's
eye or finger back and forth along a row of objects.

There are at least two kinds of development of knowledge about a
stored structure (which may be a program), namely learning new procedures
for doing things with the structure, and extending the structure so as to
contain more explicit informatiom about itself. The former is perhaps the
more fundamental kind of development of understanding, while the latter is
concerned with increased facility. A very simple procedure enables a chain
like that in figure 2 to be used to generate a sequence of actions, for
example:

179

Sloman

PROCEDURE SEQUENCE (LINK); or PROCEDURE SEQUENCE (LIHK);
START: OUTPUT (HD(LINK));
OUTFIT(HD(LINK)}; SEQUENCE(TL{LINK)});
ASSIGH TL(LIEK) T0 LIHE; B

GOTO START;

E¥D

Going down the chein starting from & given link is thus easy, and a
procedure to find the successor of an item would use a similar principle.
But answering "What'!s before item X?¥ is more sophisticated; since on
getting to a particular location (e.g. the link whose HD points to X), one
does not find there any infermation sbout how one got there, so the last
item found must be stored temporarily. One method is illustrated in the
following procedure.

PROCEDURE PREDECESSCR (X,LINK);
LOCAL VARTABLE TEMP; ASSIGN "NONE®" TO TEMP;
START:
IF HD(LINK)=X THEN RETURN(TEMP)
ELSE ASSIGN HD(LINK) TO TEMP AND ASSIGN TL(LINK) TO LINK AND
GOTO START;
END

How could a child learn to create a procedure like this or the more elegant
versions a programmer would write? Does he start with something more
specialised then somehow design a general method which will work on
arbitrary chains? Perhaps it has something to do with manipulating rows of
objects and other sequences outside one's head, but to say this does not
give an explanation, since we don't know what mechanisms enable children to
cope with external sequences, and in any case, as elready remarked, chains
of associations have quite different properties. For a child to see the
analogy would require very powerful abilities to do abstract reasoning.
Maybe the child needs them anyway, in order to learn anything.

In any case, merely being able to invent procedures like PREDECESSOR
is not good enough. For some purposes, such as counting backwards quickly,
we want to be able to find the predecessor or successor of an item much
more quickly than by searching down the chain of links until the item is
found. If a child knew only the first four numbers, then he could memorise
them in both directions, building up the structure of figure l instead of
figure 2. Notice that this use of two chains increases the complexity of
tasks like "Say the numbers", or "What's after three?", since the right
chain has to be found, while reducing the complexity of tasks like "Say the
numbers backwards," and "What's before three?" However, when a longer
sequence had been learnt, this method would still leave the need to search
down one or other chain to find the number N in order to respond to "What's
after N?", "What's before N?", "Count fram N", "Count backwards from N",
'"Which numbers are between N and M?", etc., for there is only one route
into each chain, leading to the beginning of the chain. For instance, when
one has found the link labelled X (figure L) one knows how to get to the
stored representation of "three™, but it is not possible simply to start
from the representation of "three" to get to the links which pointto it in
the two chains. So we need to be able to associte with "three" itself
information about where it is in the sequence, what its predecessor is,
what its successor is, and so on.

A step in this direction is shown in figure 5, where each number name
is associated with a link which contains addresses of both the predecessor
and the successor, like the link marked V, associated with "two". The
information that the predecessor is found in the HD and the successor found

180

Sloman

in the TL would be implicit in procedures used for answering questions.
However, if one needed to asscciate mmch more information with each item,
and did not went to be committed to having the associations permenently in
a particuler order, then it would be necessary to lsbel them explicitly,
using structures like those in figure 1 and figure 3, accessed by a general
procedure like FIKDASSOC, defined previously.

To cut a long story short, the resit of explicitly storing lots of
discoveries sbout each number, might be something like figure 6, which is
highly redundant. The structure may look very complex, yet using it to
answer questions requires simpler procedures than using, say figure 2, for,
having found the link representing a number, one can then find information
associated with that mumber by simply following forward pointers from it,
e.g. using FINDASSOC, whereas in figure 2 or 5 finding the predecessor and
successor of a number requires using twe different procedures, and each
requires 2 search down a chain of all the mumbers to start with. O0f course,
a structure like figure 6 provides simple and speedy access at the cost of
using up mich more storage space. But in the human mind space does not
seem to be in short supply!

If an item in a structure like figure 6 has a very long chain of
associations, it might be preferable to replace the linear chain with a
local index to avoid long searches. This would require the procedure
FINDASSOC to be replaced by something more complex. Alternatively, one
could easily bring a link to the front of the chain each time the assoclation
hanging from it is used: this would ensure that most recently and most
frequently used information was found first, without the help of probabilis-
tic mechanisms.

Notice that in a structure like this, normal "part-whole" constraints
are violated: information about mumbers is part of information about
"three®, and vice versa. So by using pointers (addresses) we can allow
structures to share each other. In arich conceptual system circular defini-
tions will abound. If knowledge is non-hierarchic, as this suggests, then
perhaps cumilative educational procedures are quite misguided. Further, this
kind of structure does not need a separate index or catalogue specifying
where to look for associations involving known items, for it acts as an
index to itself, provided there are some ways of getting quickly from
outside the structure to key nodes, like the cells containing "three" and
"number®. (This might use an index, or content addressable store, or
indexing tricks analogous to hash coding, for speedy access.) The use of
structures built up from linked cells and pointers like this has a number
of additional interesting features, only a few of which can be mentioned
here. Items can be added, deleted, or rearranged merely by changing a few
addresses, without any need for advance reservation of large blocks of
memory or massive shuffling around of information, as would be required if
jtems were stored in blocks of adjacent locations. The same items can occur
in different orders in different structures which share information (see
figure I for a simple example). Moreover, the order can be changed in onme
sequence without affecting another which shares structure with it. For
instance, in figure L the addresses in links W, X, Y, and Z can be changed
so as to alter the order of numbers in chain labelled "reverse" without
altering the chain labelled “forward",

As we saw in connection with figure 2, when the rest of the mechanism
is taken for granted, a structure of the kind here discussed looks like s
program for generating beheviour, but when one locks intc problems of how
the structure gets assembled and modified, how parts are accessed, how
different stopping conditions are aspplied, etec.. then it looks more like a

i8l

Slomen

date structure used by other programs. If the dlstimotion betwsen programs
and data structures evaporates, then dontt scme A.I. slogans about
rocedural knowledge have ic be retracted, or st least clarified? (Compare
Hewitt 1971.).

Conclusion

Further simple-minded reflection on facls we all know reveals many
gaps in the kinds of mechanismz described bere. For instance, very little
has been said about the g_gocadm'es required for building, checking,
modifying, and using & structure e figure 6. Nothing has been said about
the problems of percepbtion snd conception comnected with the fact that
counting is not applied simply to bits of the world but bits of the world
individuated according to a concept (one family, five people, millions of
cells - but the same bit of the world counted in different ways). HNothing
has been said about recognition of numbers without explicit counting.
Nothing has been said about how the child discovers general and non-
contingent facts sbout counting, such as that the order in which objects
are counted does not matter, rearranging the objects does not matter, the
addition or removal of an object must change the result of counting, and so
on. (Philosophers'! discussions of such non-empirical learning are so vague
and abstract as to beg most of the questions.) I cannot explain these and
many more things that ewen primary school children learn. I don't believe
that anybody has even the beginnings of explanations: only new jargon for
labelling the phenomena.

I have offered all this only as a tiny semple of the kind of explora-
tion needed for developing our abilities to build theoreticel models worth
taking seriously. In ine process ocur concept of mechanism will be extended
and the superficiality of current problems, theories and experiments in
psychology and educational technology will become apparent.

Philosophers have much tc learn from this sort of exercise too,
concerning old debates about the nature of mind, the nature of concepts and
knowledge, varieties of inference, etc. Consider answers they have given to
the question "What are numbers?", namely: mumbers are non-physical mind-
independent entities (Platonists), numbers are perceivable properties of
groups of objects (Aristotle?), numbers are mental constructions whose
properties are found by performing mental experiments (Kant and Intuitionists),
numbers are sets of sets, definable in purely logical terms (Logicists),
numbers are meaningless symbols manipulated according to arbitrary rules
(Formalists), they are whatever satisfy Peano's axioms (Mathematicians) or
numbers are simply a motley of things which enter into a variety of "language"
games" played by different people (Wittgenstein). (These descriptions are
too brief for accuracy or clarity; for more detail consult books on philosophy
of mathematics, e.g. Kormer's.) Further wark will show that each of these
views is right in some ways, misleading in others, but that none of them
gets near an accuratzs description of all the rich structure in our number
concepts.

I believe the old nature-murture (heredity-enviromment) controversy
gets transformed by this sort of enquiry. The abilities required in order
tomke possible the kind of learning described here, for instance the
ability to construct and manipulate stored symbols, build complex networks,
use them to solve problems, analyse them to discover errors, medify them,
etc., - all these abilities are more camplex and impressive than what is
actually learnt about mmmbers! Where do these abilities come from? Could
they conceivably be learnt during infancy without presupposing equally power-
ful symbolic abilities to make the learning possible? Maybe the much

182

Sloman

discussed ability to learn the gremmar of netural langusges (cf. Chomeky) is
simply a special application of this more general ability? This question
carnot be discussed usefully in cur present ignorance about possible

learning mechanisms.

a question for educationalists. What would be the impact on
primary schools if intending teachers were exposed to these problems and

given same experience of
computer?

Acknowledgements

trying to build and use models like figure 6 on a

Some of these ideas were developed during tenure of a visiting fellow-
ship in the Department of Computational Logic, Edinburgh. I am grateful to
Bernard Meltzer and the Science Research Council for making this possible,
and to colleagues in Edinburgh and at Sussex University for helping to
remove the mysteries from computing. Alan Mackworth's criticisms of an
earlier draft led to several improvements.

Bibliography

Austin, J. L.

Chomsky, N.
Frege, G.

Hewitt, C.
Korner, S.

Lindsay, P. H. and
Norman, D. A.

Miller, G. A., Galanter,
Pribram, K. M.

Minsky, M.
Quillian, M. R.
Ryle, G.
Winston, F.

Wittgenstein, L.

'A plea for excuses', in his Philosophical Papers
Oxford University Press, 1961, also in
Philosophy of Action ed. by A. R. White, Oxford
University Press, 1968.

Aspects of the Theory of Syntax, chapter 1.
M.I.T. Press, 1965.

Philosophical Writings, translated by P. T. Geach
and M. Black. Blackwell

'Procedural embedding of knowledge in PLANNER',
in Proc. 2nd IJCAI, British Computer Society, 1971.

Philosophy of Mathematics, Hutchinson, 1960.

Human Information Processing, Academic Press 1972.
Chapters 10 and 11 give a useful introduction to
semantic networks.

E.
Plans and the Structure of Behaviour, Holt Rinehart
and Winston 1960.

'Form and Content in Computer Science!, part 3,
J.A.C.M. 1970.

'Semantic Memory! in Semantic Information Processing,
ed. by M. Minsky, M.I.T. Press, 1968.

The Concept of Mind, Hutchinson 1949.
also Penguin Books.

Learning Structural Descriptions from Examples
M.I.T. A.I. Lab. AT TR-321, 1970.

Philosophical Investigations, Blackwell, 1953.

?emarks on the Foundations of Mathematics, Blackwell,
956.

Slomen

s T v

S CEEEEEE S e £OUT
\@D———n——"% odd

SRS ——

The usz of chalins. Each lin% contains two cells, the first called HD the
second TL, conteining symbols which may be pointers to other locationms.
A cell points to a locatisn in memory by containing an address of that

COmBOn & (043) (3+0) {2+1) (3+42) {1+1+1)
ete

Figure 1.
- 1
numbers Y e £
——y qz:: " » >6f£. }

v
“one” PLwo" %three" fourt {ive"

o s e

"three" ———y

TSl

predecessorl, n‘t.ype i

two number

location.
S de.
. ete.
‘F\‘7
Sucessor Ty perity
four odd

Figure 3. (This shawv & translat:.on of figure 1 using list strictures.)

-

"one" " Lwoh "three" " four®
Figure 4. (The #bility to count backwards from four.)
AUnb=rs ponbers i o1) In ,} .J-—.—v? ete.

I
eLlc

i’ mo . (Qi fours |
L—.-—‘f-"‘ o

one nree '

e

Here, writing & synbol inside a

link mey be eddressed by me:

end tae 4D of the linr coatzins
Figirs §.

of the symbol,
a pointer back to the symbol.

link represents tae fect thot thet

263 JElnE’ an ;ﬂJE‘X,

2.7

184

Slomen

P_’Fﬁm&;zt%—?da
mﬂ @M—-—;ﬁ%&-—aa&c .

‘;":}-*M@&,t deneting 4

g’vs%tﬁ:::\‘tﬂ_-———mm_w prbe.

[Fumerais ig”’ {fetiere e e,

&__i__—)‘% rgg‘iﬂ B, 53%&-——% '3,\2:——'9 ’__-f—ow—x, ete,

~~~~~ vefeo.
% ’,%Eéiuﬁs_.»:w% <§—>§.Es-—» TR B> SR Bl
: ( m@ ERUATIIINRY UEEE Sl
. EELati®ne o el
edd even prime i
ini@m&tim ebeut zere and negativesz)"j ?__‘_, S
7Tt S iy e e 7 .
e S S S i S ey
‘?’f oy (parity 8  [pfe ww_'{; GIREE ] o
: d | lzedes T §
IR L |
T ebe |
Bis‘z%m&ll |
~ fn M
.
R S
[
i i
o e 7
il ﬁﬁgﬁu‘cmminﬂ’; {
! ehelb |
P | E
;‘,em:}"'r«:ﬁ"\.‘;‘“;{ 3 :‘:fg i S B !
tive d) Fastivdy [fEsioask Ty  BEETn  Fasterim
\ : f Aoetore ,
- [ »,
(141,042,240, 5-1,e%e. ) ‘Tw*“”f £,

j

TRy et

o

¥ ete.
ete Pigurs &,

This represents, with zany eversimplifieatisns and samissiens, seme ef the '
inferzaticn ahout the nusber sequence learnt by children. To save space and

impreve intelligibility, relatiens Seiween nurbers, nusber-names, and nusersls,
{e.go tve, "twe" and "2") have nst been represented, Deubly-boxed neder are ,
meant te be directly sddressibtle fresm cutside %he neiverk (cespere fimure 3). ,
The tws verticsel chsins en the left reprssent the ability te ssunt ferwards 5

er baskwards el speed, starting at any knewn number.




Towerds & Programming Apprentice

Brian Smith
Carl Hawilt

The Planner Project is construcling a Programming Apprentice to assist in
knowledge based programming. We would like to provide an environment which has
substantial knowledge of the semantic domain for which the programs are being written, and
knowledge of the purposes that the programs are supposed to satisfy. Further, we wouid
like to make it easy for the programmer to communicate the knowledge about the program &
the Apprentice. The Apprentice is o aid in establishing and maintaining consistency of
specifications, validating that modules meet their specifications, answering questions
about behavioral dependencies between modules, and analyzing the implications of
perturbations in modules and their specifications.

A tenet of the apprentice project is that programming is a multi-level activity:
as well as writing code, programmers comm:nicate in terms of comments and models. Qur
goal is to elucidate and formalize some of these interactions. The first level of
description we have attacked is the level of abstract descriptions of what programs do,
rather than how they do it. The contracts and intentions discussed in this paper are an
attempt to embody this kind of knowledge in a formal and yet intuitive and useful way. A
process known as meta-cvaluation is presented which can justify why a program fulfills its
contract. Further research is being carried out into the role of models, background
knowledge, and commentary relating these different levels of description.

This work is presented using Actors, a semantic concept in which no active process
is ever allowed to treat anything as an object; instead a polite request must be extended
to accomplish what the activator desires.

Procedural Embedding of Specifications

To prove a thing is not enough;
you hatve to seduce people to accept it.
Nietzsche

We believe that procedures are a good formalism in which to write specifications
for tasks, where by the specifications for a procedure we mean a statement of what the
procedure is supposed to accomplish as opposed to how it does it. If you have a typical
specification expressed in any formalism [e.g. the first order quantificational calculus],
we believe that there is a procedure that elegantly and naturally tests to see if the
specification is satisfied. Programming a task should therefore involve the creation cof
at least two processes: one that judges whether or not the task has been properly
accomplished, and at least one that knows how to accomplish it.

There has been a great deal of research in the past few years [Floyd, Naur, King,
Green, Manna, Waldinger, Hoare, Deutsch, Luckham, Good, Dijkstra, etc.] which has
attempted to express specifications for procedures in the first order quantificational




caleulus. Typically expressing the specifications for a procedure f in the
quantificational calculus takes the form of attempting to find formulas P and R such that
it P[x] is true then f{x) converges and R{x,f(x)] is true. We believe that the first

order quantificational calcuius is not in fact a very good language for writing
specifications for procedures [particularly for ones involving parallelism, side-effects,
and histories]

For example consider the problem of writing specifications for a time-sharing file
system. We shall suppose that the system maintains a Track Usage Table which records
whether or not each track on the disk is in use. In addition each user of the
time-sharing system has a directory of the tracks that are used by each of his files. We
wish to specify that no two files both attempt to use the same disk track and that the
Track Usage Table is "always” consistent with the user directories.

It is not too difficult to write a procedure to check that the above cendition is
met at any given instant. We would like to develop a coherent methodology for
substantiating that the procedures of the time-sharing system are such that the
directories will never fail to pass the consistency check. To this end we have developed
a technique called meta-evaluation which attempts to implement the process that good
programmers go through when they "symbolically” execute their code in order to demonstrate
to themselves that it meets its specifications. Currently we do not know how to translate
the meta-evaluation process into a proof in the first order quantificational calculus. In
fact we do not even know whether it is possible or not! The extent to which we should be
concerned [in other than an academic sense] is moot. The meta-evaluation process [and the
underlying Actor Induction principle] carry a good deal of conviction and deserve to be
analyzed in their own right independently of any reduction to another formalism.

Confracts

When a routine or program is written, the programmer has a notion of what it does.
One of the first types of comments to formalize is this description, which is like an
advertisement to the world at large of a program’s capabilities. Not only might it be
useful to other parts of the system to have an abstract description of the routire and
therefore not have to look at its definition, but with a careful statement of the
conditions of applicability and a good description of the behavior, it may be possible to
check the code to see whether it does what it claims to do.

We call such an advertisement a contract: a statement of "what" a program does
under wiiat conditions. No attempt is made to describe how the code achieves the desired
behavior, nor is anything said about when or why this routine might be called. A contract
references neither its code nor the world of its use. It is a generalization of a
pre-requisite mechanism (with no limit on the complexity of pre-requisite computation
possible) coupled with a parallei post-requisite mechanism.

A contract consists of roughly two things: a statement of in-coming assumptions
which it expects (but has no reason to presume) to be true when it is called, and a
statement of the conditions that will be obtained which it ciaims (presumably with some
justification) will be achieved by invoking the contractor [the actor which fuifilis the
contract]. Many of our contracts are self-enforcing in the sense that they effectively
specify the tests that have to be run to verify that any given invocation of the
contractor has fuifilled the contract. There are several advantages in having contracts:
contracts can be checked each time the associated routine is called; the routine can be

187




abstractly verified in some programming conlext (i.e. the sut-going resirictions will be
satisfied if the in-coming ones are salisfied), and the contrac? can be read by other
routines who want to know what the routine does.

For example, the contract of & routine to clear off & block might be: if called
with the name of a (flat) block, it will relurn only when there are no other blocks being
supported by that block. The coniract for a matrix inversion routine might be thal if it
is called with a regular reai-valued matrix A, it will return 2 matrix B such that AsB =
the identity matrix. The contract for 2 square root routine could requirs that the cutput
times itseif be equal to the input. An elevator’s contract might be that if it is called
by a person on some floor who wants to go to some other ficor in that building, it will
pick up the person in a "reasonable amount of time” and deliver her to her destination
floor without changing direction. A maich-maker’s contract might be that if called with
the names of two people it will return only when those two people are married.

Sometimes contracts seem difficult to express. Precisely stating the
specifications of a time-sharing system including the requirements for protection,
reliability in the face of hardware malfunctions, and level of performance under specified
load is currently beyond the state of the art. Formalizing the requirement that an
elevator pick up a person in a "reasonable amount of time” is difficult although
formulations like "before passing any other fioor twice in the same direction” capture
some of the flavor of what is wanted. In some cases, such as for factorial, an abstract
statement of what the routine returns seems possible only in terms of a procedure for
calculating it. An iterative factorial routine, however, might have a recursive contract.
If the system could show in general that the two routines are equivalent, they will almost
certainly both be right. Often the contract of a routine will not completely characterize
the behavior of the routine. In fact it is undesirable to put irrelevant details about
the desired behavior of the routine in the contract for the routine because other routines
might make a practice of relying on them which will make it more difficult to later modify
the system if the details prove to be undesirable. A routine may also have only a partial
contract, just saying that it expects to be called with a non-negative integer or that it
returns a list. There is nothing immoral about not advertising everything about yourselt
-- you are just liable to be ignored and not well understood.

We formalize contracts with the aim of developing a system capable (with help) of
reading a programmer’s code and formulating questions where it is not clear that the code
satisfies its contract, intentions, and other commentary. This process of meta-evaluation
will be explained in detail below.

A Brief Introduction to PLANNER-73 Syntax

Before introducing any formal examples, we must briefly introduce some of the
common PLANNER-73 syntax which is used in the rest of the paper. in particular there are
six constructs which need to be explained at this point. We note initially that [Al Ay
... Ayl means a sequence of the elements A) through Ay

188




1. Reminiscent of the LISP lambda exprassion is the ACTOR message-receiver:

(=> pattern
body)

where "=>" is read "receives”. This means that if an actor with this definition

is sent a message which matches pattarn it will evaluate bedy in the environment
resulting from the pattern match. Patterns will often use a notation by which
names are bound in an environment. For example, if 3 is matched against the
pattern =x, then x will be bound to 3.

For example, the following routine adds one to any message it is passed:

(=> =x

e 1))
2. ACTOR detinitions are usually given labels by using:
{a-label <= a-definition]

which means that a=label is taken as the name of the procedural fixed point of
a-definition. For example, we can define increment to be the function defined
in #] above:

[increment <=
(=> =x

(x+1)]

3. Another way of binding names is in the use of the let statement, which
takes the form:

(lat
{[namel = binding, ]
[namez = binding,]

[name,, = bindingn]}
body )

which evaluates bedy in an environment with all the names bound. For example:

(lot
{[x = 3]
[y =5]}
(x % y))

will return 15,




4. An often-used mechanism for applying a predicate {0 a supply of

elements is:

{for-each
a=supplier
a-predicate)

which repeatedly asks a=supplier for another element, applying a-predicate to
each one.

5. Occasional use is made of the unpack operator, which is abbreviated as an

elements of the expression individually. Thus if S is bound to the sequence [3
4 5], then the value of [1 2 18jis [1 23 4 5]. Also if [10 20 30 40 50] is
matched against the pattern [=x =y !s2], x will be bound to 10, y will be bound
to 20, and z will be bound to {30 40 50].

6. Conditionals take two standard forms. The first is known as the

rules expression and has the form:

(rules an-expression
(=> pattorn; body,)
(= gaﬂernz bp_dxz)

(= g;.liernn body )

The expression is matched against the successive patterns until it matches one
of them; then the corresponding body is evaluated in the environment resulting
from the pattern match.

Thus:

(rules (3 + 4)
(=> (even) (yes))
(=> (odd) (no))}

evaluates to (no).
A similar construct, more convenient at the outer level of message
reception in an ACTOR definition, is the cases statement:

(cases
(=> El“eLnl h(ldl])
(=> pattern, body,)
(=> pattern body))
in which the incoming message is matched directly against the successive

patterns until a match is found, whereupon the corresponding body is evaluated
in the resultant environment.

190




Contract Examplag

We introduce the following syntax to express a contract {for an actor A) (similar
to a more standard actor definition):

{=> pattern-for-incoming-message
(require: assumptions)
(use: refevant-knowledse)
(rider=on-the=continuation: enlailmenis}
(rider-on-the=complaint-department: entailments-on-complaints))

The require: clause specifies what the programmer expects to be true about the incoming
message that has matched the pattern. The use: clause of a contract is a place for the
programmer to specify such information as what type of knowledge is likely tc help in
understanding why this contract is true (such as mathematical theorems or knowledge about
the blocks world), and to give background information such as to why the programmer
expects the routine to converge.

The entailments, or what the programmer expects to be true about the results cf
the behavior in light of the incoming assumptions, are expressed in what are known as
riders. A rider behaves like a "one-time contract” that holds only for the current
invocation. Its syntax is the same as for a regular contract. A contract often specifies
two riders; one to be wrapped around the normal continuation, and one around the
complaint-department, should the actor call there with an error.

For example a contract for a divide routine might goes as follows:

[contract-for=divide <=
(s> {=the=numerator =the-divisor]
{require: (the-divisor » 0))
(use: ordinary-arithmatic)
(rider-on-tha~continuation:
(=> [=the=quotient =the-remainder]
{require:
{the-numerator =
{the-remainder +
{the=guotient x tha=divisor)))
(the=remainder < the-divisor))))) ]

A more interesting example is the contract for an algorithm that sorts the
elements of a sequence. In particular, given a sequence of integers, it will return a
sequence with the elements arranged in increasing order. This example is significant
because it demonstrates the convenience of expressing specifications in a procedural
language. A specification of this requirement in the first order predicate calcuius is
exceedingly cumbersome,

191




We define the contract for the sequence sorter:

[contract-for-sequence=sort <=
(=> [=the~sequence]
(require: {sequence the-sequence)
{for-sach
(elements the-sequence)
{=> za=member
(integer a=mamber))))
(use: knowledge=-about-linear~data-structures)
(rider-on-the-continuation:
(=> =the-sorted-sequence
(require:
(sorted the-sorted-sequence)
(permutation
the-sorted-sequence
the-sequence))) ]

which makes use of the following two definitions:

[sorted <=
(cases
(=> [] (yes))
(=> [=the-only-element] (yss))
(=> [=tirst =second !=rest]
(and
(first < second)
(sorted [second !rest])))) ]

[permutation <=
(=> [=seq-1 =seq~-2]
(rules seqg-1
(=> [] (empty seq=-2))
(=> [=first lzrest]
(rules seq-2
(=> [!=initial first !=remaining]
(permutation

rest
[linitial !remaining]))))) ]

The contract might be satisfied by many definitions of sequence-sort, one of which
follows:

[sequence-sort <=
(cases
=01
(=> [=first l=rest]
(merge
first
(sort rest)))) ]

192




[merge <=
{=> [zelement ssaquenca]
{rulss sequence
{a> [] [element] )
{=> [=first larest)
{rulas first
{=> {< elament)
[tirst {merge element irast)])
{else
{etement isequence]))))) ]

it is important to realize the distinction between these contracts and run-time
checks. A run-time check is always going to be evaluated with the specific arguments of
each call to the routine, thus causing inevitable inefficiency, and never giving complete
confidence that a new set of arguments won’t violate it. A contract is a statement of
abstract requirements. It would be possible to have the programming system running in a
super-cautious mode and have it check the whale contract on each call, but if we
meta-evaluate the code we will discover that the contract will always be satisfied if the
incoming pre-conditions are satisfied. Checking the incoming assumptions is therefore the
most that is required; within the context of specific programs, the system may be able to
show that they are always satisfied.

Intentions
An intention is similar to a contract, but rather than being wrapped around a
piece of behavior which expects to be applied, it is inserted around something which
expects to be evaluated. It is an abstract statement which the programmer expects tc be
true about the world at the point the statement is reached, rather than an advertiserment
to the world of a program’s capabilities. It is intended to capture the flavor of
comments of the sort: "x should be less than 10 here®, "the block has been cleared off by
now”, "doing this will destroy the contents of that cell”, etc. More specifically an
intention surrounds an ac’or (routine) with assumptions that should be satisfied before
and after the actor is invoked. It is more likely to be found around an application of a
function to some arguments, rather than around the function itself. Thus it has no
incoming pattern. An intention for a piece of code makes the properties of the local
environment in which the code is intended to operate more explicit. There is a very
incestuous relationship between the contract for a program and the intentions in the
program. The pre-conditions in the contract must be sufficiently strong to guarantes that
the intentions are not violated. Conversely the intentions must be strong enough to
enable us to easily substantiate the post-conditions of the contract.

Consider an actor which looks up ielephone numbers. The actor might have a
contract of its own. A given cali to the actor, however, may have an intention saying
that the name is the name of a doctor, and that the number returned should be his/her
office phore number.

The form of an intention statement is:



{intention
(require: in-coming-assunplions)
tha-expression
(rider: entasilments))

As in the case of contracls, the sntailments take the form of a rider, and the
syntax is the same in this case. Rider: is just an abbreviation for
rider-on-the-continuation, and one could express entailments for the complaint department,
if necessary.

The above syntax is the most general intention statement, but we wili not be using
it in its full form very often. Certain restricted senses of it will turn out to be
sufficiently common to warrant their own abbreviations. Intentions can be analyzed as
being contracts on particular pieces of tode. In fact intentions can be defined in terms
of contracts. However, the distinction is analogous to the distinction between evaluation
and application, and using the actor intantion keeps us from having to reach down into the
lower levels of message passing in order to express intentions.

Types and Constraints

One of the most common intentions to throw around an expression is a statement of
the semantic type of its value. We therefore introduce the actor constraint with syntax:

(constraint x pattern)
‘which is equivalent to:

(intention (require: nothing)

(:idor:
(=> pattern
(require: nothing))))

Constraints have a graphic abb_revialion:

x|y is equivalent to (constraint x y)
Thus if you expect x to be bound to a noun, you could write:

(constraint x (noun)) or x | (noun)
Note that this would evaluate to the same thing as x. It is important to remember that

specifying such a constraint (or any kind of intention) doesn’t necessarily mean that the
code will be slowed down in any way.

Sometimes it is convenient to specify requirements dealing with the side-effects
of the evaluation of an expression. Pest-requisite statements are like constraints, but
use the require: clause of the rider. The expression:

194

E



which is an abbreviation for:

(intentions
(require: nothing)
X
(rider:
(=> 7
(require: out-going-requiremant))))

Post-requisites have their graphic abbreviation:
x || z is equivalent to: (post-requisite x z)
For example, we might write

(eat your=dinner) || (empty your-plate)

Post~Conditions

Sometimes it is convenient to bypass the incoming pre-conditions but to specify a
full out-going rider, which requires more power than the simple constraint or
post-requisite statements give. Therefore we introduce the post-condition actor, which
has the form:

(post-condition x out-going-contract)
which is an abbreviation for:

(intention
(require: nothing)

X
(rider: out-going-contract))
The post-condition statement has its graphic abbreviation:
x |l z is equivalent to: (post-condition x z)

For example, we might write
(tidy-up a=room) ||| (=> =the-room
(require:
{clean the-room)
(arranged (furniture the-room))
(for-each
(furniture the~room)
(=> [=a-pieca]
(clean a=piece))))}




Again it shouid be noted that this is different from putting in a run-time check that will
always take the time to see if all these conditions are met.

Intentions should only be written when there is reason to believe that they are
always true. Like all comments, they should not affect the operation of the program.
Further, if the contracts for all the relevant actors are well-enough specified, the
system should be able to show that afl the intentions within the code are always
satisfied. The prime use of the intention statements is in incorrect code. The
intentions can be used as runtime checks but more importantly the system can abstractly
evaluate the code and raise questions where it is not demonstrably justified that the code
satisfies its contracts.

The following program makes scrambled eggs for n people given a bow! in which to
break the eggs and a pan in which to took the scrambled eggs. It has intentions buried
deep down inside the code. (For clarity all intentions are written in capitals.)

[scramble-eggs <=
(= [=n]| O 0)
=the~bowl | (CAPACITY: (N/4 CUPS))
=the~-pan | (CAPACITY: (N/4 CUPS))]
(hoat the-pan (temperature: 350))
(clean the-bowl)
(start breaking-eggs
(0]
(=>> [=i]
(INTENTION
(REQUIRE:
(HAVE
(IN: THE-BOWL)
(2x1 EGGS)))
(rules i
(=>n
(done))
(else
(get 2 eggs)
(break-into the-bowl)
(restart breaking-sggs
[(n+ DM 1l (HAVE
{IN: THE-BOWL)
(2%N EGGS))
(whon ((temperature the-pan) = 350)
(pour the-bowl!
(into: the-pan))
(stir the=pan (until: solidly-cookad))))]

The pre-conditions for scramble-eggs should be sufficient to insure that the intentions in

the moduie for scramble-eggs are satistied. The reader should note that line oriented
formalisms for expressing intentions {such as those proposed by Sussman and Goldstein] are
inadequate for dealing with intentions in sophisticated applications such as the above.




Program Varification, Justification, and Meta-avaluation

Meta-evaluation is a process which attempts to show that the contracts of an actor
will always be satisfied. Traditionally programmers try a program on several selected
examples which they hope will bring out all aspects of its behavior, and once it works on
those they assert that the program "works” in general. With some of the mechanisms we
have been discussing we can design a procedure which will produce a much more coherent
justification of whether or not a routine does what it should do. It is a moot point
whether or not the justification produced by meta-evaluation is entitled to be called a
"proof".

Meta-evaluation deals with contracts of the actors in a program. It tries to show
that if the incoming pre-conditions of an actor are satisfied, then the out-going
contracts will always be true. This is done by showing that for every call that this
actor makes, the pre-conditions of the actors called are satisfied.

When you try to justify the contract for an actor, the contract asserts its
incoming pre-conditions and tries to prove its out-going assumptions. It does this by
stepping through the definition of its behavior; at each cail out it utilizes the
contracts of the actors that it calls by proving their in-going assumptions and then
asserting their out-going assumptions. This process of asserting incoming requirements
and asserting out-going declarations builds up enough information to enable the system to
prove the outgoing assumptions of the main actor.

For example take the simple case of factorial. Its definition and contract are
given below. In the contract of factorial we shall use an actor product [n] which can
calculate things but can also be used as a model of what factorial produces. We use

(n (inclusive a o b)
(=> [=i]
(i)

to mean

(I
(| (£ i)
I

iclinclusive a to b)
A recursive definition of factorial and an appropriate contract are:

[tactorial <=
(cases
(=>[0] 1)
(=> [=n | (> 0)]
(n % (factorial (n = 1))}

197




[contract-tor-factorial <=
{=> [=m]
{require:
(integer m)
{m 2 0))
{rider-on-the-continuation:
(=> sanswer
{require:
{equal
answer
{n (inclusive 1 to m)
{=> [=i] )30
(use:
(knowledge: bag-of-mathematical-knowledge)
(convergence=-ordering: less=-than)))]

The use: statement is a recommendation from the programmer to the system to use
algebraic and mathematical knowledge to prove the equivalence of the resuitant products.

The justification process procedes as follows: contract-for-factorial is asked to

justify itself. It asserts that its message is a tuple of one element, and that that

element is an integer greater than 0. It then tries to meta-evaluate the code for

factorial in this world of assertions. The cases statement causes the worlid to fork into
different extensions. The first branch of the cases is meta-evaluated in the first
extension-world. The receive statement adds an assertion to the world that the
tuple-element is zero, and that the result is 1. This returns up to the contract, which

is able to prove, using mathematical knowledge, that 1 is indeed equal to the product from
i =1to 1 of i. More formally we are using the following PLANNER-73 plans with

k bound to | and
t bound to (=> [=i] i)
[simplify-singleton-n <=
(to
(simplify
(r {=k}
=f))
(f k)]

[simplify=singleton=inclusive <=
(to
(simplify (inclusive =k to =k))

{k})]

where in general
(to (simplify
pattern)

expression)

means: if you want to simplify a clause which matches pattern you can use expression.

198




The cases statement then meta-evaluates the second receive statemen! in the other
exlension world in which it is asserted that the tuple-element is non-zero. This causes
the contract of = to be read, which in turn requires the coniract of factorial to be read
(nothing peculiar is caused by the facl that we are now using the same coniract that we
are trying to justify). The contract for factorial successfully tries to prove that (n -

1) is a non-negative integer (this requires reading the contract of minus, obviously). The
contract of factorial contract then asserts that

(n (inciusive 1 to (n ~ 1))

(=> [=i] i))
is its value. Times can now assert that it returns

(x
n
{r (inclusive 1 to (n =~ 1))
{=> [=i] )}

which propagates up through the cases to the contract at the top level. The
out-going-assumption that this equals

(n (inclusive | to n)

(=> [=i] i)
is now proved using the following mathematical fact about products with

y bound to n

A bound to (n (inclusive 1 to (n - 1)) (=> [=i] i)
f bound to (=> [=i] i)

remaining~terms bound to an empty bag

x bound to n

[simplify=%k=n <=
(to
(simplify
(€3
=y
(n =A
=f)
Iz=remaining=terms))
{find {y = {f =x)}
(using: arithmetic-equation=-soiver)
(then:
{%
{n (UA {x})
f
Iremaining=terms))))]




[simplify=U~inclusive-singleton~class <=
{to
{simplity
{U {inclusive =z to =&) {{+ =b 1}}})
{inclusive a to (b + 1)})}]

Justifying a contract should aiso show that it converges, and this is done by
specifying a partial order on messages to factorial which is included in the convargence:
clause of the contract. In general programmers have an idea of why any loops or recursive
routines they write should halt. Mathematicians have devised a very general method for
doing this which requires the specification of a partial order R where R must have the
property that there are no infinite descending chains of transmissions T1, T2, T3, ...,
with the property that (i > j) implies Ti R Tj. The contract has two jobs: to show that
the partial order specified by the programmer has the correct properties, and that the
definition indeed satisfies the restrictions of the partial order.

Examples of Bug Detection

This section is based on a term project paper by Brian Smith, Dick Waters, and
Henry Lieberman entitled "COMMENTS ON COMMENTS or the Purpose of Intentions, and the
Intentions of Purposes” which was done for the M.LT. course "Automating Knowledge Based

Programming and Validation Using ACTORS" in the fall of 1973.

Here we will see how the above meta-evaluation would have found several different
kinds of bugs that might have been in factorial. The specific code that is in error is
underlined.

Bug-1: Suppose factorial had been written as:

[factorial <=
(cases
= [111)
(= [=n| > 0)]
(n * (factorial (n = 1)))))]

This is a rather tough bug in a way because factorial will work correctly on every input
but 0. The meta-evaluation catches the bug because it is now unable to prove that the
input (n - 1) to factorial is > 0. The proof fails because n may = 0. At this paint the
system may well ask the programmer why it thinks (n - 1) should be > 0 at this place in
the code.

Bug-2: Suppose factorial had been written as:

[tactorial <=
(cases
(=>[0]1)
(= [=n](0)]
(n % (factorial = n 1))

This is a syntactic error: The input to factorial must be a 1-tuple but [- n 1]is a
three-tuple. The meta-match fails.

200




Bug-3: Suppose factorial had been written as:

{factorial <=
{cases
= [0]1)
(> {=n | > 0)]
{x

(n=1)
{factorial (n = 1))))}]

This error is mathematical: The contract-for-factorial is unable to prove that

(.
(=
(m~-1)
{n (inclusive I to (m ~ 1))
(=> [=x] x)))
(n (inclusive 1 to m))

{=> [=x] x))
since is is not true.
Bug-4: Suppose factorial had been written as:

[factorial <=
(cases
(=> [0] 1)
(=>=n](0)
(n x (factorial (n = 1))}

This is again a syntactic error: The contract-for-> is unable to prove that mis greater
than O because it is not; it is a 1-tuple.

Now lets look at some problems in the contract that meta-evaluation will find.

(Whether any problem found is considered to be in the code, or the contract is a matter of
taste. Meta-evaluation just finds where they disagree.)

201




Bug-5: Suppose the contract had been written as:

{eentract=for-factorial <=
{=> [=k]
{require:
{integer k)
(k> 0))
{rider~on-the-continuation:
(=> =r
(require:
{equal
r
(n (inclusive 1 to k)
(=> [=xj x)))))

(use: general-mathematical-knowledge))]

This is not really a bug, but it does not go with factorial as it is written. The error

is detected because now the whole first clause of the cases is vacuous. N can never be O.
Note that if the bug had not been found here, it would have been found in attempting to
satisfy the pre-conditions for factorial when the expression (factorial (n = 1)) is asked

to meta-evaluate itself.

Bug-6: Suppose that the contract had been written as:

[contract-for-factorial <=
=> [=k]
(require:
(integer k)
(k2 0))
(rider-on-the~continuation:
(> [sr]
(require:
(equal
r
(n (inclusive 1 10 k)
(=> [=x] x)))))

(use: general-mathematical-knowledge))]

This bug is sort of syntactic, it is caused by forgetting the normal conventions on
returning a result. It is also interesting in that this bug was made by the first author

in writing this section, and was not discovered until the meta-evaluation of (=> [0] 1)
was complete and the contract asked the pattern [=r] to meta-match 1. The meta-match
failed because 1 was not a 1-tuple.

It should also be pointed out that if all 6 of these errors were present together,
there would be no added problems with meta-evaluation; it would just complain about the
first one it encountered (bug 5) and call out to the repairman or the programmer. It
would go on to find the others if it had a chance.

202




Querview of Meta-evaluation

Meta-evaluation is the process of binding actors to their contracts and then
evalyating the actors abstractly on abstract data. Using actor induction we can show that
if the meta-evaluation of a configuration of actors succeeds then the contracts of the
actors will all be satisfied for all concrete inputs. If the meta-evaluation cannot
proceed it will stop at the point in the program where it cannot confirm that a module
satisties its contract [intention] and ask for help. At this point there are several
possibilities:

There reaily is an inconsistency:

The inconsistency is between the intention of the actor sending the
message and the contract of the actor being sent the message.

The inconsistency is between the contract of the actor and its actuai
implementation.

The contracts for a configuration of actors are not mutually consistent.

There is no inconsistency but:

There are hidden assumptions being made about the behavior of certain
actors that should be made explicit.

There is hidden domain dependent knowledge that the actor is using which
should be made explicit.

The intenticns are not being sufficiently explicit as to why they expect
to be satisfied.

Of course it can be arbitrarily difficult to decide which one of these
circumstances hold. In order for a programming apprentice to be helpful in this regard it
must try to formulate its difficulties in concepts that are easily understandable by the
programmer.

Benefits of Meta-Evaluation

“Explain all that," said the Mock Turtle.
"No, no! The adrentures first," said the Gryphon in an
impatient tone: "explanations take such a dreadful time.”
-~Lewis Carroll

Given that we have to work so hard to meta-evaluate a program we should get some
benefit from our labor.

Consistency of Specifications: The successtul meta-evaluation of the program for
factorial demonstrates that the specifications in the contract are at least
consistent. Of course the program which we have exhibited for factorial is not the
most efficient. However it is one of the simpliest.

. 203




Question Answering: There are many questions which can be sasily answered from the
above meta-evaluation that are difficult to answer directly from the code for

factorial. For example we might ask the question "What is the purpose of the
expression (n % (factorial (n = 1))) in the program for factoriai?” From the
meta-evaluation the following answer can be given. The purpose of (factorial n) is to
compute the product of the first n integers; i. e. to compute

{n (inclusive | to n)
(=> [=i] i)).

This is accomplished by multiplying n with the product of the first (n - 1) integers;
i. e. by

(x
n
(n (inclusive 1 to (n - 1))
(= [=i]i)).

Perturbation Analysis: Often it is found necessary or desirable to change either the
specifications and/or code for a group of modules. The meta-evaluation can help us
trace the implications of such changes. For example suppose that it is desired to
drop the requirement that the argument of factorial be an integer. So the contract
will now read:

[contract-for-factorial <=
(=> [=k]
(require: (k 2 0))
(rider-on-the-continuation:
(x) =y
(require:
(implies
(integer k)
(equal
y
(n (inclusive 1 to k)
(=> [=x] x))M)

(use: general-mathematical-knowledge))]

Note that programs which relied on the old contract will continue to be able to use

the new factorial function provided that the new contract subsumes the old contract
and the new implementation of factorial satisfies the new contract. There are a
variety of reasons that might prompt this change. Some user might have specifically
requested it. It might be necessary for other modules which are already written. The
system designers might see the need for more generality in the future. In any case we
arc interested in what the implications are. The major implication that emerzes from
redoing the meta-evaluation is that the original program for factorial can no ionger

be demonstrated to converge. In particular it cannot be demonstrated to converge in
the open interval between O and 1. For this and other reasons the programmers are led
to make the following change to the definition of factorial:

204




[factorial <=
(> [=n | (2 0}]
{rules n
(=>01)
(s> {¢ 1)
(integral (interval 0 to 1)
{=> [ax]
(n (1 7t =y
(vlse
[¢]
nj1)
{factorial {n - 1))MN]

Later it is noticed that another clause can be added o the contract of the new
factorial function to the effect that for every n > 0 we have ((factorial (n + 1)) =
(n * (factorial n))).

Programming Style and Responsibility

Some authors have advocated top down programming. We find that our own
programming style can be more accurately described as "middle out™ We typically start
with specifications [contracts, intentions, constraints, etc.] for a large task which we
would like to program. We refine these specifications attempting to create a program as
rapidly as possible. This initial attempt to meet the specificaticns has the effect of
causing us to change the specifications in two ways:

1: More specifications [features which we originally did not realize are important]
are added to the definition of the task.

2: The specifications are generalized, specialized, and/or otherwise combined to
produce a task that is easier to implement and more suited to our real needs.

At any given point in the programming process, we are confronted with
1: A partial program which attempts to accomplish some task

2: Partial specifications [contracts, intentions, and constraints] which judge
whether or not the task is accomplished

3: A partial substantiation which says why the code satisfies part of its contract.

4: A partial collection of the plans for using the background kncwledge assumed by
the program.

5: A collection of scenarios and models of how the programs are supposed to work in
concrete instances.

Current generation software engineering practice borders on the criminatly
irresponsible in that it does not require that programmers {whether human or machine]
substantiale that the code meets its contracts before it is foisted off on an unsuspecting

public. Ultimately we would like to automate the process of substantiation; but in the
meantime people can perfectiy well serve this role. In most caces, current practice does




not even require that rigorous contracts for the code be written down! U civil engineers
designed and built bridges and buildings with the same cavalier atlitude that has been
adopted by current software engingering practice, it would cause serious loss of life.
Consider an analogy concerning the development of surgical procedure: Before Lister and
Pasteur, surgeons operated without first autoclaving their instruments. Although the
surgeons were dedicated and well-intentioned the results cften came out badly for the
patients.

We expect that simply writing geod contracts for what procedures are supposed to
accomplish will have large beneficial effects on the way programs are written. A typical
current generation program is often both haughty and finicky. It either replies with a
complaint about some irrelevant trivial detail or a terse answer with no justification and
no opportunity for further interaction to determine the reasons for the answer. For
example consider the problem of writing a contract for a chess program. The purpose of a
chess program is to make a good move for the position. it is just as difficult to write a
program which judges whether a given move [supplied as the answer by the program] is a
good one or not as it is to write the chess program which is supposed to find good moves.
However, if the program is required to supply a convincing justification why the move that

it proposes is a good one then the task of judging the answer is much easier.

Debugging and Validation

A currently popular approach to software production is the "Debugging Paradigm™.
Debugging can be either high-level and intelligent, using powerful analysis and knowledge
of the domain, or it can be uninformed, local, and incompetent, giving no concern to the
ramifications of a suggested patch. In either case the debugging process is roughly as
follows:

1. Programmers make a first-order attempt, by simply putting together procedures that
separately achieve the individual goals. The code is then tested on some sample
inputs to see if it works at all and patched until it works on the samples. it is

then distributed to users with hopes for the best.

2. When some user [or the whole system] runs into trouble, the programmers are called

who may try to diagnose one of the symptoms as a specific (and undesirable) kind of
interaction between two procedures.

’

3. The programmers may then try to apply a "debugging technique” that, according to a
record in memory, is good at repairing that variety of interaction.

4, In any case, the programmers labor until the specific symptom goes away or is
declared to be a "teature”. The world then drifts tentatively along until step 2
recurs.

The power of this approach lies in the sophistication of the techniques applied and in the
sophistication of the analysis of interactions. Until methods are found to incorporate
naturally the knowledge that good programmers bring to bear in debugging, a programming
system will not be able to provide really useful assistance.

Furthermore, we believe that the debugging paradigm must be integrated with a

“Validation Paradigm" in which rigorous contracts are written for the systems and it is
substantiated that the software meets its contracts before it is released. This is not to

206

E



say that the the debugging paradigm is without merit. But no matter how intelligently the
debugging is carried out, it simply does not in itself produce the evidence needed to have
confidence in large public software systems. The fact that a program seemed to behave
correctly on the last three test inputs that it was given is not a substantial reason to

believe that the program will always behave as contracted.

Working with a program on concrete cases has advantages for certain purposes over
reasoning entirely abstractly. For example running a new program on a few test cases is a
good way to shake out simple bugs from the system [particularly if the system has a way to
keep a complete history of the computation and to undo [Teitelman] any or all side-effects
when the computation bombs]. Successful histories expressed in EVENT DIAGRAMS are useful
in suggesting how to substantiate that the program works in general. Furthermore
often be variabalized [Hewitt 1969, 1971; Hart, Nilsson, and Fikes 1972; Sussman 1972] to
obtain general procedures for that class of problems.

Relation to Automatic Programming
"Il"e base ourselves on the idee that in order for a program to be capable of
learning something it must first be capable of being told it."
McCarthy

In his report to ARPA entitled "Automatic Programming”, Robert Balzer has
identified the four major phases of Automatic Programming as being: Problem Acquisition,
Process Transformation, Model Verification, and Automatic Coding. He proposes to
investigate whether systems that implement this paradigm can be built to converse with
experts [businessmen, doctors, engineers, etc.] who are not programmers to automatically
produce programs in their domain of expertise. The extent to which this will be possible
within the foreseeable future is unknown.

We are working on a rather different problem: our goal is to construct a
Programming Apprentice which can aid expert programmers in constructing large public
software systems in such a way that they will be easier to write, debug, and maintain.
Furthermore there must be a substantial reason to believe that the programs will behave as
contracted. The success of our project is not dependent on the success of the Automatic
Programming projects. Indeed, it seems likely that substantial progress is necessary on
the programming apprentice problem before Automatic Programming can progress past a
certain point. Of course partial successes or useful techniques that are developed for
automatic programming stand a good chance of being useful to our Programming Apprentice.

Further Work

Contracts and intentions don't capture everything intelligent to be said about
programs. In fact they are just the first level of description beyond the code. We have
not yet incorporated more abstract descriptions of behavior like models. In real life
programmers almost always have models of what they are implementing and a wel!l-commented
program often presents the model first, and then relates the code, line by line, to the
model.

We don’t yet well understand much of this unexplored area, but are currently

investigating it in the world of programs defining data structures. There appears to be a
whole class of comments which we call purpose statements which link behaviors. Some that

207




we are beginning to understand are links belween the code and the model, links between
parts of the code and other parts affected (ofien by side-effects), and between the code
and the justification of why it works.

Purpose statements within the code come to the fore when there are relaticns which
do not follow the simple flow of control, and in particular when there are side-effects
involved. Keeping track of these purposes in the justification process allows the system
to monitor the scope of side-effects and to protect them until they are used. Protecting,
of course, does not simpiy mean making sure that a side-effect is never violated; it is
closer to meaning that if it is ever violated it should be replaced before it is needed.

If a programmer could easily specify in the justification why pieces of code were written,
in many cases the system could protect the result until needed; in this way many common
bugs could easily be tracked down, if not fixed.

There has been a great deal of work done on achieving and protecting side-effects:
Newell and Simon in GPS; Simon in his Heuristic Compiler; Hewitt in development of goal
oriented formalisms with ability to delete elements from the data base and to do pattern
directed invocation to draw conclusions from the changes; Rulifson in developing a
context mechanism for QA4 to attempt to control the scope of changes to the data base;
Winograd, Fahiman, and Sussman for the blocks world; Waldinger for simple sort programs;
Goldstein for fixed instruction turtle programs; McCarthy, McDermott, Buchanan, and
Luckham for simple robot problems; etc. Sometimes having side-effects indicates an
unaesthetic program; sometimes it is a very clever thing to do; and sometimes it is the
only way to solve a problem.

Advantages of Contracts

Actor based contracts have the following advantages over previously propcsed
formalisms for expressing what procedures do as opposed to how they do it:

The contract is decoupled from the actors it describes.

We can partially substantiate facts about the behavior of actors without giving 2
complete formal proof. An actor who is asked can if it chooses make an explicit
assumption for some circumstance being the case which the programming apprentice can
remember so that it can be dealt with later. At some later time if we require further
justification, then we can re-examine the situation.

Contracts of concurrent actions are more easily disentangled.
We can more elegantly write contracts for dialogues between actors.

The contracts are written in the same formalism as the procedures they describe. Thus
contracts can have contracts.

Historical contracts in which the behavior of the actor depends on the history of
messages which it has received can be easily and naturally expressed. For example it
is easy to write a contract for a routine which returns the average of all values it
has ever been called with. Furthermore contracts for side effects are expressibie
without recourse to the notion of a global state by packaging up side-effects in
contracts designed that purpose.

208




The extent to which contracts are checked at execution time as opposed to being
verified once and for all [making the execution time check superfluous) becomes at
teast partially an economic decision. Sometimes [as in type checking] it is cheaper
te use an efficient runtime check providing that the possibility of a run time fault
is tolerable. There are some applications [e.g. controlling a nuclear reactor or a
heart-lung machine] where 2 run time fault is not tolerable.

Because a basic kind of protection is an intrinsic property of actors, we hope to be

able to deal with protection issues in the same straightforward manner as more
conventional contracts. We use contracts to express what programs and data structures
are supposed to do. in addition we are concerned with expressing and substantiating
that programs do not do what they are not supposed to do. For example an actor given
access to a data base can be contracted not to write into the data base.

Contracts for data structures are handled by the same machinery as for ail other
actors.

Conclusions

Every actor can have a contract which checks that the pre-conditions and the
context of the actor being sent the message are satisfied. The contracts of an actor are
with the other actors with which it communicates. How an actor fulfills its contract is
its own business. A contract for an actor is an absolutely arbitrary monitor on the
behavior of the actor except that it is not to affect the behavior of the actor it
monitors. If it detects a violation the contract will bring the whole computation to a
halt. [In practice what will actually happen is that a Repairman [which is perhaps
another program] will be called to attempt to salvage the situation.]

The successful meta-evaluation of actor modules using only the contracts of other
modules makes it easier to extend behavior without introducing unpredicted complications.
The behavior of any given module can be arbitrarily extended without changing any other
modules providing that the contract for the new module can be shown to subsume the
contract of the module it replaces. Furthermore if the new module fails to fuifill
certain clauses of the contract for the module which it replaces, the modules dependent on
the discarded clauses can be identified.

By a simple bug we mean an actor which does not satisfy its contract. We would
like to eliminate simple bugs in programs by the meta-cvaluation of the modules to show
that they satisty their contracts. Eliminating all the simple bugs from a program does
not imply that it always behaves as intended. It only implies that the program will
fuitill its contract; the fine print in the contract may not be sufficient to imply the
intended behavior.

The rules of deduction to establish that actors satisfy their contracts
essentially take the form of a high leve! interpreter for abstractly evaluating the
program in the context of its contracts. This process [called meta-eraluation ] can be
justified by a form of induction. Meta-evaluation captures a large part of the machanism
that a programmer goes ihrough when she reads a piece of code to determine that it will
satisfy its specifications. It is a kind of "meta-debugging” in which the code for
accomplishing some task is reconciled with the contracts for the task. Meta-evaluation
exposes and makes explicit the behavioral dependencies of the programs sufficient to



substantiate all the contracts and intentions of the modules. it exposes both the
dependencies within a module and those between modules.

Acknowledzments

This research was sponsored by the MIT Artificial Intelligence Laboratory and
Project MAC under a contract from the Office of Navai Research.

We would like to acknowledge other members of the PLANNER Project: Irene Greif,
Peter Bishop, Roger Hale, and Richard Steiger who have contributed extensively to the
ideas in this paper. Irene Greif is doing theoretical investigations on characterizing
behavior involving parallelism and side~effects that provides a mathematical foundation
for the meta-evaluation process. The first section of the paper has benefited from
extensive conversations with Ben Kuipers and Tom Knight. Many MLT. students have served
as guinea pigs while this material has been fermenting during the last year. In
particular Keith Nishihara and Howie Shrove made valuable comments and criticisms.

"These [ PLANNER-like] systems have traded increased
operational power for loss of awareness. Because the knowledge is
represented procedurally, the system is less capable of using it
deductively or in determining what the consequence of particular
actions may be."

Bob Balzer [1973)]

The research reported in this paper is the natural continuation of previous
research [Hewitt 1969,1971; Rulifson 1971; Davies 1971; Sussman and McDermott 1972; Hewitt
et. al. 1973] for the procedural embedding of knowledge. If all knowledge is to be
embedded in actors [procedures]), then an intelligent system must have a sound knowledge of
programs and programming if it is to understand its own problem solving methods. In this
paper we have made extensive use of ideas and techniques developed for the predicate
calculus approach to verification of properties of programs [Goldstine and Von MNeumann;
Floyd; Manna; Waldinger; Milner and Weyhrauch; Green; Deutsch; Luckham and Landon; etc.].
Boyer and Moore have independently developed a system for proving equivalences between
LISP functions. Their work differs from ours in being specialized to proving equivalences
and in that their system works on the basis of structural induction where it attempts to
automatically guess the right induction principle. Meta-evaluation procedurally embeds
Actor Induction as its sole inductive principle. Furthermore, our work includes, but is
not limited to, showing that programs satisfy their contracts.

L




Bibliography.

Baizer, R. "Automatic Programming” ISi TR. Jan, 1873,
Balzer, r. "CASAP: A Testbed for Program Flexibility™ IUCAI-73.

Boyer, R. S. and Moore, J. S. "Proving Thecrems about LISP Functions” [JCAI-73.
August, 1973.

Buchanan, J. R. and Luckham, D. C. "On Automating the Construction of Programs™
Phd. Stanford. Forthcoming.

Burstall, R. M. "Proving Properties of Programs by Structural Induction” Computer
Journal. Vol. 12, pp. 41-48 {1969).

Burstall, R. M. "Some Technigues for Proving Correctness of Programs Which Alter
Data Structures” Machine Intelligence 7. 1972.

Cadiou, J. M. "Recursive Definitions of Partial Functions and their Computations™
Ph.D. Stanford. 1972.

Cheatham, T. and Wegbreit, B. "A Laboratory for the Study of Automating
Programming” SIGSAM Bulletin, Jan. 1972.

Church, A. “The Calculi of Lambda Conversion™ Annals of Mathematical Studies 6.
Princeton University Press. 1941, 2nd edition 1951.

Davies, D. J. M. "POPLER: A POP-2 PLANNER" MIP-89. School of A-l. University of
Edinburgh.

Deutsch L. P. "An Interactive Program Verifier™ PhD. University of California at
Berkeley. June, 1973. Forthcoming.

Dijkstra, E. W. "The Humble Programmer™ CACM. October, 1972.

Floyd, R. W. "Assigning Meaning to Programs” Mathematical Aspects of Computer
Science. J. T. Schwartz (ed.) Vol 19. Am. Math, Soc. pp. 19-32. Providence Rhode
Island. 1967.

Floyd, R. W. "Toward Interactive Design of Correct Programs” IFIP-71.

Goldstein, I. "Understanding Fixed Instruction Turtle Programs"” Phd. M.LT.
1973.

Goldstine, H. R. and Von Neumann, J. "Planning and Coding Problems for an
Electronic Computer Instrument” in in Collected Works of John von Neumann. pp. 91-99.
Macmilian, 1963.

Greif, I. G. and Hewitt, C. "Behavioral Semantics of ACTOR Systems” Submitted to
IFIP-74.




Greif I. G. "induction in Proofs about Programs” Project MAC Technical Report 93.
Feb, 1972.

Hewitt, C; Bishop, P.; Steiger, R; Greif, 1; Smith, B; Matson, T.; and Hale,
R. "Behavioral Semantics of Nonrecursive Control Structure” Colloque sur ia Programmation.
Paris, France. 9-11 April 1974.

Hewitt, C. "The Semantics of ACTIONS and the Semantics of TRUTH" Special Session
on Formalisms for Artificial Intelligence at IJCAI-73. August, 1973. Submitted to A. I
Journal.

Hewitt, C. "PLANNER: A Language for Manipulating Models and Proving Theorems in a
Robot" 1JCAI-69. Washington, D. C. May 1969.

Hewitt, C. "Procedural Embedding of Knowledge in PLANNER" {JCAI-71. London. Sept,
1971.

Hewitt, C. and Paterson M. "Comparative Schematology” Record ot Project MAC
Conference on Concurrent Systems and Parallel Computation. June 2-5, 1970. Available from
ACM.

Hewitt, C. "Procedural Semantics® in Natural Language Processing Courant Computer
Science Symposium 8. Randall Rustin, editor. Algorithmics Press. 1971.

Hewitt, Carl; Bishop, Peter; Greif, Irene; Smith, Brian; Matson, Todd; and
Steiger, R. "Actor Inductior and Meta-evaluation™ Conference Record of ACM Symposium on
Principles of Programming Languages. Boston. Oct, 1973.

Hoare, C. A. R. "An Axiomatic Definition of the Pregramming Language PASCAL"
February 1972.

Igarashi, S.; London, R. L.; and Luckham, D. C. "Automatic Program Verification
I: A Logical Basis and Implementation™ Stanford AIM 200. 1973.

Kaplan, D. M. "Correctness of a Compiler for ALGOL-like Programs” Stanford A.L
Memo No. 48.

Katz, S. and Manna, Z. "A Heuristic Approach to Program Verification” IJCAI-73.
King, J. "A Program Verifier" Ph.D. Thesis. Carnegie-Mellon University. 1969.
Manna, Z; Ness, S.; Vuillemin J. “inductive Methods for Proving Properties of
Programs” Proceeding of an ACM Conference on Proving Assertions about Programs™ January,

1972.

McCarthy, J. "A Basis for a Mathematical Theory of Computation” In Computer
Programming and Formal Systems. 1963. North Holland.

McCarthy, J. "Programs with Common Sense" Proceedings of the Symposium on the
Mechanization of Though Processes. Teddington. HMSO. London.




Morris, F. L. "Advice on Structuring Compilers and Proving Them Correct™
Conference Record of ACM Symposium on Principles of Programming Languages. Boston. Oct,
1973.

Morris, J. H. "Verification-oriented Language Design” Technical Report 7.
December, 1972,

Naur, P. "Proofs of Programs by General Snapshots™ BIT. 1967.

Park, D. "Fixpoint Induction and Proofs of Program Properties” Machine
Intelligence 5. Edinburgh University Press. 1969.

Parnas, D. L. "Information Distribution Aspects of design methodology” IFIP-71.

Parnas, D. L. "A Technique for Software Module Specification with Examples” CMU.
1971.

Rulifson Johns F., Derksen J. A., and Waldinger R. J. "QA4: A Procedural Calculus
for Intuitive Reasoning” Phd. Stanford. November 1972.

Scott, D. "Outline of a Mathematical Theory of Computation” Proc. Fourth Annual
Princeton Conf. on Information Science and Systems. 1970. pp. 169-176.

Smith, Brian; Waters, Dick; and Lieberman, Henry. "COMMENTS ON COMMENTS or the
Purpose of Intentions, and the Intentions of Purposes” Term Project for M.LT course '
"Automating Knowledge Based Programming and Validation Using ACTORS" December, 1973.

Snowdon, R. "An Interactive System for the Preparation and Validation of
Structured Programs™ University of Newcastle upon Tyne. 1973,

Sussman, G. J. "A Computational Model of Skill Acquisition™ A.I. TR-297.
December, 1973.

Tennent, R. D. "Mathematical Semantics of SNOBOL4" Conference Record of ACM
Symposium on Principles of Programming Languages. Boston. Oct, 1973.

Waldinger, R. J. "Reasoning About Programs" Conference Record of ACM Symposuum on
Principles of Programming Languages. Boston. Oct, 1973.

Wegbreit, B. "Heuristic Methods for Mechanically Deriving Inductive Assertions™
IJCAI-73. Vol 39. pp. 263-262.

Weyhrauch, R. and Milner R. "Programming Semantics and Correctness in a
Mechanized Logic." First USA-Japan Computer Conference. October 1972.

Winograd, T. "Joshua" draft. 1973.
Wirth, N. "Program Development by Stepwise Refinement” CACM 14, 221-227. 1971.

Vuillemin, J. "Proof Techniques for Recursive Programs™ Ph. D. Thesis. Stanford.
1973.




ACTIVE DESCRIPTIONS FOR REPRESENTING KHOWLEDGE

JAMES L. STANSFIELD
Bionics Research Laboratory, School of Artificial Intelligence,
University of Edinburgh.

Introduction.,

 The representation of knowledge is a fundamental part of any
Artificial Intelligence investigation. If we are to have systems which
understand, then the knowledge they have must be represented somehow.
In this paper we consider some representations for concepts and propnse
a new method which we call "active descriptions™.

What is a concept? If we look in a dictionary we find something
like "an idea, a notion, a class of objects"”. This is not too useful
and we do better to examine its root. To "conceive'" an idea is "to
form it in the mind - to imagine”. We see here the idea that a concept
is a construct. Again, Bourne, Ekstrand and Dominowski (1971) define a
concept as "any describable regularity of real or imagined cbjects or
events". So a concept is a description in some language and constructed
from other concepts.

By a description we mean a structure whosc parts and the relationships
between them give information about whatever is being described. In
psychology, mainly class concepts are dealt with. Here the language is
propositional calculus and is too simple for most AL programs. If we
use Fnglish as our language then our descriptions are mainly of concrete
and abstract entities such as "the red top of my coffee jar", "walking
fast", and "hairiness". Being descriptionc they are generally
represented by English noun phrases.

This definition of concept seems to equate it with description.
There is more to a concept, however, in particular the knowledge of how
to use it. A "chair", for instance, besides needing descriptions of its
structure needs information about "how to sit down on chairs" and'what
kind of shop to buy a chair in'". There are thus two poles to the concept
"concept', the structural and the procedural. Our main purpose in this
paper is to bring these two together, to show that there is a dimension
between these poles, and to suggest the kind of system which might deal
equally well with both aspects.

The two poles are expressed in two paradigms from AI which are
exemplified in...

(1) The procedural representation of Winograd (1971).
(2) The structural! descriptions of Winston (1970).

In his program, SHRDLU, Winograd treated meanings as programs.
Each word and each grammatical unit had semantic programs associated
with it which together built up mcanings for English input. The
meanings were PLANNER procedures which when evaluated would do what was
necessary to respond to the input, e.g. answer questions or take
commands. The meaning of a noun group was a program to find an instance
of that noun group so the use of the concept was being represented.

214




J. L. Stansfield

Winston's program was based upon structural descriptions used to
represent the structure of concepts from a blocks world. Such concepts
were “arch", "tower™, "bench" and other block constructioms. A
description of a concept was a relational structure which represented
both the structures which should be present in an example of the concept
and those which must be absent. The difficulty with representing
concepts this way is in representing the procedural information about
them. An interpreter for the types of structures used must be written.
Procedural embedding can be re-phrased as ''why not use the interpreter
of a standard programming language".

~ We try to reconcile these two viewpoints. We feel that the
advantage of procedural embedding should not be thrown away since to use
concepts easily they should be programs. It turns out that we need
structures which sometimes act as programs and sometimes as descriptions.
There is one example in SHRDLU where a PLANNER procedure is taken as a
structure to be examined. However we find that a new representation is
really needed.

The last section of this paper tries to suggest a form for this new
representation. We call the representation active descriptions siuce
the objects built up are structures which may be examined and hence
used as descriptions but the components of the structures are processes
running in parallel. We define a process to be any ongoing activity to
which messages can be sent and from which messages emanate. We
elaborate this definition in Stansfield (1974). An advantage of this
method is that interpretative knowledge can be spread throughout the
system — we do not require one processor which can uniformly process any
structure. The method is perhaps a step towards some representation
where there is no essential difference between descriptions and procedures.
This relates it to Hewitt's Actors (Hewitt et al, 1973) since here also
there is no difference between data and process. Again we go into this
in detail in Stansfield (1974).

Reasons for needing descriptions

1. Referential opacity.

We need descriptions rather than programs to cope with referential
opacity. A noun group is referentially opaque if the clause which
refers to it refers to it as a description rather than to some items
denoted by that description. So in...

{3) '"Deces Fred know the blocks which are on Block 27"

... the noun group should not be evaluated to produce certain blocks say
bl and b2. This would leave the sentence equivalent to...

(4) "Does Fred know bl and b2?"

... which clearly has lost sone meaning. Indeed, thzt sentence may be
asked of someone who does not know the particular tlocks. The noun
group must be treated as a description. Similarly with ...

(5) Fred thinks blocka is a cube.

Blocka might not be a cube so we cannot represent (5) by the two
assertions ...

(6) Fred thinks X.
(7) X blocka is cube.




i

J. L. Stansfield

Tt could be said that the program to find the blocks may be used as
the description and we would agree with this.  Any structure is a
description if it is used as such. Our question is simply, whether a
program in a good form for finding examples is in a suitable form for
other purposes.

2. Making simple assertioms.

We need descriptions to make simple assertionms. Winograd mentions
that to deal with the assimilation of new knowledge a better representation
is needed. In general, new knowledge is not simply stored but is
processed and may cause alterations of far-reaching proportions in the
knowledge structure. However, even the storing of facts is sufficient
for our point. SHRDLU's programs representing noun groups are composed
of three types of information linked together in an order which may be
thought of as a fourth. The three are ...

(8) A set of patterns expressing features in the description
of the noun group, e.g. (rved £x), (block £x). Each of
these patterns being an examinable structure is a sub-
description itself.

(9) The insertion of "thgoal" in front of these patterns to
to turn them into PLANNER statements for retrieving and
testing.

(10) Statements like "thfind" statements, expressing krowledge
of the part quantifiers and numerals play in the actions
of retrieving and testing.

In this paper we will be gemeralizing these features.

To assert simple facts such as ...
(11) AI is a big red block.

we must at least replace the occurrences of thgoal by thassert. This
would work so long as we have nc numbers or quantifiers. In place of...

(12) (thgoal f£x block)
(thgoal £x big)
(thgoal £x red)

we would have ...

(13) (thassert £x block)
(thassert £x big)
(thassert £x red)

It is clearer to have the meaning of (11) to be just the description
with "thgoal” or "thassert" boing given as an argument ...

(14) (arg £x block)
(arg £x big)
(arg £x red)

We show later that the best way to find an instance of a set of
patterns does not necessarily find each in some set sequence. So, we
should take "arg" outside each pattern and simply say "arg” of an
unordered description as in ...

(15) arg( (£x block ), (fx big),(fx red) )

The set of patterns is now very like a Winston structural description.

2186

=



J. L. Stansfield

3. Asgertions and referential opacity.
The question of assertions can be related to referential opacity.
Suppose we assert ...
(16) 4 piano is a box with strings in.
We don't want the separate assertions... #

(17) A piano is a box.
(18) The box has strings in.

but require the piano to be the entire object; box and strings
together. In other words, rather than ...

"find a box, check it has strings in, match the box to piano"
we need ...
"find a box,with strings in and label the whole piano".

This reveals a difference between Winston's method and Winograd's. 1In
Winston's work an ''arch” could be defined as a description ...

(19) An arch is a beam with two supporting blocks.
In Winograd's program the definiticn would be a program ...
(20) Find a beam and check it has two supports.

and the system would say Bl is an arch in Fig. 1.

Bl

B2 B3 Figure 1.

4, Numerals.

We need descriptions for making assertioms involving numerals.
Consider telling a program ...

(21) Two blocks are in the box.

If the program cannot see inside the box or work out which blocks are in
it then it must store that something satisfying the description "two
blocks" is in the box.

Furthermore the program must symbolically manipulate descriptions
to answer hypotheticals like ...

(22) 1f I put two blocks from the table on to the shelf,
how many red blocks would be on the shelf?

... where there are no blocks on the shelf to begir with and, say, all
blocks on the table are red. We certainly don't waat to run the "put"
program twice, moving two particular blocks, and then to assume ihat
since these two happen to be red that we will always end up with two red
blocks on the shelf. We need to reason about the action and, in so
doing, to manipulate a description of it if we are to arrive at a true
result.

S. /




J. L. Stansfield

/5. Verbs whith take descriptions.

Many English verbs take their objects to be descriptions rather than
retrieval programs. Below we see that the verb "call" requires a
desctiption of some object to work on and only then can it invent a name.

{23) 1If you had a2 large shaggy dog what would you call it?

Similarly “look" takes & descriptiom in ...
(24) Look at the red sky.

The description "red sky" is more than a program for finding a denotation.
There is only one sky so red is entirely unnecessary for this purpose.
Instead it points out the feature of the sky to be considered while
looking.

PLANNER's use of descriptions for finding examples of concepts

So far we have argued the need for descriptions rather than
procedures. Let us now consider arguments based on the methods used in
PLANNER and CONNIVER. PLANNER's deduction mechanism for finding
instantiations, for asserting objects to be examples of concepts, and for
reasoning about concepts in general, has deficiencies when used for the
type of reasoning about everyday objects and concepts an artificial
intelligence will require. We will show when we consider these that ccde
should be treated symbolically as a description as well as being
interpreted.

We can take as a first approximation to a description, a set of
patterns perhaps with variables to be instantiated. This could be seen
as a local selfeontained data-base. The important points about this
scheme are ...

(25) The description is not accessed from any particular point.
(26) There are links between the patterns.
(27) The patterns are in no particular order.

Figure 2 shows a possible definition of "arch"
(block q\;’-:beam ) (block @)
ARCH variables( #{xI; { M

(support J
(support
In PLANNER or CONNIVER the natural way of making such a concept
would te to choose a particular ordering of the patterns, envelope each
in a thgoal statement, and make the entire structure a procedure for
finding and testing tor the new concept.

Figure 2.

1. Choice of an order for the patterns.

SHRDLU has a very simple method of dealing with this problem in its
small world. When it builds the meaning of a noun group it orders the
patteras/

i



J. L. Stansfield

/patterns according to weights associated with them by the programmer.
This is adequate but for a larger world things cam go wrong. There are
two problems. One is in the method used to order the patterns and the
other is in the time this ordering is done. We don't know that the
weights will always work. They may depend on the context at the time
of ordering. Even worse, the order of code might depend on the context
at the time of execution. (28) is best done in one order at a
linguistics conference and the other at a brass band competitionm.

(28) Look for a linguist who plays the tuba.
2. . Problems when already given an order.

Things can go wrong even given a particular order. Suppose we have
to find an Egyptian Ephalump, i.e.

(29) thgeal (egyptian £x)
thgoal (ephalump £x).

How can we discover that these goals are inconsistent. Suppose that the
first finds an Egyptian object El. The second goal will fail and

another Egyptian object will be searched for. The mistake is that the

two goals are considered independently. Now the second goal might
instead return a reason for failure since ephalumps are either Africam or
Indian. This can only be used if the second goal knew abcut the structure
of the program it is in. The entire search could then be made to fail
with a reason.

There seems to be no simple way of arranging in general that the
best advantage is taken of possible interactions between goals without
giving up the idea of a particular ordering of goals. Any statement
needs to know not only the structure of its immediate containing theorem
but also the structure of the deductions made at run time. A more
complex example will illustrate this. Consider again ...

(30) thgoal (a £x) ; thgoal (b £x).

The first goal could cause a consequent theorem to be invoked in the
course of which (¢ £x) might be asserted. Thgoal (b £x) might fail
because of this assertion. To allow for this, "thgoal (b £x)" must be
able to see what part (c £x) played in the execution of "thgoal (a £x)"
and what conditions implied it. Having found goals that implied (b £x)
they can be failed rather than tried again for new sclutions.

Another approach to this problem is to let (b £x) give advice to
thgoal (a £x) namely, don't find anything which has (¢ £x) true about it.

3. There may be no satisfactory order.

The next example shows that no order may be satisfactory. Censider
the case ...

(31) A point on linel and on lime2.

in Fig. 3 where linel and line2 are circles centres 0 and P respectively.
It is foolish to try satisfying these goals independently ir either order.
There are an infinite number of solutions to each but orly two to thenm
both. Instead, some deduction needs to be doune first. 1t is the
situation of Fig. 4 where we know our answer is in set A and in set B

and where together they imply it is in set C.

219



J. L. Stansfield

‘Figor‘e 4.

4, PLANNER retrieval relies too heavily on a central data-base.

Finally PLANNER's approach is oriented to the use of a central data
base and retrieval is by a simple, perhaps externally directed search.

Let us take two simple cases. Firstly consider ...
(32) Find a lion in London.

Instead of looking at lions in the data-base and seeing if they are in
London it is more sensible to realise that if a lion is imn a city then
it is likely to be in a zoo or a circus. Having found a zoo we can use
knowledge of zoos and search for a map on a bill-beard. Using our
knowledge about maps we are home.

Secondly we consider ...
(33) Find a cup with a chip on it.

If my kitchen were impeccably kept it might, on data-base considerations,
be wise to look for something chipped first as there will be fewer of
these than of cups. In the real world though it is better to look for
cups since we know where to find them. We would look in the kitchen
cabinet which could be a data-base in itself. A data-base should be
like a shop with a storekeeper. If we want something we ask the
storekeeper who knows how his store is organised. Ee can give us advice
by conversation about what we might need for any particular purpose and
he might use reasoning to find this advice. Our knowledge of the world
should be organised semantically. This reduces the importance of
transactions with a syntactic data-base and emphasises the role of
deduvctions.

We have shown that parts of a concept interact allowing deductions
which add to the concept. The process is one of construction by
deduction. For example, if we have to find some example of a
description /

220




J. L. Stansfield

/description we might not sgearch for it immediately but instead consider
the description to see what it entails. In doing so we build up &
picture of the typical object required. It is unreascnable that such a
description can only be refined by mutual interactions between its parts
for we must consider its changing relation to the rest of the world
model.  Any new piece of knowledge might modify a comcept already
present by allowing further implications about it. In general this is
the problem of how concepts can develop, be generalised, enhanced,
simplified, ete.. Our picture is of concepts which are active at all
times.

Proposed implementation as parallel processes.

We propose that each patternm of a description be a separate process
as defined in section one. To ease the problems of co~ordinating these
they should be in parallel. With too many antecedent and consequent
theorems for co-ordination it is difficult to see how a program will
behave. We have a surfeit of demons where the main program is halted
to take care of side-effects which in turn take care of more side-effectc.
The main task is hardly tackled. So much code must be concerned with
scheduling that we have a kind of exponential explosion and any
linearisation which is not sufficient to approximate to parallelism will
give rise to these problems. We saw in (29) and (30) how two goals are
often dependent so that discoveries by one may help the other. The
order in which these discoveries are made is extremely situation dependent.

The separate processes must have channels along which to communicate.
They must know of each other and the results of one or advice from it
must be usable by any other. We propose that this should be done by
side-effecting. Consider two processes which are part of a description.
One is associated with the pattern (a £x) and the other with (b £x).
The entire description is asked to find an example of itrself so the
separate patterns each try to find values for f£x which satisfy their own
predicate. The variable is treated as a common store so that if ome
process assigns to it the other can tell. t is also treated as an
object since either process may need to assert something about the object.
In particular, the predicates (a £x) and (b £x) are both asserted about
fx so either process knows both. Because we do away with a global
data-base we attach the assertions concerning £x to £x itself. This
attachment is reversible so each process can examine £x or add to it.
This does not mean that all connections must be made at compile time.
During execution, processes may make more acquaintances at first
indirectly through their neighbours. A process which wants to find out
something may ask a friend to learn where such things can be discovered.
In future cases it may then go directly.

The picture of £x built up so far seems very structural rather than
procedural. This is not really the case. Suppose we asserted that fx
was a "'car’. Then that assertion should refer to the concept car. One
trivial way would be to have car be a structural description itself and
to assert zll the parts of this description directly about £x. This is
inefficient and not very effective, since the assertions would be
conglomerated with assertions about other concepts and it would be
difficult to use the description as a whole. Besides we may uct be able
to define car as a structure. Suppose the asserticn {(car £x) were
itself a process rumning in parallel with the others. Then it could
keep /




J. L. Stansfield

/keep a watch on £x. 1f certain other details were asserted of £x

such as the number of wheels, engine size, etc., these should "react"”
with the assertion car to produce a more detailed picture of the car
perhaps using these details to make deductions constructively. The

use of car must of course omly be an instance since we don't want
assertions about one car to be transferred to all. The idez of concepts
reacting can only be achieved properly by parallel processes.

The possibility for having hypothesis making is very important since
hypothesising appears to be important for reasoning. Suppose for
instance that one of the patterns in a description finds two possible
instantiations of itself. Another pattern might wish to pretend the
first is correct and to see the consequences. This is done implicitly
in PLANNER and CONNIVER by having separate data-bases for worlds in which

" the hypothesis is taken differently. LANNER handles these by the
control structure and CONNIVER also by providing contexts. A hypothesis
can be made by asserting it as a fact. If it leads to a contradiction
a failure can be generated by backtracking, erasing the fact and trying
another hypothesis. It is possible to have two separate nypotheses going
at once by keeping two contexts and running them in pseudcparallel.

There is a third possibility which we find better since it explicitly
mentions the hypothesis making. The fact could be "asserted-asta-
hypothesis" i.e. by looking at the fact we could later tell that it was a
hypothesis. Ary deductions made from it could have attached information
saying "I follow from such and such a set of hypotheses'. The attachment
could be bidirectional so that from any fact we could work back and see
what else this implies is false. In a fairly strong sense, deduction
and explicitness together replace control structure.

We find many correspondences between the ideas expressed here and
those expressed about ACTORS in Hewitt et al (1973). The connections
are reported in a thesis draft (Stansfield, 1974).

Summarz

To sum up we mention what we believe to be the most important point.
This is that a limiting factor on the size of the problems able to he
tackled by AI programs has been the inability of programs to form and use
concepts. Until programs can use definitions of large units constructed
from smaller ones any program covering a large body of knowledge will
become messy and suffer from disastrous interactions. Concept building
is possible if concepts are considered as relational structures.
However these are difficult to interpret. Progrars are far more flexibly
interpreted but we have shown certain restrictions in using them. The
answer lies in active descriptions. To make these work and tc allow
clusters of expertise we find multi-processing is necessary. This car
lead to many anthropomorphisms. The idea of many preocesses operating
simultaneously, giving cach other advice, conversing, and side-effecting
an environment which is itself a process is exirecely suggestive. It
can be dangerous if our recursion is not hased cn anythirg 2nd wc put a
homunculus into each process. On the other hand it can be an endless
source of ideas and computational possibilities.

Acknowledgment

The author gratefully acknowledges financial support by the Social
Science Research Council for the work reported in this document.

222



J. L. Stansfield

BIBLIOGRAPHY

1. Bournce, Ekstrand & Dominic (1971) The Psychology of Thinking,
Prentice-Hall.

2. Hewitt, €. (1971) Description and theoretical analysis of PLANNER:
A language for proving theorems and manipulating models in a robot.
Ph.D. Thesis. M.I.T.

3. Hewitt, C., Bishop, P., Steiger, R. (1973} A Universal Modular
ACTOR Formalism for Artificial Intelligence. 31JCAI. Stanford
University.

4, Stansfield, J. L. (1972) [PROCESS 13: A generalisation of recursive
programming languages. Bionics Research Reports: No. 8.

Schoel of A.I., University of Edinburgh.

5. Stansfield, J. L. (1974) Programming a Dialogue Teaching System.
Draft Thesis Report. Bionics Research Laboratory, School of A.I.,
University of Edinburgh.

6. Sussman, G. J. & McDermott, D. (1972) Why Conniving is better than
Planning. M.I.T. A.I. Memo 255.

7. Winograd, T. (1971) Procedures as a representation for daia in a
computer program for understanding natural language. A.I. TR.17
M.I.T.

8. Winston, P. M. (1970). Learning structural descriptions from

examples. A.I. Tr-231 M.I.T.

223




The Virituous Nature of Bugs

by &erald Jay Sussman

How much time has each of us spen: tracking down some bug in a
computer program, an electromic device, or a mathematical proof? At
¥

such times it may seem that a bug is at best a nuisance, at worst a

disaster. Has it ever occurred to you that bugs are manifestations

of powerful strategies of creative thinking? That, perhaps, creating
and removing bugs are necessary steps in the normal process of solving
a probiem? Recent research at the MIT AI Laboratory [Sussman 19731
[Goldstein 1973] [Fahiman 1973 indicates that this is precisely the
case.
While "bug" is hard to define, I do not mean those trivial
failures of oversight, of manipulation, or typing, that plague us
continually. I mean real, conceptual errors.

Recently, I have completed the design of HACKER, a
computational model of skill acquisition. HACKER is a problem-solving
system whose performance improves with practice. This investigation
has elucidated several important aspects of problem solving,
including: the relationship of problem-solving to learning; the
relationship.between imperative and declarative aspects of knowledge;
the nature of plans and their teleological structure; and the role of

bugs and debugging in the refinement of plans.

A theory of problem solving:

A human problem-solver first tries to classify his problem
into a subclass for which he knows a solution method. If he can, he
applies that method. If he cannot, he must construct a new method by

applying some more general problem-solving strategies to his knowledge

224




VHB Sussman

of the domain. In constructing the new method, he is careful to avoid
certain pitfalis he has previocusly encountered and he may use methods
he has previcusly constructed to sclve subproblems of the given
probiem. The new method is committed to memory for future use. If
any method, new or old, fails on a problem for which it is expected to
work, the failure i1s examinad and analyzed. As 2 result the method
may be modified to accommodate the new problem. Often the analysis of
the failure can also be classified and abstracted tc be remembered as

a pitfall to avoid in the future when constructing new methods.

How HACKER embodies this theory:

Please sxamine figure 1. HACKER, when attacking a problem (in
the Blocks World [Winograd 1971]), first checks to see if he has a
program in his Answer Library whose pattern of applicability matches
the problem statement. If so, he runs that program. If not, he must
" write a new program, using some general knowledge of programming
techniques applied to his knowledge of the Blocks World. Any proposed
program is criticized to avoid certain bugs he has previously
encountered. He may use subroutines (in the Answer Library) he has
previously constructed to solve subproblems of the given problem.
After criticism, the proposed solution program is tried out. The new
program is stored in the Answer Library, indexed by an applicability
pattern derived from the statement of the problem for which it was
written, so that it can be used to solve similar problems in the
future. If any program, new or old, manifests a bug when it is
applied to a problem which matches its pattern of applicability,
general debugging knowledge is used to classify the mode of failure.
Often, the nature of the bug can be summarized znd remembered as a

eritic. The program is patched to fix the bug and tried again.

N
e}
o



9zz

ANSWER

LIBRARY

BLOCKS
WORLD

KNOWLEDGE
LIBRARY

ENTER

IN
ANSWER
LIBRARY

(
|
|
|
PROPOSE

PROGRAM

DONE
ok
bu
TRY IT | CLASSIFY, k.- TVEES
ouT 1 BUG BUGS
7
]
A
- SUMMARIZE  [¢ ____ TS
- BUG CRITICS
y -~ - - ,
\ ~~o - J/\
\ 175
]
: !
Y - TYPES
CRITICIZE PATCH J( . OF
_______ [T [ |

CRITIC'S
GALLERY

figuret



VHB Sussman

The origins of bugs:

HACKER has ways of repairing bugs when they come up, but how
do bugs come up? There are several important sources of bugs.
Sometimes, because of generalizations made when a new program is
inserted in the Answer Library, a program is applied to a kind of
situation which was not anticipated when the program was written.
Other bugs result from unanticipated interactions between the steps of
a proposed solution. Let us eramine the genesis and repair of a bug
of this latter kind.

Suppose that one is confronted with a composite goal, in which
the problem is to achieve the conjunction of two conditions. In the
absence of any further knowledge about the structure of the probiem,
what is a rational strategy to follow in attempting to solve the
problem? The simplest approach, which has had great success in the
history of science, is to begin with a "linear theory" -- to assume
that the two subgoals can be achieved by independent processes. Thus,
the linear theory plan is to break up the conjunction into its
components, and then achieve each component independently, with the
hope that there will be no interference between the subproblem
solutions. Of course, this assumption is often false, and leads to a
bug, but it is a place to start. Understanding the nature of the
resulting bug will often point out the correct patch to make and may
lead to a more fundamental understanding of the problem domain.

Consider, for example, HACKER's behavior on the following
problem: Suppose that there are 3 blocks on the table, A,B and C, and

we ask HACKER to build a 3-high tower:




VB Sussman

(ACHIEVE (AND (ON A B) {ON B C)))

.’\

B

A B C C
'rABLE] : [ TABLE

Before ) After

(Please assume that HACKER has already written a program to (ACHIEVE
(ON x y)) for any bricks x,y.) HACKER cannot find any program in his
Answer Library which matches the given conjunction problem. HACKER
then goes into program proposal mode. He fishes about for a strategy
which matches the problem posed. The linear theory for achieving
conjunctions is retrieved. It suggests the plan:
(TO AND2 (ACHIEVE (AND (ON A B) (ON B C)))
L3: (ACHIEVE (ON A B))
L4: (ACHIEVE (ON B C)))

That is, in simplified HACKER syntax: first try to get A on B, then
try to get B on C. If the subgoals are independent, their order
doesn't matter, so the arbitrary order from the problem statement is
used. The proposal is then passed by the criticizer (which doesn't
know anything about this kind of problem -- yet) and tried out.

Of course, it has a bug. The program, AND2, first puts A on
B. Next it tries to put B on C, but that means it must grasp B. It
cannot move B with A on it {a physical restriction of the robot's
hand), so it removes A from B and puts it on the table. (This is part
of that Answer Library subroutine which HACKER has constructed to
solve some earlier problem of the form (ACHIEVE (ON x y)) and which is

228



VHB Sussman

being used here.) MNext, it puts B on C and is done. But it failed to
achisve its overall purpose -- A is no longer on Bt
Actually, in HACKER, the program would never get this far.

Besides proposing the plan, the linear theory also placed the
follow?ng teleological commentary for that plan into HACKER's Notebook
(Figure 1):

{PURPOSE L3 (TRUE (ON A B)) AND2)

(PURPOSE L4 (TRUE (ON B C)) AND2)
These state that the author of the plan expected that A would be on B
starting after line L3 and remain there at least until the program
ANDZ was done (the fourth position could have contained a line number
in a more complex plan where L3 was a prerequisite step rather than a

main step) and B would be on C starting after line L4 and remain there
until AND2 was done. When a program is executed for the first time,
it is executed in CAREFUL mode. In CAREFUL mode these comments are
interpreted along with the lines tc which they are attached. A daemon
was set after L3 to protect the truth of (ON A B) until AND2 is done.
This daemon interrupted the execution of L4 at the moment A was lifted
off of B. The bug is thus manifest as a PROTECTION-VIOLATION and

caught in flagrante delicto. Control now passes from the interrupted

process to the bug classifier.

Types of Bugs:

We have seen how a bug can be constructed when a powerful but
imperfect method of plausible inference is invoked. What do we do
when such a bug comes up? Until recently, it was thought that a very
good idea would have been to include a combinatorial search mechanism
{e.g. backiracking) to unwind the probiem solver back to some earliar

point where the next most plausible proposal could be selacted and

223




VNB Sussman

tried out. The hitch with this fdea is5 that this kind of search
rapidly leads to a combinatorial explosion -- just what is this "next
most plausible® proposal? It might be that the next most plausible
proposal will fail in precisely the way that the current one does and
that only the one-hundredth most plausible wiil succeed. Perhaps ths
program should re-evaluate its plausibilities on the basis of this
failure. That is, the program should be able to learn from its
mistakes, not only so as not to make the same error again, but to be
positively guided by analysis of the structure of the mistake. (See
[Sussman 1972] for a more complete argument)

If this conclusion is to be taken seriously it becomes
important to better understand the nature of bugs; to classify and
name the bugs and repair strategies. The idea of thinking of bugs as
important concepts and BUG as a "powerful idea™ may seem surprising;
but we suspect that isolating and systematizing them may become as
important in the study of intelligence as classifying interactions has
become in physics!

Now let's see how HACKER understands the above mentioned bug,
which has manifested itself as a protection violation. What is its
underlying cause? The basic strategy of HACKER in debugging a bug
manifestation is to compare (a model of) the behavior of the
misbehaving program with various prototypical bug patterns. If a
match is found, the program is said to be suffering from a bug which
is an instance of the prototype.

What constitutes a modei of the behavior of the misbehaving
program, and how is it constructed? The details of the construction
of a process model are described elsewhere [Sussman 1973], but here is
one scheme. At the time of the PROTECTION-VIOLATION interrupt, the

bug classifier has access to an essentially complete chronological

230




VRB Sussman

history of the problem-solving process which was interrupted. (A
human debugger often uses a "tracer” to help him construct such a
history, but special features of CONNIVER [McDermott 19727 provide
this and more in CAREFUL mode.; HACKER also has access to a complete
teleological commentary of his proposed solution and access to
variable bindings and other relevant data.

The bug classifier begins by noting two pointers, the current
control point, and the origin of the protection comment whose scope
was violated. These pointers are then traced with the help of the

relevant teleological commentary and history as follows:

Where was 1?7 In 1: (PUTON A TABLE)

Why? Main Step in 2: (ACHIEVE (ON A TABLE))

Why? Main Step in 3: (ACHIEVE (NOT (ON A B)))

Why? Main Step Generic in 4: (ACHIEVE (CLEARTOP B))
Why? Prerequisite Step for 5: (PUTON B C)

Why? Main Step in 6: (ACHIEVE (ON B C))

Why? Main Step in 7: (ACHIEVE (AND (ON A B) (ON B C)))
Why? 8: COMMAND

Who complained? 9: Protect (TRUE (ON A B))

Why? Result of 10: (ACHIEVE (ON A B))

Why? Main Step in 7: (ACHIEVE (AND (ON A B) (ON B C)))

A Main Step is a step in a program whose purpose is to achieve
a result which contributes to the overall goal of the program. Its
purpose comment states that the result achieved by that step is needed
until the program returns to its caller. A Prerequisite Step is one
whose purpose is to set up for the execution of some other step. The

result of this trace can be summarized in the following schematic

231




VB Sussman

diagram of the buggy process:

Each box in this diagram is a stack frame of the process. The
horizontal dimension is its extent in time; the vertical dimension is
the depth of functional application. Thus, the blocks labeled 7 and 8
(the AND2 frame and command level frame respectively) exist from the
time the command is typed until it returns. Frame number 10 is the
frame of line L3:(ACHIEVE (ON A B)) and frame number 6 is the frame of
line L4:(ACHIEVE (ON B C)). Frame number 9 is special -- it is the
protection daemon on the result of L3. It points at the accused
violator. The horizontal arrows indicate the scopes of the purposes
of the steps. Arrows which terminate on boxes are prerequisite step
scopes. (In this trace there is only one prerequisite scope, from 4

to 5.) Other arrows are main step scopes.

232




VNB Sussman

This structure matches a particular prototype bug called

PREREQUISITE-CLOBBERS-BROTHER-GOAL (PCBG):

Step 1 Step2 Ly

By this I mean a bug which is due to an interaction between
two program steps whose purpose scopes terminate at the same time. A
prerequisite step (or any number of main steps for a prerequisite step
-- the matcher can compress main step scopes but prerequisite step
scopes must be explicitly represented -- [Sussman 1973]) for a main
step in the code for step 2 clobbered the result of step 1. In this
case, the process of achieving (CLEARTOP B), a prerequisite of (PUTON
B C), which is a main step in L4:(ACHIEVE (ON B C)), destroys the
truth of (ON A B), the result of L3:(ACHIEVE (ON A B)). Since both L3
and L4 are main steps in ANDZ their purpose scopes terminate when AND2
returns.

Just how much generality is there in the concept PCBG?

Perhaps it is just peculiar to the Blocks Werid? In fact, PCBG is a
very commcn form of non-linearity.

If, for example, one wants te paint the ceiling, it is
simultaneously necessary that the paint be on the platform and that
the painter be on the ladder. The linear strategy is to achieve each
subgoal independently. The painter can either first 11ft the can to

the Tadder platform, and then climb the jadder, which works; or he can




¥NB Sussman

first climb the ladder and then 1ift the can, which doesn't work.
Once he is on the ladder, he has no access to the can on the ground.
He must first come down to get the paint (clobbering the previously

achieved subgoal of being on the ladder). Climbing down -- to achieve

the prerequisite to 1ifting the paint can -- has clobbered the brother

goal of being on the ladder.

In programming, too, one often runs into PCBG's. Consider the
problem of compiling the LISP expression (F 3 (G 4)). If the argument
passing convention is to load the arguments into successive argument
registers and then call the function, we see that the call to function
F requires that 3 be in register 1 and the result of (G 4) be in
register 2. If we try the obvious order -- first put 3 in register 1,
then calculate (6 4) and put it in register 2 -- we find that we must
Toad 1 with 4 to call G, thus clobbering the brother goal of having 3

in register 1.

Fixing the Bug:

Now that the bug is classified, can we come up with a
modification to the plan (program) which eliminates the bug? The
offending prerequisite must, in any case, be accomplished before its
target step. Its scope must extend until that step. But since the
first and second conjuncts are brothers (they are both for the same
target), their scopes must overlap. Thus, since the scope of the
first conjunct and the scope of the prerequisite of a main step for
the second step are incompatible, the only way to prevent the overlap
is to move the step for the second conjunct ahead of the step for the
first. We must assign an order to the plan. Thus, the patcher

changes the plan as follows:




VNB Sussman

(TO AND2 (ACHIEVE (AND (ON A B) (ON B C)))
L4: (ACHIEVE (ON B C))
L3: (ACHIEVE (ON A B)))
A new commsnt is added to HACKER's notebook summarizing this ordering
constraint (BEFORE L4 L3). The program is patched and the result
works. In this case a critic is compiled which summarizes what has
been learned (How this happens is beyond the scope of this paper --

see [Sussman 1973]): If for any blocks a, b, and ¢ we are proposing a

program which has lines with the purposes of getting a on b and b on
c, we must compile the line which puts b on c before the one which
puts a on b. Applied recursively, this advice is sufficient to ensure
that any program which piles up bricks will do it in the correct order

-~ from the bottom-up.

Other bugs:

Of course, not every bug is a PCBG -- not even every bug which
manifests as a protection violation. If, for example, we try to build
an arch -- (ACHIEVE (AND (ON A B) (ON A C))) -- with a linear theory
plan, the bug will manifest as a protection violation but no
interchange or other simple modification of the linear theory plan can
succeed. This kind of bug is a DIRECT-CONFLICT-BROTHERS (DCB) which
can only be resolved using more Blocks World knowledge. In [Sussman

1973] I classify three other types of bugs (but not DCB).

Conclusions:

We can draw the conclusion that to be effective, a
problem-solver need not know the precise way to sclve each kind of
problem. Perhaps a better strategy is to attempt to break a hard
problem up into subproblems. Sometimes these subproblems can be

solved independently, in which case the linear theory plan will work.

235




VNB Sussman

Sometimes the steps of the plan will interact and debugging will be
necessary. And sometimes, because of prior experience, we may know
that a particular kind of problem may require a particular kind of
nonlinear plan, such as the ordered plan required for the problem
discussed here.

The appearance of a few bugs need not be seen as evidence of a
limitation of problem solving ability, but rather as a step in the
effective use of a powerful problem solving strategy -- approximation
of the solution of a problem with an almost-right plan. This strategy
becomes powerful if the bug manifestation that results from the
failure of such an almost-right plan can be used to focus the
problem-solver on the source of the difficulty. A problem-solver
based on debugging need not thrash blindly for an alternate plan but
can be led by the analysis of the failure -- provided that adequate
bug classifying and repairing knowledge is available.

Thus, I believe that effective problem solving depends as much
on how well one understands one's errors as on how carefully and
knowledgably one makes one's initial choices at decision points. The
key to understanding one's errors is in understanding how one's
intentions and purposes relate to his plans and actions. This
indicates that an important part of the knowledge of a problem-solver
is in teleological commentary about how the subparts of the
performance knowledge relate to each other so as to achieve the
overall goals of the system. It also indicates the need for knowledge
about how to trace out bugs and about the kinds of bugs that might be

met in applying a given kind of plausible plan.

236



VNB Sussman

Bibliography

[Fahiman 1973]

Fahiman, Scott

A Planning System For Robot Construction Tasks
AI TR-283 (May 1973) MIT-AI-Laboratory

[Goldstein 1973]

Goldstein, Ira

Understanding Fixed Instruction Turtle Programs
PhD Thesis (September 1973) MIT-AI-Laboratory

[Hewitt 1971]

Hewitt, Carl

"Procedural Semantics: Models of Procedures and the Teaching of
Procedures"

Courant Computer Science Symposium 8 (1971)

[McDermott 1972]

McDermott, D.V. and Sussman, G.J

The CONNIVER Reference Manual

AI Memo 259 MIT-Al-Laboratory (May 1972) (Revised July 1973)

[Sacerdoti 1973]

Sacerdoti, Earl

"Planning in a Hierarchy of Abstraction Spaces"®
IJCAI-73 (1973)

[Sussman 1973]

Sussman, G.J.

A Computational Model of Skill Acquisition
AI TR-297 MIT-AI-Laboratory (August 1973)

[Sussman 1972]

Sussman, G.J. and McDermott, D.V.

"From PLANNER to CONNIVER - A Genetic Approach"
FJcc (1972)

[Winograd 1970]
Winograd, T.

Understanding Natural Language
AI TR-17 (MAC TR-84) MIT-Al-Laboratory (February 1971)

[N
w
Q3



COMPUTER FERCEPTION OF CURVED OBJECTS

Kenneth J. Turner

ABSTRACT

Image-processing techmiques are described which reduce
TV pictures of curved objects to a line-drawing repre-
sentation. Details are given of an application of the
hierarchical synthesis technique to flexible and imperfection-
tolerant recognition using such representations. Extensions
of VWaltz's methods are outlined which permit the analysis
of real scenes of curved objects.

DESCRIPTIVE TERMS

curved objects, curved surfaces, curve-fitting,
hierarchical synthesis, image-processing, object recognition,
scene analysis, segmentation.

INTRODUCTION

This paper is intended to acquaint the reader with the
main results of my thesis (Turner, 1974), but it can do
little more than whet his appetite. The aims of this
research were twofold : first, to evolve techniques for the
perception of curved objects; and second, to experiment-
ally demonstrate the validity and utility of these, both
individually and as part of a complex system. The types of
object that have been studied are those with curved surfaces
which form well-defined intersections (e.g. mugs, cones,
and toruses). However, the methods developed for these
have been shown to be applicable to other classes of objects
(e.g. polyhedra).

Programs have been written which : (a) process TV
images of curved objects to line-drawing form; (b) identify
objects from such descriptions, despite imperfections;
and (c) analyse hand-generated line-drawings depicting
scenes of curved objects. By modifying the scene-analysis
program to be tolerant to some extent of defects in the
picture, it has been possible to integrate a subset of
these capabilities in a complete system for anmalysing
simple scenes of curved and polyhedral objects. The
following sections describe some of the techniques used by
the system.

IMAGE-PROCESSING

Since the image-processing routines are used in a
top-down, hypothesis-generation fashion, simplicity and
cheapness were the design aims. Edge~detection is by a
simple gradient operator whose output is thresholded to
obtain spurs, which are elementary boundary steps.
Intensity discontinuities are tracked by a myopic "bug"
which is directed by the pattern of spurs present in a 5 x 3
window through which it views the picture. Boundaries are
chain-coded to form data-structures called curves. Inter-
sections of curves with themselves or with others are
detected by the use of a curve membership array, which
contains a pointer to a curve for each of its points.

238



K. J, Turner

Curves are first of all segmented at intersections,
that is, at junctions. Further segmentation is carried out
by a process which approximates a curve by a sequence of
straight and circular arcs. An arbitrary plane curve may
be represented using Wy (the angle its tangent at some point
makes with a fixed direction, e.g. the x-axis) and s (the
arc length measured from a fixed point on the curve).

The usefulness of the transformation from x-y coordinates
to y-s coordinates is that a curve which consists solely

of straight or circular segments is mapped onto a -8 curve
comprising only straight sections.

The segmentation problem is thus reduced to one of
finding straight lines. A recursive fitting procedure is
employed which is similar to that used by other workers
(e.g. Horn, 1971). The point of maximum deviation from a
base-line joining the endpoints of the y-s curve is found;
segmentation takes place at this point if the deviation is
above a threshold. The line-fitter then calls itself
recursively to deal with the two new segments, a special
check being made for a segment which is nearly parallel to
a base-line.

The preliminary segmentation into straight and circular
arcs is refined by fitting conic sections; this may suggest
re-merging segments or breaking them up still further.
Segment breakpoints are adjusted so as to optimise the fit
of curves. The algorithm given by Rosenbrock (1960) is
used to fit conic sections by minimising an error term of

the form 2
Y {elx; .y )/ |arad(slx ,y, )]}

where g = ax +bxy+cy +dx+ey+f. This was found to overcome
the problem reported by Agin (1972) of fitting excessively flattened
curves when using as the error term

Z{s(xi'yi)]z'

Junctions are derived on the basis of segment endpoint
proximity using a segment membership array similar to that
maintained for curves. A topological description of the
picture is built up in terms of junctions, lines, and areas.
A typical picture analysis at this stage is shown in fig. 1.
Line parameters are adjusted so that lines pass exactly
through junctions. Classification of junctions into types
is made on the basis of three features invariant under
moderate changes in viewpoint : (a) the number of lines;

(b) the relative size of the junction's largest angle, with
respect to 180°; and (c) the sizes of the sets of contin-
uous lines®. These features are used to determine the type
of a junction; the relative sizes of the angles and the
relative curvaturesof the lines are used to distinguish a
number ot variants of each type. Junction classification
completes the work of the image~processing routines.

»

Two lines are gaid to be continuocus if the angle
between them is 180 . Every line in a continuous set is
continuous with at least one other.




S o A - = . . -

K. J. Turner

OBJECT RECOGNITIOR

Recognition is achieved using the technique of hier-
archical synthesis (Barrow, Ambler, and Burstall, 1972).
The idea is that complex objects should be described in
terms of simpler ones and their relationships, all objects
ultimately being defined in terms of a set of primitives
(e.g. segments or regioms).

The heart of the synthesiser is a job scheduler which
processes a queue of jobs on a priority basis. Each job
has a number of associated parameters which include : an
interest-value (used to order the queue); a state component
(used to indicate whether the job has been run, is waiting
to be run, etc.); a list of pre-jobs (on which the job
depends); a list of post-jobs (which depend on the job);

a function to be run (the job itself); and the results of
the job (generated by its function). As jobs are processed,
their results are used to dynamically update the interest-
values of others on the queue. Other similar interactions
between jobs form part of a promotion scheme which ensures
that the most promising jobs are run first.

For recognition purposes a job is allocated to each
object in the hierarchy, sub-objects corresponding to
pre-jobs. The job function for an object takes an n-tuple
of instances of sub-objects and checks their relationships;
if the n-tuple meets the specification of the object it is
added to the job results list. The hierarchy may be run
bottom-up (building all possible descriptions from the
primitives) or top-down {(looking only for instances of
certain objects); a combined top-down/bottom-up mode is
also possible. Fig. 2 illustrates a typical hierarchical
decomposition of an object.

Object specifications are deliberately made tolerant
so as to cope with imperfections in the picture. Each test
of a property or relation in the specification is associated
with a confidence-value in the range O to 1. These confid-
ence values are combined in a weighted linear polynomial
which is thresholded to obtain a decision. This scheme
has the advantage of being able to handle in a uniform
manner imperfections due to noise and occlusion; if part
of an object is missing, it merely makes no contribution
to the decision polynomial.

A direct comparison was made between the performance
of the synthesiser and the ot ject recogniser of Barrow and
Fopplestone (1971), the only other program which carries
out a similar task. Both programs were run on the same set
ot test pictures - 5 examples of each of an object set
comprising : ball, cup, cylinder, doughnut, hammer, mug,
pencil, spectacles, tube, and wedge. Barrow and Popplestone's
program made a correct identification in 95% of cases in an
average time of 270 secs. (137 secs. for region-finding,
133 secs. for description and matching). The hierarchical
synthesiser also achieved a recognition success rate of 95%,
but in an average time of only 55.4 secs. (48 secs. for
line-finding, 7.4 secs. for description and matching).
It is noteworthy that the speed-up of description and matching
by a factor of 18 was obtained without loss of reliability;

240




K. J. Turner

the effective speed difference is even greater because the
synthesiser had to match descriptiona containing almost
four times as many picture elements. The flexibility and
imperfection-tolerance of the synthesiser also enables it
to cope with situations which Barrow and Popplestone's
program cannot properly handle, for example, when there are
several occluding objects.

SCENE ANALYSIS

The ideas developed by Waltz (1972) for analysing
shadowed polyhedral scenes are of wider applicability.
Waltz's principles have been generalised and extended to
the analysis of scenes of curved objects. Because general
curved objects are too unconstrained to be tractable,
certain restrictions were imposed, the most important of
these being to disallow surface splines. All the points
on the visible portion of a surface must thereéfore be of
the same type : parabolic (e.g. planes, cones, cylinders),
elliptic (e.g. spheres), or hyperbolic (e.g. saddles).

The mechanism for generating curved object junction
labels is based on the observation that two planes may
approximate a curved surface in the vicinity of a corner.

A corner composed of both plane and curved surfaces may
therefore be approximated by a purely polyhedral one.

Note that a convex (concave) surface will give rise to a
convex (concave) edge, and that the convexity or concavity

of the other edges will be preserved. This process may be
applied in reverse, a polyhedral corner being regarded as
generating one with curved surfaces. The fact that convexity
and concavity are preserved means that the labels of the non-
planar corner can be easily derived from those of the planar
one. To determine the labels for a certain class of curved
objects, the procedure is therefore to obtain the labels

for the appropriate degree of polyhedral cormer and apply

the transformation.

Junction labels must be generated for the cases of :
corners, Tees, shadowed corners, shadowed Tees, shadows
cast on surfaces, and shadows cast across edges. Junction
labels have been derived for certain interactions between
planar, conical, cylindrical, and elliptical surfaces;
hyperbolic surfaces, being of less interest, have not been
considered. Fig. 3 shows some typical labellings.

The illumination over a curved surface may vary from
directly-illuminated to self-shadowed. It is also possible
for a shadow cast across a convex surface to simply reter
ocut. It is therefore necessary to associate illumination
information not with the areas of the picture but with the
lines, in the neighbourhood of junctiomns. This does not
eliminate the problem, however, for the nature of the
illumination may be different at opposite ends of a line.

A related difficulty is that the type of an edge may also
vary from one end to another. The solution adopted was to
relax the consistency requirement that the interpretation
of a line must be the same at all points along it. Instead,
transition rules are used which specify how iliumination
and edge labels may transform into each cther slong the

241




k. J. Turner

length of an edge. The sdge-type trensition rules ere

obtained as a by-product of the procedure f{or producing
junction labels. Fig. 4 indicates transitions of this

sort and the rules which deal with them.

Pig. 5 is typical of the kinds of line-drawing that
can be analysed by these methods. Allowing for differences
in implementation, the program takes roughly four times
longer to analyse a scems of curved objects thah Waltz's
program does to analyse & polyhedrsl scene with a comparable
number of junctions. This speed difference stems from the
increased size of the label data-base (about 40% of the
junctions in fig. 5 have over 3000 independent labellings),
the greater complexity of the comsistency rules, and the
diminished value of illumination information. It was
found that illumination labels do not bind the interpret-
ations of separated parts of the picture as strongly as in
the polyhedral case. 1Indeed, it was discovered that
ignoring illumination information entirely does not give
rise to much ambiguity with curved objects : consistency
of surface type is the main cohesive force. A relaxation
of the "mo splines" rule would therefore probably degrade
performance considerably.

By ftormulating Waltz-like analysis in clique-finding
terms, it has been possible to use the same program to
interpret real data despite imperfections, the aim being
to find the largest consistent subgraphs cof the picture.
This has made it possible to integrate Waltz-like methods
into a complete system for understanding real scenes with
shadows,containing both curved and polyhedral objects.
Because of computational limitations and the difficulty of
obtaining effective feedback, only simple scenes of a few
objects have so far been analysed. The same principles,
however, ought to be extendable to the analysis of scenes
like fig. 5 in actuality.

ACKNOWLEDGEMENTS

This research was carried out in the Department of
Machine Intelligence, Edinburgh University, under the able
leadership of Prof. Donald Michie. I am considerably
indebted to Dr. Harry Barrow for his invaluable guidance
and advice during this work. I am grateful to the Science
Research Council and the Dalle Molle Foundation for
financial support.

RFFERENCES

Agin, G.J. (1972) "Representation and description of curved
objects" (thesis) A.l. Report AIM 173, Computer Science
Dept., Stanford University.

Barrow, H.G., Ambler, A.P., and Burstall, R.M. (1972)
"Some techniques for recognising structures in pictures"
Frontiers of Pattern Recognition (ed. Watanabe, S.)
1-29, Academic Press, New York.

Barrow, H.G. and Popplestone, R.J. (1971) "Relational
descriptions in picture-processing'" Machine Intelligence 6
(eds. Meltzer, B. and Michie, D.) 377-396, University
I'ress, Edinburgh.

2u2




Ke J. Turner

Horn, B.K.P. (1971) "The Binford-Horn line-finder?®
Vision Flash 16, A.I. Lab., M.I.T.

Huffman, D.A. (1971} "Impossible objects as nonsense sentences"”

Machine Intelligence 6 {(eds. Meltzer, B. aud Michie, D.)
295323, University Press, Edinburgh.

Rosenbrock, H.,H. (1960) "An automatic method for finding the

greatest or least value of a function” Comp. J. 3, 175~
184,

Turner, K.J. {(1974) "Computer perception of curved objects
using a television camera" (thesis) School of A.I.,
Edinburgh University.

waltz, D.L.(1972) "Generating semantic descriptions from
drawings of scenes with shadows" (thesis) A.I. Lab. Report
TR-271, A.I. Lab., M.I.T.

243




K. J.

Fig. 1 : A typical segmented picture

/ AN
9

./ X
A

\ /

SEGMENT

Vg

A

4

Fig. 2 : A hierarchical representation of a cup

24y

Turner




K. J. Turner

KEY :
+ planar surface

6%5/-*- convex/concave conical or cylindrical surface

+/+ convex/concave elliptical surface

Fig. 3 : Some representative labellings

\rule : "\'__:_:.}

Fig. 4 : Some edge- and illumination-type transition rules

245







ACTION PERCEPTION

Dr. Sylvia Weir, Bionics Research Laboratory, School of Artificial
Intelligence, University of Edinburgh.

Recent scene analysis work in Artificial Intelligence assigns a
central role to the support relation in making sense of static scenes.
We expect pictorial evidence that the laws of gravity are being satisfied.
Looking for 'pictorial' evidence for dynamic laws of moving objects might
be a way of extending the insights gained in scene analysis to the area
of motion perception. We choose to look at a very simple action, namely
that of one thing hitting another and setting it in motion, and use the
very well documented account of the classical researches by Michotte and
his colleagues at Louvain University over the past 40 years or so into
the perception of causality (1963) as a basis for a proposed computer
model of action perception.

1.0 In the Michotte experiments, the action is presented to the subject
in the form of coloured 2-D objects moving across a screen. Michotte
uses the verbal responses of his subjects to this (and to a wide variety
of other actions) to investigate the principles of structural organisation
which govern the perception of kinematic forms, in much the same way as
other members of the Gestalt school have studied the perception of static
forms. For him the 'causal impression’ is

"... directly experienced (his italics). There is no

question of an interpretation nor of a 'significance'
superimposed on the impression of movement". (p21)

It seems fruitful to relate his experimental findings and structural
analyses to the constructivist scheme underlying contemporary scene
analysis work in the Artificial Intelligence field. Clowes (1973) gives
an exposition of this approach, using Roberts' (1965) work on machine
perception of three dimensional solids as a computational elaboration of
the ideas of Bartlett (1932).

"For all scenes but especially those involving inter-object
occlusions the completion of segmentation in Roberts' program
is literally based on "a constructive process" in which the
3-D geometry of the model is related to the (incomplete) 2-D
geometry of the stimulus pattern by... (the) theory of the
picture-taking process. The constructive process is of course
the generation of a predicted picture of the selected model,
given the point-to—point pairing of picture cue e.g. convex
quadrilateral with model property e.g. rectangular face. The
picture segment is only accepted if the predictions derived
from the model - specifically the picture locations of other
vertices of the selected model - are confirmed."

We seek to extend the range of stimulus clues used in static scenes
to include movement patterns, and attenticn directing instructions of the
experimenter, and so widen the class of possible models (candidate
schemata) used to generate hypotheses about what is going om.

2.0 Description of the Experiments

Michotte uses a remarkably ingenious method of presenting a wide
variety of kinetic combinations by rotating a disc bearing appropriately
positioned painted coloured stripes, behind a screen which has a/

247



_—

Sylvia Weir

/a horizontal slit in it (fig. 1). He describes 102 experiments.
Impressed by the complexity of the underlying ideas, we restrict our
attention to the few described below, and two more described in 3.8.

A B C

F16. 1. Combination of discs for use in experiments on launching. Scale 1 : 10.

Exgeriment 1

Using this apparatus, he achieved "a uniform white background on
which stand out two squares of side 5mm. One, a red square, is in the
centre of the slit; the other, a black square, is 40mm. to the left of
the first. We shall call the black square 'object A', and the red
square 'object B'. The subject fixates object B. At a given moment
object A sets off and moves towards B at a speed of about 30cm. per sec.
It stops at the moment when it comes into contact with B, while the
latter then starts and moves away from A, either at the same speed or,
preferably; at an appreciably lower omne, e.g. 6 or 10cm. per sec. Then
it stops, after covering a distance of 2cm. or more, according to the
speed adopted. The result of this experiment is perfectly clear; the
observers see object A bump into object B, and send it off (or 'launch'
it), shove it forward, set in motion, give it a push. The impression is
clear; it is the blow given by A which makes B go, which produces B's
movement,"

Experiment 2(Michotte's experiment 7)

An entirely different response is elicited by changing only one
condition in experiment 1. The subject is asked to fixate a point 7cms.
above or below the point of impact so that he is looking at the point of
impact indirectly. 1In these conditions what the subject sees is "a
single object A, travelling the whole length of the slit in a continuous
movement, and on its way passing over another object which is statiomary
at the centre'". This effect is present whether or not the observer
notices the colour change. Sometimes the stationary object is described
as having A's colour throughout. Michotte gives no name to this effect.

We call it the passing response.
Experiment 3 (Michotte's experiment 29)

If a delay of more than 1/5 sec. is introduced between the arrival
of A and the departure of B, an impression of successive independent
movements is given.

2u8




Sylvia Weir

Experiment 4 (Michotte's experiment 40)

This is the same as experiment 1 except that object A moves at one
of the following speeds:— 29, 25, 22, 18, 15cm. per sec., while B moves
at a speed of 40cm. per sec.

As long as the ratio of A's speed to B's remained less than 1:1.8
the usual launching effect was seen. When the speed of B becomes
noticeably greater than that of A (an A:B ratio of 1:2.7), a triggering
effect was reported by experienced observers.

"it is as if A's approach frightened B, and B ran away"
"it is as if A touched off a mechanism in B and set it going".

3.0 Modelling a Michotte experiment

A program is currently being implemented in which a model of the
world is represented by sets of items and methods in a version of the
CONNIVER programming language (McDermott & Sussman, 1972) implemented in
POP-2 by Steve Hardy (1974). Input to the program is in the form of
descriptions such as might be produced by a coloured line drawing analyser.
For example, the starting situation:

"a red square is seen at the centre of the slit"

gives rise to an input description of the form

[At B midscreen] [[centposition [6 11][shape squarellcolour redll
i.e. an item with an associated property list, which is added to the data
base.

3.1 Experimental instructions are input directly. For example, in
experiment 1

{fixate midscreen].
This is more than an instruction about where to look. Experimenters,
unlike illusionists, are interested in directing attention to where things
will happen. Accordingly we would like this instruction to generate the
expectation of an event. We use an if-added method triggered by the
pattern

[fixate *placel (variable names are proceeded by *)
so that adding an item containing such a pattern to the data base
generates

[willhappen *event midscreenl
and sets up a process which looks for participants of the expected event,
and evidence for their participant status e.g. active—agent status,
passive—object status. Instantiation of the event will depend on the
kinetic pattern being built up.

3.2 To provide a way of generating descriptions of the movements taking
place, we represent the process continuum as successive time slices, or
conceptual snapshots, depicted as a frame sequence rather like a strip
cartoon (fig. 2). It is as though the observer takes successive
samplings of the movement processes and forms descriptions of each, so
that the difference-descriptions between 2 successive frames express the
changes which have occurred during a particular time-interval.  Such
differencing is a pervasive phencmenon occurring in many schemes of
analyses from, for example, the low-level ‘retinai’' differencing of
Lamontagne (1974) to the high level difference-descriptions used by Evans
in his ANALOGY program (1965) and by Winston's pregram for LEARNING
STRUCTURAL DESCRIPTIONS (1969).



Sylvia Weir

ORi B R2 T

CR3 | LY A

LIRS B AL i

R Om R K-t

. _Rg (R0 K
Ri (R Rz K+!
R3O8 Ry Kt2
Ris @ RIG K+3
Fig. 2

There will in general be more than one way of pairing picture regions
in successive frames and we need a set of rules for deciding which of the
possible pairings corresponds to an ENDURING OBJECT IN MOTION. Evidence
is weighed in the context of ongoing expectations.

3.3. To illustrate the steps involved in identifying the moving object we
consider the first 2 frames in fig. 2. The pair R2.R4 is an obvious
candidate for a match since it gives perfect agreement on position and
colour, while R1,R3 is a better match than R1.R4. In each case, the
presence or absence of differences is interpreted thus:-

The exact match between R2 and R4, i.e. no change in position, generates
[B stationary midscreenl

The mismatch between Rl and R3, i.e. the position difference, produces
[A moves](speed medium]

3.4 Once a movement has begun, we take a different view of what constitutes
an appropriate match. In the comparison between two successive frames,

we are now looking for that region in the second frame which most closely
corresponds to the predicted next position of a region in the first frame
and not to its absolute position. So now an exact match, for example

that between R3 in frame 2 and R5 in frame 3, generates no surprises,
whereas a mismatch at this point, which would correspond to a change in
velocity, would require explaining.

3.5 The next point exemplifies a crucial feature of the model, viz. the
co-existence of several processes, any one of which is ready to pounce on
a new piece of information to use for purposes of its own. The

CONNIVER programming language provides facilities for doing just this.

We recall that the fixation instruction in experiment 1 sets up a
process on the lookout for participants in some as yet unspecified event
to take place at the middle of the screen (a combination of if-needed and
if-added methods does this quite naturally). The addition of the item

[A moves]
to the database (3.3) activates this process. In the context of the
expected event, 'midscreen' forms the point of reference for A's movement,
which becomes

[A movesto B]
and A's approach to a stationary object in its path and at the required
place is seized upon to generate

[A agentof *event]

[B objectof *event]




Sylvia Weir

The expected event now begins to look very much like a possible collision.
The program makes this assignment

[willhappen collision midscreenl
and starts up a search for evidence of such an impact i.e. adds an
if -added method whose pattern is

[*agent nextto *object].
When invoked, this has a twofold effect. It modifies the region-pairing
process and sets up a search for consequences of the impact. (See 3.62)

Until this happens, control passes back to and remains with the main
frame comparison process, and analysis proceeds through the frame sequence.

3.6 On arriving at frame K (see fig. 2), the program takes in as part of
the input description of this frame, an item which corresponds to the
interpretation of the T junction and the shared line between R9 and R10
i.#, the fact that R9 and R10 are touching. At this point the difference
in the context of expectations in experiments 1 and 2 makes itself felt.

3.61 In experiment 2, in which a point above the screen is fixated, the
events being observed are in the periphery of the field of vision. None
of the expectations outlined in 3.1 and 3.5 have arisen. The pairs
B7.R9 and R8.R10 were the last chosen, and the predicted next position
continues to serve as the criterion for an exact match. R9.R12 is the
usbvious match, leaving R10.R11l as the stationary object. 1Inevitably
R12.R14 and R11.R13 are linked and so we get the single moving object
which passes cover a stationary object - the passing effect.

In a footnote Michotte refers to an observation which is beautifully
explained by the above. Some subjects, he tells us, who "apparently
observe in a particularly analytical way' see a small retreat (the pairing
R10.R11) of the stationary object as the moving object passes over it.

3.62 In contrast, in experiment 1, A's arrival next to B signals the
crucial point in the action sequence for which our monitor set up in 3.5
has been waiting. It takes control, over-rides the prediction concerning
the next position of A and instructs the region-pairing routines to treat
the next frame comparison as it did the first two frames in the sequence
viz. to allow the smallest absolute change in position to win.

Accordingly R9¥R1l and R10.R12 are paired and both objects are statiomary.

Now the description of frame (K + 1) is entered and again the next-to
method is triggered. This affects the region-pairing process in the same
way and produces the pairings R11.R13 and R12.R14, which yield

[A stationaryl

[B moves][speed slowl.
B's movement is recognised as the sought—after consequence of the impact.
Consequences are items of the form

[consequence *event *eventlist]
In this case the appropriate instantiation is

[consequence collisionl{B movesll].

A limit is set to the number of times this monitor can be called in the
same collision sequence. When this limit is reached, or before if a
consequence-item is asserted, the monitor kills itself. This suicide
embodies the experimental fact that a delay in B's movement prevents its
linkage with A's movement. This is the situation in gxperiment 3.
Pinally we notice that the onset of B's movement automatically resets the
region-pairing routine to use the predicted next pesition for its nearest
region comparison as described in 3.4, Frame comparison now proceeds
uneventfully until the end of the sequence.

251



Sylvia Weir

Notice that the analysis outlined for experiment 1 goes through for
experiment 4 too — the difference between the impressions in these two
ptad A el iy . g
experiments 18 discussed next.

3.7 At the end of the frame seguence analysis, the database contains a
series of items tagged by the frame number in which they occurred, which
together form a description of the movements which have taken place.

Now the episode-interpreter tekes over. This consists of a set of
methods incorporating knowledge about "pushing" and "triggering", e.g.
constraints on the relative speeds of the participants which allow the
interpretation "pushing". A Hichotte footnote (pll2), informative as
ever, refers to "a curious (sic!) agreement between the operation of the
laws of perception and the lawé governing the physical world". The
crucial feature giving rise to the triggering effect of experiment 4, ig
the speed of B's withdrawal after impact, which is suffiently greater
than that of A's approach to evoke a different explanation. Newcomers
to the experiments will see "launching" as long as B's speed is less thap
5 times that of A; but in the case of experienced subjects,the
impression of "launching' changes to '"triggering" if B moves more than
twice as fast as A. :

Michotte describes a variety of triggering effects. Some observers
postulate the the existence of a mechanism in B which is set off by A's
arrival; others Yeee" a predator-prey relationship between the
participants with B fleeing from A. We have decided not to distinguish
subcategories of triggering in the current model.

3.8 Two further experiments are cited briefly to demonstrate the way the
dynamic structuring of the movement pattern is sensitive to emerging
symmetries, and to emphasise the important of observational attitudes.

We use a graphical reppesentation of the events to bring out the
resemblance between finding the structure of a movement pattern and
assigning relational bindings to the lines in a line drawing.

B

A| B2
B3

Az
A3l B
©)
Fig. 3 (a) shows Experiment 1. Linking Al1.B2 and B1.A2 gives the
passing effect.

(b) shows Michotte's experiment 24.
(c) shows Michotte's experiment 21.

4

3.81 1In 3(b) a third object has been added; this starts from a point
the same distance to the right of B as A is to its left, and moves
towards B at the same speed as A does. On reaching B, it disappears
momentarily, then reappears on the other side of A and continues its
journey until it reaches the place where A began. Three interpretations
are offered.

i) /




Sylvia Weir

(i) 2 objects (41.C2 and C1.B2) are seen to perform "a to-and-fro
movement in relation to an object (Bl.A2) in the centre of their
path".

The latter is seen to chagge colour and move slightly.

(ii) 2 objects (A1.B2 and C1.C2) "go towards each other and cross at
the point where a third (B1.A2) is to be found in the cenmtre of
their path”.

(iii) 2 objects "rotate in the 3rd dimension around a permanent central
object".

The symmetry of the impending collisions so radically affects the analysis
that the same objects "continee moving"throughout, and their movement
does not affect the 'stationary" object. i.e. the consequence of the
"collision" is simply the next part of the agent's movement - the passive
object is unaffected and no causality is imputed.

3.82 1Imn 3(c) an oscillatory movement of B precedes A's movement, and is
timed so that B reaches the centre of the screen just as A does, and then
B makes its last journey to the right. 1In this experiment the
oscillating object (the zig-zag pattern) becomes the thing which A
approaches and comes to rest beside. No dynamic effect is created unless
the subject is asked to concentrate very hard on the point of impact.

In this case the last leg of B's journey i1s not linked to the sequence
B1.B2.B3.B4. Instead, this oscillation is seen as a preliminary to the
standard launching of B by A.

4.0 Discussion

Michotte argues that the causal impression of launching depends
crucially on establishing that the entire movement "belongs" to A even
though, after the impact, it is B which is displaced in space. The
movement is seen to belong to A because A has been established as the
dominant object, since it starts moving first and moves faster than B.
The notion of a movement belonging to an object even after that object
has stopped moving seems a strange one, especially if we are to take
this as literally as Michotte wishes us to.

"This kind of response of course is nothing but a literal
translation or accurate report of the retinal stimulation
such as could be achieved by an electrical recording device".

In fact, A doesn't always start moving first. The launching quoted in
3.82 (Michotte's experiment 21) occurs in spite of the fact that B moves
first -one needs only provide the correct viewing conditions. This
passion to exclude all possibility of interpretation in terms of
schemata, which Michotte shares with other experimental psychologists,
notably J. J. Gibson, seems to rest on some feeling that allowing
interpretation to creep in is somebow equivalent to saying that the
phenomenon hasn't really been perceived - someome only thought they saw
it.

The notion of 'belonging to'" seems to be exactly a matter of
interpretation. As must be apparent, we regard Michotte's patterns of
moving squares as having the same correspondence to actual moving objects
in the real world as, say, junctions in a 2~D drawing have to the corners
of planar solids i.e. a Michotte experiment is a kind of kinetic diagram,
and one is continually impressed by the scholarly way in which he has /




Sylvis Weir

/has explored a whole range of such diagrams.

The crucial role of context in assigning a meaning to a picture
fragment has its emact counterpart in the case of a kinetic fragment.

Without lines L3 and L4, the linme L1

and the face ¥l belong to the same cube
B Fi | Fa ag F3 does. When L3 and L4 are added,
we have to account for face F4, and we
see L1 as belonging to the same cube as

] 2

12 and F2.
EN
Just in the same way in the oscillating experiment (fig. 3c and 3.82) we
saw B5 change allegiance, this time as a result of a change in fixation-
attention.

The idea of a context of expected events as elaborated in this report
corresponds to the notion of a scenario or structured script used by
people working in language understanding and belief systems (Winograd
(1973); McDermott (1973); Abelson (1973); Rumelhart & Norman (1973)).
Particular events are to be understood as belonging to wholes of
identifiable types in terms of which expectations of new events will arise.

Consider the interpretation of a kinetic diagram which is seen as a
launching. In the static sceme case quoted from Clowes in section 1.0,
we noted that the mismatch between the 2-D picture fragment and the 3-D
model fragment is interpreted in a series of well understood systematic
inferences based on knowledge about the picture taking process. What
could provide a more appropriate stimulus cue to invoke a 3-D model of a
block than the squares used in these experiments? And what could be
more likely than one 'block” colliding with another to invoke the concept
of mechanical causality? It is extremely easy to BEE the square as a
block. However when the square is to be SEEN-AS some animate object
being frightened away, the metaphor reaches awareness and is expressed
overtly

"it is AS IF A's approach frightened B, and B ran away".

How much would one need &o add to the diagram in order to
experience a 'direct" triggering impression? What hints could ome
include in the experimental instruction to facilitate the seeing-as
process e.g. "I am going to show you a cartoon strip'".? How can ome
separate out the attention-directing element from fixation instructions?
(Piaget (1961) summarises many years of work in this area).

Finally how much can these socalled '"direct" responses (products of
unconscious inference) be manipulated by conscious control. For
example, in the series of experiments under review most subjects claim
that even when they are aware of the artefactual nature of the apparatus,
they continue to see A push B. On the other hand, one or two subjects
"observing in an analytical way'" see successive movements simply
co-ordinated in time. Gregory (1970) gives numerous examples of the
compulsive nature of certain perceptual constructs in spite of 'knowing'
that the corresponding real world object does not have the ascribed
characteristics. On the other hand, in the Johannsen demonstrations
(1971) the tendency to construct objects out of points of light moving
in particular patterns can be consciously inhibited, when an analytic
posture is adopted.

254



Sylvia Weir

Reaching awareness, we saw above, was connected with the
inappropriateness of part of the stimulus cue to the response being
given - we NOTICE when things don't go through smoothly. This
inappropriateness of response is exactly the characteristic of neurotic
compulsions. It is not strange to wash your hends pericdically,
especially if they're dirty; but it is strange to want to wash your
hands all the time. Psychotherapy is largely about tracking down.the
appropriate metaphors.

The inappropriate part of the stimulus cue in the triggering response
was the appearance of the participant. Michotte mentions (p82) that he
can "favour" the daunching effect by using, for B, a triangle on its side
pointing in the direction of the movement. We propose exploring this
aspect in greater detail. We have described our frame sequences as
rather like strip cartoons. We would like to increase the resemblance.

Acknowledgements

This work was carried out with the support and encouragement of Dr.
J. A. M. Howe, and the financial support of the Social Science Research
Council.

References
Abelson, R.P. (1973) The Structure of Belief Systems. In Computer

Simulation of Thought and Language. K. Colby & R. Schank (eds.)
W. H. Freeman & Co.

Bartlett, F.C. (1932) Remembering. Cambridge University Press.
Clowes, M.B. (1973) Lectures given at AISB Summer School, Oxford, 1973.

Evans, T. (1963) A Heuristic Program to solve Geometry Analogy Problems.
Ph.D. Dissertation M.I.T. In Semantic Information Processing (1968).
Minsky (ed.) M.I.T. Press.

Gregory, R.L. (1970) The Intelligent Eye. Weidenfield & Nicolson,
London.

Hardy, S. (1973) The Popcorn Manual. Essex University.

Johannsen, G. (1971) Visual Motion Perception: A model for Visual
Motion and Space Perception from changing Proximal Stimuli.
Report 98. Department of Psychology, University of Uppsala, Sweden.

Lamontagne, C. (1973) A New Experimental Paradigm for the Investigation
of the Secondary System of Human Visual Motion Perception, Perception,
Vol. 2 No. 2: pl67-180.

McDermott, D.V. (1973) Assimilation of New Information by a Ratural
Language Understanding System. M.Sc dissertation. M.I.T.

McDermott, D.V. & Sussman, G.J. (1973) CONNIVER Reference Manual. M™.I.T.

Michotte, A. (1963) The Perception of Causality. Transl. by T. & E.
Miles. Methven.

Piaget, J. (1961) Mechanism of Perception. Transl. Seagrim (1969).
Routledge & Kegan Paul..

Roberts, L. (1965) Machine Perception of Three-dimensional solids.
In Optical and Electro-optical Information Processing. Tiffet et al
(eds.) M,I.T. Press.




Sylvia Weir

Rumelhart, D. & Norman, D. (1973) Active Semantic Networks as a Model
of Human Memory. In Proc. Third Internat. Joint Conf. on Art.
Intell. (20%23 Aug. '73) Stanford University.

Winograd, T. (1973) Invited Address, Third Internat. Joint Conf. on
Art. Intell. (20-23 Aug. *73) Stanford University.

Wington, P. (1970) Learning Structural Descriptions from Examples.
Ph.D. Dissertation. A.I. Technical Report 231, M.I.T.

256




A NON-CLAUSAL THEOREM PROVING SYSTEM

by David Wilkins

ABSTRACT: There are reasons to suspect that non-clausal [irst-order logic
expressions will provide a better base for 3 theorem prover than conventional clausal
form. A complete inference system, QUEST, for the first-order predicate calculus using
expressions in prenex form is presented. Comparison of this system with SL-resolution
shows that clausal techniques can be transferred to prenex form and expected advantages
do seem to appear.

KEY WORDS: resolution, clause, prenex form, SL-resolution

1- Introduction

A predicate calculus expression in prenex form is obtained [rom a given wil by
eliminating implication signs, standardizing variables, reducing the scopes of negation signs,
skolemizing existential quantifiers, and removing universal quantifiers; see Nilsson(1971)
for a precise definition. Prenex form differs [rom conventional clausal form only in that
distributivity is not repeatedly applied to yield an expression in conjunctive normal form.
There are a number of reasons for suspecting that prenex form would be superior to
clausal form in automatic theorem-proving.

As anyone who has converted large expressions to clausal form knows, the
application of distributivity causes a multiplicative explosion in the number of literals so
using prenex form will at least save storage and execution time (human or otherwise).
Another advantage is that the same information is not spread over a number of clauses.
If the expression AVBV(CADAE) is necessary in a refutation, a resolution-type system
will resolve away A and B and one of C,D, or E. A clausal theorem prover may refute A
and B and get stuck on C. It then has to back up and try clause ABD which will involve
redoing the refutations of A and B. Current theorem proving systems do not avoid this
redoing of work but this would be 2 natural result of using prenex form. With prenex
form we alse gain the ability to use subexpressions that are "anded" together. For
example, in the expression AvBV({CVD)A(-CVE)) the ~CVE subexpression can be used
to refute the CvD subexpression without pulling in the "higher level” information that
resolving against the clause AB-C would. In this simple example, 3 clausal system could
avoid re-refuting A and B but the ability to use subexpressions becomes valuahle in the
general case.

Theorem provers are considered inefficient problem sclvers, but given an

unsatisfiable set of predicate calculus expressions with no meaning attached to them, |
would be worse than inefficient in finding a refutation. The theorem prover needs some

257




WILKINS

kind of knowledge about its input, or must at least be given advice. I will present 2 few
reasons why | think prenex form is more suited for giving advice about than is clausal
form. We find non-clausal forms essier to express ourselves in since we write axioms
that way. Suppose | have an axiom which represents the fact F. If distributivity shatters
this axiom into n clauses, the only plausible interpretation is that these clauses are all the
possible cases that can occur. The advice changes from "use this axiom to prove F" to
"here is a set of axioms related to F, use as many as are needed". Actually writing out
expressions and looking at their clausal and non-clausal forms should convince the reader
that clauses are not the best way to conceptualize things.

QUEST is a complete inference system for unsatisfiable sets of expressions in
prenex form. It exhibits expected non-clausal advantages and is as computationally
efficient as SL-reolution [4], one of the more sophisticated clausal inference systems.

2-Definitions

Prenex expressions are naturally tree-structured so | will use conventional
terminology(Knuth 1968) to refer to trees except as noted below. Each tree has one
particular node designated as the current node and this node is said to have control.
Each node is the parent of the roots of its subtrees and each subtree is a son of the
root node. Note that parent and son are not inverses. A node is an ancestor of 2 node,
N, if and only if it is the parent of N or the parent of an ancestor of N. A tree is a
descendant of a node N if and only if it is a son of N or a descendant of the root of 2
son of N. A nodeé is active iff it is the current node or an ancestor of the current node.
The cousins of a node, N, in a tree, T, are all those (and only those) subtrees of T that
are sons of N or sons of an ancestor of N in T, and in addition are such that their root
node is not an active node in T. A cousin of the current node in a tree is said to be a
current cousin in the tree. Branch nodes will be either AND nodes or OR hodes while
terminal nodes will be either T(true), F(false), or a literal.

If T is a tree and o¢ a substitution, then TXe¢ denotes the tree produced by
applying o to all nodes in T. Two trees, Tl and T2, are unifiable iff there is 2
substitution, o, such that T1Xcc and T2%c¢ are isomorphic, in the sense that there is an
isomorphism, [, from the nodes of TlXc¢ to the nodes of T2%c¢ such that if M and N are
any two nodes in T1¥o the following three statements are true: 1) if N is an AND, OR,
T, or F node then (N)f is the same type of node; 2)if N is a literal then (N)f is the same
literal; 3)if M is the parent of N then (M) is the parent of (N)f. Tl is said to be the
same (sub)tree as T2 iff T1 and T2 are unifiable with the null substitution. The negation
of a tree is formed by doing the following three things to the tree: 1)replace all T nodes
by F nodes and vice versa, 2)replace all AND nodes by OR nodes and vice versa,
3)replace all literals by their negation.

1 will now define the Truth Value Inference Rules which simply implement the
definitions of "and" and "or". A node can be inferred [alse iff the node is an AND node
and the root of one of its sons is ', or the node is an OR node and the roots of all its
sons are F. A node can be inferred true iff the node is an AND node and the roots of
all its sons are T, or the node is an OR node and the root of one of its sons is T'.

258




WILKINS

The expression input to QUEST are assumed to be conjoined together, s6 an input
set is represented by a tree whose root is an AND node and the subtrees of the root
are the expressions in the inpuf set.

An unsatisfiable tree, T, is minimally unsatisfiable iff when any subtree of T which
is the son of an AND node and not the only son of that AND node is removed from the
tree, the resulting tree is satisfiable.

8- Inference rules of QUEST

The truth value inference rules have already been mentioned. Let T be a tree
from which we are trying to infer false. Suppose N is the current node in T and let S be
the son of N we are currently trying to refute. When N is an OR node, all sons must be
refuted but when N is an AND node the search strategy may pick a son to refute. To be
complete, the inference system must in general allow any son to be tried although
QUEST restricts the choice in some cases without sacrificing completeness. The
distinction between rule of inference and operation must be understood. The rules of
inference presented here are ways of changing a derivation tree so the validity of the
expression it represents is unchanged. QUEST changes these rules into operations (of
the same name) by allowing substitutions to be made in order to apply the rule and by
placing restrictions on the use of the rule.

To develop the first rule, let O be the set of cousins of N in T which are sons of
OR nodes, with § deleted from the set. Rule one considers all members of O to be false
and infers whatever it can about S. Intuitively, the validity of this runs as follows. To
obtain a refutation of T by working at N, all sons of OR nodes which are ancestors of N,
i.e. O, must be inferred false if inferences about N are to help in a refutation. So if S is
to be inferred false above N, it is safe to infer S false at N and wait for the refutation
above N. This is valid because all inferences at a node are made using the information in
a node’s ancestors. Therefore, if S is the same subtree as a member of O, it is inferred
false, and if it is the same as the negation of a member of O, it is inferred true. This
rule is called the factoring rule of inference because it’s role corresponds to the role of
factoring in clausal inference systems. S is said to be factored on and the member of O
is said to be factored against.

Let A be the set of cousins of N which are sons of AND nodes, with S deleted
from the set. Rule two considers members of A true and infers whatever it can about S.
This simply uses the information provided by the axioms used so far. If S is the same
subtree as a member of A, it is inferred true, and if it is the same subtree an the
negation of a member of A, it is inferred false. This rule is similar to ancestor
resolution in linear resolution systems, but has added aspects because of the non-clausal
structure. To avoid confusion, it will be calied the smashing ruie of infercnce. S is said
to be smashed and the member of A is said to be smashed against. | shall call the
combination of smashing and factering the reduction rule of inference. Reduction and
extension (3 term used in the next paragraph) are both used in SL-resolution for similar
ideas.




WILKINS

The last inference rule is the one corresponding most closely to resolution. It
grows the current tree and is called the extension rule of inference, Extension says that
members of A (the set defined in the last paragraph) can be grown onto N as follows: if
M is an OR node then S can be replaced by a tree whose root is an AND node with its
subtrees being S and 2 copy of a member of A; if N is an AND node then simply add a
copy of a member of A as a new son of N. The member of A is said to be extended

=

|

against and S is said ic be extended o

QUEST is basically these rules with strict restrictions put on them to guide the
refutation and prune the search space.

4- Informal description of QUEST

QUEST has five operations. Each operation produces a new tree from an old
tree. A QUEST derivation is a sequence of trees where each is produced by applying
one of the live operations to its predecessor. The object is to produce the tree whose
root is the node F' from the input tree.

The most trivial operation is diving which simply moves control down one node to
the root of a son of the current node. The truncation operation changes the current
node to F' and moves control up to its parent whenever the current node can be
inferred false by a truth value inference rule. The reduction operation does inferences
from the reduction rule of inference, but only when false is inferred, and then only when
it is inferred from a son of the current node. The reduction operation, unlike the other
two, may apply a substitution to the tree in order to make this inference. The deletion
operation does true inferences from the reduction rule of inference, but only when a son
of an AND node that is not the only son of that AND node is inferred true. Deletion
may not apply a substitution since true inferences are a sign that something has gone
wrong so we don’t want to waste effort producing them.

The last operation is the extension operation. Growing the tree without a purpose
will probably not get us any closer to a refutation so it will be required that the tree
extended against have a subtree which is the negation of S. The number of subtrees in a
tree increases with increasing tree size something like factorially or worse, so finding
something to extend on may involve a huge number of uniliability tests. The test for
unifiability of two trees is not trivial since the nodes at one level can be matched in
many diiferent ways with the nodes at that level in the other tree. Therefore QUEST
does not allow extension on non-literal subtrees at all. Since only literals are extended
on, the subtree extended against will always contain the negation of this literal alter a
substitution has been applied. This negation is called the literal extended against. The
tree is grown as in the extension rule of inference and control is given to the root node
of the extended against subtree. The extension operation, by delinition, also requires
that any AND node in the subtree extended against which is on the path to the literal
extended against, must relute the son which contains the literal extended against. This
does not destroy completeness and significantly prunes the search space since only one
son need be tried at these AND nodes, and also makes the operation more like resolution
since the extended against literal must eventually get smashed.

260




WILKINS

QUEST has six restrictions on the applications of these operations which
significantly prune the search space.

1: The current tree can no longer be considered if an active node can be inferred
true by the truth value inference rules and the reduction rule of inference. This does all
true inferences not done by deletion. This restriction stops processing on trees that
cannot lead to a proof.

9: The initial current node must be one that is in some minimally unsatisfiable
subtree of the input tree. Thus only one starting point need be considered. This
corresponds to support subset restrictions in clausal systems, but here the negation of
the theorem can always be expressed in one prenex expression, so one starting point can
be picked.

3: At a particular OR node, all reductions must be done before any extensions or
dives. Without restrictions like this, the search space will be full of derivations that do
the same operations in a different order. This eliminates all derivations which do
extensions or dives before reductions at the same level. Hopefully, doing reductions first
will instantiate the variables further thus reducing the number of possible unifications
later on.

_4: If any current cousin can be inferred true or false by the reduction rule of
inference, then this is the only allowable operation. If there is a false inference the node
should have been inferred false when its parent had control, but instead an extension or
dive was done. Thus there is an easier proof than the one we are working on. If there
is a true inference then either the first restriction will stop processing or a deletion will
be done which simplifies the tree.

5: If the next operation is to be extension or diving then it must be done on the
son selected by the selection function over OR nodes. This corresponds almost exactly
to the selection restriction in SL-resolution. This also orders the applicable operations.
If all nodes have n sons then a system without this restriction would have on the
average n! times as-many derivations it can produce. As would be expected, QUEST
works for any selection function over OR nodes.

6: The same selection restriction is now applied to the sons that are reduced.
The same factorial saving is made by not repeating the same reductions in different
orders. The restriction is implemented by defining a total ordering of the sons rather
than a function that picks one out. A function will not work because we cannot always
apply reduction to a selected son. If the next operation is reduction then it can only be
donz i[ no son greater than (in the given erdering) the son being reduced has been
reduced.

This gives an informal desription of QUEST that is exact as | could make it. The
formal definition is [airly short and easy to read but is not within the scope of this
paper. QUEST is sound and complete, but again the proofs are too long to present here.
The formal definition and proofs can be found in (Wilkins 1973).

S}
oy



WILKINS

5- An Example

I will present one example of QUEST in action. | will point out places where
prenex form is an advantage in the hope the reader will recognize these as general
phenomena likely to occur in most problems. To make things readable, 1 will represent
the trees graphically. AND nodes will be distinguished by drawing an arc through their
branches. | will leave off the top AND node which has all the input expressions as its
sons, but one should remember that it is there. The current node will be desgnated by
an arrow. ’

Theorem: Every integer greater than 1 has a prime divisor. This can be
axiomatized as follows: D(x x) means any number divides itself. -~D(x y)v-D(y z)vD(x z)
represents the transitivity of divisibility. P(x)v(D(g(x) x)AL(1 g(x))AL(g(x) x)) says that
if x is not prime then a number between 1 and x divides x. Let a be the least counter-
example to the theorem. The negation of the theorem is as follows: ~P(x)v-D(x a) says
that if x divides a then x is not prime. ~L(1 x)v-L(x a)v(P(T(x))AD(f(x) x)) says that il x
is between 1 and a then it has a prime divisor.

A proof found by a POP-2 program implementing QUEST is presented in the next
five diagrams. The meaning easily attached to these diagrams is as follows: 1)Since a
divides itself, it is not prime. 2)Thus there is a number, g, between 1 and a which divides
a. 3)a was the least counter-example so there is a number, f, which is prime and divides
g. 4) does not divide a, since a is a counter-example. 5)By the transitivity of
divisibility, this is a contradiction.

D(x x) N&— ‘
~P(a) F

~D(x a) is immediately smashed
against input expression.

D(g(a) a} L(1 g(a)) L(g(a) a)

Extension on ~P(a) against second axiom,
followed by smashing the literal
extended against. A literal must
be chosen to extend on.




WILKINS

Dlx ) > D(X X) >

-P(a)

D(g(a) a) L(1 g(a)) L(g(a) a)

L(1 g(a))
~L{g(a) a)

P(f(g(a))) D(f(g(a)) gla)) P(f(g(a)))

D(f(g(a)) gla))
. =N
Extension on L(1 g(a)) against the fourth axiom, .
followed by smashing the literal extended against. F -Dif(g(a)) a)
The next operation must be the smash of -L(g(a) a)
against the L(g(3) a). In clausal form, if we had
just used the clause with L(1 g(a)) in it, we would
need another whole clause to get L(g(a) 2) and this
would involve re-refuting all the literals above this
AND node since distributivity would “attach” them to
L{g(a) a).

Extension on P({(g(a))) against
the third axiom followed by
smashing the literal extended
against.

263




WILKINS

D(f(g()) ga))
2)

—> ~D(f(g(a)) a)

- =D(f(g(a)) y) -D(ya) F

Extension against the first axiom with smashing of the literal extended against. Now y is
instantiated to g{a) and both ~Ds are smashed. Truth value inferences then infer F' from
the whole tree and the proof is complete. Note that the same situation as before arises
when we smash the =Ds. They are smashed against 1} and 2), both of which are sons of
AND nodes different from the son extended on at that AND node. Thus clausal form
would have two more extensions against clauses rather than two reductions. | hope the
reader may recognize this ability of prenex form as a general advantage and not particular
to this problem. In a sense, extension in prenex form sucks in 2 or 3 or n clauses in
compact form. Moreover they contain information likely to be relevant since one would
usually not expect a single axiom to contain parts irrelevant to each other.

R s s e i 5 2% S R S

7
S




WILKINS

8-Comparison with SL-resolution

Many of the ideas in QUEST come from SL-resolution so it is natural to eompare
the two. For the reader not familiar with SL, it is presented in (Kowalski and Kuehner
1971). The purpose of this comparison is to show that our clausal techniques can be
carried over to the prenex case, and to show how QUEST compares to clausal inference
systems in general since SL is currently one of the better ones.

A QUEST derivation tree can be considered as an SL chain. A cousin which is
the son of an OR node would be a B-literal, the son of an AND node would be an A-
literal, and top to bottom would correspond to left to right. Let us consider the case
when clausal input is given to QUEST. All cousins are now literals so I will speak of
QUEST trees as if they were SL chains. The only difference between QUEST and SL
chains initially is that QUEST chains have the unit clauses tacked on the front as A-
literals. This was done because I felt extension against a unit clause is more like
reduction than extension. Either system could easily be changed to be like the other.
With clausal input, QUEST will never do a dive and will never do a deletion unless the
same clause is input twice.

First, let us look at the admissibility restriction of SL. It says that no two
literals in the chain may have the same atom unless the next operation is reduction.
QUEST has the same restriction since two literals having the same atom is equivalent to
being able to infer a cousin true or false by the reduction rule of inference. Let us now
consider the operations.

The truncation operation is essentially the same in both systems. There are three
differences in the reduction operation. Both systems require reductions at one level to
be done before extensions but, as mentioned before, in QUEST this also applies to unit
extensions. This is a trivial difference. SL does not allow factoring within a clause or
ancestor resolution (smashing) against the rightmost A-literal while QUEST does. SL
makes up for this by allowing extension against all factors of the input clauses. Thus SL
has fewer reduction choices” but more extension choices, but once again either system
could easily be changed to be like the other. The third difference in reduction is the
ordering of literals to determine the order of reductions. This simply applies the
selection idea (the heart of the SL system) to reductions as well as extensions, and | feel
it should be included in SL. The only difference in the extension operation is the already
mentioned one of SL having more extension choices.

The differences when QUEST is applied to non-clausal input can be thought of as
follows. Some links in the chain are now pointers to a tree instead of literals. These
trees can be reduced as they are or "expanded in line" by diving operations. There are
now A-links in the chain that correspond to sons of AND nodes in the input tree. These
provide information which in the clausal case, loosely speaking, is only provided as a new
clause and then only with more literals in the clause because of the distributivity
applications. The following section gives evidence that the advantages one intuitively
expects actually do appear.

265




WILKINS

7-An implementation

I wrote a POP-2 program implementing QUEST 2t the University of Essex. The
program extends Boyer and Moore’s structure sharing techniques (Boyer 2nd Moore 1971)
to the prenex case. The purpose of the program is to run on examples in clausal and
prenex forms with a breadthfirst search so as to get a fair comparison of the size of the
search space. Since QUEST is fairly good on clauses as shown by its comparison to SL,
this should be a fair comparison. Three statistics are given: 1) cpu time in seconds, 2)
number of extensions against input expressions, and 3) number of derivations being
processed in parallel by the breadthlirst search.

For lack of space, | have picked only 3 examples. These demonstrate results
found by running other examples. It was also found that the amount of processing needed
in clausal cases varied greatly with the clause picked to start with. Problem 1 is the
classical Quine-Wang problem P(x a)v(P(x [(x))AP([(x) x)), -P(x a)v-P(x y)v-P(y x).
Problem 2 is a variation of 1: G(y a)v(G{y {(y))AG({(y) y)), ~C(w y)v(C(y [(y))AG([{y)
y)A-C(y a)). Problem 3 is the example of section 5.

NON-CLAUSAL CLAUSAL

cpu time exten. deriv. cpu time exten. deriv.

Problem 1 1.074 3 2 1278 8 4
Problem 2 .746 3 2 mmm u 1
Problem 3 11.296 65 45 28965 136 4

8- Conclusion

It it may be favorable to abandon tlausal form for a form easier to attach meaning
to. This paper presents a non-clausal inference system that is complete at the general
level and probably as efficient as current clausal systems. Section 7 provides evidence
that computational advantages expected with prenex form do in fact appear (I do not wish
to argue about judging criteria here). The comparison of QUEST with SL-resolution
shows that techniques developed for clausal systems will be applicable to prenex systems.

266




WILKINS

REFERENCES
1. Boyer, RS, and Moore, J.S., The Sharing of Structure in Resolution Programs,
Metamathematics Unit, University of Edinburgh, 1971,

2. Hayes, P.J., and Kowalski, R.A., Lecture Notes on Automatic Theorem-proving,
Metamathematics Unit Memo 49, University of Edinburgh, 1971.

3, Knuth, D.E., Fundamental Algorithms, Addison-Wesley, London, 1968.

4, Kowalski, R.A., and Kuehner, D.G., Linear Resolution with Selection Fuﬁction,
Artificial Intelligence, 2, 1971.

5. Nilsson, N.J., Problem Solving Methods_in Artificial Intelligence, MeGraw-Hill,
New York 1971.

6. Wilkins, D.E., QUEST: A Non-Clausal Theorem Proving System, M.Se. Thesns,
University of Essex, 19’73



A COMPUTER SYSTEM FOR MAKING INFERENCES
ABOUT NATURAL LANGUAGE

by

Yorick Wiiks
Artificial Intelligence Laboratory
Stanford University
Stanford,Calif. 54305, USA.

ABSTRACT: The paper describes the way in which a Preference Semantics
system for natural language analysis and genaeration tackles a difficult class of anaphoric
inference problems : those requiring either analytic(conceptual) knowledge of a complex
sort, or requiring weak inductive knowledge of the course of events in the real world.
The method employed converts all available knowledge to a canonical template form
and endeavors to create chains of non-deductive inferences from the unknowns to
the possible referents. Its method for this is consistent with the overall principle of
"semantic preference” used to set up the original meaning representation.




WILKS

1LINTRODUCTION

This paper describes inferential manipulations in a computer system for
representing the content of chunks of natural language. By inferential manipulations,
| mean the drawing of complicated inferences about the course of events in the
world that are necessary to understand natural language, and in particular
necessary lo resolve pronoun references (anaphora), and ambiguities in the senses
of words.

To take a simple example : when the system sees the sentences JOHN LEFT
THE WINDOW AND DRANK THE WINE ON THE TABLE. IT WAS GOOD, it decides that
the pronoun refers to the wina, while if it sses JOHN LEFT THE WINDOW AND
DRANK THE WINE ON THE TABLE. IT WAS GREEN AND ROUND, it will dacide that it
is the table being referred to in the second sentence. "Decide” here must be
treated with care, since further text might correct both these decisions, of course,
the point is that a hearer or reader, having encountered the amount of text given
ebove , will almost certainly understand in the way indicated, even if the speaker or
write intended something different.

The system is programmed in LISP 1. 6 and MLISP, and runs as an analyser of
English and a generator of French, on the PDP6/10 at Stanford A. |
Laboratory.  This provides a very firm context of verification for a natural language
understanding program: in the first example above, if “it" emerges as “il” the
French masculine pronoun, it can only refer to "wine" since that is only masculine
noun in the t The ples dear to the hearts of those who analyse
stories and dialogs can all be reconstructed within a machine translation environment.

The system described here has had its lower level capabilities
described slsewhere[ 6,7,8 ] : its abilities to cope with complex sentences
without a isolable syntax package;iis ability to deal with wide areas of word sense
ambiguity , and the case ambiguity of prepositions. All these abilities are
2ssumed in the present paper, and not described in detail. Those "front end
capabilities” set up very complex semantic objects, called "semantic blocks" :
networks of objects called templates , that are themselves complex structures of
semantic primitives. The present system is distinguished not only by the more
complex objects it handles than other programs (and the greater abilities to
handle unrestricted natural language thal come from that), but its ability to
handie objects representing longer stretches of discourse. The semantic blocks
described below , that are these networks of templates, are representations for
small paragraphs of text. ~ Again, it must be emphasised, that thess complex objects
are not merely the result of applying projection rules to dictionaries, as in most
contemporary systems [ 12, 13 ] They are built in part from already available
complex parts, called templates and paraplates [see 7 Jthat are "fuzzy matched™
onto text chunks as wholes.

267




e S A R

WILKS

In this paper then, | am concerned with the manipulation of these complex
objects to draw out semantic information, and the application of inference rules to
that information, in order to solve concrate reference probl It is an pti
of this work that these problems cannot be solved independently of a
strong representation [ 1 ].

| would not defend the details of the semantic codings given in this paper, nor
the particular control structure of the program. What is essentisl in this system
, and among its distinguishing features, is (1) the inferential use of partisl
information , that is, information wesker than thst in dictionaries and analytic
(always trus) rules. i The use of such information constitutes the EXTENDED MODE
of the system described baelow. The second distinguishing feature (2) is the
preferring of one representation or inferential chain to another. This is important
and a neglected aspect of modern natural language research, whers workars often
seem to feel that the first representation or inference their system finds MUST
be the right one. This is discussed elsewhere [ 7 ], and again below in the
context of inferential chains.

The common sense rules of inference used in this system are not deductive
consequences about the world, but are likely courses of events which , if and only if
they match onto the available explicit and implicit information in the text, may be said
to apply, and by applying may enable us to identify mentioned extities and so
resolve problems of reference. In the examples above we need to apply at least
a rule equivalent to , in ordinary language, IF SOMEONE WANTS AN ENTITY , HE
WILL WANT TO CAUSE IT TO MOVE IN SOME WAY. Such arule is , in this
system , in no way contradicted by mention of exceptions ,such as someone wanting
some object but doing nothing to move or otherwise affect it. This rule (see
below for details) is fuzzy matched onto what we know from the example, and what
we know about drinking, including that it is an act of causing a liquid to move.
These processes to be described in the paper allow the pronoun to be
retferred correctly in a way consistent with the common sense inferences a person
would make and are reducible to non-deductive forms such as SOMETHING X's
AND FOO X's , THEREFORE THE SOMETHING IS FOO.

Such inferences could, of course, be represented in some much stronger
system with deductive machinery , given all the missing frame axioms,
quantification etc. My point is that nothing would be gained by doing so, because
such machinery can never improve the reliability of the partial information being
handled. It is the content and applicability of such inferences that should be
our concern at present , not the finding of strong systems of logic in which to
represent them. | have set out that case in more detail in [ 8 ).

Secondly, with regard to what | called preference, it is an important premise
of this work that the basic problems of natural language semantics have simply
not been solved, either by the linguists or the A.l people in the field, and that
insights about the structure of language are still needed: needed in the same sense
in which Papert has often argued that Al must offer simple rule systems

270




WILKS

different from the first sledgehammer you thought of. His persuasive example is
thet of catching a ball, done by a simple algorithm and not at ali, as one might
have thought, by the solution of complex differential equations. To this end, we
avoid the generative gr tical and tic systems of the linguists, as well
the deductive systems of logicians. The essential part of the prasent system that
aims to offer a little of the missing content is what we call “Preference Semantics*.

The key point is that word sense , and structural , ambiguity in natural
language will always, in @any system, give rise to alternative competing
structures, all of which can be said to "reprasent” whatever chunk of language
is under examination. What we mean by "preference” is the use of procedures , at
every level of the system, for preferring certain derived structures to others on
the basis of their “semantic density”, and in this paper we shall be particularly
concerned with preferring certain inferential chains to others on that basis.

What we are postulating ,speaking psychologically, is that humans interpret
language so &s to reduce the conceplual density to a minimum; which can be taken to
mean " keeping the amount of new information introduced into the system to
& minimum . Without this feculty a language understanding system cannot
funetion.  in understanding "Piaces of paper lie about the floor", wa will thus
choose 1o interpret it as being about position rather than deception because from
the preference information in the system about the concept "lying" we will know
that deceptive lying is a concept that prefers an animate agent if it can get it,
(here it cannot) while & statement about passive position prefers a physical object
as the apparent agent , which is available here. The satisfaction of a preference
increases the density of the derived representational network and the densest
network will be the one ultimately preferred. But, in understanding "My ideas
followad hers closely” ,we want to accept the ideas as the agent, even though our
information about the concept of following is that it normally prefers an animate
agent if one can be found, since only in that way can the animate sense of “fly"
be chosen torrectly as the agent in "The fly followed the ladybird into the
web". The point is to prefer the normal , but to accept the unusual. A little
reflaction will show that conventional linguistic rules, with fixed word
classas, operating with (unintelligant) derivational rule systems, cannot do this very
simple thing.

The preference computalions,just sketched above, ,that involve no real
world knowledge above and beyond the conceptual knowledge we have about
word meanings,l call the BASIC MODE of the system.| want to distinguish the basic
from the extended mode that | discuss in detail in this paper in terms of the kinds
of anaphora problem the modes can tackie.n the basic mode, the sysiem resoives
those anaphoras that depend on the superficial conceptuzl content of text words.
This is does in the course of selting up the initial semantic representation (
which | have not yet described at all). | shall call these type A anaphorss. For
example, in "Give the bananas to the monkeys although they are not ripe,
because they are very hungry”, the system in its basic mode would decide that
the first "they™ refers to the bananas and the second to the monkeys. Il does that




WILKS

by seeing, in the representation for the concept of hunger, that it prefers to be
applied to something animate,and that the concept of ripeness prefers tc be applied
to something plantlike.lf every satisfied preference increases the denmsity of the
conceptual network ,then we shall get the densest network when the first "they" is
tind to "bananas” and the second to "monkeys”.

The main part of this paper describes an EXTENDED MODE of the system that
tackles two other kinds of anaphora example that | shall call types B and C.
Consider the correct attachment of "it" in "John drank the whisky from the gless, and
it felt warm in his stomach”. It is clear that the pronoun should be tied to “whisky"”
rather than TO "glass”, but how that is to be done is not immediately obvious.
Analysis of the example (see below) suggests that the solution requires ,
among other things, some inferance equivalent to the sentence "whatever is in a
part of X is in X".

Anaphoras like the last | shall call type B, because the inferences required
to resolve them are analytic but not superficial. By analytic | simply mean that the
quoted sentence above, about parts and wholes, is logically true , and not a fact
about the real world, but rather about the meanings of words like "in". What is
meant by "superficial” in the distinction between types A and B will become clear
below after some a di ion of the ing formalism employed

Most importantly,l shall discuss type C anaphoras, which require
inferences that are not analytic , bui weak generalisations (often falsified in
experience) about the course of events in the world. Yet their employment here
is not in any sense a probabilistic one. In "The dogs chased the cats, and | heard one
of them squeal with pain™, we shall, in order to resolve the referent of "one"
(which | take to be “"cat" not "dog"), need a weak generalisstion equivalent to
"animate beings pursued by other animate beings may be unpleasantly affected”.
Such expressions are indeed suspiciously vague, and a reader who is worried at
this point should ask himself how he would explain (say, to someone who did not
know English well) how he knew the referent of "one" in that sentence. It can
hardly be in virtue of a particular fact sbout cats and dogs because the same
general inference would be made whalever was chasing and being chased. |
shall be surprised if he does not come up with something very like the inference
suggested, and it may be the nature of natural langusge itself that is worrying him.

The inferences for type C, then, are general expressions of partial
information(in McCarthy's phrase) and are considered to apply only it they are
adequately confirmed by the context. What | mean by that will become clear in the
course of what follows, but in no case do these expressions yield deduclive
consequences about the future course of the world, nor is there any assumption
here that the event generalised about ALWAYS happen in such and such a way.
Indeed, they would be foolish if they did because the world's course cannot be
captured in that way. In the whisky example above, it might have been his earlier
dinner that in fact made him feel good. Yet, nonetheless, the solution of the
anaphora problem for an understander, derived as just described, is definite,




WILKS

for anyone who writes the sentence asbout John's slomach will be taken to mean
that the whisky wes in his stomech, whatever he might have intendsd in the rare
case of a glass swallower.

2.BRIEF RECAP OF THE SYSTEM’S BASIC MODE OF ANALYSIS

The heart of the basic mode's representation is the template (not to be
confused in eny way with the usage of that word in character recognition to
mean a context-free mathod of analysis).This is an active frame of complex
concepts that seeks preferraed categories of concepts to fill its slots,though if its
preferances zre not satisfied it will accept whatever it finds in default. What Minsky
has recently called [ 2 ] frames are good first approximati to teamplat

The template can be thought of as expressing the gist of a phrase or clause,
or even simple senience, of languagelt is a connectivity of FORMULAS,which
in turn are complex concepls exprassing the senses of words,one formula to a
word senself Fl etcstand for formulasthen a template has the following
connactivily :

FlenanaF2eeasaaF3
/1N \ ]\
F11 F12 F13 F21 F31 F32

At nedes Fl, F2, F3 are the principel formulas of the template and
aro always agent, action and object (in that order), though any of them may be &
dummy in any particular example. (F11, F12, FI3)is a list of formulas dependent
on main formula F1 etc. Let me give an example of a tamplate structure at this point
by using the following simplifying notation: sny English words in squere
brackets [] stand for the meaning representation of those words in the Preference
Semantics syslem. This device is important in the exposition of the material in
that the content of the []-abbreviated forms can be seen immadiately, whereas
the complex coded forms themselves would be as hard to read as ,say , @
sentance read a word at a time. But it is imporiant to restste thsi the rules
and formalisms expressed within [] are really formulas and subformulas of structured
primitives, and that their tasks could not be carried out, as some slill seem to
believe, by massaging the English language words, standing for their own meaning
rapresentation.

So then, the template conneciivily of formuias for "The black horse passed
the winning post easily” could be written (ignoring any ambiguity problems for the
moment):



[mfrsai Iptauﬂ {;;ont]
[the bieck] {sasily]  [the winning]

When the system runs,input iexts are fragmented into cl ,phrases
otc. and templat are tched to  each of these,probably a number of
templates to asach text chunk depending on how potentially ambig! its words are .
The first exercise of preference triss to cut this number down and throw
away as many templates as possible . To see how this is done ,we must realise that
the formulas at the nodes of the template network are themsslves complex

objects. Hare for example ,are two formules for the English action "grasp™:

"grasp"(actionl) = ((%xANI  SUBJ)((*PHYSOB  OBJE)((THIS (MAN
PART))INST)(TOUCH SENSE)))))

“grasp"(action2)-> ((xHUM SUBJ)((SIGN OBJE)(TRUE THINK)))

There is no space to explain these tree structures of semantic
primitives in detail here (see [ 6 , 7, 8 ])nor is there any need to do soWe
need only note that the right-most element of each formula is its principal,or head,
eloment. Thus, graspl is basically a SENSE action,as in grasping a block, while
grasp2 is basically a THINK action, as in grasping a theorem.The case
subformulas at the left hand sides of the formulas express the preferences
under discussion. The subformula with  SUBJ expresses preferred agents
(animate things for graspl ,and human things for grasp2), while the subformula
with OBJE expresses the preferred objects of the actions ,namely physical
objects and SIGNS respectively,the latter being thoughts and symbols of thoughts.

This should all become clearer if @ach formula is thought of as & binary
tree,with dependency of all branches to the right. Thus for the first formula above,
we have:

274




WILKS

/\
/ \
/\ \
/ \ \
=AN1  SUBJ /\ «pref. agent
/ \ =animate
/\ \
/ \ \
*PHYSOB OBJE \ «pref, object
/\ =phys., obj.
/ \
/ \
/\ /\
/ \ / \
/ \ TOUCH SENSE «head
/ \ =sense act
/\ \
/ \ \
/ /\ \
/ / \ \
THIS MAN PART INST epref.inst,

=human part

So, when anelysing “John grasped the idea"the agent preferences of
both the templates initially constructed will be satisfied by John ,who is both
animate and human.But only grasp2 will have its object preference (for a SIGN-like
entity) satisfied!f we think of a satistied preference as strengthaning one of tha
arrow links in the diagram above, then it is clear that the template with the grasp2
formula at its action node will have the stronger linkage and will be preferred, and
the template with the graspl formula will be rejected, and never considered again.

The representstion of a text(composed of fragments) is then a neilwork of
these template networks. The templates are interconnected by case ties. The notion
of case is discussed in datail in [ 7 ]1, , bul for the moment a case can be thought of
as a type of link tying one template to some particular node in another template.
In the sentence "He lost his wallet / in the subway" (fragmented at the stroke)
we might say that the second fragment of the sentence depends on "lost" in the first,
and thal the dependence is the locative case. Thus in the representation, the
template for the second fragment would be tied to the central, acticn, node of the
tirst, by a link labelled LOCA. The noda on the first template to which the case
tie ties is called the mark of the second template. Enormous gaps have been left
in this brief recapitulation : in particular how this last process is done with the aid of
dummy templates and highly structured case objects called parsplates [see 7 ;




i

‘de8uny pue dis ey s)d jos. d pessejeid ey} uo suoljejndwod
uey} @Jow Ou Spuewep UuolN|ose. ey} esneaeq epow dseq ey} ur  Aem
siy} ul peajoses ese L A4Buny Aiea eue Aeyj esnedeq edii jou ese Keyj y3noyje
seueueq ey} pejuem sAeyuow ey], ul sesoydeue ey)'epow Iiseq 8y} ul }xe} jo
sydes3e.ed Joj $20|q dljuewes ey} dn eyew suoljejuasaidas sy passeidwos esey]

"ejdwexe Siy} Ul pejjyun st 8pou YHOHJVYNY
®y) ,e|qe} ey} uo, Jo; ejeidwae) ey} jo ezuepuedep jo juiod ey} Kjieed S| jey)
@3Uis o8} Ul BUIM, Joj E|NWJO} BY} Joj 6POU By} O}---- OUIM ey} yuelp uyof, Joj
®je|dwe) Jeyjous ul epou 8y} 0} Jejulad. B ©Q PINOM MY Oy} pue‘esed uoljedn|
v say _e|qe} ey) uo, e3uls'y]07 eq Pinem el 3ISYD eyl'seylenb i jeum  ym
Suoje pejlussesdes s ey), BUIS SejNWLO JO SiSI| juspuedsp ou 8q pPinom Jey]'Ed
12 ,@|qe},, 10} BjNWJO) ® puR (SUoljle-Opnesd se pejeeJ) oJe suoijisodesd esuls) Z4
ie ,Buunp, Joj ejnwuo; jusle-opnesd ef[4 je ejnwioj jueSe Awwnp e eaey pinom
L2198} @y} uo, Juej ey} 4o} uolejuasasdaes sy passaidwod ey}, e|qe} ey} uo
BUIM By} NuBJDP uUyol, Sem Bdusjues |sJi asoym e|dwexe Jaljde@ ey; ul ‘og

‘eAoqe pejesisnji . dsed8, 4o} seuo ey} eyl ‘eat) ejnw.o}
e 3uiejued jdefqo xe|d € 8| epou [3 ey} je Ajenjde i jeym jeyi noyEnodyy
pesequewe. eq jsnw }I puy'seje|dwe) jo jdomjeu e dn Buyjes Aq yd0|q
dljuewes, ey} 04nJNA)S YYOHJYNY Pue NuWW'ISYD 'Sl jeyl 'seljlaljdeuuca yans
48yjo u sepou o} AjAljdeuuc) ejejdwe) aoum ey} Suik] smodle Jeyjo se jo JyEnoy)
eq ued sepou'pasijejided’meu &y]  Ajiadsuucy  ejejdwe}  Jiseq ey}  sem
Yauym  ‘eaoqe wesBeip js4l ey} UO Sepou ey O} Jojes sisi| ey} pue “dl@ (4 eyj

((syuepuedep
£d)(siuepuadep zy)(sjuspuedep [4) €4 24 14 VHOHAWYNY MUVA  3SVD)

18} @poul 2seq ey} wWodj ‘xe} jo juewBel) e\Buis e oy peulejqo uojjejuesesded
ejoym BY} JC W40} §81 PRsIEIdwor ey} W)  JUedejad |Ie4lod S} O} B|qeidea
unguodd 8y} woJ; ‘sejajdwe) ueemjeq Sy ejnjysucd osje sesoydeue y  8d4}
@584} ‘PoAjoseJ Bsu(eduessjesd o epou diseq Siy} Ul PeAjoses eJe se.oydeue
v 8dA} moy sjduexe sAsjuow pum seumusg ey} yim ‘Jellsee peqiidsep |

‘Jusuodwod 2j32juds |[BUOLUSAUCT T JO ¥JOM oy} eucp esey Bullieje.id
pue Suiyaew Jjuswes |pidljiedne ey} moy pue ‘seiuwng eyl Buneuuile Aij@Alde)e
uojjejuese.dss Jedeep o o) pejssaucd o Buppjew ejejdwe; |edijsedns Siy} Moy

SAUM



WILKS

3.QUICK SKETCH OF THE EXTENDED MODE OF INFERENCE

The extendsd mode of inference ,using common sense inference rules, Is
cellad whenever the besic mode cannol resolve a pronoun anaphors, between two
or more candidete words, by semantic link density alone. In the example
asbout John and his stomech, density techniques have no way to decide whether the
gless or the whisky is in his stomach. On a basis of preferrad agenis and objects of
ections , whet | called superficial conceptual information, both sre equally good
candidates. The extendad inference procedure is called and, if it succeeds,it
returns s solution to the basic mode which then continues with its analysis.lf it
too should fail to reduce the number of candidates to one, then the top lavel of the
system tries to solve the problem by default, or what a linguist would call focus.
Roughly, that means : assume that whatever was being talked about is still being
talked about. So, in “He pul the bicycle in the shed and when ha came back next
week it was gone", neither densily criteria, nor the extended inferences tc be
described here, will help at all. So the system may as waell assume ,in this limited
context , that the bicycle is still the focus of attention, and hence the reference
of “it".

Consider again the following sentence eafter all the basic mode's routines
have been applied:

ft: John drank the+ whisky / 2 DIRE : DTHIS from aeglass / 3 : and it felt
warm / 4 IN : DTHIS in his+stomach]

Since in is in []-abbreviated form, this object is really four succassive
list~-compressed-templates described above , ona for each of tha four fragments of
the sentence. The slash marks the fregment boundary and the case
names DIRE(direction) and IN(contzinment) indicate the dependencies of templates
2onl,and 40on 3 , respectively. The DTHISs are dummies added to fill out the
canonical template triplet in cases of missing agents,objects etc. Further assume
that the "his" has been tied to "John" by the basic mode , and presents no problam
of analysis, and assume too that the basic mode provided s list of "candidates”
for the referance of "it"("whisky" and "glass"). because if there had not been such a
list of more than one tandidate the routine under description would not have been
called into play.

EXTRACTIONS are then made from each template in turn, if and only if it
contains a represantation of either an answer word or the variable pronoun itself.
An extraction is the unpacking of every possible case tie : both those in the
action (second)formula of the template and those labelling a link to other
templates. In this example we obtain the following extractions: which ars template=
like forms as follows (where the first digit refers {o the fragment &, the second to
the number of the axtraction from a particular template , and "+" links words with a
single formula):




11:  [whisky (INin )} John «part)

12: [whisky (DIRE to) Johnepart]
21: [whisky (DIRE from) a+glass]
41: [ 7it (IN in) hissstomach]

We can explain how these extractions were made, even in the absence of
any detailed knowledge of the struclure of formulas: 11, for example, hes baen
derived from the template for "John drank the whisky" because from the structure of
the formula for “drink” it follows thai the liquid drunk is subsequently inside
the drinker. This is because, when making up the formula for the action"drink", we
express in it that the action consists in causing a liquid to be inside the agent of
the action, as follows:

((kANI  SUBJY((FLOW  STUFF)OBJEM{SELF  IN)((WRAP  THING)FROM)MOVE
CAUSEM))

This form requires no more to be understood than earlier example formulas,
except to note that (FLOW STUFF) denotes liquidsthe preferred objects of
drinking, and that the action causes io move that liquid into the agent's self,and
that it is (FROM implies direction case) liquid moved from a container ,or {(WRAP
THING).

So, in this informal representation we have acquired new template-like
objects that express, in canonical form, new analytic information extracted from the
axisting tamplates, and from which new inferences can be made. It is postulated that
the generation of this inexplicit information from the deeper levels of the
formulas ic essential to the process of understanding. These new forms differ
from standard templates only in that their second node, or pseudo-action,
has had a case name CONSd onto whatever the node was before. Note here that
the form (IN in) is not redundant since the case namae IN locates the case precisely
as containment, while the English preposition can indicate many csses other than
containment, as in “in five minutes”.

We have now obtained new temptiate items that yield assertive information,
but did not appear in the original text. We then try two strategies in turn: first we
try a zero-point strategy, which is to try to identify an answer template(or
extraction) and a variable template(or extraction) without the use of common sense
interence rules [CSIR's ] .

The general assumption here, and it is a strong psychological assumption, is
that in order to resolve these painful ambiguities the understanding system is going
to use the shortest possible chain of inferences it can. And a zero-point strategy will,
as it were, have no length at all (in terms of a chain of CSIR inferences) and so if
it works, it will always provide the shortest chain. This preference for the shortest




WILKS

chain is itself a strong pasychologica! hypolhesis ,and is for exsmple,very ditferent,
apperenily from the hypothesis about “keeping as many of & frame's terminal
satisfied 2s possible™ that Minsky suggests briefly in his recent "Frames” paper[ 2
] The present hypothesis is a “laziness hypothesis™ consistent with the gomn!
principle in use here of slways being prepared to plexify ,or o
representation,but never doing so unless necessary-=--just as the oxhndad
mode is never cslled unless nacessary.This is a very different cversll principle
from the wide {orward inference proposals of Schank [ 5 ] and Charniak[ 1 ].

This zero-point strategy is adequate for the ple under di ion,
because we can (under a suitable definition of template and extraction maichmg)
identify extractions 11 and 41, end thus identity "?it" and the whigsky, and we
are home. This was the solution of 2 B type anaphora, requiring orly analytic,
r arily true, ptual information.

It the zero-point strategy fails, we bring down all the CSIR rules that contain
an action subformula occurring in an answer or problem template form in the
pool, and attemp! o find the shortest chain that lesds from some answer to some
variable.

Lat us return to the first example of the papar: "John left the window and
drank the wine on the table. I was good". Notice already that we can reject all
simple solutions based on focus (thst the wine is referred to because it is what is
being talked about) in view o of the contrasting example whose second sentence is
“It was green and round" where clearly it is the table being referred to. Notice
that this contrasting sentence pair will be dealt with inside the basic mode,
because the preference of concepts of chape for physical object possessors, will
reject the wine as referent,

Let us now set out that exsmple, using the informal [] notation, and
label original templates from the sentence with T# numbers, and label extracted
template forms with E® numbers. We shall have then, after extraction:

Ti. [John left theswindow]

El. [John drank the+wing]

E2. [wine (LOCA on) the+tabls]
E3. [wine (IN in) John]

T2. [ ?it was good]

All these slay in the inference pool because all contain either the problem variable
?it or one of the possible referents window, wine or table. The exiendsd mode
now atcesses its CSIRs which are siored under the main action element of their
antecedent and consequent . That doas not imply howesver that the action is




WILKS

only the simple primitive head element==-the actions in CSiRs cen be as complex
sub-formulas as is necessary, which i a different approsch from Schenk's [ 5 ]
where the inference rules are sirongly clessified by the fourteen primilive
actions. | consider 2 much finer discrimination of rules y.

Here are two rulas { shall call 1T and 12 respsclively, given in formal end
informal versions:

11: [ animatel likes 2 ] = [! causes-lo=move 2]

((%xANI 1) WANT 2) - (1 (MOVE CAUSE) 2)

{2: [ 1 is good ] - [animate2 wanis 1]
( 1 BE (GOOD KIND)) = ({kAN!I 2) WANT 1)

The rules are flexible about expression of restrictions on variables by
subformulas or elements . They are ungquantified , but analogs of universal and
existential quantification can be seen in them: in 12 for example, the sppearance of
the animate variable 2 can be read as "then there is some animate enlity 2 such that.
.oete. ™

The strategy searches form both the ?variable and from the potential
answer template forms, trying chains of length one first, then of length two. At
present it will not attempt to construct a chain longer than two. This could be
easily extended to three, but | suspect that understanding of normal situations
rarely requires longer chains than that. The preference for the shortest chain is
analogous 1o the use of preference in the basic mode: both uses introduce as
little new information into the as is possible.

Again, the consequences drawn are not nacessarily trus, they resolve
ambiguities only where both antecedent and quent match what we alreedy
know or can semantically extract. Much of the effort of the program is in the inexact
matching of the template forms to the rules (or "fuzzy matching”™ as the
fashionable phrase now is. ) That does not meen the satisfaction of the
restrictions on the variables in the rules----that is not fuzzy, but the
closeness requirements on subformulas in template forms and rules. This always
involves decomposing formulas into case parts , as on the tree diagram earlier,
and matching some but not all the brenches ---this is a2 process analogous that
sketched by Minsky [ 2 ] as "matching frames by matching their terminals™.

In the present case a chain with two inference rules is set up as follows:

[ %it is good] ' T2

{animate2 wants ?it] using rule 2




WILKS

[animate? csuses-to-move Fit] using rule |1
[ John drank wine) El. by fuzzy match to I1.

Hence template node “"wine” and ?it are fuzzy melched, bacause of the fuzzy match
of the last two lines of the chain, thus so referring the pronoun "it". It is virtually
certain, as always, that there would be chsins yielding other possible answer-
referents, bul none with chains shorter than this one.

4.DISCUSSION

The system described cannot be considered in any way adequately
tested , partly because no one has any vary clear idea of what constitutes a test in
this area. But even to qualify, the basic mode must be shown to be stable under &
considerable vocabulary and range of senses for words, and the extended mode
must be shown fo be determinate with s decent sized inventery of CSIRs.
The praesent(end=1973) vocabulary is 500 words yet, though small, it is to my
knowledge the largest of any operating deep-structure semantic analyser. At
prasent, the program swaps in two large cora images of 46K and 50K respectively,
plus two small ones of 5K each ,all under control of a SAIL program. A
trouble-free peragreph of text is processed in sbout 6 cpu seconds, while a quite
simple sentence requiring inference chaining of the sort just described may
require that sort of time by itself.

i think the use of the shortest possible CSIR chain can be defended as sn
extension of semantic preference used in selting up the basic rapresentation. That
preference was justified as an opling for the “semantically densest™ interpretation
which was, | claimed, the one "with the least meaning"(in the sense in which &
siring of random words carries the maximum possible information). Similarly, the
shortest chain of inferences alse minimises the information in play, and introduces
the least extraneous inductive information into the system. It is clear that such a
notion of information based choice is ultimately inadequate. We only have to
consider a senlence like "l was named after my father” where it seems clear that
we exclude one interpretation simply because it contains virtually no information
at all. This alone shows there must be some qualification to @ "minimising
information™ theory.

In this paper, and its predecessors, much emphasis has been piaced on the
template as a device to be parsed onto real text, because the subject
investigated in this paper cannot be trested in isolation from an adequate linguistic
base system. The inferring of a corract interpretation is intimately related io
the systematic exclusion of competing interpretations, and any system that does not
allow raalistic ambiguity of sense and structure in at the start can hardly appreciate

281



WILKS

this point. | have devaioped elsewhere { 10 ] en absiract view of meaning along
these lines: that to have mearning is sssentizily to have one meaning RATHER THAN
ANOTHER. Or, put another way, having maening sesentially involves procedurss for
the exclusion of alternative interpretatiorz. This, | belleve, is the residuel truth
lurking b th the “prucedurs! view of mesning”, a thesis which when taken s
face value is patently false.

Another important sspect of the system iz that it has a2 uniform
representation and inference system &t all stages of operation: there is no
conventional division into syntactic, samantic and deductive or knowledge packets.

There has been no space in thus peper for comparisons with the work of
others, though the similarity of the task described here for the extended mode to
the work of Charniak [ 1 ] will be obvious. There are overall similarities of aim and
assumptions ,too, with the work of Schank [ 5 ] and Winograd[ 12 ]. One main
difference of emphasis is the noticn of preferences. If there is such a notion in
those works it is hidden away in the "hacks” and not brought to the fore where it
belongs.To my knowledge the only other author who has emphasised the notion,
though in a quite different context, is Quillian [ 4 ].

ACKNOWLEDGEMENT

This research was supported by the Advanced Research Projects Agency,
Dapartment of Defense(SD 183), USA.




WILKS

REFERENCES

[1] E. Charniak, Jack and Janet in search of a theory of knowledge. Advanced
papers of the Third International Joint Conference on Artificisl Intelligence,
Stanford Research Institute, 1973.

[2] M. Minsky, Frame Systems, unpublished MSS, MIT, November 1973.
[3] S. Papert, The Romanes Lectures, U.C.Berkelay, 1973.

[4] R. Quillian, Semantic Memory, . in M. Minsky, (Ed. ) Semantic Information
Procaessing. MIT Press, Cambridge,Mass., 1968.

[5] R. Schank and C. Rieger, Inference and the computer understanding of natural
language. Stanford Al Laboratory Memo #197, May 1973.

[6] Y. Wilks, An Artificial Intelligence approach to machine transiation, Stanford
Al Laboratory Memo #161, March 1971; and in R.Schank and K.Colby, (Eds.)
Computer Models of Thought and Language, W.H.Freeman, San Francisco, 1973.

[7] Y. Wilks, Preference semantics, Stanford Al Laboratory Memo #8206 , July 1973;
and in E. Keanan(Ed.) Formal Semantics of Natural Language,Cambridge U.P.,
Cambridge, 197 4(in press).

[8] Y. Wilks, Understanding without proofs , in Advanced Papers of the Proceedings
of the Third International Joint Conference on Al, Stanford Research Instilute
,1973.

[9] Y. Wilks, Natural Language Inference, Stanford Al Laboratory Memo 2211,
October 1973.

[10] Y. Wilks, Decidability and natural language, Mind, Vol.  LXXX, N0.320, 1971.

[11] Y.Wilks and AHerskovits, An intelligent analyser and generator for natural
language, to appear in the Communications of the A.CM.

[12] T. Winograd, Understanding Natural Lamguage, Edinburgh U.P., Edinburgh.
1972.

[13] W. Woods, Procedural Sematics for a question-answer machine. Proc.FJCC ,
1968.




PRODUCTION SYSTEMS AS MODELS CF COGRITIVE DEVELOPMENT

Richard M. Young

Bionics Research Laboratory,
School of Artificial Intelligence,
Edinburgh University

Abstract

A form of information processing model known as a '"production system'
(PS) is described. A PS is a set of rules each of the form C => A
meaning that in the circumstances specified by C the subject performs
action(s) A. PSs have certair advantages over other forms of model that
make them especially suitable for describing cognitive development.

This paper discusses their merits, with examples drawn from research into
children's seriation behaviour.

Keywords: production systems, cognitive development, Piaget, protocol
analysis.

1. Introduction: Production Systems

Comparisons have been drawn between computer programs and aspects of
human behaviour since the late 1950s, but in recent years the nature of
this relationship has been changing. As Klahr (1973b) points out,
information processing models can be viewed at three levels ranging from
the metaphoric to the concrete; it would seem that computer models have
over the years been migrating downwards through these levels. At first,
computer simulation studies merely used the general ideas of programming
as a source of metaphors (e.g. Miller, Galanter & Pribram, 1960) or
contented themselves with exploring the theoretical possibilities (e.g.
Hunt, Marin & Stone, 1966). Since then, however, an extensive theory of
human problem solving has emerged which yields information processing
models closely tied to the details of the behaviour actually observed
(Newell & Simon, 1972). Research in this area typically proceeds by the
close analysis of an extended protocol of problem solving behaviour,
followed by the construction of a model to reproduce the protocol as
faithfully as is practicable.

A central technique in Newell & Simon's theory is the use of
"production systems" to capture the regularities in a subject's
behaviour. A production system (PS) is a set of rules expressing what
the subject does under what conditions. Each rule is a condition-action
statement of the form C => A, and means simply that in the circumstances
specified by C the subject performs action(s) A. As a simple example,
Newell & Simon give the following PS to describe the behaviour of a
thermostat intended to keep the temperature of a room between 70 and 72%:

Thl: Temperature <70° and Furnace = off => Turn-on [Furnacel

Th2: Temperature >72° and Furnace = on => Turn-off [Furnacel

The action on the right hand side of Thl applies whenever the condition on
its left is satisfied, and similarly for Th2.

The /

284



R. M. Young

/The first work to make use of PSs was concernmed with the analysis of
verbal protocols gathered from adults tackling symbolic problems in
cryptarithmetic, formal logic and chess (Newell & Simon, 1972). And
more recently, this line of work has led to attempts to model the control
of short term memory (Newell, 1973a), the interface to the perceptual
system (Newell, 1972; Klahr, 1973a), and the coding of visual information
(Baylor, 1971).

However, this paper will focus on a different application of PSs:
their use in describing the course of cognitive development. Cognitive
development is among the potentially most fruitful topics to which the
new information processing techniques are applicable (e.g. Farnham—
Diggory, 1972). In part, this is because information processing
psychologists have begun to recognise the significance of Piaget's
developmental analysis of "genetic epistemology" (Piaget & Inhelder, 1969;
Elkind & Flavell, 1969). But Piaget's formulations tend to remain at a
rarified level of abstraction and, as has often been noted, it is hard to
bring them into close contact with actual behaviour. This is especially
frustrating from an information processing point of view, since Piaget
seems so nearly to be talking in process terms. He deals with
"representations'", his "schemata" can be identified at least temtatively
as fragments of program, and many of his observations seem to demand a
processing explanation. Providing such an explanation consists of more
than a mere "working out the details" of Piaget's theories. It involves
the challenging task of designing information processing models of
cognitive development, based on Piaget's notions (modified where necessary),
which serve both to explicate those notions in concrete terms and to
square them with the observed facts of human development.

This paper, then, summarises the case for PSs as tools in the
investigation of cognitive development. We begin by presenting a PS to
model a child's performance on a Piagetian task. After that we will
discuss the merits of PSs, making use of examples from the literature to
illustrate the main points.

2. Example: a PS for Seriation

All oyr examples will be drawn from research into the task known as
seriation. In a typica! length seriation problem, a child is shown a
jumble of wooden blocks of differenft lengths and has to arrange them in a
straight line in order of size (thereby forming a staircase-like pattern).
In the analogous problem of weight seriation, the blocks are all of the
same size but differ in weight. Usually the difference is not directly
perceptible, and the child has to use 2 balance to compare the blocks.

Seriation was introduced into the literature by Piaget, two of whose
books report studies dealing with the task (Piaget, 1952; Inhelder &
Piaget, 1964). For Piaget, the ability to seriate is of great
importance for the child and underlies many of the other operations of
concrete thinking; for instance, seriation and classification together
prcvide the twin supports on which the child's (or the adult's)
conception of number is based.

As /

* We will therefore not have occasion to deal with Xlahr & Wallace's
(1972) PS analysis of the Piagetian class inclusion problem.

28%




R. M. Young

/As with the other concrete-operational skills, Piaget divides the
development of seriation into three main stages. A child at Stage I
is unable to comstruct an ordered line. At first he simply aligns the
blocks in an arbitrary order. Later he may construct two or more short
series which he cannot combine, or else a single series omitting some of
the blocks. Stage II is the level of "empirical seriation”. A child
at this stage succeeds in building an ordered series, but does so by
what Piaget calls "trial and error"; that is, by repeated rearrangement
of the blocks in the line being built. "Operational” seriation makes
its appearance in Stage III. A Stage III child seriates by choosing
the blocks in order of size, and comstructing the series step by step
from the smallest block, say, tc the largest. It is at this stage too
that he is first able to insert further, intermediate, blocks into an
existing series.

Let us now look at a seriaiion of six blocks carried out by a five
year old boy, Del. Figure 1 shows the layout of the blocks from

Figure 1: Layout of Del's seriation

Del's point of view. The blocks lying on the table drawn in solid
lines show the initial configuration; the box-like structure depicts
the final seriated line, with 21l the blocks standing upright; and

the dashed outline represents a block in a temporary intermediate
position. Figure 2 presents a summary of Del's behaviour on the task,
divided into episodes each concerned with the placing of one block.

286




R.M. Young

Episode Summary Line

1. Add F |Scan Pool
Reach towards E
Get F, put at left

2. Add C |Get C, put next toF |F C
Examine

3. AMdE |Get E, put next to C |F CE
Examine
Switch C, E FEC
Examine

4, Add B |Get B, put next to C |FECB
Examine

5. Add A |Move D to d ]
Get A, put next to B |FECBA
Examine

6. Add D |Get D, put next to A |[FECBAD

Examine

Switch A, D FECBDA

Examine

Switch B, D FECDB A
Examine

Switch C, D FEDC B A
Examine

Straighten B, A FEDCBA

Figure 2: Summary of Del's seriation

It is not hard to summarise Del's seriation technique. As far as
the choice of blocks is concerned, he starts with the biggest block in
Episode 1 but thereafter simply takes successive blocks as they come to
hand, regardless of their size. (The one exception is in Episode 5,
where Del picks block A instead of the nearer block D). Each new
block is added to the right hand end of the line, and is accepted there
provided that it preserves the ordering of the line (Episodes 2, 4 and
5). Otherwise the new block is switched with its neighbour and then
re-evaluated (Episodes 3, 6), this switching being repeated as cften as
necessary (Episode 6).

Before we look at the PS to model this performance, we must deal
briefly with a couple of points that arise with "real" PSs. First, we
assurme that behaviour - that is, a production rule - is evoked always in
the context of some active goal. These goals are organized into a
stack, so that whenever a new goal is set up the old one is saved by
being '"pushed down'" on the stack. And conversely, when the active goal
is satisfied it is '"popped off" the stack and the previous goal is
reinstated.

Second, the matter of conflicts. Running a PS basically consists
of repeatedly finding the rule whose left hand conditions are satisfied
and then executing the actions on its right., But it can sowetimes /




= s

R.M. Young

/sometimes happen that two or wore rules have their conditions satrisfied
at the same time, and the question then arises as to which of then to
evoke. It is necessary in such cases to have some way of resolving the
conflict. The convention adopted here is to give priority to the rule
whose conditicns are the most restrictive. The usual situation is that
the conditions of one rule, Rl, are included in those of another, R2;

in which case R2 is given precedence when both apply. We will meet
several examples of this in just a moment. (Notice that other
conventions are possible. For example, Baylor & Gascon (1974) order
their rules by priority, and then always choose the highest-priority
rule whose conditions are satisfied.)

Tl:  Goal=SERIATE => Set.goal [ADD.ONE]
Sl: Goal=ADD.ONE => Get.block [next nearest]

T2: Goal=ADD.ONE & have.just [Get.block'd] %> Change.goal.to [PLACE]

Pl: Goal=PLACE => Put.block.at [right]

PGl: Goal=PLACE & have.new.configuration => Examine

PG2: Goal=PLACE & have.just [Examine'd:z%g]=> Goal.satisfied [PLACE]

7
PG3: Goal=PLACE & have.just [Examine'd:;%ja]=> Switch.blocks

Bl: Goal <new> = SERIATE => Set.goal [ADD.ONE <first>]
B2:  Goal=ADD.ONE <first> => Get.block [biggest]

B3:  Goal=ADD.ONE <first> & have.just [Get.block'dl
=> Put.block.at [far leftl]; Goal.satisfied [ADD.ONE]

Figure 3. Producrtion system for Del's seriation

Figure 3 gives a PS to model Del's behaviour. It uses a fairly
informal notation, and I hope that most of the rules are self-explanatory.
2ules T1 through T2 are concerned with the cyclic tehaviour of getting

locks from the pool and adding them to the line; Pl through PG3 govern
he actual placing of the blocks, and finally rules Bl to B3 deal with
he very first block. Rather than going through the whole PS and

aining the function of the rules one by one, let us watch what happens
ng a typical episode.

. m ot ot

xpl
uri

Suppose we plunge inteo the seriation at the beginning of Episode 3,
when blocks F and C have already been placed. The top goal is SERIATE,
and /

288




R.M. Young

/and the only rule applicable is T1, so it fires off with the result that
the active goal now becomes ADD.ONE. Now rule Bl is evoked, and Del
reaches out and gets hold of the nearest block, E. At this point, rule
S1 still has its condition satisfied, but so also does T2, which being
more specific than S1 is therefore the next rule to fire: the active
goal now becomes PLACE. Rule Pl is evoked, and Del moves block E to the
end of the line. This results in a '"new configuration", so rule PGl
fires (taking precedence over the less specific P1l) and Del examines the
shape of the line in the vicinity of the block just added. The outcome
satisfies the condition for rule PG3, so he switches blocks E and C.

That switch yields another "new configuration'", so PGl fires and Del
examines the line again. This time rule PG2 is evoked, so the goal of
PLACE is satisfied and it is popped off the stack, returming Del to the
context of the top goal of SERIATE. And so on. In Episode 6, rules
PGl and PG3 fire in alternation no less than three times.

3. Advantages of Production Systems

Generality across situations

Why should anyone want to use PSs?  Their principal methodological
attraction is their ability to cope with minor variations of the task
(Newell, 1973b). A conventional flowchart model, because of the
(psychologically unwarranted) division it imposes between processing and
control, typically has to be structured anew for each experimental
condition. A PS, on the other hand, to serve as an adequate model of a
subject must present a single processing system to handle all variationms.
This means that the PS an experimenter builds to model a subject's
performance in one situation also predicts his behaviour in another.

Thus to a far greater extent than is true of conventional processing
models, a PS can serve as a miniature "artificial subject" whose reaction
to different experimental manipulations can be empirically explored.

It is this property of PSs that makes possible the experimental
technique used by Young (1973). In that study, the emphasis was on the
possibility of obtaining empirical support for a proposed analysis of a
child's seriation ability by examining his behaviour on a variety of
problems closely related to the original task. Thus the PS to model a
child's performance on a straightforward seriation predicts also what
will happen when he is asked to construct the line out of sight behind a
screen, for example, or to correct a wrongly seriated line. So the
results of these '"probe" tasks can be used to aid and support the
analysis of the primary seriation task.

A series of studies by Baylor and colleagues at the University of
Montreal is also closely concerned with the similarities and differences
between related tasks (Baylor & Gascon, 1974; Baylor & Lemoyne, 1973).
In addition to the basic length and weight seriations they used a third
task, the hidden-length problem. This is again a seriation of length,
but with the difference that the blocks used are kept hidden most of the
time inside identical tubes. The child is allowed to have no more than
two blocks expesed at any time, so in this respect the hidden-length
task is similar to weight seriation, in which only two blocks can be
compared at once. Baylor & Lemoyne (1973) tackle the issue of the
"horizontal décalage’ between length and weight seriationm; i.e. the fact
that although the two tasks have the same logical structure, performance
on one lags behind the other by about two years. Their investigation of
décalage rests on the possibility of writing a single PS to model a
subject's behaviour on all three of the tasks. Figure 4 (adapted from /

2R



R.M. Young

(€L61 ‘oukowa] § Io1Aeg 193JE) SYSBI 991yl 10J Sd. B IO IIBJ Y 2an81y
((LdF1 4d) = IXAN 1IT) ((L431 4d) = LXaN 1d71)
(1331 44) (1SEONOT 0d) FAOW) (24 (14371 0d) FAOW) - (0 = 4d)
((LSFONOT 0d) = MDILSMAN 1T) ((1d1 9d) (14971 3d) IA0W)|((LIFT 0d) = ADOTAMAN 1dT) (0 < ad)|TIVAW0D  :11d
(dd (ISIONOT 0d) TAOW) ((IHOIY 9d) (IHOI¥ 0d) HAOKW) (€4 (1431 0d) FAOW)
(dd (1SIONOT 0d) HFAOK) ((1331 9d) (IHOI¥ 0d) TAOW) (gd (1331 0d) FAOW)| (TAVAWOD QAIJISILVS)| <=
(0 = 4d)|49vdW0oD :0Td
(ad ((310H 4d)
((499N0T 9d) (MALNOHS €d)) ((4AIAVEH €d)
AAVAT) | ((144T1 4d) (YITYOHS €d) HAOW) (43IHOIT €9d)) HAOW)| (ILYASNI QITASILVS)| <=
((10H~J0~-IHITY 4d) ((1s3ONOT/143T dd) :
> (MEONOT/IHOIY 9d)) < (44140HS/IHOIY €d))
((4H190HS €d) = ADILSMAN) ((4ELYOHS €d) = MOILSMAN)| ((EIHOIT €d) = MADOTEMEAN) (z = 4d)| I¥4SNI  :9d
(41VI¥ds QUIdSLLYS) | <=
(0 = 0d)|dIvI¥ds  :2d
(LMASNI TV09-14S) | <=
(0 < 0d) |dIVI¥ES :1d
(1) yaduag o3 o131oRdg (4) y3aBuel ueppry 03 d13Tdadg (M) ayStem 03 o13Tdedg| T ‘W ‘M 03 uowwop| TBOD BIMY




R.M. Young

/from their Figure 2) is part of such a PS. It shows how the conditions
and actions can be divided into a generic part, common to all three tasks,
and a specific part, adapted to the particularities of each. (PO, PB,

and PF refer to the Original, Balance, and Final positioms).

Role of the environment

Unlike a flowchart, the explicit control structure of a PS makes
clear exactly which decisions the child has control over and which others
are forced on him by the enviromment. To see this, consider a fragment
of a flowchart of the form shown in Figure 5, which simulates a child
performing action A followed by action B. Why are the actions done in
the order A then

Figure 5. Fragment of a flowchart

B instead of the other way round? The flowchart provides no indication
whether the sequence is decided by the child's problem solving processes,
and is therefore "arbitrary" in the sense that B could equally well be
carried out before A as after it, or whether the order is determined by
the very nature of the task, as would be the case if A were the action
"pick up the doll" and B were '"squeeze the doll".

But a PS exhibits directly the factors that determine what actions
are taken. Thus in the PS of Figure 3, we can see how rules like PG2
and PG3 isolate the internal and environmental components. Both rules
demand that the child havejust performed an Examine, but they respond
differentially to the shape of the line. Baylor & Gascon (1974) devote
considerable effort to showing how a child's seriation technique uses
features of the enviromment such as the "hole" left in a line of blocks
when one of them is removed, and they find that an increased flexibility
of response to aspects of the enviromment is one of the themes
characterising a child's growing skill.

So a PS can represent the role of the environment in governing the
child's behaviour in a way that a flowchart normally cannot. For a PS
presents the set of possible actions that the child can take together with
the basis on which he decides between them, whereas a flowchart or
algorithm states only the outcome of that decision. This is important,
since young children are usually given concrete tasks, such as seriation,
which invelve a high degree of interaction with the physical world; and
also because a pre-operational child relies to a great extent on the
environment as an external memory to reduce his cognitive load.

Independence of rules

According to Newell & Simon (1972), "production systems are the most
homogeneous form of programming organisation known'. One consequence of
this homogeneity is that a PS's simple organisation as a collection of
rules leads to a corresponding structure in the resulting behaviour. Each




R.M. Young

/Each rule represents a fragment of potential activity that is a
meaningful component of the total problem solving process. As a result,
individual preduction rules frequently possess a kind of local
plausibility that makes them intelligible in their own right, regardless
of which other rules are present. This makes it easier to see how the
child could have acquired them individually. In Figure 3, for example,
each of the rules can be seen as reflecting some particular aspect of the
seriation task. Rule Tl is a specialised version of a general rule
saying something like: "If you want to do something to each of a set of
objects, do it to one of them"; the rule keeps applying until there are
no objects left. Similarly, T2 seems to make sense independently of this
particular seriation context. (Namely: if one is trying to extend a
line and he has a block in his hand, then he should place it in the line).
And so on; the completion of this exercise can be left to the reader.

The structural independence of production rules has two consequences,
both of considerable psychological import. First, from the subject's
point of view, it removes the need for self-programming: the rules
relevant to a situation are simply evoked when their particular conditions
are satisfied. But from the investigator's point of view it means that
various sets of rules can be combined freely to form working PSs. Young
(1973) provides a dramatic example of this flexibility. There a
collection of rules is presented, various subsets of which form PSs which
reproduce the different seriation methods and pre-seriation phenomena
noted by Piaget. Some of the rules are concerned with episodic behaviour
of trying the blocks one by onme - like rules Tl to T2 in Figure 3 - and
they have to appear in any PS for seriation (or pre-seriation). But
provided these rules are included, almost any selection of some or all of
the remaining rules yields a working, psychologically plausible PS for
(pre-)seriation. With the conventional form of model, the idea of
providing such a "kit" - which serves to specify an entire space of
seriation processes as mere collections of its parts - seems unthinkable.

Incremental growth

Perhaps most important for the understanding of development is the
fact that the independence of the individual roles makes it possible to
extend a PS incrementally simply by adding new ones. For instance, to
return for a moment to the simple thermostat described above, we can
easily add a more advanced feature to take special action when the
temperature falls too low, merely by adjoining to Thl and Th2 the new
rule:

Th3: Temperature<32°=>Call-repair-man; Turn-on [Electric-heater]

or whatever.

In a similar vein, Figure 6 shows a hypothetical sequence of PSs,
each differing from the one before simply by the addition of one or two
new rules. It represents a hypothetical child who initially can only
arrange the blocks in a line, but then gradually acquires the rules that
lead him through one or more of the observed pre-seriation phenomena, on
to simple seriation, and finally more reliable seriation.




R.M. Young

T1: Goal=SERIATE => Set.goal [ADD.ONE]
Bl: Goal <new> = SERIATE => Set.goal [ADD.ONE <first>]
S1: Goal=ADD.ONE => Get.block [next nearest]

T2: Goal=ADD.ONE & have.just [Get.block'd]l => Change.goal.to [PLACE]

B3: Goal=ADD.ONE <first> & have.just [Get.block'dl
=> Put.block.at [far leftl; Goal.satisfied [ADD.ONE]

Pl: Goal=PLACE => Put.block.at [right] A
B2: Goal=ADD.ONE <first> => Get.block [big] B
PGl: Goal=PLACE & have.new.configuration => Examine

P2: Goal=PLACE & have.just. [Examine'd: <too big>]
=> Reject.block; Goal.failed [PLACE] |C

PG3: Goal=PLACE & have.just [Examine'd:%]=> Switch.blocks D

S2: Goal=ADD.ONE => Get.block [similar to last]|E

Figure 6. Hypothetical sequence of production systems

Some details have been omitted, but roughly, rules Tl through P1
constitute a PS to build the blocks into a line without regard for size
(see location A in Figure 6). Next the child acquires the idea of
starting with the biggest - or at least, a big - block; this is
represented by the addition of rule B2 Qocation B). At this point the
child is still constructing an unordered series corresponding to Piaget's
Stage 1. However, he next begins to satisfy the ordering requirement,
at least enough to examine each block after adding it to the line and
reject it if it is too big; this is expressed by the addition of rules
PGl and P2 (location C). At this point he is constructing partial
seriations with some of the blocks omitted. Perhaps he next acquires a
simple correction technique, that of switching an oversize block with its
neighbour, by addition of rule PG3 (location D). Like Del, he can now
seriate successfully provided that the blocks are not too numerous: his
performance would be classified by Piaget as Stage II, trial-and-error
seriation. Finally we may suppose that having acquired rule S$2 he begins
to choose blocks according to their size (location E). Fis seriation
behaviour then appears more or less "operational' depending on the
accuracy of his selection. The combination of an at least approximately
correct selection (rule S2) with a means for correcting slight errors
(PG3) means that he is now able to seriate blocks both harder to /

S




R.M. Young

/to discriminate and more numerous than before.

It is of course true that this sequence does not provide an
explanation of development, since nothing has been said about the origin
of the new rules. But it is a mecessary first step towards such an
explanation, for it shows how the description of a child's ability in
terms of PSs reveals the gradual, cumulative progression underlying the
striking (and discontinuous) changes in his overt performance. The next
step is to understand how he acquires these rules from the regularities
in his existing behaviour.

Acknowledgement. The author acknowledges the financial support of the
Social Science Research Council during the preparation of this paper.

4. References
Baylor, G. W. Program and protocol analysis on a mental imagery task.

2nd International Joint Conference on Artificial Intelligence.
London: British Computer Society, 1971.

Baylor, G. W. & Gascon, J. An information processing theory of aspects
of the development of weight seriation in children. Cognitive
Psychology, 1974, 6 (in press).

Baylor, G. W. & Lemoyne, G. Experiments in seriation with children:
Towards an information processing explanation of the horizontal
décalage. Université de Montréal, Institut de Psychologie,
M.C.P. #15, 1973.

Elkind, D. & Flavell, J. H. (eds.) Studies in Cognitive Development.
New York: Oxford University Press, 1969.

Farnham-Diggory, S. (ed). Information Processing in Children. New
York: Academic Press, 1972.

Hunt, E. B., Marin, J. & Stome, P. J. Experiments in Induction. New
York: Academic Press, 1966.

Inhelder, B. & Piaget, J. The Early Growth of Logic in the Child:

Classification and Seriation. New York: Harper & Row, 1964.
Klahr, D. A production system for counting, subitiziag, and adding.
In W. G. Chase (ed.) Visual Information Processing. New York:

Academic Press, 1973.(a)

Klahr, D. An information processing approach to the study of cognitive
development. In A. D. Pick (ed.) Minnesota Symposia on Child

Psychology, 7, Minneapolis: University of Minnesota Press,
1973.(b)

Klahr, D. & Wallace, J. G. <Class inclusion processes. In S.
Farnham-Diggory (ed.) Information Processing in Children.
New York: Academic Press, 1972.

Miller, G. A., Galanter, E. & Pribram, K. H. Plans and the Structure of
Behaviour. New York: Holt, Rinehart & Winston, 1960.

Newell, A. A theoretical exploration of mechanisms for coding the

stimulus. In A. W, Melton & E. Martin (eds.) Coding Processes
in Human Memory. Washington, D.C.: Winston, 1972.




R.M. Young

Newell, A. Production systems: Models of control structures. In
W. G. Chase (ed.) Visual Information Processing. New York:
Academic Press, 1973.(a)

Newell, A. You can't play 20 questions with nature and win: Projective
comments on the papers of this symposium. In W. G. Chase (ed.)
Visual Information Processing. New York: Academic Press, 1973.(b)

Newell, A, & Simon, H. A. Human Problem Solving. Englewood Cliffs,
N. J.: Prentice-Hall, 1972.

Piaget, J. The Child's Conception of Number. New York: Humanities
Press, 1952.

Piaget, J. & Inhelder, B. The Psychology of the Child. New York:
Basic Books, 1969.

Young, R. M. Children's seriation behaviour: A production system
analysis. Ph.D. dissertation, Carnegie-Mellon University, 1973.

295











 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 0.00, 1.36 Width 21.28 Height 594.92 points
     Mask co-ordinates: Horizontal, vertical offset 18.24, -0.66 Width 406.41 Height 26.35 points
     Mask co-ordinates: Horizontal, vertical offset 409.45, 15.55 Width 12.16 Height 83.11 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         210
         CurrentPage
         217
              

       CurrentAVDoc
          

     0 1.3641 21.2835 594.925 18.243 -0.6629 406.4138 26.351 409.4543 15.5531 12.162 83.1071 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     0
     299
     0
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 6.08, 96.63 Width 11.15 Height 164.19 points
     Mask co-ordinates: Horizontal, vertical offset 5.07, 9.47 Width 414.52 Height 9.12 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         210
         CurrentPage
         217
              

       CurrentAVDoc
          

     6.081 96.6332 11.1485 164.1871 5.0675 9.4721 414.5218 9.1215 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     1
     299
     1
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 6.08, 4.40 Width 409.45 Height 15.20 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         210
         CurrentPage
         217
              

       CurrentAVDoc
          

     6.081 4.4046 409.4543 15.2025 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     2
     299
     2
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 6.08, 5.42 Width 409.45 Height 13.18 points
     Origin: bottom left
      

        
     1
     0
     BL
    
            
                
         210
         CurrentPage
         217
              

       CurrentAVDoc
          

     6.081 5.4181 409.4543 13.1755 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     3
     299
     3
     1
      

   1
  

 HistoryList_V1
 qi2base



