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ABSTRACT

We present in this paper an original approach of Debugging. The general goal
in Automatic Verification of Programs is to prove that a program is correct
or incorrect. This does not generally provide enough information to catch the
bugs. On the opposite, the purpose of the debugging system LAURA, that we

have designed and implemented, is to find the errors.

In order to debug a student program, the LAURA system uses a procedural des-
cription of the program task, under the form of a program model. Debugging

is then viewed as a comparison of two graphs, built from the student program
and from the program model. The system can apply powerful semantic transforma-
tions on the graphs to increase their resemblances and to identify subgraphs

that perform a same task.

The LAURA system has shown to be able to determine the correctness of programs
implemented in various ways, very different from the program model. It can

also express sophisticated diagnostics and set up proper corrections.

Kevs words : Debugging, Program Transformations, Graphs of Program, Diagnostics

of errors.
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INTRODUCTION :

The numerous studies that have been made about the correctness of programs
try only to prove whether a program is correct or net. If it is incorrect,
no information is given about the errors that effectively exist. S0, these

methods cannot help us in Debugging.

Thus, we have designed and implemented a system called LAURA, whose first
object is not to prove the correctness of a program, but to detect or loca-

lize the errors it may contain.

The programs that LAURA deals with have been written by students that are

programming apprentices. These programs are compiled before they are submit-
ted to the system and syntactic errors have been eliminated. The system only
looks for the semantic errors, which prevent the program from giving the ex-

pected results,

I. AN ORIGINAL APPROACH OF THE DEBUGGING PROBLEM

In order to find all the semantic errors that the given program contains, it
is essential to have some knowledge of the problem that this program is suppo-
sed to solve.

"assertions" (an

The description of the program's task consistsin sets of
assertion is a property about the values of some variables, which has to be
true in a given point of the program). The output results that the program
intends to achieve are expressed by the mean of one set of output assertions.
One set of input assertions corresponds to the data properties. Then it must
be proven that the program holds through from input assertions to output asser=~
tions. FLOYD [}967], NAUR and HOARE (}971) were the first to consider and to
formalize this method that has since been used by many researchers, e.g.

ASHCROFT [1975], KATZ and MANNA [1976), LEVITT and WALDINGER {1974].

We do not describe in this paper the classic program verification methods that
use assertions. But we must briefly mention the main objections that may be
made to the assertions methods and that have led us to try another approach.
Firstly, it is very difficult to give complete sets of assertions that describe
the problem entirely. Secondly, the introduction of "invariants" (internal
assertions given by the programmer, which are necessary to separate the diffe-
rent paths) quickly becomes a problem more difficult than the writing of correct
programs. Thirdly, the automatic detection of invariants and the demonstrations

of theorems that must be made, are so complex than they cannot be executed by
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an autematic system (at least considering the actual power -~  automatic theo-
rem provers). Last but not least, the methods based on assertions give a boo-
lean answer : the program is correct or not. If not, they do not make anv cons-
tructive criticism to show what errors have been made. So they are not really

adaquate for debugging.

We have selected another way of giving the knowledge of the program task to the
system. Instead of describing what the program has to achieve, we give informa-
tions about how it must proceed. In other terms we give the system the algorithm
that the program must use to attain its goals rather than the goals themselves.
For that, we use a "program model"” which is supposed to be a correct implementa-
tion of this algorithm. Thus the LAURA system receives two programs, the program
model and a student program, that should be two implementations of the same al-
gorithm. In order to debug the student program, the system has to compare it
with the program model. Automatic debugging is then viewed as a comparison of

two programs.

In order to simplify further matching, the first purpose of the LAURA system is

to make some normalizations.

The system translates each program into a graph. This choice is very fundamental.
The vertices of the graph represent the essential actions (assignments, tests,
inputs or outputs) and not instructions in the used programming language. The
arcs represent the partial order relation between these actions. This transfor-
mation of a program into a graph is a first and very important standardization.
As a matter of fact, the graph is a representation of the calculus process that
a program implies. This representation gets rid of particularities coming from
syntactical choices inside the used language. Furthermore it is independent of
the language. So it will be possible to deal with student programs written in
other languages than that of the program model. Each graph obtained from a pro-
gram represents a large class of programs which imply the same set of calculus.
Many syntactical choices in each language are not taken into account in the

graph. (In particular, as the graph is non-linear the labels have disapeared).

Furthermore, LAURA systematically applies transformations to each graph in order
to extend the standardization. For example if the same variable is used for two
different purposes, a second variable is generated. Also, if an internal variable
is only used to store an intermediary result, useful for several computations,
this variable is suppressed. It is interesting to note that standardizing trans-

formations are generally deoptimizing transformations.
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When standardizations are finished, the LAURA svstem has to mzatch the two
graphs. It tries to bina variables, vertices and arcs. For lhis, it can

work step by step around a pair of already identified vertices : it tries
to bind their immediate successors (respectively their predecessors) then

the successors of the successors, etc...

When such an exploration does not give any more result, the system can con-
sider another pair of unidentified vertices and match them. In order to
select this pair it uses a function which heuristically evaluates the plau-
sibility for two given vertices to be corresponding ones. The representa-
tion of programs by graphs makes possible such a non-linear strategy, that

could not be used on ordered sets of instructions in a source language.

Also, the system can use heuristiecs to apply powerful semantic transforma~
tions to the graphs, in order to make two subgraphs which previously had
different structures become similar. The system is able to perform split-
tings, permutations and test-crossings (see Fig 1). It can alter the struc-
ture of loops. It can also solve recurrence equations and then, some loops

may be replaced by a single formula. (see Fig 2).

In the first graph, there is the vertex s : IF((I+1)+A(I1+1}) and in the second graph,
there is the subgraph G :

J=J+1

The variables J and B are bound with

()

N
://\KIF(JzB(J)) I and A respectively
u v

£ some conditions about the subgraph B are verified, the LAURA system can transform

G into :

l"\
l\ﬂl'
o : ! IF((J+1) 2 B(J+1))
J=J+1 J=J+1
u eV

and t' may be bound with s

FIG 1 : EXAMPLE OF GRAPH TRANSFORMATION
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From each one of these two subgraphs, the LAURA svstem is able to extract the same

formula : X

“paz: A@xEN?
1=0

FIG 2 : ZXAMPLE OF RECURRENCE SCLVING

If total. identification is possible, the student program is found to be cor-
rect (meaning that it computes the same functions as the model and produces

the same results besides round-off-errors).

If only partial identification is realized, the system tries to analyse the
remaining differences in order to give exact diagnostics and to set up pro-
per corrections. The main diagnostics that LAURA can express are :

- error of variable

- error of constant

- unary connective forgotten

- useless unary connective

- sign error

- branching error

- inversion of two instructions (which are not permutable)

- test error (conditions on arcs do not correspond)

If some subgraphs still remain unidentified, they are printed by the system.
In this way the user knows in which part of this implementation a doubt re-
mains. If this part contains a semantic mistake, it has not been pointed out

by the system but it has been localized, which is quite a big help in debugging.

The diagram of Fig. 3 shows the different phases of the LAURA system.
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Standardizatizsn of these
two graphs

t
i

-

(S:ep 1 : IDENTIFICATION )

PARTIAL
CORRECT PROGRAM : Y

it computes the . . canes
(S..ep 2 : RESEARCE OF DIAGNOSTICS

seze fwactions PROBABLE TRRORS

as the program
model

Yno

Listing of unidentified

subgrapns

FIG 3 : THE LAURA DIAGRAM

II. RESULTS

The LAURA system has been tested on about a hundred programs written by stu-
dents to solve eight different problems in various fields :

- management (tax computation, electric company invoices)

~ arithmetic (perfect numbers, Pascal triangle)

- numerical analysis methods (integration, equation roots)

-~ sorting of an array A of N numbers (using a given algorithm : looking

for the maximum and permutation)

Numerous examples are given and commented h\BAURENT, 197@}. We give two of them

in this paper.
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Example 1 : Text of the exercice

2
Find the real roots of the equation ax™ + bx + ¢ = 0.

Print their number and their values.

Program model : Student procram
0 READ(OS5.11)4.8.C 0 RzAD(DS.300)4,8.¢C
19 FORMAT(3ES2.4) 0 IFCA.EQ.02GCTO 1
0 IFCA)S1,50,51 O D=Bwe2-Lrae(
51 D=geel=4irAs( 0 IF(D22.3.4
8 1F(L21.2.3 4 NR=2
1 k=0 . 0 b=SORT(D)
70 WRITE(D6,92)N 0 Ri={=-B+D)/ (2«2}
12 FORKAT(1S) 0 r2=(-8-0)/(2+a)}
0 60 To 100 0 WRITE(66,200)NR.R1,R2
2 xo6=-~B/{2-A)} 0 stoP
20 w=1 3 R1==8/(2+4)
0 WRITE(06.13)K,%0 7 HR=1
13 FORHAT(IS,E12.4) 0 WRITECO06,.300)RR.R1
0 60 To 100 0 sToOP
3 X1=(-8-S0RT(D)I)I/(2+4) 2 HE:O
0 X2=(-8+SQRT(D))/(2=A) 12 WAITECO6.L00)KR
0 K=2 . 1 1F(8)5,6.5
¢ WRITE(06,14)4,X1,%X2 6 R1=-8/4
14 FORMAT(IS5,2812.4) 0 60 70 7
0 GO 70 100 S 1r(C)2.8.2
. 50 1FC(B)6Y,.60.61 8 NR==1
61 x0==C/B 0 6070 12
¢ 60 O 20 100 FORMAT(3E12.4)
60 IFCCI1.62.1 200 FORKAT(IS)
62 N==1 300 FORMAT(I5,E12,4)
0 60 TO 70 400 FORMAT(IS,2E12.4)
1¢0 sy0P 0 sTOP
0 ENO ) 0 END

The final states of the two graphs correspond to the two following programs

that the system generates at the end of the run :

PROGRAMME DS REFERENCE

+PROGRAMME ETUDIANT REECRIT PAR LE SYSTEME

1 READ & 101 READ &
2 READ g 102 READ B
3 READ . 103 READ ¢
4 xF(A;°6-19-06 104 IFCA)106.121,106
19 IF(BI20,21,20 121 1F(8)123,122.123
21 IF(C07,22.07 : 122 Ri=-B/4A ’
22 K=-1 . 117 PRINT 1
g PRIKT N 118 PRINT R
23 sTO0P 114 stop
? K= 123 3#(C2119.124,119
GOIO 8 124 NR=e%
20 x0=-C/B . 120 PRINT KR
41 PRINT 1 5010 121
12 PRIKT X0 119 NR=0
60T0 23 60TO 120
6 1F(Bev2, +AsCe{~4.))07,09,14 © 106 IE(Eer2,+AvCe(~4.)2119,115,109
44 X2=((Be*2,4AC"8~2,0)ee0 5-B)7A20,5 109 WIRI=((Be22.+A2Co(~4 ))ov0 5=5)/A¢0,5
43 X1=(—(Bwv2,+heC2(=4,))+20,5-B)/A20.5 110 R2=(~{5es2,+AeCr{=b,))ee0, 5~5)740.5
16 PRINT 2 . 111 PRINT 2
48 PRIKT X2 112 PRINT W1R1
17 PRINT X1 . 113 PRINT R2
6070 23 6070 114
9 X0=B/A«(-0,5) 115 Ri=p/Aa+(-0.5)
¢0T0 11 8070 117

END END
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PTAGKCSTICS
(1)

IHSTRUCTION 20 DANS PROGRAKME 1 NC% IDENTIFIEE }

IKSTRUCTION 9122 DANS PARCGRAMME 2 NCH IDEKRTIFIZS

ERREUR DE BRANCHEKENT PROBAELE : ARL(120.921) AU LIEy BZ ARc(120.114) (2)
CONDITIONS DIFFERENTES SUR LES ARCS ISSUS DES INSTRULTICKS 1§ ET 121 3)
COMPILE TIXME= 3.03 SEC.EXECUTION TIKES 7.55 SEC.

(1) Rl = ~B/A irstead of Rl = -C/B
(2) a stop has been forgotten
(3) labels 122 and 123 are interchanged

Example 2 : text of the exercice :

"A perfect number is a positive integer k which is equal to the sum of its
divisors, 1 incluted and not k. Print each perfect number less than or
equal to 1000".

Example 2 :
Program model : Student program :
£ 0 NOMBRES PARFAITS — ETUDIANT 1
0 x=8
c 0 KOMBRES PARFAITS = CORRIGE g {§$
o bo_y00 1=6.1000 1 IFCH=CN/1)+1010.20.10
0 k=2 20 L=LetoN/T
1 IFCI/E9K,EQ I ISSISsRe1/K 10 IE((1+1)0n2-K130.£0.440
9 K=t o coto 1
0 IFCRK,.LT,1)60TO 1
100 IFCIS.EQ IJURITE(08.10)1 40 1FEL-H)50,60,50
60 WRITE(D6,55)n
10 FORMAT(IS)
-0 sToP S5 FORMATLIA) . _
0 END S0 IF(N-1060)70,100,100
70 H=H+1
0 coTo 2
100 sTOP
0 END

PERACTRNCCIPOSDOISIISIQROCETRRIGOTTSE

DIAGNOSTICS

PROGRAMME CORRECT : IL CALCULE LES MEMES FONCTIONS QUE LE PROGRAMNE DE REFEREMCE

CEINC TN PIPRUTIO LIV ICIATRIISIOTSL

COMPILE TIMES 3,17 SECL.EXECUTION TIHEZ s.os sec. (IBM 370-168)

In spite of many syntactical and structural differences, the LAURA system has

established that the student program is equivalent to the program model.
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CONCLUSION

The LAURA system is able to recognize correct programs even if their struc-
tures are very different from the structure of the program model. It is also
able to express exact diagnostics of errors, or at least to localize the er-
rors. Thus the LAURA system may be a great help in debugging programs.

In particular, it could be an effective tool for student programmers.

We think that three points are essential to explain the good performances
that the system has obtained :

- representation of programs by graphs, which gets rid of many syntac~
tical choices.

- use of program transformations, realized on the graphs.

~ heuristic strategy to identify step by step the elements of the graphs,
to make suitable transformations, to overlook more and more complex differences

which probably correspond to semantic local errors.

It should be observed that automatic interpretation of differences is far from
obvious. As a matter of fact, a difference may result from an error but it may
also result from the use of a variation in the required algorithm. This varia-
tion may have no real importance. It may also be an awkwardness or on the con-
trary a skilful optimization. To discover it, the system should have, besides
the knowledge of the task the program has to perform, a great knowledge of the
field in which this task has a meaning. So we must choose between two possibili-
ties. The first one is to give a good knowledge of a narrow specialized field
and to debug programs in this field only. The second is to debug programs in
various fields and to let the user himself make some difficult interpretatioms.
This dilemma is actually a limit for automatic debugging. In our system the

second solution has been preferred.
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A COMPARATIVE STUDY OF SEVERAL PROOF PROCEDURES

Wolfgang Bibel
fnstitut flir Informatik
Technische Universitdt

Miinchen, Germany

Abstract. In this paper three algorithms for testing the compiementarity of
a matrix (representing a propositional formula) are developed in stages. Any
of these algorithms is distinguished from its predecessor by a specific fea-
ture (linearity, jump, non-normal form) which endows it with a provable ad-
vantage w.r.t. its performance. For well-known proof procedures it is shown
that they can be simulated by at least one of these algorithms.

Introduction

Measuring the relative performance of automated theorem proving (ATP) methods
is a highly desirable but complicated and thankless task. Given two such
methods, the most promising approach to such measurement seems to be an at-
tempt to gain a deeper insight into their respective nature and hopefully to
find a common basis on which their shared and differing features become ap-
parent, and thus capable of measurement.

Theorem proving can be viewed as the problem of verifying that each path
through a matrix (i.e. a set of clauses) is complementary in the sense that
it contains a literal and its complement. This view, was first explicitly
adopted by Prawitz in [12], later by the author in [9], and recently by
Andrews in [1;2]. It has been formalized for the ground level in [6]. This
formalization has already been used in [7] to provide a more profound in-
sight into the nature of resolution. And in fact it is this very insight
which will provide the basis for comparison in the present paper. Thus this
study should be considered as a direct continuation of that in [7].

In detail we will proceed as follows. In section 1 we begin with a basic
path-testing algorithm Al of the nature mentioned above. lts faults are ob-
vious therefore it will be immediately improved to provide a slightly more
sophisticated one A2 which differs from Al by what is called the linearity
feature. The improvement is studied in quantitative terms. In section 2 it
is shown that the well-known linear methods such as model elimination or SL-
resolution [11] can be simulated by A2 which at the same time has a smaller
search space than those methods. In section 3 an obvious redundancy is re-
moved from A2 by adding what is called the jump feature, thus obtaining an
algorithm A3. It is conjectured that A3 can simulate the connection graph
procedure [10]. Finally, in section 4 a different redundancy is removed from
A2 by implementing what is called the non-normal form feature, thus obtain-
ing an algorithm A4 which operates on completely general matrices. It is
shown that the refutation graph method [13] can be simulated by AL. In each
of these cases ''simulation' is to be understood without any increased time
or storage requirements.

It should be not too difficult to combine the advantages of A3 and Ak in a
future algorithm potentially more powerful than all methods mentioned above
and many others with them.

1. Basic algorithms testing complementarity

A propositional formula is valid {or inconsistent) iff its matrix is comple~
mentary, i.e. each path through the matrix contains a literal L and its
negated form L. Therefore the simplest algorithm, which tests whether a
matrix is complementary, is the following.
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1.1.A.*)  For each path p in the given matrix M do

rDONE «~ @; 1: choose L,K such that L,K€p and (L,K) é DONE ;
if L#K then T"DONE < DONE U (L,K); goto 177

The algorithms PAIR within the system which has been described in [9], its
predecessor in [3], the algorithm (15) from [5], and the process described
in section 1l of [1] are exactly of such a nature. Note that the matrix is
not required to be in any norma! form. However, from now on until section L
the discussion will be restricted to matrizes in normal form. For those a
deterministic version requires only a few lines as follows.

1.2.A. {1t is assumed that the given matrix and the active path is represent-
ed as a binary array M[i,j] of literals and a unary array P[i] of inte-
gers, resp., 1=<jsm,, 1<i<m)

for i:=1 until m do P[i]:=1;

1: for i:=1 until m do for j :=i+1 until m do

if M[i,P[i]]=M[},P[j]] then goto 2; return (Ycomplementary');
2: k:i=1;

3: if P[k]<mk then "P{k]:=P[k]+1; goto 17; Pk]:=1;

if k<m then "k:=k+1; goto 3" else return (*'non-complementary");
LKLN

N K -
algorithm. (1.2) compares L with K _and L with L in the first path
{L,K,L,N}, L with N and L with L in the second path, etc.; altogether
it performs 13 comparisons in the four different paths. A different sequence
of comparisons would require only 3 comparisons {L-L,K-K,N~N) for testing
complementarity. There are two reasons for the striking difference. First,
these algorithms do not benefit from the fact that a pair of literals may
prove more than one path complementary. Second, the search for complementary
literals is performed in a completely blind way.

it

The simple matrix may exhibit an obvious drawback of this kind of

It is straightforward to overcome these disadvantages by adjusting the choice
of paths and literals to the given matrix in & flexible way. To that effect
we may assume that for a given literal L an occurrence of L in the matrix
can be determined in one step. This can be realized by adding the set of con-
nections, or, even simpler, by establishing a list in which for each literal
all occurrences in the matrix are noted which increases the amount ) [C| of
memory required for storing the matrix M by a factor 2. CeM

1.3.A. (The algorithm is presented in two versions. The preliminary version

- to be discussed in this and the next section - is obtained from the follow-
ing text by cancelling everything embraced by brackets [...]. The full
version - to be discussed in section 3 - is obtained by deletion of the

brackets. Both versions test whether a matrix M in normal form is comple-
mentary. In the list variable ACT the list of literals of that part of the
active path is stored which have been considered sofar; WAIT denotes a stack
on which literals to be considered later, together with the values of ACT
and M relevant for them, are stored; push(W,L) means that the value of

L is stored on top of stack W; conversely, pop(W) has as its value the
top element of stack W, which is removed from W except in a call within

a boolean expression - like in step 15 below. ‘dm'® abbreviates ''ditch-
marker''.)

*) A.,T. abbreviate ''algorithm'' and ‘'theorem', resp.
p
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: ACT<¢; while non-empty{WAIT) do pop(WAIT); [i=<0;]
: choose a clause C from the matrix M; M«M~C;
: choose a literal L from C;
if CN\L+0 then push(WAIT, (CNL,ACT,M));
[i<i+1;] ACT-ACT(IL[,1,0)];
if M=9 then return ("'non-complementary'');
if there is no clause € €M such that L&€C then
"if there is no clause € €M such that
Kec for some [ (IK[,j,b)] EACT then goto 1
else r<_:hoose C from M such that
Kec for some [(IK[,j,b)] €ACT;
[push(WAIT,"dm'*); dm=i;]""

8: else choose C_from M such that L€C;

9: M«<M\C; C<C\L;
10: for all iiterals K such that

KeC and [(IKL,},b)) €EACT [for some j and b] do
fc<C\K; [if j<dm then replace b by 1 in (K,j,b) €ACT;]’

11: if C+¢ then goto 3;
12: if empty{WAIT) then return (''complementary');
13: [if pop(WAIT) ="'dm" then

Toop (WALT);

while pop{(WAIT) = (C',ACT'L(L',i*,0),M")

for some C',ACT',L',i',M' and i'>max(0,])
where j =max{k](K,k,1) €ACT for some N or k=0}"

do pop(WAIT); goto 12;"]
(C,ACT,M) < pop(WAIT);[if ACT=ACT'(L',i',b*) for some ACT',L',i',b’
then i«i' else i«0;] goto 3;

wWN -

oV

~

Until section 3 the discussion is restricted to the preliminary version of
(1.3). Let us consider our previous example and assume that K will be cho-
sen in the initializing step while leaving N at the bottom of WAIT. In
the first comparative step the single K will be selected as illustrated
in figure 1 (full line from K to K). This step proves all paths comple~

K— K. L. K. N K K L N

S /

- L N N L
Figure 1. Two snapshots and the whole matrix

mentary which contain this pair (K,K), and none of these paths will be con-
sidered again. K is now stored in ACT. A}l remaining paths which pass
through K must pass through L (dotted line from K to L)} which in
this case is the only other literal to be chosen during this step. Since L
is the only Titeral in the clause chosen in the second step (full line from
L to L), the process may now turn to the next literal on the stack. Fig-
ure 1 illustrates this situation in the first snapshot. All paths containing
K have turned out to be complementary at this moment while all paths con-
taining N are yet to be considered. But this in fact will be completed in
one further step as illustrated in the second snapshot in figure 1.

The correctness and completeness of this algorithm (in its preliminary ver-
sion) is obvious on the basis of the definition of complementary matrices.
The only point worth to be mentioned in this respect is the case where for
the chosen literal L no_complement can be found in any remaining clause

. . L—L N S L T . .
(steps 5-7) like in ‘\NfCSfQ:) T . When the algorithm arrives at the

encircled N this case occurs. But obviously, any literal which has a com-



BIBEL-4

plement in the active path ACT may play the role of the missing N (actu-
ally, this could have been allowed in the_algorithm as an alternative choice
even in the regular case where € with L€C exists). If not even such a
literal does exist in any of the remaining clauses then the whole matrix is
complementary if and only if this holds for the remaining matrix, since by
construction any path which has ACT as a subpath must contain a complemen-
tary pair of literals in the remaining matrix.

We notice the following two virtues_of algorithm (1.3). Firstly, within one
step, for any pair of literals (L,L) currently being considered it proves
the complementarity of all paths passing through this pair and it never con-
siders these paths again. Secondly, in the regular case (step 8) it never re-
quires more than one step (i.e. one comparison) to prove that a path is com-
plementary, since the choice of complementary pairs of literals is the lead-
ing action (not the blind choice of paths as in the previous algorithm). For
the steps 7 and 10 the number of comparisons is bounded by the number of el-
ements in ACT which in turn is bounded by m:={M|. Therefore, (1.3} is
faster than any version of (1.1) for a normal form matrix. The speed~up is

in fact considerable since, assuming a uniform distribution of literals with-
in the matrix), the number of comparisons per path on the average is quadrat-
ic in m for {1.1) while it is less than m for {(1.3). Under the same as-
sumption the number of paths is 0(nM) where n is the number of different
variables in the matrix which shows that the improvement renders an exponen-
tial speed-up.

The price for this improvement is on the memory side, but it is very cheap.
If one shares the information within the stack - note that the values for
ACT and M build upon those of the previous entry, and that a marker suf-
fices for C - then we need at most 3+m auxiliary locations (in addition

to the factor 2 mentioned before 1.3). The following theorem summarizes these
arguments.

1.4.7. Algorithm (1.3) in its preliminary version is strictly faster than

(1.1) for a matrix in normal form, the speed-up being exponential in the num-

ber m of clauses in M (for a uniform distribution of literals). On the

other hand, (1.3) requires at most z [C[+3m more memory locations than (1.1).
CeM

2. Linear resolution methods

Figure 1 has illustrated one key idea which distinguishes aigorithm (1.3) -
still in its preliminary version - from (1.1) and which will be called the
linearity feature: the pairs of complementary literals are chained in a lin-
ear way (whenever the condition in step 5 is false). This is exactly the fea-
ture which characterizes all linear resolution methods. In order to illus-
trate that let us present the actions of (1.3) for the example of figure 1 in

a modified notation which clearly reflects exactly the same steps.
1. N given

2. L_ given

3. KL given

L. KN _ given

5. N[K]JL extension with 3.

6. N extension with 2.; bracketed literals deleted (truncation)
7.8 extension with 1.; bracketed literal deleted

The reader familiar with model elimination (ME) will inmediately see that
this is a correct ME refutation (see [11] for terminology). ME is just a var-
iant of the class of linear resolution procedures. Hence, there seems to be

a close relation between linear resolution and (1.3). This relation will be
now explored in precise terms.
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{1.3) contains no action which corresponds to merging (or factorization) in
ME. As we will see in section 4, factorization is a separate issue which has
been solved only in an incomplete way in all linear methods; therefore its
implementation is postponed.

In (1.3) the information given by M prevents the algorithm from extending
a path a second time through the same clause. Of course, this provision
could be deleted without touching compieteness or consistency, since addi-
tion of a second copy of a clause to a given matrix apparently does not af-
fect complementarity at all. But it certainly would affect efficiency in abad
way since the number of paths apparently increases with each such copy.
Hence this additional feature of (1.3) turns out to be a special virtue
which is implemented in ME by the restriction of a deduction to contain
acceptable chains only. Since without factoring the notion of acceptability
would have to be adapted, we rather implement the information given by M

by attaching the corresponding clause numbers to the A-literals and by re-
stricting extension to be allowed only with clauses whose number has not yet
been attached to any A-literal in the given chain. With this irrelevant modi-
fication ME without factorization will be denoted by PME (pure ME).

2.1.T. Each PME refutation of a matrix M can be simulated by {1.3) with
exactly the same number of steps. (The representational form of (1.3) endows
it with a little advantage over PME w.r.t. space.)

Proof. The simulation is obvious with the following correspondence. PME ex-
tension can be simulated by the steps 3,8,9 of (1.3). PME reduction can be
simulated by line 10. PME deletion of bracketed literals (truncation) for
completion of both, extension and reduction, is performed in 13. Note that
the A-literals are those stored in ACT, while the B-literals are those
stored in the first component of the entries in WAIT.

The implementation of (1.3) suggested in section ! requires only one pointer
instead of a whole cell in a chain. This amounts to 3:32{C{+2m locations re-
quired at most by PME as opposed to 2-I|C{+3m Tocations mentioned in sec-
tion 1 for (1.3).

3. Connection graph method

Algorithm (1.3) in its preliminary version has a redundancy which becomes ap-

L K

parent by the following exampie*!: L<<:§::z;lL’£ . Upon arrival at R the

=N |
algorithm chooses the clause {L} in step 7. Complementarity is now obvious;
the algorithm, however, does not notice this and considers the literal N
on the stack. In general, instead of the single literal N the stack may
contain arbitrarily many entries. Also, the example may be easily modified
such that the deletion rule (see [7], temma 3.1) does not apply. All linear
methods Tike ME suffer from this redundancy.

This redundancy disappears in the full version_of (1.3) which is discussed
now. Namely, after the choice of the clause {L} as before ‘0" is re-
placed by "1' in the first element (L,1,0) in ACT within step 10 which
allows to empty the whole stack in step 13. The justification for this is
provided by the following theorem.

*) A similar example was mentioned by R. Kowalski in a discussion with the
author. Closer examination of it revealed several defaults in an earlier
version of this paper.
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3.1.T. Algorithm (1.3) - in its full version - is sound and complete.

Proof. For the preliminary version soundness and completeness was obvious.
The only crucial difference apparently is within step 13 where subgoals on
WAIT are simply deleted by the full version. Hence completeness is trivial-
ly carried over from the preliminary version. It is a little more difficult
to show the same for soundness.

Let M denote any matrix. It was already mentioned in section 1 that (1.3)
- in any version - determines pairs (L,L) of complementary literals, and
thus proves complementary any path containing this pair; moreover, (1.3)
never considers such a path again. Let us assume that during a run of (1.3)
we note in a separate copy of M the pairs considered in this way by sett-
ing links between the respective occurrences of these literals.

Now, assume {(1.3) runs in the full version on M but without the while-
statement in step 13, and consider any situation when it arrives at step 13
and the if-condition turns out to be true. Let A denote the set of links
which have been set sofar in M, and P the set of paths which sofar turn-

ed out to be complementary. This situation is illustrated in figure 2.
G4 4L & ¢ ¢, Cott
Ky Ki-1 Kj-1 Kn-1 L
- K/K /... /K / /K. / /K L /
1 2 i j n 1
: . . : . P
- R.
J

Figure 2. The connection graph {M,A)

K.y...,K are literals in ACT (not necessarily all). K., 0<i<n, de-
notes the rightmost literal which is connected with a Titeral beyond the
ditch determined by the ditch-marker dm currently being considered in the
if-condition of step 13 and illustrated by the right vertical line. The left
vertical line illustrates the next dm on WAIT or the end of the matrix
if there is none. j is determined by i<j<n. R is any literal in the
clause Cj on WAIT remaining from Cj' (Note that the example at the be-

ginning of this section is a special case of this general situation.)

Now, let P' and Py be obtained from any path P&€P through M by re-
ptacing in P the literal Sj' from clause cj‘ by R., for all j'eJ
for any J such that @#J<{i+l,...,n}, and the literal Sj from clause
Cj by Kj for all je{i+l,...,n}, resp.. By construction, PO €P and
the link which yielded complementarity of P, cannot contain any of the

literals Ki+1""’Kn' Hence, such a link is also contained in P', i.e.

P' €P. On the other hand, switching on the while-loop in step 13 prevents
the examination of exactly those paths through M, which can be obtained
as P', and therefore has no effect w.r.t. soundness.

After removal of the redundancy mentioned above the distinction, that has
been elaborated between the conrection graph procedure and SL-resolution
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by Kowalski in [10], cannot be made between the connection graph procedure
and (1.3). In fact, it seems that the following conjecture holds.

3.2. Each connection graph refutation of a matrix M can be simulated by
(1.3) - or perhaps some further improvement thereof - with the same number
of steps, considering corresponding pairs of literals but possibly in a dif-
ferent sequence.

In (3.2) would turn out to be true then this would mean a considerable ad-
vantage for (1.3) w.r.t. storage (no inherited links to be stored!) and
w.r.t. the search space {no increase of the matrix!).

4. Non~normal form methods

Figure 3 illustrates a redundancy inherent in all the methods discussed so-
far, and first noticed by Shostak in [13]. In the first snapshot, the path-
checking process (1.3), which here simulates the SL-refutation given in fig-
ure ha in [13], has just proved those paths complementary which contain N
but not Q. in the process which takes place between the two snapshots atl

N/ML NS L P NRG T R
Q/ /N/L -7 /L//N/L TSLLE';ET

Figure 3. A redundancy in normal form methods
(2 snapshots and the whole matrix)

paths through N and Q turn out to be complementary. But except for the
first step this whole process has already been performed before in literally
the same way (compare the last four clauses in both snapshots).

This redundancy can be easily removed by generalizing the preliminary ver-
sion of (1.3) to non-normal form matrices. This is illustrated by

N// M //L//N and accomplished by the following algorithm.
- T /L /L P b4 g alg

b.1.A. (Preliminary version of (1.3) generalized to arbitrary matrices. No-
tation as in 1.3)

1: ACT=@; while non-empty(WAIT) do pop(WAIT); push(WAIT,"Im");

2: choose a clause C from the matrix M; M«<M\C;

3: choose a matrix M' from C;
if C\M' +¢ then push{WAIT, (C~\M',ACT,M));
if M' is not a literal then rpush(WA!T,”lm”); M<M'UM; goto 27,
LeM'; ACT=ACTLL;

4: if M=¢ then return ("non-complementary');

5: lf there is no clause C €M such that L occurs in C then

6: |f there is no clause CEMsuch that Koccurs |anor some K& ACT then

wh:le pop{(WAIT) #"Im" do pop(WAIT); ACT~@; goto 2’

7: else "choose KEACT such that K occurs in M; L+ -k

8: choose C from M such that L occurs in C;

9: M«<M\C; choose M' €C such that L occurs in M'; C«C\M';
9': for each C' &€M'such that C' ={K} and K#L for some K do

"check each entry on WAIT from top until the first_occurrence

of "Im'' whether for its first component, say C', K€C';
if this is_true then cancel this occurrence of K lf
even ("= {K} then remove the whole entry from WALT'
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10: among the matrices of C delete those which are literals K such that
K €ACT; _
11: if M' =L and C#¢ then goto 3;
if M'#L and C+¢ then Tpush(WAIT, (C,ACT,M}) ;push(WAIT, " 1m"};
goto 1111;
if M =L and C =9 then goto_12;
11': choose C from M' such that L occurs in C; M=~ (M'~L) UM;
choose M' from € such that L occurs in M'; C<CM';
goto 11;
12: while pop(WAIT) ="Im" do pop(WAIT);
if empty(WAIT) then return (''complementary'!);
i3: {C,ACT,M) ~pop(WAIT); goto 3;

4.2.T. a) Algorithm (4.1) is complete and sound.

b) For each matrix M in normal form there is a generalized matrix M'
consisting of a factorized version of M such that each refutation of M by
Shostak's graph construction procedure [13] can be simulated by (4.1) ap-
plied to M' with the same number of steps (while the converse does not hold).

For reasons of space it is only mentioned that step 9' simulates ''reduction
using a C-literal", the other steps behaving similar as pointed out in the
proof for (2.1).

Acknowledgements. | thank R. Kowalski and G. Wrightson for discussions and
comments and A, Bussmann for the typescript.
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Representing Design Alternatives’

Daniel G. Bobrow and ira P. Goldstein
Xerox Palo Aito Research Center
Palo Alto, California 94304, U.S.A

Abstract:

Artificial intelligence systems are complex designed artifacts. Techniques
used in A} systems to describe structures and to represent alternatives can be
used to support the design of the systems themselves. PIE is an experimental
personal information environment which provides wusers with descriptive
structures for programs and documents. In PIE, allernative designs for
programs and documents are simulianeously viewable in the system through
the use of a context structured database. This short paper gives ‘an overview
of how the use of these facilities improves the design environment for builders
of software systems.

introduction

A maijor activity in artificial intelligence research is the design of complex systems. Yet
most software environments do not support this activity well. They do not alfow within
the system description of different properties of a design nor the flexible examination of
alternative designs. Ail designers create alternative solutions, develop them to various
degrees, compare their properties, then choose among them. Yet most software
environments do not allow alternative definitions of procedures and data structures o
exist simuitaneously; nor do they provide a representation for the evolution of a particular
set of definitions across time. 1t is our hypothesis that a context-structured database can
substantially improve the programmer's ability to manage the evolution of his software
designs.

Present computing environments support the creation of alternative designs only with file
services. Typically users record significant alternatives in files of different names; the
evolution of a given alternative is recorded in files of the same name with different
version numbers. We contend that this use of files provides both an impoverished
structure as well as an inflexible one. The poverty is a resuit of the fact that file names
are simply a limited length sequence of characters, hardly an adequate scheme to
describe the purpose and contents of a file, and its relation to other files. It can be an
adequate reminder to the originator of the name, but is often opaque to a new reader.
The rigidity is a reflection of the fact that one typically cannot use parts of files as part of
a new composite design, except by tedious text editing. Finally, the most serious
timitation is that files are "off-line” in the sense that the alternative designs are not
stored within the computing environment in a form that can be easily manipulated by the

"Tn be published in the Froceedings. Artificial Inteftigence and Simulation of Behavior Conference, July,
1880, Amsterdam. A more extended discussion of this research can be found in Goidstein & Bobrow {80}



BOBROW-2

programmer. Although Interlisp [Teitelman, 78] provides some facilities for manipulating
pieces of a file (e.g. individual function definitions), it still suffers from the "off-line"
limitation.

To ameliorate this software bottleneck, we have constructed a computing environment in
which "on-line" descriptions of alternative software designs can be readily created and
manipulated. We use a context-structured description-centered database to describe
code. Such databases have been explored in artificial intelligence research for over a
decade as a mechanism to represent alternative world views. [e.g. Hewitt, 71; Sussman
& McDermott, 72].

Our application of this machinery is novel in several respects. (1) Previous applications
have focussed on the use of such databases by mechanical probiem solvers. We are
exploring the use of such databases in a mixed-initiative fashion with the user primarily
responsibie for their creation and maintenance. (2) Previous applications have aiways
demanded a uniform overhead in space and time for adopting the context machinery.
We are exploring configurations for a design environment that allow the programmer to
trade flexibility for efficiency, decreasing the system’s investment in tracking the
evolution of particular parts of a design at the price of not being able to represent
alternatives simultaneously in primary memory. Thus, employing the design environment
is not an all or nothing choice for the user. (3) Previous applications have been to
problems of limited complexity. in our application of context structured databases to
software design, we are exploring their utility in a world several orders of magnitude
more complex. '

To understand the pros and cons of context structured environments for software design,
we have implemented a prototype environment and conducted several experiments. The
environment is called PIE, an acronym for personal information environment. PIE allows
the user to build context sensitive descriptions of code, documents, and, indeed, any
object for which a machine representation exists. PIE has been employed (1) to allow a
programmer to create alternative software designs, examine their properties, then choose
one as the production version, (2) to coordinate the interactive design of two
programmers, and (3) to coordinate the documentation and definitions of an evolving
package of code.

The Smalltatk environment

To describe PIE further, we must first introduce Smalltalk [Ingalls, 78; Kay, 74], the
programming environment in which it has been implemented. Smalltalk is an object-
oriented programming language. (See Dahi & Nygaard [66] on Simula and Hewitt et al
{73] on "actors” for related work on such programming languages). Behavior arises
from the transmission of messages between objects. Each object is, in essence, a
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simulation of a computer. It can respond to some number of messages and it maintains
its own state between message invocations.

The message set of an object is specified by Smalitalk’s class structure. Each object is
an instance of a class. When a message is sent to the object, it asks its class for the
method associated with that message. The class either contains the definition directly,
or if not, passes the request to its superclass. For the object to understand the
message, its definition must occur somewhere in this superclass chain. Thus, objects of
the same class are analogous to computer products of the same model.

Figure 1 shows a fragment of the definition of a Smalitaik class for Spaceship. The
fragment shown indicates that instances of Spaceship understand messages that
simulate motion and collision and that each instance carries its own private state
regarding its position and velocity.

Class new title: Spaceship
superClass: Object "class Object is the root of the superClass hierarchy."
declare: ’allSpaceships’ "a class variable --shared by all instances”
fields: ’position velocity’ “instance variables -- each instance has private versions of these"

Moving "methods are divided into ‘protocols’ -- this one is called Moving”

accelerate: dv "dv is the argument of the method with selector accelerate”
[velocity « velocity + dv]

move [position+position + velocity. “points understand the message +
self crashes => "self refers to this instance. = > indicales a conditional expression

[t selt explode} "“if condition is true, move returns with value of self explode”

self display. “done il condition is false - display is a message this instance understands”]

Collisions “another protocot”

crashes | ship “ship is a local variable for the activiation”
“This assumes that all ships are of unit size, and collide only when at the same point"
{for: ship from: aliSpaceships do: [ ship collideAt: position =D>[ttrue]l.tfalse]

collideAt: place
"a method to test if | collide with another object at place.”
[position = place =>[ttrue] tfalse]

Figure 1: Partial Definition of a Smalltalk class

We chose Smalltalk over Lisp, the usual vehicle for Al research, because Smalitalk has a
superior set of interactive display facilities. DLISP {Teitelman, 77] provides enough
capabilities we believe, but was not available on the same fast hardware. These
interactive display facilities were of critical importance to allow the functionality of the
design environment to be delivered to a user. No matter how powerful the design tools,
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no experiments would have been possible with an interface based on an inadequate
communication channel. Using Smalltalk, however, has required that we reimplement
machinery common to such Al languages as FRL [Goldstein & Roberts, 77] and KRL
{Bobrow et al, 77]. This has proved straightforward because the object oriented
structure of Smalltalk is congenial to the frame-based viewpoint of a Al representation
languages.

The PIE environment

To describe Smalitalk code, we created a class of Smallialk objects called nodes. Nodes
are analogous to KRL units, or FRL frames: they consist of a set of attribute value pairs
with support for attached procedures, the use of defaults, meta-descriptions and
inheritance.

PIE provides convenient ways of viewing relationships between nodes, and viewing and
changing the properties of nodes. One can automatically create nodes which describe
existing pieces of the Smalltalk system, and conversely, make the system congruent with
a description of it. Node23 in Figure 2 is a description that might have been been
computed from one method of the Smalltalkk code shown in Figure 1.

Node23
class Node17 “Nodel7 is the node describing the class Spaceship”
selector ‘crashes "This is a unique string - like a Lisp Atom"
localVariables  ('ship) “This is a set of unique strings”
variableslsed ('ship ‘allSpaceships ’position 'mySize)
metlhodBody “This is an edilable paragraph®

ffor: ship from: allSpaceships
do: [ ship collideAt: position =>[ttrue]l.tfalse]
comment
'This assumes that all ships are of unit size, and collide
only when at the same point’

Figure 2. A node describing the method for crashes

In PIE, changing the values of any of these attributes does not automatically change the
object being described by the node. The node describes an intended object in the
system, not necessarily the version that exists in the system. This is worth emphasizing
as one of the principles characterizing our point of view towards the design process.

* The Description Principle: In a system there should exist a descriptive
level at which objects can be described without actually affecting the objects
themselves.
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Representing alternative designs

Using node structure, there are two distinct ways to have alternative descriptions of the
same object: coreference and context. We have explored both, with our current
preference being for the use of contexts.

Coreference uses separate nodes to describe separate alternatives. in Figure 3, Node25
is a description of an alternative version of crashes. The intended identity of the
Node23 and Node25 (they are both are describing the same object) is made explicit
with the coreferentNodes atiribuie.

Node25

class Nodet8 “Node18 is the node describing the class Spaceship which differs

from Nodel7 in having an additional instance variable -- mySize”

selector ’crashes
localVariables ('ship)
variablesUsed ('ship ‘allSpaceships ’position 'mySize)
methodBody “a different method body"

[for: ship from: aliSpaceships

do: [ ship collideAt: position of: mySize =>[ttrue]}.+false]

comment 'Uses mySize for each ship to determine overlap’
coreferentNodes (Node23)

Figure 3. An aiternative method for crashes

However, coreference has certain difficulties. The first is that it does not represent the
manner in which two descriptions may differ on some attributes but otherwise be
identical. The second is that the coordination of the choice of Node23 vs. Node25 and
other choices in the system for consistency is not expressed. For this reason we have
chosen to explore another way of expressing alternatives.

in this second method, all descriptions (values of atiributes) of any node are relative to a
context. Context as we use the term extends the notion of context as used in Conniver
[Sussman & McDermott, 72], and has certain similarities to the vistas of partitioned
semantic nets [Hendrix, 75].

% The Context Principle: Al attribute-values in the system are relative to a
context, and alternatives in a system are expressed by alternative contexts.

When one retrieves the values of attributes of a node, one does so in a particular
context, and only the values assigned in that context are visible,
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Incremental design

Design involves more than the consideration of alternatives. It also involves the
incremental development of a single alternative. Every programmer is aware that
software has a life cycle: following its birth, it undergoes progressive refinement in
response to changing external requirements. PIE supports the incremental modification
of a design by providing a fine structure to contexts that we have not, as yet, discussed.

A context is structured as a sequence of layers. It is these layers that allow the state of
a context to evolve. The assignment of a value to a property is done in a particular
layer. Thus the assertion that a particular procedure has a certain source code
definition is made in a layer. Retrieval from a context is done by looking up the value of
an attribute, layer by layer. If a value is asserted for the attribute in the first layer of the
context, then this value is returned. If not, the next layer is examined. This process is
repeated until the layers are exhausted.

Figure 4 shows a layer C containing some coordinated changes to the spaceship class of
Figure 1. This layer contains those changes necessary to allow the class to use size
information in determining collisions. In a context which contained this layer dominating
those containing the information implicit in Figure 1, the changes would be visible.
Those attribute-values such as the superclass of Spaceship that are not contained in
fayer C would be found in less dominant layers.

Node17 “the node for the class Spaceship”
fields: ('position 'velocity 'mySize) “a change in a declaration”
methods (... Node23 Node27 ...)

Node23 “the node for the method crashes”
methodBody
{for: ship from: allSpaceships
do: [ ship collideAt: position of: mySize = >[ttrue]].tfalse]

Node27 "the node for the method that tests for a collision”
selector ’'collideAt:of:
methodBody
[(position + mySize>place-size)and:(position-mySize<place + size) =>[tirue]
tfalse]

Figure 4. Layer C, containing coordinated changes to use mySize

Figure 5§ shows several spaceship nodes in which the values of attributes have not been
filtered by a context sensitive lookup. Instead, we see the underlying data structure,
which is an association list of layers and values. Layer B is the base layer in which all
the nodes were presumed to have been originally defined for this example.
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Node17 “the node for the class Spaceship”
fields: LayerB (’position 'velocity)
LayerC ('position 'velocity 'mySize)
Node23 “tne node for the method crashes”
methodBody
LayerB
[for: ship from: allSpaceships
do: [ ship collideAt: position =>[ttrue]].tfalse]

LayerC
[for: ship from: allSpaceships
do: [ ship collideAt: position of: mySize =>[ttrue]].+false]

Figure 5. An unlayered view of node structure

Extending a context by creating a new layer is an operation that is sometimes done by
the system, and sometimes by the user. The current PIE system adds a layer to a
context each timé the context is modified in a new session. Thus, a user can easily back
up to the state of a design during a previous working session. The user can create
layers at will. This may be done when he or she feels that a given groups of changes
should be coordinated. Typically, the user will group dependent changes in the same
layer.

Given the existence of layers, a complex design developed over many stages can be
summarized into a single new layer. The old layers, reflecting past choices, can then be
deleted. Thus, the designer, if he wishes, can compress the past, achieving a more
compact representation at the price of no longer representing the dynamics of the
design.

Coordinating designs

So far we have emphasized that aspect of design which consists of a single individual
manipulating alternatives. A complementary facet of the design process involves
merging two partial designs. This task inevitably arises when the design process is
undertaken by a team rather than an individual. To coordinate partial designs, one
needs an environment with these properties: (1) non-interference. Two designs may
overlap. 1t must be possible to examine the overlap without the designs overwriting one
another. (2) incompleteness. It must not be necessary for a design to be complete
before it is examined. (3) merging. It must be convenient to create a common design
from the individual contributions. It was encouraging for us to learn that the
context/layer machinery created to manage alternatives lent itself well to meeting these
requirements for coordinating partial designs.
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Non-interference between the overlap of two partial designs was accomplished by
adopting the convention that different designers place their contributions in separate
fayers. Thus, where an overlap occurred, the divergent values for some common
attributes were separated by distinct layers. Handling incomplete designs of software
was facilitated by the distinction bstween intensional node descriptions and the actual
code definitions. Since the node descriptions were not installed code, they could be
partial and hence non-executable with no difficulty.

Merging two designs can be viewed as a process that creates a new layer into which are
placed the desired values for attributes as selected from two or more competing

] contexts. 1t is hence very much like the summarization process described earlier, but it
is relative to more than one context and requires user interaction. For'complex designs,
the merge process is, of course, non-trivial. We do not, and indeed cannot, claim that
PIE eliminates this complexity. What it does provides is a more finely grained descriptive
structure than files in which to manipulate the pieces of the design.

Understanding how to merge two designs is facilitated by examining commentary
supplied by the designers regarding the rationale of their choices. But this raises the
classic software problem of coordinating documentation with design. Fortunately no
additional machinery is required in PIE to address this problem. Commentary such as
the rationale of a procedure, or its dependencies on other procedures, can be stored as
attribute value pairs within the node describing the procedure in question. A request to
be informed of the rationale of some change is answered by fetching this information
from the same layer as the one which records the change, thus keeping them
coordinated. Figure 4 shows how the rationales of various method definitions are
recorded in the layer along with the altered definitions.

Complexity.

We claimed in the introduction that PIE copes with problems several orders of magnitude
more complex than those previously represented in Al systems such as Conniver. By
complexity we mean both the size of the data base in the system, and the variety of
operations done on contexts. The Conniver database was never efficient enough to
implement any useable subsystems. McDermott's [McDermott, 74] examination of the
Monkey and Bananas problem within Conniver exercised it to its limit.

PIE is able to build a context sensitive description of any class within Smalltalk. Thus, it
can be applied to any programming problem that a Smailltalk programmer undertakes.
This is analogous to using Conniver to build a programmer’s interface to Lisp. Attacking
problems of this size is, in part, possible because we have more computational resources
than were available in the early 70’s. PIE runs as a stand alone job on a processor with
at least the power of a KA10. However, it is also possible because we have implemented
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machinery to allow the programmer to move between context sensitive and context free
descriptions at will. Thus, there is a more congenial marriage between PIE and Smalltalk
than there was between Lisp and Conniver. This is discussed in the next section.

An interesting side effect of PIE's ability to describe any code within Smalitalk is that it
can and has been used to describe itself. Thus, PIE's present capabilities have passed
the test of being sufficiently powerful to support its own development, for example, by
allowing us to examine alternative implementations of the PIE user interface within PIE.

Efficiency versus Flexibility

PIE allows the user to trade flexibility for efficiency. At one extreme, the user can
employ standard Smalitalk mechanisms for defining new code. If this route is chosen,
then no evolutionary history is maintained, and no context overhead is paid. However, if
the user wishes to pay the price of some decrease in efficiency of storage and retrieval
time, then he can first build a set of nodes describing Smailtalk code, then continue his
development in a context structured fashion. From this point forward, the evoiutionary
history is maintained. If the user reaches the point where he once again prefers
efficiency to flexibility, the context definitions can be converted to pure Smailtalk and the
layers deleted. If desired, the user can first store the layers remotely, preserving the
ability to recreate the context description later. Al these facilities are curently
implemented.

This discussion suggests how a central design facility can serve as the nucleus of a
network of remote servers that provide current packages to users. Pefiodically, the
design server can release new layers to these servers with updates to particular designs.
The servers can then generate new Smalltalk versions and release these designs to
clients. Clients who wish to know what has changed, can get a description from the new
layer.

Interaction

PIE’s ability to represent non-trivial alternative designs raises deep problems related to
the user interface. How can we make available this power in a useable form? What are
the cognitive requirements of the programmer? Presently we are employing an interface
modelled on the standard Smalltalk interface for examining and altering code. This
interface, called the browser, displays a hierarchy of descriptions of Smalitalk code to the
user. The user can examine any method by a process of selection that specilies first a
category of classes, then a particular class, then a protocol of methods within the class,
and finally a particular method. This scheme of organizing code into a four-level
taxonomy has been adopted in PIE to minimize the overhead for a Smalitalk user
learning to employ the PIE environment. However, PIE makes this classification context
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dependent. As with the standard Smalltalk browser, the user can alter the definitions of
any object viewed. But these alterations are made in the dominant layer of the
associated context, and do not affect the Smalitalk kernel itself, whereas making changes
with the standard Smalltatk browser forces immediate incorporation of any changes.

Research is needed to explore whether this interface is adequate given the increased
complexity of a context structured environment. In Smalltalk, the hierarchy of code
definitions is the primary structural organization. In PIE, this hierarchy is now context
dependent. Has this additional complexity made the Smalitalk organization inadequate?
Will we need a classification scheme with more levels of division, or will some other kind
of organization be appropriate? Just one of the problems that we will have to consider is
that in a design environment, there is no need for a particular method description to be
associated with only a single class, even though the actual Smalitalk system requires that
the method be separately compiled for each class to which it belongs. Hence, a strict
hierarchy is obviously inadequate.

Conclusions

This paper presents only a sketch of the PIE system; our research is reported in greater
detail in Goldstein & Bobrow [80]. We have not discussed here issues in the design of
the user interface, although a successful interface is critical to delivery of these
capabilities to the user. We only suggest here that layered networks are applicable to
more than software: an extended example in cooperative writing of a document is given
in the larger work. Finally, the system has as yet had only limited use. We do not know
which features will be used most, which need to be automated to be helpful, and which
may prove to be too complex to be useful. Recording and analyzing this experience is
an important part of our research program.

A major theme of Artificial Intelligence research has been the development of languages
to describe complex evolving structures. In general, these structures have been the
belief structures of an artificial being about some subject matter (e.g., the SRI
consultant’s [Hart, 75] beliefs about the state of a water pump being constructed, or
SAM’s [Schank et al, 75] beliefs about what went on in a story it just read). We have
been exploring the premise that these techniques can be used to describe the complex
evolving structure of a software system, and as such can provide aids to the designer of
such a system. One use of artificial intelligence is to amplify human intelligence. We
suggest that the (recursive) application of Al techniques to Al can have a powerful effect
on the development of the field.
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PATTERN-BASED REPRESENTATIONS OF KNOWLEDGE

IN THE GAME CF CHESS

M.A.Bramer
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Milton Keynes, ENGLAND MK7 6AA.

Abstract

The focus of recent Artificial Intelligence research into Computer Chess
has been on endgames. These afford the possibility of centrolled
experimentation, whilst retaining much of the complexity of the full game
of chess. This paper discusses some of the specific reasons for
complexity in the endgame and considers its effects on human chess-
playing strategy, textbook descriptions and the development of programs.
In programming the endgame the researcher is faced with a range of
decisions concerning the quality of play to be aimed at, the balance
between knowledge and search to be adopted and the degree to which the
playing strategy should be understandable to human chessplayers. A model
for representing pattern-knowledge is described which has enabled the
development of algorithms to play a number of endgames. Three algorithms
representing different levels of performance for the endgame King and
Pawn against King are compared, in order to discuss the tradeoff between
complexity and completeness, on the one hand, and compactness and
comprehensibility, on the other. Finally, the role of search in reducing
the amount of knowledge to be memorised is considered and an extension to
the basic model to incorporate deeper search is discussed.

Introduction

The game of Chess combines complexity with a well-defined structure,
together with an extensive background culture against which a given
standard of program performance can be evaluated.

The focus of much research into computer chess has moved towards the
study of endgames, which retain much of the complexity of the full game
whilst affording the possibility of controlled experiments and precise
quantitative analysis. It is also notable that conventional chess~
playing programs using deep secarch with simple evaluation functions
generally perform very badly in endgames, where knowledge, rather than
calculation, is probably the major factor in human play.

Studies of even the most elementary endgames such as King and Pawn against
King (KPK) and King and Rook against King (KRK) have revealed surprising
complexity. Numerous difficult cases have been found which are not

given in textbooks and conventional programming techniques have proved
most unsuccessful. Knowledge-based algorithms for a variety of endgames
have been given by Bramer (1977b), Bramer and Clarke (1979), Bratko and
Michie (1980) and elsewhere, in each case developed after a lengthy

series of trials and careful refinement.
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There are a number of reasons for this unexpected complexity.

(1) Limitations of current theoretical knowledge of chess.

Experiments have revealed important errors and omissions in the known
theory of various endgames, with erroneous evaluations previously made by
experts and counter—intuitive moves and results found in several
important positions.

KPK and KRK are believed to _be fully understood theoretically by
reasonably strong players. Nevertheless there are difficult cases which
are not given in the majority of widely available textbooks, or (in some
cases) in any of them. The authors have either been unaware of the
difficulties or have excluded them as unimportant.

(2) Boundary effects caused by the board edge.

Inability to manoeuvre beyond the Rook files or the first or eighth ranks
leads todifficulties and ‘'special cases' affecting general strategies
(particularly for KPK).

(3) 'Discontinuities' in the rules of chess.

Stalemate, the option of an initial double Pawn move and pawn promotion
can be viewed as 'discontinuities' in the normal rules (being unable to
avoid King capture loses, pieces move in the same way anywhere on the
board) and both are significant in endgame play. .

(4) Chessboard geometry.

The geometry of the chessboard is non-Euclidean (and varies from piece to
piece). Measuring in terms of King moves (one square vertically,
horizontally or diagonally at a time) the distance from square Al to
square A7 is 6 units either directly or via two sides of a triangle
(A1-B2-C3-D4~C5-B6-A7). The situation is compounded by the existence of
squares on to which a King may not legally move, which alters its
'effective distance' from a given square. Some analysis of effective
distance in the KPK case is given in Bramer (1977a).

With this geometry it is difficult to define even apparently simple
geometrical relationships, such as 'Black King can take Pawn' for KPK.

From the above it is clear that endgames, especially those with only a
small number of pieces, differ from middlegames by being much more ili-
behaved, with numerous special and unexpected cases arising. Moreover
the traditional computer chess technique of using a sophisticated search
algorithm with a fairly simple evaluation function is not applicable (at
least without major modification) to endgames, where it is easy to find
examples of positions which would require a search of 30 ply or more deep
to find the one (counter-intuitive) winning move.

Textbook descriptions of endgame strategies

From the chess literature it is evident that endgame play depends much
more on the use of plans based on a knowledge of significant configura-
tions (or patterns) of pieces than on deep analysis of possible varia-
tions.

For elementary endgames such as KPK and KRK, the plans are very simple
(e.g. 'move as close to White's Pawn as possible') and the search very
shallow, in fact almost non-existent.



BRAMER-3

Conventional chess-playing programs start with search and use knowledge
to reduce the amount of search required. In endgame play (especially
with few pieces) it is probably more appropriate to think of using search
as a means of reducing the amount of knowledge that must be stored.

A typical textbook description comprises a small number of general 'rules
of play' together with some example variations from diagrammed positions.
The rules are normally only imprecisely worded and omit important details
which have to be inferred_ from the variations given.

Although standard textbooks such as Fine (1941) are often thought of as
definitive and exhaustive, this is far from true. Aside from gaps or
errors in chess theory as mentioned previously, there is no attempt made
to deal with all possible situations which can arise even in the simplest
endgames. Fine remarks "I have given a large number of rules which are
at times incorrect from a strictly mathematical point of view, but are
nevertheless true by and large and are of the greatest practical value".
Thus he concentrates on the typical cases to the exclusion (in general)
of rarely arising exceptions even when these are known, and no effort is
made to demonstrate the most efficient strategies (in the sense of the
shortest possible win in every position).

Programming the endgame

In attempting to model the strong player's knowledge of the endgame, the
researcher is faced by a number of decisions. One is whether to adopt a
structural or a procedural representation, another is the level of per-
formance for which he should aim. A helpful distinction can be made
between winning algorithms which are optimal (i.e. the stronger side wins
wherever possible in the smallest possible number of moves) and those
which are correct {(the stronger side wins wherever possible but not
necessarily as quickly as possible). The evidence and examples given in
Bramer (1980) strongly suggest that, even for KPK, strong players perform
sub-optimally, although almost certainly correctly. For complex endgames
strong players do not always perform even correctly.

There is a principle of sufficiency involved here. The game-theoretic
maximum number of moves needed for the stronger side to win any winnable
KPK position is only 19. The rules allow for 50 moves (without any piece
taken or any Pawn moved) before a draw can be claimed. It is simply not
worthwhile to overload the memory with numerous special cases (or spend
time performing a deep analysis) to achieve optimal play, even assuming
this is feasible, if there is a simple algorithm which suffices for
correctness, still well within the constraints of the 50-move rule.

On the other hand, the endgame King, Bishop and Knight versus King is
thought to require up to 34 moves to win and an error in certain critical
positions can easily lead to an exceeding of the 50 move limit. In these
cases it is worthwhile memorizing much more detail of difficult cases,
although not necessarily all of them.

Clarke (1977) draws attention to the tradeoff between knowledge and
search. At the extremes are a program which has full knowledge and uses
no search (i.e. it simply looks up the best move in a table) and one
which uses extensive search and has no non-trivial knowledge (i.e. it
uses only the definitions of won, drawn and lost terminal positions).

In general, programs will lie somewhere along this spectrum, with recent
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Artificial Intelligence research concentrating on programs towards the
'knowledge' end.

Michie (1980) has described another tradeoff: this time between the per-
formance of a program and its comprehensibility to subject experts.
High-performance programs which are also comprehensible are referred to
as lying inside a 'human window'. In applied domains such as medicine,
the importance of this concept is that with an appropriate representation
it may be possible to satisfy subject experts of the accuracy of machine
judgemants, for example by describing the factors which were taken into
account, the weighting given to each, the diagnostic inference rules
applied and the reliability attached to the result.

Such considerations argue strongly in favour of the choice of a
structural representation, particularly one based on rules or patterns.
A pattern-based approach also allows subject experts, as well as judging
the rules given, to add their own experience in codified form.

An interesting case where trust in an unfathomable program was required
has already arisen in chess. Michie (1977) reports that the grandmaster
Bronstein made use of a database of the best move in every position for
part of the King, Queen and Pawn against King and Queen endgame for analy-
sis of an adjourned position. If the move retrieved from the database

had conflicted with Bronstein's own judgement it would have been virtually
impossible to check whether it arose from an error in creating the data-
base or was in fact accurate.

Rule-based representations of a body of knowledge can be viewed as having
two possible functions: one as a replacement for the textbook, to be
committed to memory by the chessplayer, the general medical practitioner
etc. and used as required, the other is as an expert computerized
assistant typically used in an interactive mode. In both cases, there is
an important need for comprehensibility. However, a set of rules for the
former will generally need to be much briefer than for the latter, to
match the limitations of human short-term memory, and again there is a
tradeoff, this time between accuracy (or completeness) and compactness
within a given framework.

A desirable feature of a rule-based expert system is that learning within
it will generally proceed monotonically, i.e. that adding a new rule
should not invalidate old ones but should lead to an improvement in per-
formance. This is only likely to be true if the underlying representation
is well chosen. The proliferation of rules each covering a small number
of cases which the subject expert would not regard as reflecting aspects
of the complexity of the domain in question is a good indication that the
representation is probably not appropriate.

The weakness of general-purpose representations of knowledge is that they
fail to take into account the specific features of the domain under con-
sideration. Thus it may be that in specifying the 'King can catch Pawn
predicate, some descriptors should always be used in preference to others
where possible or that some descriptors should only be used in conjunction
with others, or if others do not appear, etc.

A model for representing pattern—knowledge for chess endyames

representation designed to enable the chessplaver's knowledge of an end-
ame to be represented in a structurally simple and compact form, capable

2
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of incremental iterative refinement to improve its performance whilst
preserving its initial properties, is given in Bramer (1977b) and Bramer
and Clarke (1979) and summarized below. It is assumed that the problem
is to construct an algorithm to find a move for a chosen side (say White)
in any position p, for a given endgame. The basic move finding algorithm
is then as follows:

(a) generate the set Q of immediate successors (Black to move) of p
(b) find the highest ranked member of Q, say g
(¢) play the move correspording to q.

To achieve step (b) an implicit ranking is defined on the set Q% of 211
legal BTM (Black to move) positions for the endgame in question. Each
such position is assigned to exactly one of a number of disjoint and
exhaustive classes which partition the set Q*.

The ranking of each BTM position is then determined by its class value
{which is constant for all the positions in any class) and the values of
a number of associated functions. These vary from one class to another,
in general. For positions in the same class, the functions used are
always the same although their values will vary from one position to
another. To compare the values of two positions, their class values are
compared, with the larger value indicating the higher-ranked position.

If there is a tie, the first associated function is used for comparison.
If there remains a tie, the second associated function is used, and so on.
(Any ties remaining after all the associated functions have been used are
resolved arbitrarily.) When comparing the values of associated functions,
in some cases the larger value is preferred, in some cases the smaller is,
depending on the particular function. The intention is that each class
should correspond to some significant static feature of the endgame as
perceived by chessplayers, e.g. 'Black is in check'. The associated
functions correspond to relevant numerical values, such as the distance
between the two Kings.

Assigning a position q to a class is achieved by working through a series
of predicates (called rules) in turn until one is satisfied. (Subsequent
rules are not evaluated.) A position q is defined to belong to a par-
ticular class N if and only if rule N is satisfied by q and none of the
preceding rules are satisfied.

This procedure ensures that each position belongs to only one class and
helps to simplify the definition of the rules. To ensure that each
position belongs to some class, the final rule is defined to be always
true for any position q.

This model was used initially to develop an algorithm for the stronger
side (White) of KPK which was thought to be a fully correct strategy as a
result of extensive testing, reported in Bramer (1977b). Subsequent
analysis revealed that the algorithm was not entirely correct. An
optimal strategy was developed by a process of iterative refinement using
a database of the shortest-path winning move (or moves) in every position.
A correct algorithm has now been refined from the original 'mear correct
version’' by the semi-automatic refinement process based on inspection of
'win-trees' given in Bramer (1979) and is summarized in the Appendix.
(The development of a correct algorithm for KRK is described in Bramer
(1979).)
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Three algorithms for King and Pawn against King - a comparison

The following figures give basic information about each of the algorithms.

Figure | - Three algorithms for KPK
Algorithm Description Classes  Associated Max. depth
Functions of win (ply)
A ‘near correct'-strategy 19 9 ~-
correct strategy 20 10 44
optimal strategy 38 13 38
Figure 2 - 'Optimality Levels' for algorithms A (near-correct) and B
(correct)
) Algorithm A* Algorithm B
Move played is optimal 59,888 (95.937%) 60,462 (96.777)
Move played increases depth by | 1,526 (2.44%) 1,075 (1.727%)
" n n L1 n 3 673 660 i
1 " " " " S 251 222
11 " 1" " 1 7 68 . 47
i3] 1 " " 1" 9 |9 ] l
it " rn " 1" 1 1 5 ]
" " 1" " no13 - - '
Ai} " " " " ]5 2 2 ;
Total 62,432 62,480
(Breakdown for all legal WIM positions, which are theoretical wins).

* Excluding non-win preserving moves

Figure 3 - Class membership for algorithm B (correct strategy)

Class Number of positions Class Number of positions
(BTM) (BTM)

1 10,093 (10.37% 14 1,620 (1.7%)
2 9 15 8,507 (8.7%)
3 12,985 (13.37%) 16 2,632 (2.77)
4 35,026 (35.77) 17 1
5 14,6422 (14.77) 18 4,971 (5.1%)
6 694  (0.77) 19 5
7 50 20 4
8 6,045 (6.27)
9 42 Total 97,992
10 66 —
i 584 (0.6%) .
12 60
13 176

(Pavn on file A-D, ranks 2-8.)

Classes 2, 7, 9, 10, 12, 13, 17, 19 and 20 total together 413 members
(0.427).
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Figure 2 shows the 'Optimality Levels' for algorithms A and B; i.e. the
amount by which the move selected in each theoretically won WIM position
changed the maximum depth. For an optimal move the depth is decreased by
one ply. The figure shows that in both cases the great majority of moves
are either optimal or increase the depth by only one ply. The differences
between the two algorithms are small and, in fact, algorithm B was formed
from A by the addition of one new class (with only one member) and one
new associated function plus slight changes affecting a few other classes.

However, the difference in performance is substantial. Algorithm A fails
to win from as many as 4,602 theoretically won positions (WTM) and 4,351
(BTM). Only in 48 positions (WIM) is a move played which does not
preserve White's winning advantage, the other positions simply transform
into one another in cycles. This result reinforces the evidence given in
Bramer (1979) for the KRK endgame that a change to the move played in a
small number of positions can drastically alter the overall performance
of an algorithm. Testing even by expert human players might never reveal
that A was not a correct algerithm. 1Its errors will in general result in
a cycle but this may be after many moves of otherwise expert play,
possibly ip response to poor play by Black.

To improve the performance of KPK from correct (B) to optimal (C)
requires an increase from 20 to 38 classes and from 10 to 13 associated
functions. This near-doubling of the size of the algorithm results.in a
relatively minor improvement in performance. The number of individual
positions played optimally rises from 96.77%7 to 100% and the maximum
depth is reduced from 22 moves (44 ply) to 19 (38 ply). The definitions
of 38 classes would probably be too many to commit to memory, if the
algorithm were to be used as a replacement for the textbook, whereas 20
classes would probably be acceptable. Either number would be satisfac~
tory for an expert computerised assistant. The pattern of distribution
of depths for algorithm B is very similar to that for C {theoretical
maximum depths), and this is also true for algorithm A, which would tend
to support the appropriateness of the representation adopted. In making
the transition from algorithm B to C, it is clear that a 'diminishing
returns’ effect is involved. The maximum depth of 22 moves for algorithm
B is still well within the 50-move drawing limit. For a practical player
to take on the additional memory burden required to play optimally would
simply not be worthwhile, an unnecessary violation of the principle of
sufficiency.

The class membership table for algorithm B (Figure 3) shows that a fairly
small number of classes account for the great majority of positions. The
nine smallest classes contain less than a half of one percent of the
positions, and four classes contain less than ten positions each. It is
useful to consider whether classes with a low level of membership reflect
'special cases' of the domain in question or merely result from the par-
ticular representation used. 1In the case of algorithm B, the classes
concerned do seem to correspond to clear special cases arising from the
boundary effects, rule discontinuities etc. referred to previously. For
example, Class 17 is used to deal with recognized difficulties with a
Knight Pawn and Class 2 contains all the positions where Black is stale-
mated. Some of these special cases although important are not given in
the major textbooks (or not in all of them) and this is more markedly so
for algorithm C (optimal strategy). Bramer (1980) gives several examples
of positions which are clearly special cases but are of no practical
significance and would certainly never be quoted in textbooks. It is
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evident that textbooks omit many special cases, even those which are
necessary for correct play, and that a major reason for this is to reduce
the amount to be memorized.

It is not suggested that algorithm B is a minimal correct strategy for
KPK, i.e. one with the fewest number of rules possible. By removing
certain of the special cases or by other changes it might be possible to
construct an algorithm which was still correct but had a greater maximum
depth, although still within the 50-move limit. Such a strategy would
doubtless still have to include classes to deal with a (possibly reduced)
number of special cases. If the aim were not to achieve correctness, but
to perform expertly in practical play or to serve as a teaching document
superior to standard textbooks, it could be argued that an abbreviated
algorithm which omitted special cases but was still reliable in the great
majority of cases wus preferable. !

Extending the model

The most important way in which people reduce the amount of knowledge
memorized without necessary loss of correctness is by making use of
analysis or search.

For experienced players, search plays little part in simple endgames
(although exact counting does) but increasingly more as the problem
becomes more complex. Unfortunately, tournament chess-playing programs
have found it necessary to use search of a volume and kind which is most
unlike that of expert human plavers. An extension of the model previously
described enables the use of pattern-knowledge to be combined with search
deeper than one ply, but which is capable of careful control.

The final class (defined to be always true) is called the residual class;
those with class values greater than that of this class are called
positive, those with lower values are called negative. These latter two
categories broadly reflect features of the endgame which are particularly
desirable or especially undesirable. The most likely source of difficulty
in programming complex endgames lies in specifying a sufficiently large
number of positive or negative classes, with many Iimportant positions

thus falling into the residual class.

There are four possibilities for a given set of successor positions:

(a) at least one belongs to a positive class;

(b) all belong to negative classes;

(e) all belong to negative classes, except one which belongs to the
residual class;

(d) two or more positions belong to the residual class and the remairder
(if any) belong to negative classes.

In cases (a), (b) and (c) the most favourable position can be found
statically using position values in the usual way. In case (d), either
the positions in the residual class can be taken as terminal and the
associared functions used to calculate the value statically, in the usual
way, or an analysis tree can be generated from each of the residual class
positions, with the negative class positions rejected altogether.

Constructing an analysis tree in this way has the effect of reducing the
amount of search by pruning all branches to positions in negative classes
and defining terminal states of a given set of positions as a whole
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(cases (a), (b) and (c) above). Since a residual class position can, at
any stage, be regarded as terminal, with the static value of the position
backed up the tree, the amount of analysis performed is subject to close
control. 1In general, this form of the model is distinguished from con-
ventional tree-searching in that search is intended to be used in a con-
trolled way only as necessary to supplement the pattern-knowledge which

it is believed is the fundamental component of the chessplayer's endgame
knowledge. It corresponds roughly to the high-level rule 'if in an
unfamiliar situation, search for possible fercing variations into known
positions'. An alternative-approach which uses recognition of patterns to
invoke a goal-directed search (where each pattern is associated with its own
list of goals) is described by Bratko and Michie (1980).

Appendix
A correct algorithm for the endgame King and Pawn against King

Figure 4 - Classes for King and Pawn against King (summary)

Class Property of position q Class | Associated Functions
(Black to move) value
1 Pawn en prise 1 2, 3
2 Black is stalemated 2 ~
3 Pawn is on eighth rank 20 -
4 Pawn can "run" 19 1
5 Black King is effectively closer 3 2,3

to the Pawn than White (adjusted
for second rank case)

16 (Some Rook Pawn cases) 4 -
6 Black can move to 'blockade'" square 5 1, 2, 3
17 (Knight Pawn position - special 11 -
case)
7 White is on the "blockade" square 6 -
and Black can take opposition
8 Black King at least two files from 18 1, 4, 7

White King on same side of Pawn,
White King not below Pawn's rank

9 Kings on critical squares on same 17 !
rank
10 Kings on critical squares, Black 16 1
one rank above White
il White King on Pawn's rank, above 15 1, 7
Pawn
12 Kings in vertical opposition, with 14 -
the White King on a critical square
13 Kings in opposition, White King 12 1
above Pawn or both on sixth rank
14 White King on a critical square 10 1, 6, 5, 10
18 White King on a file above Pawn 9 4,1, 8
19 (Pawn on sixth rank-~special case) 8 -
20 (Pawn on fifth rank-special case) 13 -

15 (always true) 7 2, 3, 7,9
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Figure 5 - Associated Functions for King and Pawn against King

1
,Function Value of function :
1 The Pawn's rank*
2 The file or rank distance between the Kings, whichever
is the larger#®*
3 The file or rank distance between the Kings, whichever
is the smaller**
4 The file distance between the White King and the Pawn*%*
5 The file distance between the White King and the Pawn*
6 The number of ranks the White King is above the Pawn%
7 The White King's rank*
8 The rank distance between the White King and the Pawn®*%*
9 The file distance between the Kings*
10 The Wnite King's file**

* The largest value should be taken
*% The smallest value should be taken
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EXTENDING MECHO TO SOLVE STATICS PROBLEMS
by
Lawrence Byrd and Alan Borning
Department of Artificial Intelligence
University of Edinburgh
ABSTRACT
Mecho dis a computer program for solving mechanics problems. To

test the generality and extensibility of its representation and
search control mechanisms, we extended Mecho to handle problems

from a new domain, namely that of statics problems. This paper
describes the representation and solution of some of these
problems.

Keywords: statics, mechanics, problem solving, inference
Introduction

Mecho is a computer program for solving mechanics problems L2, 41,
Problems previously solved by the program have been from the areas of
pulley problems, motion on complex paths, and motion under constant
acceleration.

One of our goals in designing and building Mecho has been to investigate
general, extensible representation and search control mechanisms. We
decided to test how well that goal had been satisfied by extending Mecho to
handle problems from a new domain, namely that of statics problems. To do
this, we had to add several kinds of knowledge to the program: new types
of objects, such as rods and springs; new quantities, such as elasticities;
new formulae, such as Hooke's Llaw; and new strategies, such as taking
moments about a point. We found that 4n fact the program was easily
extended. For the most part, we simply had to add new physics knowledge;
only minor modification and debugging of the original set of rules was
required.

The full Mecho program is divided into three modules. The first module,
the natural language component, accepts a problem statement in English, and
from this produces a set of predicate calculus assertions describing a
situation. The second module, the problem solving component, accepts such
assertions as input, builds a strategy for solving the problem, and
generates as its output a set of algebraic equations. These equations are
then passed to the third module, an algebraic equation solver [33, which
produces the final answer. In the work described here, we bypassed the
natural language analysis phase, and entered the problems directly as
formal assertions. ALL of our extensions were to the problem solving
component; the algebra package was able to handle the equations produced
from our new problems without modification.

Other AI researchers have also worked in this area, in particular Gordon
Novak [81, E. Tyugu [91, and Jill Ltarkin £6, 7]. Several of the examples
described here are taken from Novak's and Larkin's papers; indeed, it has
been our intention to try and solve the problems handled by other workers
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in this domain.

In the remainder of this paper, we will describe how the statics problems
have been represented and solved, and attempt to bring out the reasons for
the success of our extensions.

Representing Statics Problems

We shall now discuss how an example problem is represented, and in the
next section we shall show how it is then solved. This problem is taken
from [81. .

A scaffold 10 ft Llong is supported by ropes attached at each end.
The scaffold weighs 100 Lbs. A man weighing 150 lbs stands on the
scaffold 4 ft from one end while another another man weighing 175
Lbs stands on the scaffold 2 ft from the other end. What s the
tension in each of the ropes supporting the scaffold?

k &

[A) [A)

Figure 1: A Scaffold Problem

The problem contains various objects, such as the ropes, the scaffold,
and the men; and certain quantities, such as tensions and masses. We
represent these entities, their properties, and the relations between them
by a set of predicate calculus assertions.

To start with, we need to represent a number of part/whole and connection
relations. The scaffold has end points and internal points where the men
are standing, while the ends of the ropes are attached to the end points of
the scaffold. We represent this by idealizing the ropes as strings and the
scaffold as a rod, both of which are types of LINE~like object. The men
are treated as particles, which are types of POINT-Like object. Points on
the ropes and scaffold are alsc POINT's. ALl the reguired relations can
then be represented using existing primitives for LINE-like and POINT-like
objects. Figure 2 shows how the problem from Figure 1 can be broken down
in this way, and introduces some names for the objects. This information
is represented by assertions such as:

isa(string,ropel)
end(string,bottom?,right)
isa(rod,scaffold)
end(rod,leftend,left)

fixed contact(bottoml,leftend,periodl)

The concepts of sub/super-LINE's, POINT's of LINE's, and connections
between POINT's can be used to represent uniformly a class of very common
relations over a wide range of objects. Even abstract objects, such as
periods of time and paths (trajectories of particles in motion), make use
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Figure 2: LINE/POINT relations for the Scaffold Problem
of the same underlying relations.

The objects also have properties like inclinations, masses, lengths, and
tensions. These are represented as relations between the objects and
corresponding symbolic quantities (which will have types like angle, mass,
distance, and force). Examples of such assertions would be:

mass{manl,ml,period?)
tension(ropel,t1,periodl)
separation(leftend,mani,d1,0,periodl)

These assertions are input to the program and placed in the data base.
They are then managed by an inference system (not described here, see
2, 41, which contains a wide range of inference rules about the mechanics
domain. The inference system uses meta-knowledge about the properties of
the predicates involved to control the use of these rules. It is capable
of satisfying queries about the problem regardless of whether or not we
have explicitly given the exact information the problem solver requires.
This will often dnvolve introducing new quantities not mentioned in the
problem statement. In the current example all the required quantities are
given, but this is not so for the examples given Later.

Solving Statics Problems

The problem solver consists of inference rules which reason about the
objects and relations in the problem, and about the strategies available
which might relate 'sought' quantities to those 'given'. The quantities
involved will be those mentioned in the problem statement, plus any new
intermediate quantities introduced by the inference system.

Mechanics text books usually present formulae such as 'F =M % A' in
their solutions to problems. Using such a formula involves knowledge about
when it is applicable and how to correctly apply it, taking into account
all the relavent objects and quantities. Our strategies consist of facts
and rules that provide this information. For example, the ‘'resolution of
forces' strategy (based on the above formula) contains knowledge about what
types of quantity it relates (forces, masses and accelerations in this
case), and rules that state exactly which forces etc need to be considered
when dealing with particular object configurations.

The program currently has about fourteen such strategies which deal with
a wide range of areas (such as principles of motion and energy). Onty
three of these are used for the problems in this paper. However, all of
the strategies remain in the program and could be used if deemed
applicable. A general goal directed method controls the application of
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these strategies (see [41).

Let us follow program's operation on the example from Figure 1. The
problem is to solve for the two tensions in the ropes in terms of the
masses and distances given in the problem statement. Considering the first
tension, it is known to be a force involving the string ropel. The program
now Looks for a strategy that will relate the force tensionl to other
quantities, and finds the resolve-forces strategy. The program's next goal
is to find a situation 1in the problem to which the strategy can be
successfully applied, in other words, to instantiate the variables in the
strategy. One of the available rules states that if the force is a tension
in a string, and the string has a point in contact with a rigid body (a
rod), then resolving about the complete rod should be considered. This is
the case in the current example, and the application of the strategy will
now 1invoke rules which state that force contributions from all objects
attached to points on the scaffold need to be taken into account. Finding
these force contributions involves considering the two tensions and all the
masses. The mass of the scaffold is treated as acting at the center of the
scaffold. Thus, reasoning from general properties and rules has lead to
the particular inter—-dependencies of the quantities in the problem, which
are now expressed in the form of an eguation.

No new unknown quantities have been introduced, so the remaining goal is
to solve for the second tension. The reasoning used above will now fail
because the resolve~-forces strategy will have already been applied to the
scaffold. Another strategy, that of summing the turning~moments, also
relates forces to other quantities. Similarly, another rule states that if
there 1is a rigid body attached to a point of the string, then summing the
turning-moments on that body (about some point other than where the string
is attached) should be considered. Applying the new strategy will invoke
rules about force contributions and distances. The inter-dependencies
discovered can again be expressed as an equation, and so the result of this
problem solving will be two simultaneous equations which can be solved by
the equation solver to produce a final answer.

Further Examples
The following problem is taken from [6]:
Block B in Figure 3 weighs 160 Llbs. The coefficient of static

friction between block and tablte is 0.25., Find the maximum weight
of block A for which the system will be in equilibrium.

Figure 3: Another Statics Problem

This problem is more complex than the previous one, in that solving for
the mass of the hanging particle requires that the program successively



BYRD-5

introduce a number of new quanitities not mentioned 1in the problem
statement, namely the tensions in each of the strings, and the reaction
between the table and Block B. This makes full use of the general probiem
solving strategies. Our program employs a backward goal-directed search
strategy rather than the forward chaining strategy used by Jill Larkin.
However, the actual qualitative reasoning involved in the problem solution
is none-the-less similar.

A related domain that was investigated was that of spring problems.
Solving such problems requires the addition of several new formultae, e.g.
Hooke's law, along with rules for applying them. Hooke's law should not be
used for inelastic strings. Therefore, a predicate ‘elastic® 1is also
defined, and the rule for applying Hooke's law includes a condition that
the Law be used only for elastic strings. Another formula specifies that
the extension of an inelastic string is zero. A typical problem of this
sort, taken from [1] p 153, is as follows.

Two springs AB and BC are joined together end to end to form one
long spring. The natural Llengths of the separate springs are 1.6 m
and 1.4 m and their moduli of elasticity are 20 N and 28 N
respectively. Find the tension in the combined spring if it is
stretched between two points 4 m apart.

In the process of solving the problem, Mecho had to create several new
unknowns: the tension in spring?2, and the extensions of both springs.

Mecho can now solve quite a wide range of problems involving rods,
strings and particles. The expanded version of this paper [5]1 contains
examples of other problems and the assertions representing them.

Conclusions

In this paper we have described a number of statics problems that Mecho
can now solve. There are certainly problems that cannot be solved, either
because the program's inference rules are inadaquate (for example, there is
not enough geometric knowledge), or because the problem solving strategies
are inadaquate (many situations are not covered, e.g. heavy strings and
composite objects). The program's reasoning about its strategies could
also be improved -- impossible problems, for example, should be rejected as
such without trying all possible solution paths!

Nevertheless, we have been greatly encouraged by the ease with which
statics problems have been incorporated into the program. The following
features of the program have played an important part in making this
possible:

- The modularity of the assertions and inference rules.

- The uniformity of certain underlying representational tools (such
as the POINT and LINE relations), which took care of a central
core of relations that needed to be represented.

- The decoupling of the problem representation from the rules of
the problem solver by a sophisticated inference system. Since
the program is willing to perform complex inferencing from the
input assertions, it is able to bridge the gap between what it is
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- The general

8YRD-6

told and what it needs to know.

New formulae (such as Hooke's law) can be simply "plugged in".

Mecho to solve problems from a new domain.
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AUTOHMATIC ANALYSIS OF ITALIAR

A. Cappelli, G. Ferrari, L. Moretti, 1. Prodanof, 0. Stock

Istituto di Linguistica Computazionale - CNR - Pisa

ABSTRACT

ATNSYS, an automatic syntactic analyser, has been used for a number of
experiments with Italian texts. It is provided with a Dheuristic mechanism
bhased on probability evaluation. A “verb frame’ representation is introduced.
RBoth these aspects are discussed and the results of our experiments are
considered.

L. Natural languape processing seems to be in a phase of experimentation,
often more concerned with performance problems than with the proposal of new
nodels.

Our own contribution deals with experiments on the analysis of complex
Italian sentences, taken from descriptive and narrative texts. This type of
text was chosen as it offers a large sample of linguistic phenomena.
Limitations in the parsing techniques and the linpuistic theories assumed,
thus, tend to he evidenced. We have wused an ATN parser, because of its
characteristics of nmodularity, perspicuity and flexibility [Woods, 1970}.
Moreover, the capability of ATN to maintain the original distribution of the
elements of the input string makes it a suitable rodel for the analysis of
rather free order languages 1like Ttalian. It also offers a model of the
processes of sentence conmprehension, as perceptive strategips can be
formalised in the arcsets of the network [Kaplan, 1972].

2. Dur experiments aim at the improving of the search in the network hoth by
the use of heuristics and by the strengthening of conditions on the arcs
based on lexical expectations and constraints. We have used ATNSYS, an ATN
parser desisned and implemented by 0. Stock {Stock, 1976} and written in
MAGIfA-LISP, a dialect of LISP developed at the '"Istituto di Tlaborazione
dell’Tuformazione" of the Ttalian 1!ational Research Council (CNR), Pisa
fAsirelli et al., 1975).

R ke
GRAMMAR

SENTENCE b

Statistical
Data

Dynamic
Heuristic
Setter

Fig. 1

PARSES



CAPELLI-2

The system, shown in Fig.l, has the following characteristics:

a) The lexical component (dictiomary and preprocessor) is kept separate from
the rest of the parser. This permits the wuse of larger dictionaries (at
present we are adopting a dictiomary of about 20,000 forms).

b) The grarmar entered to the system as input can be partially or totally
compiled in LISP functions. Each state is coded as a LAMBDA containing, in
sequence, the series of arcs controlled by the non-~deterministic structure.
Compilation may be only partial as during the experiments certain parts of
the grammar may be consolidated before others. As for the treatment of
non-determinism ATNSYS takes advantage of ND-LISP [Montangero et al., 19761 |
a facility of MAGMA, compilation here is 1less complex than as described in
[Burton and Woods, 197561. ‘

c) ATN is a strongly non-deterministic model in which the arcs exiting from
each state are tried in the order in which they are found. In ATNSYS, search
is "depth-first" and the parser interacts with a heuristic mechanism which
orders the arcs according to a probability evaluation. This probability
evaluation is dependent on the nath which lead to the current node and is
also a function of the statistical data accumulated during previous analyses
of a '"coherent" text.

The mechanism can be divided into two stapes. The first stage consists in
the acquisition of statistical data; i.e. the frequency, for each arc exiting
from a node, of the passages across that arc, 1in relation to the arc of
arrival: for each arriving arc there are as many counters as there are
exiting arcs.

flo)zax, fislzy

flo)zw, flo)z2

Fig.?2

In this way, in Fig.2 arc 1 has heen crossel x times coming from a and y
times coming from b. 1In the second stage, during parsing, in state S, if
coming from a and w > x, arc 2 is attempted first.

3. A group of experiments was ained at verifying the statistically hased
heuristic mechanism. The first experiment consisted in analysing a coherent
text, a page of a science fiction novel. An accumulation of descriptive
statistical data might provide valid material to be used in the formulation
of a model for linguistic analysis, taking also into account performance
aspects. (Ye refer to the hypothesis by which the order of the arcs in ATN
can adequately represent the set of sentence comprehension strategies in the
order of increasing complexity).

The introduction into the parser of this heuristic mechanism has given good
results. We have achieved both an appreciable reduction in the execution
time and in the computational load necessary for parsing. The computational
load is measured in terms of the length of the path followed through the
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network including the number of blind alleys. Some average results relating
to the strategies for the text specified above are shown in Tig.3.

U;iginal network Reorde}ed network
.

Ve N
Scnience tiue fails arcs time fails arcs
1 parse 1 parse
3 1 £,335 92 231 5.445 _|+0,108 84 -8 232 1 1
& 2 |l 3.B6¢€ 17 185 3,699 -06,167 60 =17 165 . ~20
3 4,956 58 212 4,600 -0,156 70 -18 188 -4
* 4 3,910 75 186 3,825 -0,088 67 -8 185 ~ 1 .
3 2,455 T a7 105 2,289 -0,166 36 =11 101 - & 1
[ 2,454 46 105 2,242 -0,212 36 -10 102 -3
- 7 3,652 72 167 3,429 =0,229 55 -17 146 -21
[:] 4,087 71 187 3,958 =-0,129 63 - 8 185 -2
3 5,100 135 332 7,946 -0,154 106 -29 316 -22 |
19 1,891 30 82 2,917 +1.,026 54 +24 128 +43
it 1,620 33 ‘81 1.769 +0,148% 30 -3 81 -
Tk 12 6,340 107 273 11,480 +5,11 267 +160 553 1280
h 13 4,154 78 189 4,465 +0,311 68 - -10 188 -
Fig.3

Columns 1 to 3 sive respectively the times, number of failad arcs, and nuwher
of traversed arcs vhen the text is parsed with the original srammar. Columns
4 to 9 show the same figures referred to a reordered grammar together with
the differences. Lines stressed by an asterisk indicate those sentences irn
vhich the semantically acceptahle parse appears as first only after
reordering.

A formal analysis of the statistical data in relation to a pramrer, with the
introduction of significant mathematical measures, may constitute a unitary
method for measuripg linguistic facts. 1In this sense, this collection of
statistical data may 1lead, for {instance, to the identification of a
particular syntactic style in relation to a general orammar, and to give a
more precise concept of the performance adequacy of a grammar for a text
{Ferrari and Stock, 1980].

4. Another group of experiments has been aimed at verifying a linguistic
model which, while taking advantage of the possibilities offered by the
structural representation, also develops the functional relationships of the
components of a sentence. Functional lahels were first given to the
arguments belonging to the 'verbal frame", i.e. the predicative structure
that is assumed to be associated to every verb in the dictionary. Then, when
possible, labels were associated to the other arguments of the sentence. The
assoclation of labels to arguments is achieved by operations of intersection
upon lexical information of the following kind:

a) the verbal frame (its argumental structure) and the requisites (selective
features) that the "heads"” of the NP’s must have in order to eater into that
structure. This information is represented in the form '

(<verb> (<preposition>( <selective feature> <functional label>)+)*) where
the preposition is the one which on the surface realises the particular
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argument;
b) the specifications associated to each preposition for the functions that
it can realise as a surface element, and the relative selective features inr
the form

(<selective feature> <functionzl lahel>)+
c) the list of selective features vhich can be associated to every noun.

The analysis of the verb frame works as follove:

- if the arzuments precede the verb: 1) a 1list of functional labels is
assigned by intersection of b and c. Given For instance the preposition "A"
described as ((LUOGO MOTOA) (PERSOMA MATIVN))  and a nourn described as LUOCO,
the function MOTOA is selected; ii) the verb werifies these hypothesized
labels. Thus the ver® SUMGTRE having in its frame (A (T.0GO MOTOA)) accents
the lahel selected above.

- if the arguments “nllow the verk: 1) the verh tentatively indicates a list
of hypotheses by the described intersection operatinn ; ii) these are
verified hy the presence in the surface of a preposition and by the features
of the head.

Tre mechanism we have described falls entirely into the classical AT
formalisr. As we need information coming from different points of the
sentence, we have heavily wused SENDR and LIFTR, actions of ATN whichk sidely
nass information from one level to apother. This corresnonds to a  rodel of
analysis which involves a predetermination of the confipuration vhere the
information will he processed. We think it would be more correct to ensure a
model in which information are retrieved when neanded.

Ye are nov vorkine on this topic.

Fisures 4 and 5 show parses with functional labels assicned according to the
frames of the main verhs: AIIMNCERE ((A(LUNGD MOTOAY) and DIPE  ((A (PTRSOMA
DATIVO)). '

(Il PT DICEVA COST RPUTTF ALLT SIGHORINE A TAVOLA)

S Ti?P0 DCH
GN¥ DPEI ART IL

¥ RZ
GE MAS
WU  SING
A0S TEMPO PAS
ni3bo IND
GV v NDIRE
GN N C0354
ATIR GA  AGSG BRUTTO
GE FEM
N PLU

GP PREP A
oM K SIGHEORTYA
GE  FEM
i PL{I
FIUHZIONE DATIVO
3p PREP a
GN N TAVOLA
GE FEX
U  SING
FINZIOCK NOTOA
STATIN

Fic.4h
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PAQSE POALTIAL. TIME § . 54 VD Stconvs.
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GN  DET ART IL
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#ODO  IND
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Fig.5 STATIN
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Litroductlion

The paper describes a sentence analyser wilch operates as part ol a  story
understanding system, In broad outline, the systen Las taree Coaponents: the
sentence analyser, wilich produces analyses Into o conceptual representation,
ie. a case-oriented representational lamnguaje chin to Conceptual Lependency;
an inference wechanism, whiclh answers questions, and &lso, whilst producing
inferences, resolves pronouns; and & sentence jenerator, which can express
these inferences and tne answers to questions, and can also paraplirase we
individual seintences of the story.

The larger systen enbodles & novel approsch to the inteyration of low—level
and  high=level knowledye, In which script-like and plan-like structures ate
indexed by, and thus subordinated to, the structures which encode and épply
nundane knowledyge; and also has a unified approach to the probleas of
question enswering and pronoun resolution.

The analyser is of specific interest because it coablnes sawantic processing
with low-level syntactic processing, but has no need for an overall sentence
grammar; and, whilst operating in a non~deterwministic fasnion, it retains
plousibility because of tne limited nuaber ot partiel analyses 1t needs to
reneier.

the first section presents the principles which guideu  the wesign ol the
analyser, sketching the derivation of these principles from earlier work on
analysis. lhe secorx) section presents the Lasic wechaniisns used to put these
principles into effect, presenting a sanple dictionary entiy, and showing
how only sell nuapers of partial analyses need oe kept. ‘e third  section
shows the application of these mechanisus to specific linjulstic phenomenas
conjuictions, relative clauses, lexical and structural aublguity.

1) Principles

The principles on which the analyser is based were derived wainly frow
consideration of eacrlier work on analysis by kKiesbeck[74], Wilks[{75] and
woods[7v). woods adopted the classicel approach, deriving senantic readings
from prior syntactic analyses, wnilst both Riesbeck ang wilks atienpted to
parse directly into a sewantic representation.

woods used the now-familiar AIN mechanign to produce syntactic analyses of
sentences;  these were then checked senentically. ‘the AlN forwalisn allows
great flexibility in the handling of syntactic struwcltures, and is  well
suited to the task of searching the space of possible analyses: however 1t
is not an ideal wvehicle for semantic analysis, since this depenus so
strongly upon the actual words in the sentence. ‘The strength of the ATN is
in capturing rejgularities; syntactic regularity is cowonplace, Sewmantic
regularity is not.

Riesbeck's analyser was driven by requests - test/action pairs - which
constituted the definitions of the words in the dictionary. In soujh
outline, as a word was taken from an Input sentence, as uwany existing
leguests  as  possible were satisfled; wnhen no more of  these coulu pe
satisfied, any requests attached to the new word were added to the list of
active requests {(possibly for ludediate use). wWhen no wore reguests coulu ve
satisfied, the next word wus considured.,
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This schaae was purely left-to-rigit, and used vittually no syhitax; this
caused socae problens, anotebly with detcectiyy  the end of a noun pnrase.
Probleus also arose Lecause there was no meons of destroying requests which
were 1o lonjer peeded, and because there was nu wechanisa tol deléayily the
structural decisions which aust bu waue in processing aibeduwd clauses.

It has oveen sujyested (gisenstadt{7Y}) that Riesbeck's parser uay e
reforulated as an AviN. Such & reforuulation is Indeed siown to be possible;
however the spirit of Riesbeck's woirk is very different, especlally witn
respect  to  nondeteruinisa  ana overt syntactle  processing. The anadyset
discussed later can siuilarly be vicwed as en AN, or, wore helpfully, as
two  ATNs in series: for instance, 1t has mechanisas which parallel tue
PUSH/POP operations perforumed in an AfN. Wverall, 1t way e regatded Lest as
a dynanicelly constructed ald, further augwented with preferential orcering
of arcs. It is in spirit far removes froa Ares as traditionally concelveu.

wilks's analyser, based ugon preference semantics, first Lroke &  sentence
into  fragments, and then wapped bare itenplates cortespolding Lo weaningful
message Schawas onto  these frager ts. Tue  tenplates were Lripdets of
senantic  prinitives; tue mapping process involved coidpal il tiese witl the
head eleuwents of the foruulas which defined word senses. when & successtul
match was foud, che foraulas for the worus in the frajuent wels suvscituted
in the baie templete. The formulas also encoded preferences for sewentic
features of contextually related iteaws; these preferences could we used for
choosing word seinises, wuwaking struccural decisions and  resolving  (souie)
PLONOUIS .

wilks's notion of prefercnce seeas a valuable idea; however his
Inplementation with repeated scans ol many alternative analyses is higluy
Luplausible as a model of human langusye couprehiension.

More recently, marcus [79] has proposed a deterministic model of  syntacule
recojnition for tenjlish sentences. 1howgh thls work was contemgorary, ana
hence did not forna part of the backyround Lo this work, thelte are sowe
superficial similarities. sarcus finds that yrauwsar rules way be wrltten in
a fomm which permit a syntactic garser w operate deterministically. ‘lnis is
achieved larjely by pemitting & 3-deep lookahead; thus sowe degtee of
nondetenainisn is linplied but hiduen. As will be seen in  sectlon 2.3, the
analyser discussed here has explicit limited nondetecniunisa. ‘this analyser
is narkedly different in other respects, notably the parsing wechanisa  cad
the sewmantic, anaelysis it provides, contrasting with tue syntactic analysis
provided by mMarcus's systeam.

From consideration of the various nerits and disadvantages of the earlier
analysers, the following principles aierge:

i) The information to guide analysis of a sentence stould be derived from
the definitions of the words in the sentence; this should be packaged in a
aanner similar o reyguests - that is, test + action pairs.,

ii) The requests used should be manipuleble, capadble of beiny renoved when
no lorger applicable, and clean, not modifyirnyg the definitions of other
WOrds.

iii) The role of syntactic processing should be to locate constitucnt groups
of words which may be treated as building blocks for a largyer sentence
representation: neither a reguest mechanism, nor any Keyword—based
algorithm, should be expected to perform this task. mNor should an explicit
syntactic analysis of whole sentences be souwht, since a  sewmantic
representation naturally encodes that structural information which is
important for coaprehension.
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iv) The analysers progress throujh a sentence should pe predasinantly
left-to-right, mut should not nave to eaploy cuabcrsome stratajens whien a
given path of analysis proves fruitless.

v) There should be a mechanisa for specifying and applyliy preferences.
An analyscr has been constructed which adheres to these principles.

a) It uses an ATN parser to locate the vasic bullding vlocks of sentences,
nadtely sinple noun jroups, veld Jroups, prepositional phrases, comnas,
wh=foras and conjuictions.

b) It uses a set of requests, classifieu into six types, and associated both
with individuel words in the aictionary ane with standard operations, such
as relative-clause processing,

c) It uses a control wechanisa for applying tunese requests, which follows a
preference-based strateyy for controlling a nondeterministic analysis, and
reqyuires only a small mewory for partial analyses.

2) The basic comgonents.

2.1y Tha AN

A AN 13 used here to isolate syntactic constituents of a sentence, rather
than to build & structure which explicates the syntactic relationships
between the constituents. The constituents it recognises are siwple noun
phrases, verb groups, prepositional phrases, conjunctions and whi-forms.
These constituents are recoynised by subnets which sinply find syntactic
constituents. This contrasts with the use of subnets in tne PLANES system
(waltz[78]) for finding sewantic constituents.

Verb groups are not treated conceptually by the AIN, but wmerely analysed in
terias of main verb, tense, voice, fous and neyation. Tnus "was uot beiny
given" woulu pe represented by the AYN as the constituent

(VP (tense PAST) (form PRUG) (voice PASSIVE) (ney T) (verb GIVE))

simple nouwn phrases - possibly  containing  determiners,  adjectives,
possessives and Guantitiers - are accepted by the NP subnet of the AN,
Thell representation at this stage closely parallels the ultiivate conceptual
representation, thoujh disaubiguation of polysemous nouns anu the attachment
of modifiers are perfomed at & later staje. Prepositional phrases are
treated similarly.

The treatiient of conjuictions and coamas by the AN is trivial, since its
task 1is werely to locate and identify constituents. uUnknown woids, or words
which fit into no higher structure ({such as dawliiy prepositions) are
narked as isolated words.

Since some words have several syntactic cateyories, tire are occasions
vhiere it is possible to find wore than one constituent in one piece. It is
then appropriate to build & constituent tree - akin to a lattice - to
represent the possible constituents.

This use of an AN has two principal effects. Firstly, it provides a
convenient echanis for treating words with mnore than one syntactic
category, especially since frequently one cateyory only will pe considered
because of the influence of the surroundiny context. Secoidly, it provides a
wotivated and isolable fragunentation schewe, which can assist the
identification of the key elanents of a sentence (vero and head nouns) . 1his
13y be contrasted with wilhs's fraguentation algoritha, which was bDaSed
larjely wp0on xey words, aid which could not be separated frow the rest of
his system. It way also be contrasted with kiesbeck's approach, wnich relied
upon  coiplex requests associcted witn deterwilners, adjectives and auxiliary
verbs.
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2.2) The reyuests

A set of requests, each having one sction part aid two predicate parts, is
useC  to julde the analysis of scutences. Yhe first predicate deterniines
whether the action part is to be executed, while the secund determines
whicther  the reguest should e discardea 1f 1t is not used. ‘ilicsu two
preGicates are named respectively the mALN aind U RKuEP  predloate.  lhe
requests are used to specify wial sooulG e wXpoCted, 10 botn syntactic and
seaantic terias, and to deternine the utilisation of such eleaents when  they
are foud.

The requests come from two sources: [irstly from wie definitions of worus in
the dictionery, principally frou verbs and counjunctions; and secoiiiy froa
pleces in the projrau wiere a stondard situation nas oewn  cecognised, fot
instaiice, the beginning of & sentence, reletive clauses, or sentences of the
fora "X do Y to wo 2%,

The tequests are classified into six types, eacn cotrespouding Lo & step in
the cycie of processing & constituent. dhe Characteristics ol ‘tike sSix Lywes
vilich make 1t usetul to cifferentiate between thew will be explained  in
section 2.4 telow, when toe control mechanisn a theories, Lhe oujeces the
mechiunisw Lanipulates, nave been uesclibed. priefly, tne six types are:

i) USL ~ use a constituent founu by tie AIN; 1f a consiluent can oo used,
aity progran essoclated witn ciie head word is executed. In the case of verus,
tils loads in the requests whiich will process the rest of the senteice,

11) TiWlNG - provides for o specified delay, in teras of constitucnts  seen,
oefore perforalnyg some action. (These reguests are very rare,)

1ii) TRIVIAL = the prograds assoclateo with verbs norially loau fequests ol
this type, wiose purpose is to bulld ug structures, insert time information
and neyation, wnd to sud further pecuests.

iv) Use-kiG - nandle constituents which have been placed in registers, a
fori of local storaje. Usually this is just for plecing the subject into the
structure bullt by & verb sense.

V) UNEMBED -  insert the structures corresgonding to  abudded  Cciauses,
relative clauses and prepositional modifiers, into a predeierained pleace in
the higher-level clause. Also resets structure, rejisters and requests.

vi) EdMbED - Save existing structure, registers and requests, and prepale Lo
process an enbedded clause of soine kind.

2.3) The control nechanisa: theories; and seory liditations.

Based on the notion of preference, a control wechanisu for the application
of reguests has been developed which, even in @ non-deterministic
environment, is found to need only a sasll finite wenory for partial
analyses.

These partial analyses, I call theories :when tested these will usually
generate new theories. fach has seven conponents:

1) A nuneric score which may be nodified by the satisfaction or violation of
preferences, but also by behind-the-scenes activity, such as uneaiedding
(see section 2.6). This score is a simple inteyer, and in practice lies
rouyinly in the range -ld to 54.

2) A partial senantic structure.

3) A set of requests.

4) An indication of the request-class to be tried.

5) The rewaining constituent-tree (product of AN processing)

6) A current constituent (if the request-class is USE)

7) A set of registers , a form of local storage
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The Lasic nechanisa iz single, wad  is releted W e Olopit TTaverser
(Doranissl), woocs's "thweories" (wouds{77)) and the dni schieduler queue
(BoLrow et «l{77}). 1the tiweories are mailtained in order of score, arg  the
highest-scoring  theory is ciosen; requests of the right class are selucted
anl tried. mew theories, with aoccifiet structures, registers ctleterda, ate
gyeilerated; in making new theories, the used reguests are ulscarded, &u 1s
any selected request whosc KetP predicete fails. wne  Joncration of & nww
theory requires specification of & request class. ‘ihis fullows tik peltern
shown in fijure 1. G2V cues not label any reyuests at all, bub is the  stage
of  processing where o ilew constituent is  foww, usually froa thwe
constituent—tree returned by the AN (Lut See section 3.2).
" entry
]
o bxcept for GET and USE, & class is  oily
/N chosen 1f there are reqguests of thet
] GeE'T class in the theury. Lf therc e no sucn -
| | requests, ik next class in the cycle 1s
| ] tried; and o on.
| Usk
| 1\ egit
I !
] TLoloG
| I
| (I \
| TR1Vial
| !
!
| This looy is used if an Udkmistl
| sueceeds
l
|
|
|
I

UNEMBLED
\ /

I
USp—hel

I

!

I

|
LMokl

\ /

Figure 1: The constltuent processing cycle

Tae loop shown froa JvimskED to PRIVIAL appliecs only when &n UNomoED has Leen
done, penaitting nultiple unaabeddings without conswiing wore conscltuents,
and also permitting an UdkEMBED to influence TRIVIAL or USE-kel  reguests
directly (thiougli this is seldon needed) . when no UNEMBED is done, babED i
selected next; or in the absence of haskD requests, GET.

The opcration of the mechanisim as descrives is modified 1in one particuler
case. 1 have said that a theory 1s selected from bhe top of the stack ot
theories, on the basis of preference. In fact, all thwories with the sawe
preference  as the top theory are separated frow the stack, and processed in
turn. ‘This averts problens where one theory generates new theorles with &
slightly higher preference, causing the next theory, intrinsically of the
sane value, to pe obscured.

‘The wechanisn is also usefully restricted by teking account of an  eusdirical
fact which, I believe, also has iluplications for the relation between meaory
and linguistic faculbies. It has beun owborved that, despite the apparently
non-cetetwiniseic oparation of this analyser, the deptih of its scack of
theories need only be snzgll; the size of stack necded comgares witn the
postulated size of human short—teru masory. Limiting tihe size of this stack
to seven theories, by simply discarding any tlieories which fall off the end,
actually improves the perfomiance of the analyser for conplex sentences; anc
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in fact the largest stack needeu for any sentence which Lies peen  processed
usinky my test vocabulary has been only 5 elaients longy. This result is an
enpirical observation, based on the successful analysis of several huidieg
diverse sentences, and does not ucpend on any fine-tuning of the preference
wanipulations. (It may turn out that the addition of large nuacers of
highly-polysaous words may reqyuire adoption of a walt-and-sce strateyy,
such as those used oy Hayes[77] amd marcus[79}. However, thwujlh the
dictionary does contain a nkaber of polyseuous wotds, no problews of this
nature have been encountered.)

marcus{79] proposes a "determinisa hypothesis", and describes an  analyser
vhiicn also has a limited acaoty. In his system, Lne tnory consists of a
stack ot partial syntactic structures, and tne rules of the jramwear  are
weranitted to inspect only & swall nuaber (usually 3) of these structurcs.
hHowever , Marcus does adiit that this analyser is unable to deal witn counplex
sentences, and anust seeh advice froa sowe other, wore gx)m.kful campoient of
the larger Systew. lU seeus to we that this is tantasount to &ecepting  tuat
Jraumar rules ere inadequate when so constrained; anu his analyser does not
attem.t Lo provide a semantic analysis eitner.

This concept of a liaitation on menory leads to a plausivle solution of  the
question "when 1is a sentence structurally aubijuous?™, 1f we inclule the
hypothesis that alternative readings violate no wore noun-feature
preferences than does the first reading found.

2.4) 'Ihe stajes of pfOCEbSln(_.,.

The btanS of t,rom_bsmg are ndturally described 1n teras of the classes of
request to which thiey correspord, since these classes, with the exception of
GeET , are in fact baseu on processing stages. Gl 1s discussec wore fully in
section 3.2, where the treotawent of questions and telative clauses is
eganined: for the noseant we may siuply note that Gel retrieves a constituent
from the tree jiven by tne AinN; for each retrieved iten, a new Usk theory is
constructed, with the appropriate current constituent aing constituent—trec.
b use

USE requests nave & sAIN predicete which nomally specifies the  syntectic
class exjected. 'Thelr action parts, in addition to specifying tie use to be
nade  of  the constituent they accept, witl often contain  prelerence
manipuletions based upon the  leatures  associated with nouns: for wis.
purpose, features are arranged in a ilerarcuy.

tor each sense of tie nead wora of a constituent, each UsE tegyuest is
applica:  and  for weach successful application, where the #ALN predicate
succeeds, @ new theory is created: the class-ta; beinj deternainea  accoraing
to the rules given in section 2.3 above, The ruguest applied, anu any other
requests of the samce type whose KebP wpeedicate tells, are renoved. (1 As
noted earlier, tiids iIs true of ell reguest ciasses. ) NMus UGE requests may
branch 1n two dvitrerent ways; tor different senses ol worus, and  for
ditferent uses of tiw Constitusinc.

If o constituent is enccuitered for which no reguest suwcceeds, it is  testeu
to  see 1P 1t can Lo Crapjad; tlaps =~ wilen nanule conjunctions, soie coaas
and certeln hijhor-level stiwClires = are disCussed i section 3. 5.

i1) TINING anG 1tdvial

TIeInG ance LdVIAL foequests are Loth simple, ceusing tee creation of only
ONE new Lheoly. Ay nuleer ol sUCih requests way be present; if they are
prescitt, thelr #ALV  ptuliCale  debonalnes waether  the  action  snoulu  ve
pertoraeu,  vbut  the rekP pledicace 1s umiacerial. TLaInG reguests are rare,
Lelng used Lily Lof & Lew COnjunctions.  TRIVIAL reguests  dre oXlredely
Coadon,  bedny the  venlele for the ntroulction of othwer Leyuasts Eron Uie
gictionddy. These reguests gre oftein used to Lulld  conceptual  structures,
o Liie  ang negaclon laforiwbion, aid lows the other requests witlch will
mnnlyse the rensinder of o clause,
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iii) USE-REG

USE-KEG reguests take a constituent, usually tue subject, froa  tewporaty
storade  in a register. BinCe the constituent has veen plated tiere LDy a Usk
reyuest, it correspoids to only one sense of the iwad noun. bowever, it
sometines happens that ore  thign one USE-RKEU egyuest ekists, and In this
case a2ll the evailable USE-KuG requests ere gpplied, producing one new
theory each. This  situwetion occurs uostly for tue passives of
indirect~object verbs, where the subject uay £ill  either the slot
corresponding to tihe direct object or  the indirect vvject in an &ctive
sentence.

iv) EmpeD

EMpED  reguests deal with  enbedced clauses, relative  clauses  ana
prepositional phirase wodifiers. An EaseD operation is usuually optional, so
one theory will resuit froi this staje whilch aas not veen eovedded, aiu ol
or wore whicn have. These toeories will uave the curtent state ol the
rejisters, the current set of requests, anu the Curlent seeillC  struciure,
«ll  saved on an otierwise vlank list of rejisters. wien this nas been uone,
the actions of the applicable BvbED request are execubed. 1hese will  always
add  new requests to deal witin the eabedawa clause, and will often set a few
rejisters. tor the latter purpose, tiwre Is Leapolaty access to  fie  saveu
rejisters, which 1is necessary to handle the Lensing structurces which occur
in eanlwdded clauses, and tnose clauses which bLorrow tne suoject froa @
higher-level clause,

An obvious point is that an analysis cannot pe allowed o terwinate while
still in an eubedded state.

v) UNEMBED ; and constraints

UNEMEED requests are the converse of kmpib, Therce can only be  oiae  Jdiovpbi
request present ab any time. kequests of this cléass restore the regiscers,
requests and semantic struwture before thelr action parts &re cAecuieu.
however, the MAIN predicate on  the UNaioED reyuest is not  regecded  as
sufficient to permit an uneabedaling. A furiher wechanisi, the specilication
of constraints, wust be considered. A jeneral coanstraint on  wenlauding  is
tnat there nust be & sewantic structure ohich bas veen pulle, Cerialn verus,
however, specify Lurther constraints - sdylug sucirand=suCh a  tuguest  aust
be used. If any of thoue constraints have ot been satisfied, no uiGuiedling
can take place. { This wecnonisa agplics also to accepting tue ena of  the
seiittence, which is seen as @ special case of uneibedding. )

An UNEMBED request is also optional; tnus one theoly will élways be cCreated
which corresponds to a failure to uneubed.

2.5) The dictionary entries

kequests can be fairly complex objects, involving two predicates and  an
arbitrary set of actions, and their full specificetion on  wach vero
definition would be & tedious and repetitive process. advantaje can ve Laken
of the repetitiveness of sinple reguests however, by detfining a set of
nacros with which such requests can e bullt up. Several suCn nmacros nave
been provided, greatly easing the definition of new verbs. Pigure 2
illustrates some of these.

The nacros available include:

PIACE-5UBI  for using the subjeCt: generates a Use—ikeG reguest
PLACE-0OBJ for using a noun-plirase: Jenerates a Usk request
PLACE-PP for using a prep-phirasv: Jenerates a Usk reguest

PIACE-CIAUSE, PIACE-SUBJECTIESS-CIAUSE, PI ACE-OBJ!:IC'I‘IVE.—C[AUL:’E
all look for various sorts of embedded clause.
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(DISPIEASGE
{{regests
(ADUREY
(TRIVIAI
T
NIE
(sulips
((Causc
(ANTECEDENT
(BviewnD (ACLIOI DUsuaY—riamAnl)
(AC0 DUY))
(RusulT
(&4 (BTalEnAne JOY)
(TUING DUMMY—t1Jbian2)
(VAL (1UserbY 2)))3)))
(T Lmt~Pl ACE)
(VERBS-Dusm LES
((CAUSE ANTECEDEWL tvanl ACTUR) DJMiar—HUmMAN)
{({CAUSE REbUlT STATE THING) UMY =EiUahiN) )
(COND
((ACT1Vve)
(PIACE-5U] (CAuok ANTECEUENT bvenT ACTUR) ANYLHING)
(PIACE=OJ (CnaUSE RESULT STATe THING) bhadl
(PLACL=5UBJaC Tl B55~CLAUSE
BY
{CAUSE ANTECELENT)
(AND (FUR=~15 PARTICLIPLE)
(PRASE-LS PRES))
subj)))
((PASHIVE)
(PIACE=GURI (CAUSE RESULT STATE THING) poasT)
(PLACE-CI AUSE
oY
(CAUSE ANTECEDZENT)
(AN (TENSE=IS PRES) (bORM-15 PATICIPIE)))
(PlaCc-pP2
BY
(CAUSE ANTLCEDENT Evinyt aClTOk)
ANYTHING)
(Pi ACE=-5ULIcCIT ESS~CIAULE
Y
(CAUGE ANTECEDENT)
(AND (PASSIVE) (LFORW-L5 PRUG))

Subs )
(PI ACE=-SUBJECTT ESH-CLAaUSE
Al

(CAUSE ANTECEDENT)
(ANL (PASBIVE) (FOwsi-1o PRUG))
5601))))))))

rigure 2: Lictionary entry for DISPIEAGE

in this exanple, tnere 15 only ohe detinition for the verb, le. oaly one
sense  Is oeing considered. The part of  the wefinition which is to ve
erecuted 1s lebelled by 'requests', witin the function ADDKEY used to add &
reyuest., ‘Ihe one reguast concerned here is of class TRIVIAL, and its main
precicate 1s T (InUn): tnerefore it will succeed. Its actions are:
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BULILS . . + . » to build a seaantic structure

TIME-PIACE o . « to insert temporal infonsacion in a standard way
VERBS-DUMMIES. . to create new ‘tokens' to fill in parts of the structure:
this correspords to assuming features of objects in default. Tne
destinations within the structure are denoted by the paths

{(CAUSE ANTECEDENT EVENT ACTOR) and (CAUSE wESULT STATE THING) .

The request-macros also use paths to deternine the destinations of the
substructures they create,

COMD o« . o« o o » the IiSP conditional, having here two branches; the
selection is mede by the functions ACTIVE ane PASSIVE, which inspect
registers which have been set up at the time the verb group was encountered.
The wacros build up requests vhich effecuively specify case-frames; these
are then fitted by (linited) esploration of possibilities.

In the ACTIVE branch, (PIACE~SUBJ ..... ANYTHING) adus a USE-REG reguest
which will look at the 'subj' rejister. This reyister has been set, by one
of the initial reyuests, to contain a conceptual representation of the
subject; this request now inserts that representation into the semantic
structure, at the end of the path (CAUSE ANTECEDENT EVENT ACTOR); also it
will epply, in this case, the very weak preference for the feature ANYTHING
(weak, since AMYIHING is very near the top of the feature hierarchy) .

(PIACE~OJ +.... BEAST ...} adds a USe request which seeks a noun phrase,
preferring the feature BEAST to be present: when this nas peen found,
(Pl ACE-SUBJECTI ESS-CIAUSE BY (CAUSE ANTLCEDENT) X...X subj) &ids a further
reyuest, which corresponds to an EMBED, This will only be used if the wora
BY is located, in which case an eabedded clause 1s expected, which will lack
a subject, and whose verb is a present participle. 'lhe current contents of
the reyister 'subj' (ie whatever did the displeasing) is to be used again as
the subject of the embedded clause. ‘fhe conceptual representation of the
entire aabedded clause is to be placed at the end of the path (CAUsE
ANTECEDENT) , replecing the default DO event.

In the PASSIVE branch, there is again a PIACE-SUBJ macro call, aid sone
PIACE=SUBJECTT ESS=CIAUSE macros wnich differ only in the word they expect as
a cue. The new items are:

(PIACE-CIAUSE BY useees XoaoX), wnich looks for a complete clause cued by
the word Y, whose verb is , ayein, a present participle, This will
corresponkd to sentences like “Fred was displeased by Mary going to the
shops" }

(PIACE-PP BY ..... ANYP'HING) creates a USe request wiich looks for a
prepositional  phrase, with the preposition 8Y. ‘Ihis will correspond to
sentences like "Fred was displeased by rary"

2.6) Preference wanipulations

Preference, the nuneric score associated with a tneory, is lwportant because
it provides the basis for the selection of theories in a nondeterministic
environnent. It has been noted above (Section 2.3), in connection with the
observation that only a =aall stack is needed for theories, that this did
not depend upon finely tuning the preference nmanipulations. ‘There are
nevertheless several different reasons for performing such manipulations,
most of which are strategic rather than wmerely tactical in nature,
pPreference manipulation is required to deal withs:

i) Feature watches and wismatches

This corresponds in spirit to wilks's preference mechanisws; however,
whereas Wilks uses only direct matChes between Individual seinantic
primitives (witih sowe primitives acting as classifications), I have found it
useful to allow two distinct types of mstching operation. Firstly, wilks's




CATER-10

schene is generalised vy builcing & nlerarchy of priuery features , all of
whiich correspond to wilks's "class"  primitives; a reguest vhich prefers
feature X will accept a noun—sense with feature Y 1f Y is anywhere on  tie
branch of the hierarchy headed by A. (by "eccept & noun—sense”, 1 mean the
preference will pe applied.) Secuidly, tiere are secoraary features ,  suci
as MASSY, PHROPEKWAME and REIATION, which do not occur on tie hierarchy, and
with which only direct matches are considered.

Nonually, these preferences are applied positively: ii there is a watch, the
'score'  of the next theory yenerated s increased by 2. blaultancously, ail
UskE requests decrease the score of the next tikory by 2. dunis effectively
neans doing notiing drauaatic when a noun sense (18s the expected featuces,
but inhibiting its use 1f the wxpected festures are not present; thus any
conpeting  sense of that noun will be preferred (preference only nakes schise
when dealing with coapeting alternatives) . turther, for those elauents to
whilch no preference is applied, such as  verb yroups and conjuictions,
competing theories arc yiven a chance to catch ug and increase their '"score!
if they can.

1) Bualwdded clauses, and unanboddicgg.

When an EMBED roquest way e applied, Cwo  theories eie  Created  which
correspont  to  enbedcing and fallure to aubed respectively, having the saue
preference. tiowever, the uacros from which tuese requests are usually
generated specify a nuaber of USE requests on the lower level, and the first
of these will, if successful, increase preference by 2. Tne effect ot this
is to stilmulete an adbedded path vhich nas located & component wnich it
neels.

UNEMBED requests will modify the preference of the unaubedced analysis,
Gecreasing it by 3 if some other conponhent is expected, by 1 otherwise. the
general disinclination to uneabed reflects the observation uiat ambijyuously
placed  conjunctions are wmost often  taken to conjoin clauses at the .aost
deeply @abudded level. bod instance, a3 senteiace yiven by Cullingford[74¢]
(which he guotes from & newspaper) illustrates tais point alcely: "A New
Jersey man was Killed briday evening when the car in which he was riding
swerved off  Route 59 and struck a tree” Naturally this heuristic sosetines
feils; but it has peen ovoserved  that  wrurgly-eabeoded  analyses  aliost
invariably «cennot &ccept the next constituent, and S0 the correct
(unaabudded) analysis path will be tried yuickly.

It should be noted that no explanation is given nere for the difficulty of
gardeirjpath sentences sucih as

"The boat floated down the river sank"

"the horse raced past the barn fell"

iii) Cues

The presence or absence of detenwiners is a cue for the disambiguation of
nouns, such as JOHN and bBILI, having one sense which is a proper noun, and
onc which is noty possessors provide the sase cues. 1lu deneral, the
selection of a noun sense is penalised if these cues are inappropriate. An
exception occurs when a relative clause follows, for instance "ihe Bill to
whont I spoke". In such a case, no jenalty is agplied, and thie usual
feature-matching procedures must work unassisted.

iv) Overwriting

Once a constituent has been placed into the sementic structure, any attewpt
to replace that part of the structure will be penalised; in practice, tuis
penaits verbs to be more easily defined.

v) Constituents which cannot be used.

When no USE request will accept a constituent, and no traps can be invoked
to use 1it, the analysis path is effectively terminated. For testing anxd
developaent purposes, a new theory is created with a score decreased py 253
an attempt to consider this theory is regarded as an error.
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3) Linguistic phenowena: further aetails

3.1) Treztaent of aubijuity

I wish to distinjuish three levels of ambiguity, and to present the unainer
in which the analysis model described above attenpts to handle theu.

1) multiple senses of a syntactic constituent.

1t should be noted that the use of semantiCc primitives tends to blur some
fine sense distinctions.

The disambiguation techniques used differ according to the syntactic
cateyory.

Verbs with wore than one sense are normally distinguishable on the basis of
their case~framses, thoujh occasionally there is an interaction with the
features of surrouxling nouns. Ihere is one exasple, even in the sanall
vocabulary of this systen, of a sense discriwination which cannot be
effected by this technique: this is the crtoice of CET = FEICH or GeT =
ACQUIRE, wnich I nust leave as an open proble.

Nouns witn several senses are normally distinguishable by their features,
but occasionally CUES are wuseful: for lnstance, proper namnes are not
normally introduced with deteruiners. This infornation is coaamuicated to
the overall reyuest waechanisii by inspecting CUES in the USE phase; this
causes behind-the-scenes preference changes. .

Prepositions usually have several senses, but each sense is associated with
a particular usage. This is hendled by associating appropriate requests with
the prejositions in different ways; most commonly, prepositional phrases are
located by PIACE-PP nacro reguests, and the definitions of the jrepositions
are luwaterial., #ost prepositions only new Lixlividual definitions to nandle
their use in postuodifiers.

Adjectives nay have usny senses; the current prograun  does not attenpi to
Cisaabiyuate these, but assuues each adjective has one sense only.

ii) pultiple syntactic categories of words,

An explicit syntactic analysis, whether of couplete sentences or, as here,
of well-foried constituents, goes a long way towards handling this forn of
ambiguity. In this model, the AIN performs this function, but sometimes is
unable to deternaine tLhe correct constituent (as noted in section 2.1). The
application of reyuests, which correspord to expectations, will in  these
cases nake & decision on the basis of surrounding context. 1f any
constituent has multigle senses, these are treated by the same wechanisus as
outlined above.

iii) Structural asbijuity of sentences.

The analyser presented hiere is intended as a front-end to an  inference
nechanisa, and attenpts to find tue wost plausible reading of a sentence. A
sentence is reanalysed only if the inference component deterines that the
first reading found is ludicrous. In this case, the analyser will repeat its
analysis, but reject the first reading encountered. If the next reading is
also found to be lulicrous, the analyser cycles round &jain until either the
inference component finds an acceptable reading, oc the analyser can find o
wore readings.

This is not an acceptable long-term solution to the problens of genuine
structural aabiguity; but the discussion in section 2.3 may point the way.

3.2) Postponeaent nechanisws: yuestions and relative clauses.
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siimguestlons end relative clauses poth exhibic & superficlal  transtouaation
of the nomial word order, where the lnglied position of the reléetivised
object or the wh-ford is, in traditional terus, a trace., In the analyser
described here, such a constituent is held in & reylster, aixd is explicitly
reintroduced into the set of syntactic cunstituents handled sy tite requesis.
‘This  is  done whenever thie processing cycle alony iy anslysis peta reaches
the Cor stage.

Gel also deals with yes/no questions, and witis wh—juestions not  focussiig
ugon  the  subject, wnicl both split the suxillary fron the aailn verb group.
Sentences like "Whas It Jolur who aimoyed mMary™ can Le seen &s  jrouaxi with
these 1f we allow "was" to fuclion as Dotil o Lronted auxlilary aid tue
entire verb jyroup.

In section 2.4, the cperation of tiie GEY phase wids  siliply described éas
taking the nest set ot syntectic constituents, awl creating new theories fox
eachi of them. To nendle the phznoadgna just wentloned, Gl wust Jo uote  than
tiils. ‘The more couglex opcretions it actually carrles out are controllea Dy
the settings of rejisvers (local to an analysis patn), and include

1) Inserting an sudiliary to make & coaplete verv group

This is cone for yes/I0 Guestions ang Some wi-questions. ‘ibe awciliary is
taken iron  the reyister 1n which It is stored, amd placed &t the oeylnning
ol the ruvaining words of Lioe seateice, ‘ihe suvstring S0 foteu  is
reanzlysed by the ATN constituent Jléaial .

11) Replecling & pow) parase constituent, or prepositvional jdirase constiliuveiit
This 1s Comon to relative clause and wi-guesbion grocessing,  and | Livolves
shaply  Jenerating & neis USk theory wnici must Use the constituent. wi=worGb
1 relative clauses are reploced wy thie selected sense of bt relatlviseu
oLject.  Exanpdes of the situations wiete Chis repdaCaicht Operalion nay be
Uone vccur in the sentelices:

M0 Aid Jolur ennoy?d A0 annoyed mery?

Toe person Join anhoyws it olo.

The venana whiich Jotn jave Lo sary was rottern,

The peLlS0N B0 Wt Jotn Jéve the rotten wandha vecant Sick,
Sowetines a relative cleuse, o1 wimguestion, is deeply eapeuded. by tuis, 1
wean that & turther clause 1s  wunbwdded within the relacive clause (ot
yuestion) , and the trace of the relativised object 15 to De foww wiltiiln
this eabedced clause; for  instance, "l car your brother sald he was
e pecting us to cell Jane to buy" (an exauple frowm  winograd{72], which e
calls dowrel ) This often nappens with verbs, such as 'say', which nornelly
ehpect a cleuse optionally introduced oy 'that'; however wien  the  aabedded
clause contains a trace of a relativised object, 'that' sceus yuite out ot
place. Consldecs
"The banana lred said tiwe monkey ate" and
"The banana bred sald toatc the wonkey ate"
when such an <atadded clause  1s  processed, the seaantic  structure  will
indicate the position of the relativised object (or gueried object) witiiin
itself, and this nust be coubined with the wosition of the euledded ciause
to give & true representation.
It is necessary when processing relative clauses to wake sure that
quantifiers, it present, are properly scoped. 1In  the representational
lamnjuage used here, this requirenent is siugly met by placing the seaantic
representation of the relative clause inside any existing gualifying
inforuwation,

iii) Combining a noun phrase constituent with a daigyling preposition,
This operation is very similar to the straightforward replaceent outlined
above, but is performed (aduitionally) if the next word in the rewaining

part of the sentence is a preposition, and tue constituent to be replaced is
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not & prepositional plirase (eg "0 wola") .

3.3) Tre

deallivy will the unexected.

It has peen explained tnat verv deiinitions provide @ set 0fF  Case—fraucs,

wiiich denote  the expected jross syntactic elanents of a clausc. wwever,

itenis such és conjuwictions ere never expeCled, wul wiil theasclves dotelalie

how tiley are to Le used. ihey are cqulpeed wlon Lraps, wdiicn, lise reguests,

gave & predicate and an action,

In the vase ol conjunctions, tne predicate will noaeliy Lest to sue whglugl

a clause can be ternnlhoted; tic actions will noraally

a) teaove ali existing requests except UNEMBED roguescs

L) bulld @ hew sauaantic strwiure, naviig tiw eL1sting siluwwure &5 & parl

) borbia furtner conjunctions froa operating ab chis leved

d) Initviate tne processing of a new clause, ersbkdocd nlo e newly-ouliltl

structure, ,

The treatinent of AN,  bECAUSE, LEFOke and  aAbick follows  Lhis oucdlic,

hiowever, sECAUSE, BLFORE aiu Ablith may aiso LDojln o clause; Lol lnsStein
YheCause maly wenl o e perh, Jobi Lelt unbigp "

These  conjuncllons  twretore aave  several LLapSy wirose pledlivtes

distingulsn  the particular ceses. The aCtloi-palls LOI Ghwse seiniSus wiid

consude & Cowaa 1f it occurs at che wnu of twe tirse clause,

Siittlarly, the construction '<clause> to <uwd ...' 1s haided oy & trap;

ajain, there 1s a test to ensure tnot the Lirst clause 18 Coapletu, dis

othel requasts are uiscardou.

Connes, apart trow belng expected at toz cid oL Certaln Clesses ol clouosu,

can be uandlad Ly a trap. This trap Loons at Lhe ekt coistituent, to ses 1b

It oo will be bandieu Ly & trap. 1hus Conjuictlons Way aluways oo pleCeoded

Dy COMias, &s hidy "Lo ...t constiuctlons.

4) Conclusion

As noted ot verious polnts, the analyser so  Lar Daploucnled 1o Labl Lrus
teing eble to handle the full ranje of synlactic construwcllOns. 1is
rerfornance for the sentences so tar sugplied is very eftective, am e
ease with which its raiFje has Leond projressively edcended has Gown nlost
encourdjing. 1t ls ny belief that  the Systea Cail oo furtnel  edtended,
relying  only on the existing  technigues, to deal with such  lcnouacna as
reflexive pronouns, abstract nouls, participlel preawifiers aid  appositive
clauses.
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Abstract

A semi~intelligent CAI program for teaching the use of comjunctions in a
number of foreign languages is presented. The representation of well known
confusions in the use of these conjunctions form the basis of tutorial
strategies to correct the student. The program is written as a try-out

of DART, an ATN-based system for authoring intelligent CAI lessons on the
PLATO-system.

Emphasis is put on the fact that intelligence in CAI is not all-or-none:
the degree of intelligence required is dependent on the variances per—
mitted and expected in the student's responses. Misconceptions are one

of the major sources of variance. DART is proposed as facilitating the
transition between traditional and intelligent CAI.

1. DART and Computer Assisted Instruction (CAI)

DART (Didactic Augmented Recursive Transition network) is an authoring
system for CAI on the PLATO-system. PLATO is a CAI dedicated system, using
a central computer that is at the heart of a network of up till 200 special
terminals. In contrast to other CAI author languages, im DART the represen—
tation of subject-matter (data) is separated from the teaching program.
This separation of data and program increases the generative capacity of
CAI programs: several programs may operate on the same data, or the same
didactics (program) can be used for different domains of knowledge, repre-
sented by different data-bases.

Moreover, DART is designed for intelligent CAIL. A major obstacle in tradi-
tional CAI is the restricted nature of the processing of the students
response {(cf section 3). In DART the development of intelligent programs
is facilitated by the use of two well tested conceptions from Al: semantic
networks for the representation of the structure of the subject-matter,
and ATN's (Augmented Transition Network) for the teaching program. ATN's
are not only extremely suited for parsing student input, but also for
planning or controlling the initiatives in the tutorial dialogue (cf Brown
e.a,,1977). Although ATIN's have a bias for top~down processing, which

may lead to strongly teacher oriented tutorial strategies, DART does

not exclude bottom-up procedures.

2. A second language learning experiment

2.1. The use of conjunctions

The first operational program written in DART teaches the conjunctions of
subordinate clauses in a foreign language (at present: Dutch, English,
French and Italian). It is in fact a try —out in a domain which seems at
first sight i1l suited for a demonstration of intelligent teaching. In
traditional CAT foreign word teaching exemplifies "dumb" drill and practice
programs, which seem to involve no more than simply putting new labels to
old concepts. We have opted for this domain, however, because some well
koown and tenacious errors can be attributed to conceptual confusions.




CERRI~2

The meaning of conjunctions is complex and their use is highly context
dependent. What makes things complicated in learning a foreign language,
is the fact that different languages do not always make the same dis—
tinctions in expressing temporal, conditiomal, causal etc. relations.

Conceptually, conjunctions are one of the means to express inter—proposi-
tional velations, i.e. relations between facts. In many theories these
relations are represented by a limited set of primitives, like PURPOSE,
ENABLEMENT, REASON, etc. (cf Schank & Abelson, 1977; Norman & Rumelhart,
1975). Temporal relations are generally denoted by time labels. Although
there is a correspondence between conjunctions and these relations, .there
is in general no one to one mapping. "Because" may indicate a REASON
relation, whereas "although" implies pragmatic aspects, refervring to
expectations that should be invoked by the receiver. This makes a corres—
pondence with one of these primitives definitely context dependent.

In Westeuropean languages there is a considerable overlap in the use of
conjunctions, but there are differences as well, leading to errors. For
instance, the Dutch word "als" has both a conditional ("if") meaning and
a temporal ("when") meaning. In Dutch the distinction between these con~
ceptions appears to be less emphasized than, for instance, in Italian,
where one cannot use ''quando” instead of "se" as a connective for an
impossible condition. On the other hand, the Dutch conjunction “sinds™
has a strictly temporal meaning, while the English homophone "since"

may also denote reasons. This lack of distinctive use leads to errors:
e.g. Dutch native speakers using "quando" where only "se'" is appropriate.
English native speakers using "sinds" in a causal context.

These distinctions can be easily represented in a network. A node ('topic')
stands for the discriminative use of conjunctions across languages. If in
a particular language the use of a conjunction is less restricted, it is
related to two or more topics. (cf figure 1)

( )_.*__9 wanneer

uY.CP' —— ——o als

/ nm C TEXT quando
conjunctiod Duseh . Jan in het café komt, ontcoet hif
S LT

au::»

zijn vriend Klaas

\‘O—-——> ... Giovanni arriva 2l bar, incontra i
sun amico Hicola

n oyt

cencedt

indien

concept

Text ... de auto van Jan rijdt, kan hii op(

438 koven

TEXT ... T'auto di Glovenni funziona, Tul ©
arrivare in tempo

English (1) ... John enters the cafe, he meets his friend Ki:
(2) ... John's car runs, ke can come in tire

The network emphasizes differences in meaning. The meaning itself is opera-
tionalised by relating topics to contexts: sentences in which the use of
the conjunctions related to that topic is more or less exclusively , or

at least highly preferentially , allowed. A context consists of a subordi-
nate clause , -without the conjunction- and a main clause, e.g. "..... my
car will start, we may be able to reach the city in time", which allows
only conditional conjunctions (if, se, si, indien, als). In some cases,

the use of other conjunctions cannot be completely excluded, but then a
non-standard interpretation of the context is necessary.
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This short analysis of the knowledge domain to be taught and of the mis~
conceptions that are common in students is primarily meant as an illustra-
tion of the point that intelligent CAI does not necessarily involve full
understanding by the program of all aspects of the teaching and learning
process.

2.2. Assessment of misconceptions

The program teaching these conjunctions consists of three main phases:

presentation, assessment and test. Particularly in the assessment phase
intelligent didactics are indispensable. Where in the presentation the

understanding is mainly up to the student, in the assessment phase the

teacher/system has to figure out in what way the student may have (mis)
conceived the presented subject matter.

In the program, the student does not receive direct feed-back in the assess-
ment phase. In many cases, the student will lack the insight to understand
what misconception is at the base of an error, and will therefore not be
able to self~correct, when only presented with the right answer. If the
student gives a wrong answer in the assesment phase, the program exhaustively
generates hypotheses on the nature of the error by generating a confusion
matrix. The student is not informed about this. The cells in the confusion
matrix are evaluated by succeeding presentations of relevant items (an

item consists of a sentence in the source language, followed by a transla-
tion in the target language, where the appropriate conjunction is missing)
The evaluation of the confusion matrix generally takes two or three items.
The misconceptions can be very superficial: the student may simply mix

up the translation of a conjunction. But if the misconception is concep-
tual, ie the indiscriminative use of conjunctions, more steps are involved.
Of course, the hypotheses testing may require more steps, when new and
inconsistent errors appear, but this is quite improbable after the
presentation phase.

Generally, such an algorithmic approach is not possible in diagnosing mis-
conceptions. In this domain, the subject-matter is simple and transparent.
But for more complex subject matter misconceptions cannot be represented
by confusion matrices. A first complication is the fact that the size of
the set of wrong responses can easily lead to combinatorial explosions.
Secondly, the pattern of errors may appear to be inconsistent, but the
underlying misconception can be coherent:it can be based on context sensi-
tive rules (cf Brown, e.a.,1977).And thirdly, misconceptions cannot simply
be considered as a pattern of errors, generated by a variation on a cor-—
rect model, where eg a rule is missing. Misconceptions reflect the use of
distinct and consistent other models (cf Stevens, Collins & Goldin, 1979;
Stevens & Collins, 1978). These two last complications require more than
straightforward computation: they require guided or 'pattern—directed’
inference ., Psychologically, misconceptions are often difficult to trace
by teachers or researchers, because they may contain elements which are
correct, but not a specific context. As Collins & Stevens (1978) showed
misconceptions may have at their base many naive preconceptions. These
preconceptions are conditions, not causes causes of misconceptions. Pre—
conceptions are, rightly or wrongly, invoked if the processing of a text
which presents the new information exceeds the capacity of working memory
(Kintsch & van Dijk, 1978). Dominant preconceptions easily seduce the
reader in unwarrented interpretations of new information: this is not

the consequence of "prejudices'", but of the fact that well established
preconceptions supply evidence for coherence testing (Breuker & van Dijk,
1980).
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3. Inteligence in CAI

Intelligence is a much desired feature in CAI mainly for understanding
student responses (Camstra, 1977). In the presentation of new subject
matter pre—specified texts, called ‘frames’' in CAL, will certainly be pre-
fered to computation, as long as no text producing systems have become
available with extensive paraphrasing capacities and a variety of didactic
strategies, sothat the presentation can be adapted to the individual needs,
capacities and pre-existing knowledge.

The intelligence needed for response understanding is mainly dependent on
the variations expected or allowed to the input. The following categories
of variations play a role:

1. Typing and spelling variations or errors. Some CAL systems, including
PLATO have correction facilities at their disposal.

2. Paraphrases. The student can express the same conceptualization in many
different ways. There are three solutions to this problem. ‘The most intel=>
ligent one is to provide a CAI system with natural language front-ends. But
no general and manageable front ends will be available in the near future.
Another solution is the use of subject-matter , which has a simple syntax
and well-defined symbols for its expressions. Mathematics and programming
are favourite subjects in ICAI, because the meaning of every statement in
itself is easily found. This does not imply that the meaning of combinations
of statements is trivial. On the contrary. Understanding the successive
steps of a students solution of a mathematical problem may require lots of
inferences. Thirdly, the vocabulary and syntax of the student can be re-—
stricted. There are indications that these restrictions will not hamper

the students performances ( Kelly & Chapanis, 1977). On the other hand,
students seem to have problems in paraphrasing their responses, even

when their first responses may differ widely ( Burtom & Brown, 1979).

3. The amount of initiative permitted to the student in topic selection

and specification in the dialogue. One of the advantages of ICAI over
traditional CAI is that the student is enabled to pursuit his own interests
because the system should be able to trace his explorations and guide his
steps when desired. Apart from the fact tracing requires even more inference
capacity than understanding paraphrases, we have found that mixed-initiative
dialogues are rather an exception than a rule in tutorial dialogues. From
protocols of students communicating with teachers by way of teletypes, we
found that students only took initiatives when explicitly invited and were
using strategies to return it as soon as possible to the teacher. An expla-
nation for this phenomenon can be that the student is quite aware of the
fact that he ‘is less informed than the teacher. This is also indicated by
the fact that students try to avoid well specified answers and that about
60 7 of the interactions refer asking for specifications by the teacher.

4, The expected range and types of errors. The complexities in diagnosing
misconceptions have been pointed out before. These may even cast a doubt
on the feasibility of intelligent CAI, and to the educational enterprise
itself, because human teachers do fail also in many cases (Brown e.a., 1977)
A strategy may be to use simple and well understood domains of knowledge

or to accept a more heuristic approach, which can be updated by collecting
data from running programs or their simulations ( Collins, Warnock & Passa-—
fiume, 1975).

If intelligence is not an all or nothing characteristic of CAI, the sharp
division between ICAI and CAI appears to be accidental. ICAI has emerged
from work in AI, which means that many accomplishments are in fact models.
But wider applications of these models is impeded, because the instruments
of AI are not easily accessible in educational settings. In order to intro-—
duce and dissgminate conventional CAI it took a lot of effort to design
habitable authoring languages. These languages arve not suitable for symbol
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manipulation, analogous to many other computer languages that do not lend
themselves easily to AI problems.

We think that DART provides an instrument that can facilitate the transition
between ICAI and conventional, frame oriented CAI within an established
educational setting,ic PLATO-users.

This transition is facilitated by the following characteristics:

1. The data structures of DART can be used both for frame manipulation

and for operatioms on structures for representing knowledge. Any node in
the data network can refer to an input/cutput feature of PLATO (text,
pictures, audio, etc). This references to output can vary from simple
characters to complete frames. Therefore the more 'shallow' the controlling
'semantic’ network, and the larger the textual units for presentation the
more a DART data-structure resembles conventional CAI. An example of

this shallowness is the use of contexts to operationalise the meaning of
conjunctions.

2. The use of an ATN-dialect in DART programs has a number of advantages.
ATN's are not only very suitable for parsing, eg the student's response,
but they can be used for planning too, (For more arguments for the use

of ATN's in ICAI cf Brown e.a., 1977).

3. The DART package also includes an editor specifically designed for not
very experienced authors, and an authoring guide, which is a (conventional)
CAI program teaching some basic principles of AI. Moreover the author has
access to a library (file) of tried out routines.
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Abstract

We present here three results obtained from our dinvestiga—
tions of a computational model of the effect of motion con=-
trast on the perception of physical (3D) surfaces. The first
result is a set of equations that describes the relationship
between fixed bounded surfaces and the motion contrast infor-
mation given to a moving observer. It is shown how to ex-
tract surface slant and the types of bounding edges. The
second result is a computer program that implements the

~ theory. The third result is a set of graphs, derived from
the equations, that depicts the psychophysical thresholds for
slant and edge detection under a variety of conditions for
human subjects and for computer programs. The graphs show
the precise conditions under which slants and edges can be
extracted from motion contrast information.

Introduction

Our investigations are concerned with the role of optical motion con-
trast on the visual perception of physical surfaces. Although we would
expect that visual perception in general is derived from the operation
of a variety of subsystems, it is useful to know the detailed proper-
ties of dndividual subsystems and computational models of them. Such
information can tell us the conditions under which the subsystem can
respond to stimuli, and whether it is feasible to construct such sub-
systems. :

Our investigations employ certain assumptions (or 'constraints') about
the nature of the surfaces to be perceived. The widely-known assump-
tions of surface continuity and uniqueness (Marr and Poggio, 1976) are
observed. Furthermore, it is assumed that surfaces are rigid, fixed,
opaque, and bounded. The bound of a surface is either some sort of
corner or a depth discontinuity. The observer nmoves with non-zero
velocity through the environment. When imaged by the observer, the
projection of a surface s covered in Luminance discontinuities (opti-
.cal texture). It s assumed that the optical texture is fixed to the
surface, so that, unlike 'glare' or shadow boundaries, it does not mcve
with respect to the surface when the observer moves. Finally, the
observer is equipped to recover the projected velocity of optical
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texture elements as his movements force them to travel across the reti-
na. At this point the assumptions end, and the theory can be derived.
We will not examine the assumptions themselves here; they are accepted
in all the optical flow studies cited in this paper, and are examined
elsewhere (Turvey, 1977, 1979).

It has been previously shown that, providing the above assumptions are
met, that the resulting optical velocity field (optical flow) can be
easily described formatly (Whiteside and Samuel, 1970; Lee, 1974).
Furthermore, computations on the optical flow can yield information
about object contours (Nakayama and Loomis, 1974) and self-movement
(Prazdny, 1979). In the previous AISB/GI Conference, Clocksin (1978)
suggested that gradual and abrupt motion gradients informéd about sur-
face slant and edges respectively, and showed how surface slant in
principle could be extracted. In this paper we show that different
kinds of surface edges can also be distinguished by optical flow infor-
mation, and we give the results of a computer implementation showing
the precise conditions under which surface slant and edges can be
detected by a human or machine observer. The same <coordinate system
and derivation used in the previous paper will also be assumed here.

Slant and Edges

From Clocksin (1978), the angular velocity f of a point at range r and
eccentricity b appeared to the observer moving at speed S as f = S*(sin
b)/r, provided the above constraints were observed. Next, a sufficient
representation for the local surface slant (Figure 1) with respect to
the direction of Llocomotion was given by the pair (tan s, tan t),
where: -
tan s = cot b - d/db log f ; tan t = ~d/da log f.

Now we show that the types of edges can also be extracted from optical
flow patterns by noting the correspondence between types of edges and
the optical flow that arises from the edge when a flow line crosses it.
Without Lloss of generality, the second derivative of flow with respect
to a meridian or eccentricity will inform, by the distribution of
singularities, what kind of edge the meridian or eccentricity crosses
(if any). Such an operator can be considered as providing a '"signe-
ture” in the pattern of singularities that result. Each type of edge
has its own signature, as shown in Figure 2.

Four different types of edges are distinguished. The convex and con-
cave edges are common edges (Clowes, 1971) that typically occur at
corners. There are two types of eclipsing edges —- occluding edges and
disoccluding edges. An occluding edge gradually covers a background
surface, and a disoccluding edge gradually uncovers a background sur-
face as the observer moves past. The essential feature of the common
edge i3 the discontinuous tangent in velocity with respect to a flow
line crossing the edge. The sign of the feature specifies whether the
edge 1is concave or convex. The corresponding feature of the eclipsing
edge is the discontinuity in velocity with respect to a flow Line, and
the sign of the feature specifies whether the edge is covering or un-
covering the background.

Edges and slants are computed with respect to a single a- or b-
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coordinate. Edges crossing a coordinate Line will be detected, but
those Llying the length of a Line will not be. Also, no feature can be
detected when both a and b are 0, because f is by definition 0 at that
point. The types of edges can be distinguished providing that the
assumptions mentioned in the introduction are met. If the ambient
visual information falls below thresholds discussed in the last section
of this paper, then the observer would require other means (Clowes,
1971) to discriminate types of edges.

Implementation

For the purposes of explicit models of slant and edge-label detection,
the following general issues are important: the discrete nature of the
computations to be performed; a method for sensing the optical veloci-
ties; and establishing the (a,b) coordinate system from the data, The
first issue suggests that it is necessary for the purposes of implemen—
tation to derive a discrete approximation to the theory by wusing dif-
ferencing. ALl values thus obtained will be finite, so the edge signa-
ture points are now very large instead of singular. Thus, to discrim=
inate edges from non-edges, a mathematical analogy to the psychophysi-
cal threshold must be considered. Predictions resulting from this are
presented later. Second, it 1is necessary to represent the optical
velocities. Many investigations have provided evidence that the per~
ception of motion has a neural basis (Sekuler, 1975). The implementa~
tion discussed here makes no further contribution to our knowledge of
velocity sensitive mechanisms, but only assumes the existence of
mechanisms with particular properties. Third, since the (a,b) coordi-
nate system used for representing flow fields bears no relation to
retinal position, the implementation could simulate receptive fields
lying along a or b flow coordinates. It is a simple matter to check if
a receptive field lies along a flow Line: a b-receptive field contains
only flow vectors with the same direction as the field's orientation,
and an a-receptive field contains only flow vectors perpendicular to
the field's orientation. Any field not meeting this constraint is not
oriented along an a- or b-coordinate, so it 1is discarded from con-
sideration.

We implemented a computer simulation of the above slant and edge equa=-
tions. The 1input to the program was a depth map and some parameters
for observer movement. The depth map was used only as a simple way to
generate the velocity flow field, and was then discarded. The progran
used a receptive field model to produce the local slant or edge label
when the receptive field passed over the simulated terrain. The output
was either in the form of a slant measure, or a Label taken from the
set <{convex, concave, occluding, disoccluding, contour}, where a con-
tour edge joins a surface with empty space.

The program always returned near-perfect results for two main reasons.
First, the slant equations are trigonometric identities derived fronm
the geometric basis of the problem (Clocksin, 1978). Likewise, the
edge~labelling scheme has been derived from first principles, except
for the template matching of the signatures. Second, the input data is
simulated, and hence within roundoff error of being perfect. One woulgd
have misgivings about this: some programs, when given test data, are
known to fail when given "real' data. However, psychophysical studies
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of relative velocity thresholds lead us to believe that the human visu-
al system is sufficiently sensitive to the optical flow to be able to
carry out the computations we propose, and to return reproducible
results. We tested this hypothesis by experimenting with the computer
program. We raised the program's relative velocity threshold from
5x10"7 radians per second (roundoff error) to 1.5x107% rad/sec, a rela-
tive velocity threshold in humans under good conditions (Graham, Baker,
Hecht, and Lloyd, 1948). As a result, we found that computations of
surface slant by the program varied plus or minus 4 degrees from the
correct value. This compares well with judgements of surface slant by
humans, whose estimates vary between plus or minus 4 and 7 degrees
(Gibson, Gibson, Smith and Flock, 1959; Flock, 1964) under good condi~
tions.

Other artefacts result from the discrete nature of the computations
performed. The program cannot determine the stant of surfaces that
subtend less than 5 quantization units of arc, and all non-contour
edges are Llocated to within 2 units of arc from the correct position.
Contour edges are located to within 3 units of arc of the correct posi-
tion. Edge types are correctly labelled, except for edges within a
unit of arc from the optical centre of expansion (a=b=0), where edges
cannot be detected. Slant values are smoothed over the centre of ex-
pansion.

Further implementation details are not appropriate here. A complete
derivation of the theory, and a physiological model together with other
items relevant to vision research are published elsewhere (Clocksin
1980a). Results will separately appear on a new statistical algorithm
for extracting velocity vectors from images without the use of correla-
tion or correspondence.

Specifying the conditions for perception

What are the conditions and Llimits under which the observer obtains
effective information from optical flow? The fact that the Ames Window
(Ames, 1951) is ambiguous even though it is a real moving surface means
that there are thresholds which must be exceeded before the information
is effective. The notion of a 'threshold', or the minimum amount of a
stimulus that is necessary for its detection at least fifty percent of
the time, is used throughout psychophysical research. Although <thres~
holds have been determined for simple stimuli such as luminance and
motions, such work has not previously been carried out for more "physi-
cal”™ stimuli such as surface slant and edges. We can use our slant and
edge theory to derive the slant and edge detection thresholds for bhu~
mans under a variety of conditions. When cast into threshold boundary
graphs given below, we are able to predict the conditions under which
humans can or cannot detect surface slant and edges, based on whether
the motion contrast stimulus is above or below empirical thresholds.
For simplicity, the assumption is made that motion contrast is the only
source of information used, but in general we should not rule out
cooperative effects from other sources of information. Thresholds can
also be estimated for computer programs, so the tradeoff between reso-
Llution and performance can be determined in advance.

The conditions we can vary for the slant and edge judging tasks include
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the distance to the surface and the speed of the observer. For the
slant task we also vary the amount of slant, and for the edge task we
vary the depth of the depth discontinuity. The observer's movement
could be, for example, a side-to~side head movement. Given some set of
conditions, all we need is to compute the motion contrast stimulation
resulting from the conditions (see Figure 3), and determine whether the
motion contrast 1is above or below some threshold. Stimulation above
the threshold means that the slant or edge should be detectable.
Atthough the exact value of the threshold is not crucial for our pur-
poses, a typical relative velocity threshold of 0.5 minutes of arc per
second was empirically determined by (Graham, et al, 1948), and depend-
ing on conditions, measured thresholds can range from 0.4 to 1.5
minutes of arc per second.

By comparing retative velocity thresholds with the motion contrast cal-
culated to occur under a large combination of conditions, we computed
the theoretical boundary between subthreshold and suprathreshold
stimulus conditions for slant and edge detection. Graphs showing the
resulting boundary curves for various conditions are shown in Figure 4.
In both slant and edge graphs, the range to the surface (in meters) is
represented by the abscissa, and curves are shown for several observer
speeds (in meters/second). The ordinate represents amount of slant (in
degrees) for the slant graph, and change in depth (in meters) for the
depth graph. For a given speed, the appropriate curve describes the
boundary between suprathreshold and subthreshold stimuius conditions.
Points on the graph Llying below the curve represent conditions for
which motion contrast stimulation is below the threshold. Points above
the curve represent suprathreshold conditions, which should be detected
by human observers. Figures 4a and 4c refer to edge and slant thres-
holds for humans. for example, Figure 4a tells us that we should be
able to resolve (50% of the time under good conditions) a 10 cm deep
depth edge at a distance of 8 meters, provided that we (or the edge
under certain conditions) travel at 10 cm/sec past the edge. Also, we
should not expect to judge the 10 degree slant of a surface (by flow
alone) unless we are moving at Lleast 10 cm/sec and the surface is less
than 2 meters distant. Motion contrast should become more effective as
conditions well above threshold were observed.

In order to test predictions resulting from this study, we reviewed a
nunber of experiments pertaining to stant and edge perception (includ-
ing Gibson, et al, 1959; Smith and Smith, 1963; Flock, 1964; Rogers and
Graham, 1979), and found that our predicted boundary curves accurately
discriminate amongst experiments where subjects (on the average) did or
did not obtain stant and edge percepts from motion contrast (Clocksin,
1980b) . This would suggest that the effectiveness of motion contrast
in slant and edge perception in the absence of other information
depends on having conditions that provide sufficient amounts of motion
contrast. We hope to have shown just what those conditions are.

This analysis can also evaluate computer vision techniques. Limb and
Murphey (1975) determined, for their motion detection algorithm, the
range over which the speed of 3 single object moving along the scan
lines in the video image could be measured relative to 3 contrasting
background. The Llower bound was 0.25 pixels per frame. We converted
this to a relative velocity threshold for real-time motion detection
using a proposed frame rate of 60 frames/sec for a frame subtending 10
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degrees of arc and a 256x256 quantisation. The resulting threshold,
0.010227 radians per second, is about two orders of magnitude higher
{worse) than human vision. The edge and slant threshold boundary
curves under these conditions are shown in Figures 4b and 4d. Under
these conditions, the observer's speed must increase significantly to
detect the same features: to measure surface slants, for instance, a
robot equipped with such a vision system would need to move at rather
distressing speeds exceeding 6 meters per second. However, by improv-
ing the velocity detection algorithm or by increasing resolution (the
angle subtended by a pixel), the relative velocity threshold (and con-
sequently, slant and edge thresholds) would decrease. Thus, the tra-
deoff between resolution and performance can be examined. Further ways
to increase performance could make use of other information such as
texture gradients, however, Braunstein (1976) has found that motion
overrides static indicators of surface slant, completely dominating
slant judgements by humans. ’
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FIGURE 1: (a) The coordinate system centred on the observer 0 moves
with speed S in the direction of the X-axis; a and b are angular spheri-
cal coordinates of meridian and eccentricity; n is the normal of sur~
face T at point P; the slant is (tan s, tan t). Angle s is the angle
between r and the projection n' of n into the RX glane. Angle t is the
angle between r and the projection n'' of n into the QR plane. The
velocity flow from P is f = (S sin b)/r.

(b) The image of P, viewed from 0, sighting along the X-axis.

FIGURE 2:
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FIGURE 3:

Using f with b=90 (movement perpendicular to Line of regard), motion
contrast is |f - f | = S(1/r =1/r ).
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FIGURE 4:

(a> Predicted edge threshold boundary curves for a human observer mov-
ing at 2 mm/sec, 1 cm/sec, 5 cm/sec, and 10 cm/sec.

(b} Edge threshold curves for simulated computer vision system moving
at 25 cm/sec, 1 m/sec, and 2.5 m/sec.

(c) Predicted surface slant threshold curves for a human obser&er mov~
ing at 1 cm/sec, 3 cm/sec, 7 cm/sec, and 10 cm/sec.

Slant threshold curves for simulated computer vision system moving

()
of 2 m/sec and 6 m/sec.
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Using models to augment rule-based programs

Stephen W. Draper
Cognitive Studies Programme
University of Sussex
Brighton, Sussex, U.K.

Abstract

This paper discusses the design of a program that tackles the
ambiguity resulting from the interpretation of line-drawings by
means of geometric consiraints alone. It does this by supplementing
its basic geometric reasoning by means of a set of models of various
sizes. Earlier programs are analysed in terms of models, and three
different functions for models are distinguished. Finally, princi-
ples for selecting models for the present purpose are related to the
concept of a "mapping event' between the picture and scene domains.

Introduction

The line-labelling scheme proposed by Huffman (1971) and Clowes (1971) in
effect posed the problem of producing all the interpretations in terms of line-
Labels of a line-drawing that can be made on the assumption that it is a projec~
tion of a scene composed of polyhedra with trihedral vertices, plane surfaces,
and straight edges, and also that the viewpoint does not give rise to any
accidental alignments of vertices or edges (i.e. any "accidentals"). The Lline-
Llabelling scheme offered only a partial solution, and left two major challenges
for future program designs: to relax the non—accidental and trihedral restric-—
tions (i.e.to allow accidental alignments and vertices with more or fewer than
three surfaces), and to generate only those labellings that are geometrically
consistent with the assumptions - Huffman himself showed that the line-labelling
scheme was jnadequate in this respect. Waltz' (1972) program did nothing
towards the latter goal, and made only ad hoc attempts at the former by includ-
ing a few hand-picked accidental and multihedral junction labellings (his real
contribution was to the expression of knowledge about shadows). Mackworth's
program Poly (Mackworth 1973) achieved the first and partly achieved the second
goal, and work by the author on sidedness reasoning including a design for a
program called Ellsid (Draper 1978, forthcoming) has completed this goal. It
turns out, however, that the purely geometric constraints thus fully captured
allow an enormous number of interpretations (many hundreds even for simple draw-
ings of a cube or a tetrahedron) even though people see only one or two.
Clearly the next task is to attempt to model the choice of interpretation made
by us from among those geometrically possible.

Much of this ambiguity comes from allowing accidentals indiscriminately -
in effect this treats each picture region as the projection of (part of) an
opaque plate with no necessary point of contact with any other, and many of the
interpretations represent such weird, disconnected scenes where the edges of
floating plates are Lined up in various unlikely ways. This does not however
account for all the ambiguity since even excluding accidentals still allows
numerous odd interpretations. It is now clear that the trihedral and accidental
restrictions in the Huffman-Clowes scheme were responsible for keeping the
interpretations produced in fairly close correspondence to human interpreta-
tions, even though their rigid application prevented the interpretation of some
simple pictures. Kanade (1978) shows how even a slight relaxation of the res-
trictions (redefining the trihedral restriction to allow up to three surfaces at
a vertex, which can be either laminae or faces bounding a solid volume) greatly
‘multiplies the possible interpretations of simple pictures and that extra scene
constraints must then be mobilised. However his proposed scheme, although an
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interesting compromise between ambiguity and geometric competence, neither
reduces the ambiguity to the point of corresponding to human perception, nor
fully enforces the applicable geometric constraints. An obvious suggestion then
is to look for a way to select the interpretation which conforms or most nearly
conforms to the Huffman-Clowes restrictions while retaining the more general
geometric powers of sidedness reasoning for use as and when necessary.

This paper outlines an approach which uses models of familiar objects and
fragments of objects to implement, and hopefully to improve on, this suggestion.
The program will be based on the sidedness reasoner from Ellsid, which is essen—
tially rule-based, but will be augmented by the models whose rote is to guide
the interpretation - in effect resolving the ambiguity found by Ellsid alone.
It 1is argued that this offers a method of capturing the good aspects of past
programs (including the Huffman-Clowes scheme) particularly their abiltities to
choose the same interpretations as people, while overcoming their inadequate
grasp of geometric constraints and inability to cope with accidentals when this
is necessary. In addition it offers a way of modelling the effect of common or
familiar objects or configurations on the perception of drawings.

Mode l-based vision programs

Most, perhaps all, programs can be seen as model-based in some sense
despite the fact that their general "feel' may be that of a bottom-up general
purpose method. For instance Woodham's (1977) program for getting shape from
shading by a local computation uses models of fragments of surface shape. In
the domain of line-drawing interpretation, the succession of programs can be
seen as having been based on successively smaller models. Roberts (1965) used
complete, simple, convex polyhedra such as bricks and wedges as models. Line~
labelling schemes are based on models of possible vertices and their appear-
ances. Mackworth's Poly and the author's Elisid both use planes as their basic
element or model: they reason about how these may be fitted together to make up
scenes. .

Here it is useful to distinguish three different aspects of the wuse of
models.

1. They can largely determine the way in which the scene (i.e. the interpreta-
tion) 1is described. This dis most obviously true when models are used to
achieve recognition of known objects - the interpretation may then consist
almost entirely of the names of those objects. Likewise when models carry
information which could not otherwise be deduced from the picture - such as
lengths in Falk's (1972) program and hidden surfaces in Roberts’' program -
they have a large effect on the content of the scene description. Apart
from this effect on its content, models may affect its structure by deter-
mining the elements of which it is made up: Roberts' program sees an L-beam
as two bricks welded together whereas Poly sees it as planes meeting along
edges with no sub-division into convex blocks.

2. Models can be used as hypotheses - sets of conclusions about the scene that
are jumped to on the basis of slight evidence, though some checking may fol-
Llow. Roberts' program has this flavour; Line-labelling does not since it
considers all possibilities and allows all consistent interpretations that
survive all the checks it knows how to make. As we shall see, it s this
aspect of models that is needed in the present application since they are to
be the basis for going beyond the geometric constraints.

3. Models are often the basis for organizing the way knowledge is built into
the program - primarily constructs to help the programmer organize the code,
nuclei for structuring the program. It is in this sense that all the pro-
grams mentioned are model-based - they are all organized around some basic
scene concepts. Loosely speaking, frames (Minsky 1975) are models 1in this
sense since a frame brings together procedures as well as declarative infor-
mation, and the idea is to organize the program round frames whether or not
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it has a hypothesise~and-test flavour and however its scene descriptions are
organized. 1In vision this is taken furthest by Freuder (1976) who organizes
all knowledge around models but these appear in what are effectively four
different networks of declarative information and have at least two sets of
procedures associated with them (for use when activated 1in top-down and
bottom-up modes respectively).

A program design using models to select interpretations

We are now on a better position to specify clearly what role the models are
to play in the proposed program design. We do not want them for defining the
scene description language - that is still to be done primarily by the underly-
ing sidedness reasoning program using Uine-labels and its representation of
planes and their relationships; neither are the models to be central units of
the program organization. They are instead required tp provide Likely
hypotheses about parts of the scene.

The basic sidedness reasoner is retained firstly to ensure that the final
interpretation is geometrically consistent -~ and so it is used to check that the
hypothesised fragments of scene description are mutually compatible. Each
hypothesis must therefore be expressed in terms that the reasoner can deal with
directly - as sidedness assertions about planes. Note that in terms of the
underlying plane-based approach the models do not correspond to natural frag-
ments of scene objects: for instance the all-convex labelling of a Y-junction,
which in the Huffman-Clowes scheme 1is a complete model of a vertex, tells a
plane~based system something about one carner of each of three surfaces and the
way they meet each other there. In this respect these models are more Llike the
M.I.F.s and M.U.F.s developed by Frank Birch (1978) in a letter recognition sys-—
tem than they are like Roberts' models. M.U.F.s (minimal unambiguous fragments)
are combinations of strokes that have no meaning by themselves as letters but
are valuable to a program as a combination that can belong to only one letter
and can hence initiate some special processing. M.1.F.s {(minimal impossible
fragments) are stroke combinations that cannot be part of any single letter and
hence signal that some stroke junctions must be undone. Both are models
selected not for their significance in the resulting interpretation but for
their usefulness to the process constructing the interpretation.

The second function of the sidedness reasoner is to fill in the gaps in the
interpretation when there are parts of the picture not covered by hypotheses of
familiar configurations - e.g. at accidentals. How many such ‘"gaps" occur -
that 1dis, how much of the interpretation will not be covered by the models -
depends partly on how extensive the set of models is, and partly on whether the
control strategy 1is to search for the interpretation that has the maximum pro-
portion supplied by models, or to grow an interpretation outwards from an ini-
tial model match, using other models if possible but only backtracking if forced
to by a geometric inconsistency. The latter strategy will not always give the
"best" interpretation and in general will depend on the order in which parts of
the picture are tackled. Probably both should be explored to see which c¢an be
made to fit human performance best.

A second major design decision is to trigger the models by matching cues in
the picture domain. It is possible to have a system where scene descriptions
are generated by some means and then.models of 3D configurations are matched to
them. This is sufficient for recognition systems, where the purpose of the
models is to identify known objects, and it could be used here by preferring
interpretations containing familiar 3-D configurations. However it seems

~unlikely to provide a good model of human preferences for several reasons.
Firstly, such a system would behave like a paranoid: it would have strong ideas
about what the interpretation “should" be and very slight evidence would be
enough to '"confirm" this - it would take no account of what those appearances
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probably or usually indicate. What we really want 1is a system that assigns
appearances a plausible interpretation and does not invoke unlikely links
between appearances and interpretations unless it has to. This is achieved by
having a stored set of picture configurations called “keys" or “cues" each of
which triggers a particular fragment of 3-D interpretation called a model. It
is these pairs of keys and models that are stored, and have been loosely
referred to up to now simply as "models".

This decision fits well with previous programs, and with the aim of trying
to recapture the insights contained in past work. Line-labelting is based on an
insight first exploited by Guzman (1969) that picture junctions are good evi-
dence about the scene (see Hochberg 1968 for evidence of the psychological real-~
ity of this): what we want to capture here is the idea that Y-junctions, say,
normally have one of the three interpretations allowed by the Huffman-Clowes
scheme although a lot more are possible. Similarly in Roberts' program models
have keys associated with them that are good candidates for incorporation in the
present program, as are the "line features" used by Grape (1973).

Principles for choosing model-key pairs for incorporation

Depending on the motives for constructing a version of the proposed pro-
gram, various principles might be used in selecting the model~key pairs to be
used. Interesting experiments could be made to see how well the ideas in previ-
ous programs will work when augmented by sidedness reasoning - for instance by
using as models just the Huffman-Clowes set of junction Llabellings one could
find out 4f it could now cope with multihedral vertices and accidentals while
avoiding geometrically impossible interpretations and still generally producing
only those interpretations which people see.

Another idea would be a learning program which had some method of analysing
each picture-plus~dictated-interpretation in a training sequence and compiling a
set of picture fragments plus interpretations to use as models, selected perhaps
on the basis of frequency of occurrence. Alternatively a set could be compiled
by hand, the aim being to model the interpretations people select over as large
a set of pictures as possible.

The above program designs might possibly achieve a good approximation to
human perceptual behaviour (within the Llimits of the power of line-labels to
express 3-D interpretations) but they could never offer a theoretical explana-
tion of why they worked. What than should the principles for selecting models
be? A possible answer comes by extending Huffman's General Viewpoint idea
(Huffman 1971 p.298): we want picture-to-scene hypotheses that are probable. To
explore this we need to develop the picture/scene distinction emphasized by
Clowes (1971).

The keys are defined in the picture domain - e.g. a Y-junction is defined
by picture angles etc. independent of the labelling (interpretation) that may
later be assigned to it. The models are defined in the scene domain - that is
they specify aspects of the 3-D scene in a way that in principle is independent
of the picture (this is completely true of Roberts' program, only partly true
when the interpretation is specified by line-labels). 1In order to identify
probable key-model pairs we must consider the relationship between parts of the
scene and the appearances they generate - I shall call these pairings "mapping
events'. A good example of a mapping event is a T-junction generated by an edge
being occluded. Not all T-junctions signal occlusion and not all occluded edges
generate T-junctions. When trying to interpret a T-junction the gquestion 1is:
was occlusion the mapping event that generated it? If that is the hypothesis
you adopt, it dictates certain features of the putative scene - a relative depth
relationship for dnstance; in general several somewhat unconnected scene rela-
tionships are specified by the hypothesis of a given mapping event. Occlusion
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is not a scene property - it is not part of a scene but a consequence of the
association of a scene and a viewpoint, pairing a particular appearance (i.e. a
picture) with the scene.

In order to pursue the idea of choosing key-model pairs that represent
probable hypotheses, then, models should not be chosen by selecting convenient
scene fragments nor keys by selecting convenient picture fragments. Rather we
want to 1identify keys that have a good chance of leading to a correct piece of
interpretation. It is mapping events like occlusion and accidentals that are
more or Lless probable, and so it is these probabilities that should be taken
into account in formulating hypotheses and 1in designing the model set that
determines the hypothesis~making of a program. Key-and~-model pairs correspond
to mapping events and should therefore be selected for maximum. probability of
the correspondence. Some mapping events have a relatively high probability and
are worth being stored explicitly as models, while others do not have a high
enough relative frequency to warrant this. Ideally we would like to identify
keys for which a subset of their possible interpretations account for the Large
majority of their preferred interpretations in practice. The non-accidental
interpretations of a junction are an example of this. The selection should also
be dinfluenced by the effect of other constraints operating on a hypothesised
interpretation - one can afford to consider fairly unlikely dinterpretations if
they are (nearly) always ruled out by other constraints when they are incorrect
(not preferred)., A considerable further amount of theoretical work needs to be
done on the behaviour of such systems, but practical experience with various
sets of models in the proposed system may suggest important leads in this.

Conclusion

The proposed program will have a competent geometric facility as its basis
(the sidedness reasoner) to check the overall interpretation produced and to act
as a medium for combining the contributions of other parts. This will be sup~
plemented by a system of stored models of a range of sizes. These models are
not included to provide the program's basic ability at interpretation but to
generate good hypotheses for the reasoner to work on. They can be seen as par-
tial results stored ready-made because they are frequently encountered, and as
such they may save computation. However that is not their primary function.
Like M.I.F.s and M.U.F.s, they are items useful to the program for controlling
the computation rather than for making up large portions of the output. They
are hypotheses in the sense intended by R.L. Gregory (e.g. 1974) when he charac-
terised vision as a process of forming and checking hypotheses: they are used to
resolve the ambiguity inherent in the picture. They cause the program to jump
to a conclusion that goes beyond the evidence in the sense that, although it
will check that no constraint refutes the hypothesis, the interpretation is
partly determined by ignoring the possible alternatives.
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Abstract. The system ADTCOMP which constructs LISP-impiementations from algebraic
specifications of abstract data types is presented. ADTCOMP accepts specifications

with conditional axioms and hidden operations (parameterized specifications are not
yet accepted). Code is gemerated by applying programming knowledge codified in terms
of production rules. '

1. Introduction

A standard paradigm of software development is to start with abstract specifications,
and to gradually expand, refine, and transform them into an appropriate linguistic level
to obtain efficient implementations. Algorithm design should be done independently of
machine representations.

Algebraic specifications [ADJ 76] of abstract data types (ADTs) allow to specify
data types by characterizing the behavior of data objects under characteristic opera-
tions without using any particular representations of data objects. Hence, developing
algorithms at the level of manipulating objects of algebraically specified ADTs provides
an optimum of freedom from specific representations, facilitates the manipulation of
algorithms (e.g. nrogram transformations), and allows tc prove properties of algorithms
which are independent of representation details. The remaining task consists in
implementing such abstract algoritims in terms of appropriate representations supported
at the machine level.

Previcus investigations [BAR 77, LON 77) in constructing concrete implementations
of abstract algorithms have revealed that the problem primerily is how to represent and
utilize programming knowledge. However, the “abstract” structures considered by PECOS
{BAR 77] (and even more in [LON 77}) are substantially more "concrete” than algebraic
ADT-specifications. ADT-specifications only provide functionalities of operations and
equational axioms on which design decisions can be based on. :

We present the system ADTCOMP which constructs LISP-implementations from algebraic
ADT~-specifications. Programming knowledge is codified in terms of production rules,
contained in five different production bases. ADTCOMP constructs LISP-code by successive-
1y working through seven phases, each of which incorporates specialized programming
knowledge and refines intermediate constructions obtained from the previous phase.
ADTCOMP accepts specifications with conditional axioms and hidden operations (see e.g.
[ADT 79]), but not yet parameterized specifications. So far, ADTCOMP has successfully
implemented ail ADT-specifications we could get hold of (about 70). The five production
bases contain some 120 rules. There is an additional system of meta-rules for meta-
reasoning and constraining search. ADTCOMP uses well-established Al-techniques such as
agendas and dependency-directed backtracking.

It turned out that the choice of LISP as target language was not essential. Although
this will not become clear from this paper, we could have easily changed our rules to
generate implementations in terms of SIMULA-classes{say; in fact, such a redesign making
ADTCOMP multilingual is currently under way).

This paper is aimed at introducing the basic machinery by which ADTCOMP works, at a
level of detail that allows to recorstruct how simple and familiar data types are
implemented. Section 2 gives a rough survey on ADTCOMP illustrated by a detailed walk
through the implementation of a simple data type. Section 3 reviews decision making
and coding illustrated by a variety of simple, but non-trivial examples.

ADTCOMP is implemented in INTERLISP without using features not being standard in
LISP-systems (ADTCOMP even runs on LISP-F3 [NOR 79]). The system as well as a detailed
reference manual is available from the third author.
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2. A Survey of the ADT-Compiler

This section introduces the most important mechanisms of ADTCOMP. To show how the
system works, this overview is illustrated by a particularly simple and familiar example,
the unbounded stack abstraction.

2.1. Input Specifications and System Structure
2.1.1. Input Specifications. The input to ADICOMP is an algebraic data type specification
(S,Z,E) which consists of - a signature (S,I) containing sorts and operations with
their functionalities.
- a set E of equational axioms describing the effect of opera-
tions.
Completeness and consistency checks are not yet included in ADTCOMP.

2.1.2. Example. We consider the specification for unbounded stacks:

DATATYPE : STACK D3 D, X are sorts for STACK~ and component-objects
COMPONENTSORT: X3
OPERATIONS : PUSH: D X - D3 ;
POP : D -+ D; these are the operations and their functionalities.
TP : D~ X5
AXIOMS: [A1] (POP DP) = UNDEF;
[A2] (TOP D@) = UNDEF;
[A3] (POP (PUSH D2 X2))
[A4] (TOP (PUSHD2 X2))

So far, ADTCOMP is restricted to specifications of data types D s.t. all D-objects can
be inductively generated from a basic D-object D@, which is the empty stack in our
example. For all sorts, UNDEF is the error element of the respective sort.

2.1.3. System Structure. Upon encountering an input instruction, ADTCOMP works through
seven phases that successively construct a LISP-implementation of the data type. Except
for the first and last one, each phase incorporates specialized programming knowledge
and refines the intermediate constructions obtained from the previous phase.

These seven phases are:

D2,
X2,

(1) Initialization (I-) Phase. The I-phase converts the input specification into a LISP-
representation.

(2) Punctionality (+) Phase. The »~phase considers the signature of the input specifi-
cation only. Conclusions from the operations' functionalities are drawn, and the
structure of LISP-functions implementing these operations is established.

t3) Axiom (=—) Phase. The =-phase considers the axioms of the input specification only,
and makes inferences from observations on the axioms.

After the =-phase, the input specification is no longer considered.

(4) Representation (R-) Phase. The R-phase combines conclusions of the previous phases
to determine the data structure in which D-objects are represented.

(5) Compile (C~) Phase. Using all information obtained so far, the C-phase constructs
actual LISP-code to make optimizations and improvements.

(6) Cleamp Phase. The Cleanup-phase refines and/or rearranges the LISP-code obtained
from the C-phase to make optimizations and improvements.

(7) LISP-Phase. The LISP-phase constructs the final LISP-code. As LISP does not support
a module-construct such as SIMULA-class or ALPHARD-form, a corresponding
mechanism is built up in the LISP-phase.

Phases (2)-(6), which actually apply programming knowledge, are production systems.
Applications of production rules is controlled by meta-rules and attention focussing.
These mechanisms, dependency-directed backtracking, and pattern matching are not
discussed in this paper.

2.2. A Walk Through the Automatic Implementation of an Abstract Data Type Specification

To explain how ADTCOMP works, we present a walk through the implementation of the
STACK-specification 2.1.2.

2.2.1. Initialization (I-) Phase. The input specification is converted into an internal
LISP-representation, and the LISP-atoms D, X, PUSH, POP, TOP are associated with the
following properties:

D NAME STACK name-property of Dhas value STACK.
X COMPSORT the COMPSORT-property of X has value TRUE (omitted).
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Pg%g g: %{g;tgﬂ; these cperations ave to be IMPLEMented,

TOP 0P (IMPLEM) i.e. they are no hidden operations.

2.2.2. Functionglity (+-) Phase. ~-rules check functionalities of operations to make
useful observations. In our case, the three rules 01, -02A, -08 apply:

[FOI. *0P1: D <I #Y> ... - D, <i *Y NOTEQUAL D>
=>#0P1 CONTINUABLE SINGLE

Zf #0P1 maps a D-object and possibly a =Y-object to a D-object and %Y is not D
then #0Pl is a singly continuable operation

HNote. (1) An operation op is n~-fold continuable iff op constructs from n D-objects
another D-object.

(2) The first clause of the above rule is matched against the OPERATIONS-part of
the specification. = prefixes match-variables. In ‘<l #Y>', 1 is a LISP-atom
bound to TRUE iff =Y is matched to something. 1 serves as a condition for the
test '<l #Y NOTEQUAL D>' which is evaluated only if 1 is bound to TRUE.

We call such a test a conditioned test.

~01l:Result. PUSH CONTINUABLE SINGLE
POP_CONTINUABLE SINGLE

CR.~#0P1: D ... - X => 0Pl READS

if #0P1 maps D-objects and possibly more arguments to component sort X
then 0Pl reads some contents from D-objects.

~02A only fires for operation TOP which results in
[>02A:Result.  TOP READS ]

The third applicable rule sets up the structure of the LISP-functions that will
implement the operations:

+08. «0P1 OP IMPLEM, if #0P1 is to be implemented, and

NOT =OP1 CONTINUABLE DOUBLE, *0P1 is not doubly continuable, and

LET #LIST BE LIST, the variable »LIST is declared to be bound

<1 *NA MEMORY 1>, to 1ist structures, and

<2 *NB MEMORY 2>, {these conditions don't apply here), and

LET 3 BE NOT 1, 4 BE NOT 2, 3,4 are bound to TRUE (as 1,2 are NIL),and

<7 *0P1 CONTINUABLE>, 7 is TRUE if =0P1 is continuable, and

<8 #=0P1 SETS>, (doesn't apply here, i.e. 8 is NIL), and

#0P1:<D><5 #NA> <6 »NB> «LIST - the functionality of =0P1 matches this pat-
tern;=LIST is the list of al) sorts follow-

=> *0P1 FUNCT then 3 £
(D<1 #NA><2 #NB><3<5 #NA>><4<6 xNB>> »LIST. ing the 3rd argument

FORM <1<7 S>> <8 S> <3<7 D>>, l this is the structure of the LISP-function
*0P1 PARAMS <1 #NA><2 =NB> implementing #0OPl, entered under property
<3<5 #NA>><<4<6 *NB>> #LIST) FUNCT of =0P1,
I the property PARAMS of *0P1 records all
parameters except for the first (for D-ob-
Jects); the PARAMS-property is used in recursive calls.
-+08:Result. PUSH FUNCT ((LAMBD& (D X) FORM D))
PUSH PARAMS (X)
POP FUNCT ({LAMBDA (D) FORM D))
POP PARAMS
TOP FUNCT ({(LAMBDA (D) FORM})
TOP_PARAMS

2.2.3. Axiom (=-) Phase. =-rules analyse the axioms of the specification.

=01. =0P1 READS TRUE, /(+OP1 {#0P2 ... X2 ...)...) = X2 <1 IF «COND>/
=>#0P1 READS <1 IF *COND>, *0P2 WRITES ELEM, =E DENOTES #0PZ

if #0P1 is a read-operation extracting information from a term as described by
the axiom-pattern in slashes (possibly qualified by a condition #COND)
then  #0P1 is a read-operation (possibly under *COND), and *0P2 is the elementary
construction operator for D-ohjects which is signalled by permanently bin-
ding the pseudo-varizkle *E t0 the value of =0P2.
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Rote. Including an axiom in slashes results in omitting the respective axiom from any
further consideration after the respective rule has been applied successfully. The
conditioned test <1 IF =COMD> is checked in the consequence-part of the rule if the
test has been established in the precendition, i.e. the axiom which matches is &
conditional axiom.

=01 applies to the axiom A4 (TOP (PUSH D2 X2)) = X2, and results in:

=01:Result. TOP READS TOP reads from D-objects. 1
PUSH WTIES (ELEM) PUSH writes el bjects into D~obj »
«E DENOTES PUSH eonstruct new D-obﬂecta.

#E 78 a variable bowund to PUSH.
axiom [A4] will no longer be congidered

=03. LET =EXPR BE EXPR, /(*0OP1 #EXPR ...} = UNDEF <1 IF »COND>/,
<2 «EXPR EQUAL D@>
=> #0P1 UNDEF IF <1<2{AND>> <2{EQ D DP)> <1 *COND> <1 2)>>.

if #0P1 applied to some expression *EXPR yields UNDEFined, possibly under
conditions (a) *COND, and (b) *EXPR can be shown to be EQUAL DP
then applying #0P1 returns UNDEFined under the conditions established in the precon
dition of this rule. The axiom involved in a successful application of the rul

is deieted.
Note. A meta-rule makes sure this rule is neverhpplied when neither condition (a) nor
(b) holds.
=03 applies to the axioms [Al] and[A2], (POP D@)=UNDEF and (TOP DP) = UNDEF:
=03:Result. PQP UNDEF 1F (EQ D 0B)
TOP  UNDEF IF (£Q D D@)
axioms [Al] and A2] are deleted

=06C. #0P1 CONTINUABLE, *E CONTINUABLE SINGLE, NOT «OP1 WRITES,
#0PL (%€ ... D2 ...} ...) = <1{(#0P1>...D2<l...)> <2 IF #COND>
=> *0P1 DELETES <2 IF *COND>
if 0Pl is a continuable operation extracting a D-object from an object built up
by the elementary construction operation E, possibly under condition =COND
then #0Pl is a deletion operation whenever *COND holds (if *COND is established).

=06C applies only to axiom [A3] (POP (PUSH D2 X2)) =

{=06C;Result. _POP DELETES }

2.2.4. Representation (R-) Phase. There is a wealth of conclusions which can be drawn
from the results of the previous phases. First, rule ROl decides to implement data types
as lists if their elements are constructed by 2 singly continuable construction operatio

RO1. =E CONTINUABLE SINGLE => D LIST|
ROl:Result. B LIST
For operations which unconditionally read or delete, rule R04 concludes that their actio
affects the last {NEWEST) element of their arqument which had been added by the elemen-
tary construction operation:
RO4. LET #ACTION BE !READS DELETES!, ! ... ! emcloses altermatives (ORing)
#0P1 *ACTION
=> #0P1 =ACTION NEWEST
Zf »0P1 READs (DELETEs) unconditionally
then READing (DELETing) of #0P1 affects the NEWEST element in its argument

R04 applies to operations POP and TOP:
RO4:Result. POP DELETES (NEWEST)
TOP READS  (NEWEST)
There is another rule to detect the OLDEST element in a D-object as affected by some
operation.

Although ROl has decided that stacks should be implemented as lists, it is still
open what particular kind of 1ist structure -such as singly or dcubly Jinked lists-
should be chosen. E.g., the doubly linked list structure is selected when reading is
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done at one end, and a counting operation recursively works through the 1ist from the
other end. To prepare this decision, we have to find out about whether operations work

at the front resp. back end.

R11A, D LIST, NOT D DIRECTED,*0P1 OP IMPLEM,
LET «PLACE BE INEWEST OLDEST! OP1 DELETES PLACE<1 IF =COND>
=> D DIRECTED, #0P1 DELETES FRONT <1 IF «COND>

Zf D is to be implemented as a Tist, but no direction has been established yet,
and =0P1 is an operation to be implemented,
and #0P1 deletes the NEWEST (resp. OLDEST) elements from D-ocbjects,
possibly under some condjtion #+COND
then #0P1 deletes at the front end of D-objects under condition «COND (if estab-
lished), and the lists representing D-objects are directed now.

R11A applies to POP:
R11A:Result. D DIRECTED, POP DELETES (FRONT)

Remark. After having applied R11A to some operation, this rule is no longer applicable
for any other operation, as D is tagged DIRECTED now. This is important because
operations may work on opposite ends s.t. choosing one operation to work at the front
end implies the other operation works at the back end. ‘

With rule R11A, we have now established what is taken to be the front resp. back end

of 1ists representing D-objects w.r.t. operation POP. The next two rules determine at
which end the other operations work.

R13A. D LIST, +0P1 DELETES FRONT, =0P1 DELETES /NEWEST/
=> «E WRITES FRONT

if the data type is renresented by lists, and *0P1 DELETEs the NEWEST element
of D-objects, and the NEWEST element is in the FRONT position of the list
then the elementary construction operation *E WRITES into the FRONT position, and
the NEWEST-value under property DELETES of #0P1 is deleted.

R13A:Result. PUSH WRITES (FRONT)
POP: NEWEST-value of property DELETES is erased

R15A. LET #ACTION BE !READS DELETES!, #0P1 =ACTION /NEWEST/, =E WRITES FRONT
#0P1 *ACTION FRONT

if #0P1 READS (resp. DELETES) the NEWEST D-element,
and the elementary construction operation writes in the FRONT-position
then #0P1 READS (resp. DELETES) in the FRONT-position, and the NEWEST-value
of property READS (DELETES) of *0P1 is removed.

R15A:Result. TOP READS {FRONT)
TOP: NEWEST-value of property READS erased

We have now collected all information which makes the next rule choose the singly linked
list structure to represent D-objects:

R21l. O LIST, EXISTS NO #0P: =OP DELETES BACK AND =0P OP IMPLEM,
EXISTS NO =0P: 0P COUNTS BACK AND =0P OP IMPLEM
=> D LIST SL

if D-objects are represented as lists, and there is no operation to be implemen-
ted which deletes or counts at the back end of 1ists
then D-objects are represented as singly linked lists.
Note. The value IMPLEM of property OP of 20P rules out that 0P is a
hidden operation.

R21:Result. D LIST SL

Finally, R29 establishes the LISP-representation of the basic D-abject D@{empty stack):

R29. D LIST sSL
=> D FUNCT (NLAMBDA (FRONT) (SETQ FRONT (CONS}) (RPLACA FRONT FRONT))

if D-objects are represented as singly linked lists
then implement the basic D-element DP by the above LISP-function.
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[ R29:Result. DP FUNCT (HLAMBDA (FRONT) (SETQ FRONT (CONS)) (RPLACA FRONT FRONT))

2.2.5. Compile (C-) Phase. C-rules work on the FUNCT-property of operation names which i:
a pattern of the LISP-function to implement the respective operation. All strings in
such a FUNCT-pattern that are not LISP-atoms are regarded as keywords to be ezpanded to
Li1SP-code by C-rules. C-rules work from front to back ends of FUNCT-patterns. A C-rule
inspects the next keyword after the current position. The §-sign indicates the current
position pointer.
First, we work on operation PUSH.
C0il. D LIST,

LET «ACTION BE !READS DELETES WRITES!, LET =POSITION BE IFRONT BACK!,

#0P1 =ACTION *POSITION, #0P1 FUNCT: /FORM/
=> (COND UNDETERMINED (T «ACTION =POSITION}).

D is a 1ist, and *OP1 does *ACTIONEREADS, DELETES, WRITES} at the
*POSITIONE{FRONT, BACK} end

then in the FUNCT-pattern of »0P1, FORM is replaced with
(COND UNDETERMINED (T ACTION POSITION))

Note. C~rules differ from all previous rules in that /FORM/ occurring in the preconditio
is replaced with the value of the consequence of the rule {shorthand notation).

[ COL:Result. PUSH FUNCT ((LAMBDA (D X) § (COND UNDETERMINED (T WRITES FRONT)) D ))

The next keyword after § is UNDETERMINED; it is simply deleted by rule C108:

C10B. NOT =0P1 UNDEF IF =COND, »0P1 FUNCT:/UNDETERMINED/ =» .
C10B:Result. PUSH FUNCT ((LAMBDA (D X) (COND § (T WRITES FRONT)) D })
€15 generates LISP-code from the observation "WRITES FRONT":

C15. D LIST SL, OP1:FUNCT:/WRITES FRONT/
=> (REPLACE FRONT (CONS X FRONT)) (AND (EQ {CAR URD) D){RPLACA URD FRONT))

C15:Result. PUSH FUNCT
({LAMBDA (D X) (COND (T § (REPLACE FRONT (CONS X-FRONT))
(AND (EQ (CAR URD) D)(RPLACA URD FRONT))}) D ))

The next two keywords are both FRONT and are both expanded by rule C33:
€33. *0P1 FUNCT:/FRONT/ => (CDR D).
€33:Result. PUSH FUNCT
((LAMBDA (D X) {COND (T (REPLACE (COR D) (CONS X § (CDR D})))
(AND (EQ (CAR URD) D){RPLACA URD FRONT}}})} D })
We omit the rules for further expansions and show the final result of compiling PUSH:
C:Result{PUSH). PUSH FUNCT
({LAMBDA (D X) (COND (T (REPLACE (COR D){CONS X (CDR D)))
(AND (EQ (CAR URD) D){(RPLACA URD (CDR D)}})) D ))
Next, we turn to operation POP. Rule COl{above) yields
[ C01:Result. POP FUNCT ((LAMBDA (D) § (COND UNDETERMINED (T DELETES FRONT)) D )) ]
Contrary to PUSH, POP is sometimes UNDEFined, so rule C10B does not apply. Instead,
€08 fires:
C08. +0P1 /UNDEFINED IF #COND/, <l #Q0P1 WRITES>, #0P1 FUNCT:/UNDEFINED/
=> (*COND (RETURN (QUOTE UNDEF))) <1 UNDETFRMINED>.

CO8:Result. POP FUNCT
({LAMBDA (D) (COND § ((EQ D DP){RETURN (QUOTE UNDEF)))
(T DELETES FRONT)) D })
Our next rule refines the test (EQ D DP), i.e. "is D the emtpy stack?":

C088. LET =ACTION BE !'READS DELETES WRITES!, NOT 0Pl »ACTION REFERSTO =N,
NOT =0P1 COUNTS BACK IF ..., 0Pl FUNCT:/(EQ D DB)/
=> (NULL FRONT)
C0RB replaces the test (EQ D DB) with {NULL FRONT):

€088:Result. POP FUNCT ((LAMBDA (D) (COND(§ (NULL FRONT){RETURN{QUOTE UNDEF)))
(T DELETES FRONT)) D ))
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Rule €23 expands DELETES FRONT into LISP-code:

€23. D LIST SL, =0P1 FUNCT:/DELETES FRONT/
=> (AND {EQ {CAR URD) FRONT) (RPLACA URD D))} (REPLACE FRONI (CDR FRONT}).

Omitting several further steps, the C-phase finally produces the following code for POP:

C:Result(POP). POP FUNCT
{(LAMBDA (D) (COND ((NULL (CDR D)){RETURN {(QUOTE UNDEF)))
(T (AND (EQ {CAR URD) (CDR D}) (RPLACA URD D)}
(REPLACE (CDR D} (CDR {CDR D))))) D))

To implement TOP, we need two additional rules:

C13. LET »POSITION BE !FRONT BACK!, =0P1 FUNCY:/READS *POSITION/ I
=> {COMPONENT «POSITION).
IC36. D LIST SL, =0P1 FUNCT:/COMPONENT/ => CAR. l

In our example, these two rules determine that TOP reads the CAR-position of.lists.
Again omitting further steps, the C-phase finally implements TOP in this way:

C:Result(TOP). TOP FUNCT
((LAMBDA (D) (COND ({(NULL (CDR D)) (RETURN (QUOTE UNDEF)))
(T (COR D})))))

2.2.6. Cleanup Phase.The Cleanup phase again works through the FUNCT-property of
operation names, and makes optimizations and final expansions. In our example, the
following rules apply:

CLEANO4. LET »VARLI BE LIST, =0P1 FUNCT:/(COND (T #VAR1))/ => «VARI.
any COND~form kaving only a T-branch is replaced with the T-branch.

;ngggllowing rules replace REPLACE appliied to a CAR- resp. COR-form with RPLACA resp.

CLEANQI. LET VAR BE EXPR, #0P1 FUNCT:/REPLACE (CAR #VAR)/ => RPLACA »VAR. '
CLEANOZ. LET #VAR BE EXPR, #0P1 FUNCT:/REPLACE (CDR #VAR)/ => RPLACD #VAR. I

2.2.7. LISP Phage. Simulating a CLASS-construct in LISP, the LISP-phase returns the
following LISP-cede:

(PRINT *STACK)
FINEQ
<STA X
<NLAMBDA (OP DLIST) (SETQ DLIST (EVLIS DLIST))
(PROG ((URD (CAR DLIST)))
(RETURN (NEVALA (APPLY (EVAL OP) DLIST STACK>>

>
<SETGC STACK
(<TOP LAMBDA (D)
{COND ((NULL (CDR D)) (RETURN 'UNDEF)) (T (CAR (CDR D>

(POP LAMBDA (D)
COND ((MULL (COR D)) (RETURN 'UNDEF))
(T (24D (E® (CAR URD) {CDR D)) (RPLACA URD D))
(RPLACD D {COR {TDR D> D)

(PUSH LAMBDA (D X)
(RPLACD D (CONS X (CDR D)))
(AND (EQ (CAR URD) D) (RPLACA URD (COR D))} D)

(D@ NLAMBDA (FRONT) (SETQ FRONT (CONS)) (RPLACA FRONT FRONT>

As an example, the empty stack is generated by

(SETQ S (STACK D9)).
PUSHing 17 onto the empty stack S is done by

(STACK PUSH S 17), and (STACK PUSH S 25) PUSHes 25 onto S so that we obtain
from (STACK TOP S) the value 25, and (STACK POP S), (STACK TOP S) yields 17.
POPping S twice, i.e. doing (STACK POP S), (STACK POP S) yields UNDEF.
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3. List and Tree Representations of Abstract Data Types

ADTCOMP implements ADT-specifications in terms of a variety of given data structures
This section briefly reviews decision making and coding for three simple structures:
(3.1) doubly-linked 1ists, (3.2) association iists, and (3.3) bimary trees.

3.1. Doubly-Lirked Lists. After the R-phase has established that objects of the data
type D are to be represented as lists (i.e. 'D LIST {TRUE}'), one or both of the rules
R19A,B may apply:

R19A D LIST TRUE, =0P1 OP IMPLEM, =0P1 DELETES BACK => D LIST DL
R198 D LIST TRUE, =0P1 OP IMPLEM, »0P1 COUNTS BACK If ... => D LIST OL

if D-objects are to be represented as lists, and there is an operation =0P1 to be
implemented which deletes {counts) at the back end
then D-objects are to be represented as doubly-linked 1ists.

R27 establishes the LISP-implementation of doubly-linked 1ists by generating code for th
basic D-object DP:

R27 D LIST DL
=» DP FUNCT (NLAMBDA (FRONT) (SETQ FRONT (CONS (CONS)))
{RPLACA (CAR FRONT) FRONT) FRONT).

The following C-rules compile LISP-code for various kinds of operations:

€36 D LIST DL, #OP1 FUNCT: /BACK/ => {(CAR (CAR D)). AAJ
the BACK-end ie reached by CAAR.
C37  LET +REPKIND BE !DL ASSOC!, D LIST #REPKIND ...,
LET =LIST BE LIST, #0P1 FUNCT:/COMPONENT »LIST/
=> {CDR (CAR =LIST})).
theFRONT~element is obtained by applying CDAR.

The following four rules generate code (up to further refinements) for operations writ-
ing (deleting) at the FRONT-/BACK-position:

T16 D LIST DL, OP1 FUNCT:/WRITES. FRONT/
=> (REPLACE FRONT (CONS (CONS D X) FRONT))
(COND ((NULL (CDR FRONT)) (RPLACA (CAR URD) FRONT))
(T _(RPLACA (CADR FRONT) FRONT))).

C19 D LIST DL, *0P1 FUNCT:/WRITES BACK/
=> (REPLACE BACK (CDR (RPLACD BACK {CONS (CONS BACK X)(CDR BACK))))).

CZ4 D LIST DL, *0P1 FUNCT:/DELETES FRONT/
=> (COND ((NULL (CDR FRONT))(RPLACA (CAR URD) D)) (T (RPLACA (CADR FRONT) D)})
(REPLACE FRONT (CDR FRONT)).

C26 D LIST DL, #OP1 FUNCT:/DELETES BACK/
=> (REPLACE BACK (CAAR BACK)) (COND ({EQ URD D)(REPLACD BACK))
(T (RPLACD BACK D))).

Compile-rule CO3 constructs a schema for implementing operations that count recursively
from the back end:

03 D LIST DL, LET *ACTION BE 'READS DELETES WRITES!,LET #POSITION BE IFRONT BACKI
LET #40DE INONE OVER!, NOT #OP1 =ACTION *POSITION, NOT #0P1 #ACTION REFTO =N,
*0P1 COUNTS BACK IF *COND3, <1 #0P1 *ACTION sMODE IF +COND2> ,
#COND1 IMPLIES (NOT #COND2) , <1 #CONDZ IMPLIES (NOT *COND3)>, «OP1 FUNCT:/FORM
=> (COND UNDETERMINED (#COND1 «ACTION BACK) <l (*COND2 =ACTION #MODE BACK)>
(T_(APPLY* »0P1 BACK PARAMS))).

le: Two-way list. An algebraic specification of a two-way list is:
DATATYPE: TWOWAYLIST D; COMPONENTSORT X; OTHER SORTS: A = NAT;(NAT=nat'l mumbers)
OPERATIONS: ADD1: D X - D, ADD2: D X - D, REMOVEl: D + D, REMOVEZ 0D,
READ1: D A ~ X, READ2: D A + X;
AXIOMS: (ADD1 D@ x) = (ADD2 DP X), (REMOVEl DP) = UNDEF, (REMOVE2 DP) = UNDEF,
(ADD1 (ADD2 D2 X2) X) = (ADD2 (ADDI D2 X) X2),
(REHOVEI {ADD2 D2 X2)) = D2 IF (EQ D2 D)
(ADD2 (REMOVEl D2) X2) IF (NOT (EQ D2 DP
(REMOVE2 {ADD2 D2 X2)) = 02 (READI D@ A) = UNDEF, (READ2 D@ A) =

9)),
UNDEF,
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(READL (ADD2 D2 X2) A) = X2 IF (AND (EQ D2 DB) (EQ A 1)),

(READ1 D2 A) IF (AND {NOT (EQ D2 D))(EQ A 1

(RE?DI éREPOVEl (ADD2 D2 X2))(SUB1 A;xF(nur(so A 1))
X2

(READZ(DZ (SUBI A)) IF (NOT (EQ A 1));

This specification is compiled to the following LISP-code:
<DEFINEQ <TWOWAYLIST
<NLAMBDA (OP DLIST) (SETQ DLIST (EVLIS DLIST))
(PROG ({URD (CAR DLIST)})
(RETURN (NEVALA (APPLY OP) DLIST) TWOWAYLIST>>

(READ2 {ADD2 D2 X2) A)

Bowouowoa

>
(SETQQ TWOWAYLIST
(<READI LAMBDA (D A)
{COND ({EQ (CAR (CAR D)) URD) (RETURN *UNDEF))
<(EQ A 1) (COR {CAR (CAR (CAR D>
(T (APPLYs READI {CAR (CAR D)) SUBL A>
<READ2 LAMBDA (D A)
(COND ((NULL (COR D)) {RETURN *UNDEF))
<(EQ A 1) (CDR (CAR (CDR D>
(T (APPLYx READZ )COR D)(SUB1 A>
(REMOVEZ LAMBDA (D)
<COND ({NULL (COR D)) (RETURN 'UNDEF))
(T (COND ((NULL {COR (COR D))) (RPLACA (CAR URD) D))
T (RPLACA (CADR (CDR D)) D)))
(RPLACD D (COR (COR D> D)
(REMOVEL LAMBDA (D)
(COND ((NULL (CDR D)) (RETURN 'UNDEF))
(T <RPLACA (CAR D) (CAAR (CAR {CAR D>
(COND <{EQ URD D) (RPLACD (CAR (CAR D>
(T (RPLACD (CAR (CA2 D)) D))) D)) D
(ADD1 LAMBDA

h)
<RPLACA((CA& D) (COR (RPLACD (CAR (CAR D))
(CONS (CONS (CAR (CAR D)) X){COR (CAR(CAR D>D D)
(ADDZ LAMBDA (D X)

(RPLACD D (CONS (CONS D X) {COR D))
<COND ({NULL {COR (CDR D)}) (RPLACA (CAR URD)(CDR 0)))
(T (RPLACA (CADR (CDR D)) (COR D> D D
(DD NLAMBDA (FRONT) (SETQ FRONT (CONS (CONS)))(RPLACA (CAR FRONT)FRONT)FRONT))).

3,2, Association Lists. If components of a data type D are accessed via an index sort,
then D-objects are represented as association 1ists. This decision is made by rules of
the +- and =-phase. As an example, we show how ADTCOMP implements the flexible record
abstraction.

Example: Flexrecord. In our specification, a predefined operation LEGAL? checks whether
an object of the componentsort X may be entered into a record under a particular index.

DATATYPE: FLEXRECORD D; COMPONENTSORT: X; OTHER SORTS: I = NAT, B = BOOL;
OPERATIONS: ASSIGN: D I X » D, DROP: DI > D, READ: D I » X;
GIVEN OPERATION: LEGAL?: I X+ 8;
AXIOMS: (READ D@ I) =
X2 IF (EQ I I2)

UNDEF,
(READ (ASSIGN D2 12 XZ) 1)
READ D2 I) IF (NOT (EQ I I2)),
(ASSIGN(ASSIGN D2 12 X2) I X) = (ASSIGN D2 I X) IF (AND (EQ I I2)(LEGAL? I X)),
= UNDEF IF (NOT (LEGAL? I X),
(ASSIGN DP I X) = UNDEF IF (NOT (LEGAL? I X}),

P DB I) = UNDEF,
(DROP (ASSIGN D2 12 X2) 1) = D2 IF (EQ I 12},
= (ASSIGN (DROP D2'1) 12 X2) IF (NOT (EQ I 12));

This specification is implemented by ADTCOMP in this way:

<DEFINEQ  <FLEXRECORD
<NLAMBDA (OP DLIST) (SETQ DLIST (EVLIS DLIST))
(PROG ({URD (CAR DLIST)))
(RETURN (NEVALA (APPLY (EVAL OP) DLIST) FLEXRECORD>>

N

>
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<SETQQ FLEXRECORD
(<READ LAMBDA (D I)
{COND ((NULL (COR D)) (RETURN ‘UKDEF))
<(EQ T (CAAR (CER D))) (COR (CAR (COR D>
(T (APPLY= READ (CDR D) I»
(DROP LAMBDA (D 1)
(COND ((NULL (CDR D)} (RETURN 'UNDEF))
<(EQ I (CAAR (CDR D))) (RPLACD D (CDR (CDR D>
(T (APPLY= DROP (COR D) I))) D)
(ASSIGN LAMBOA (D 1 X)
(COND ({NOT (LEGAL? I X)) (RETURN 'UNDEF))
<(NULL (CDR D)) (RPLACD D (CONS (CONS I X»
((AND (EQ A {CAAR (CDR D))) (LEGAL? T X))
(RPLACD (CAR (COR D
(T (APPLY» ASSIGN (CDR D) I x))) D)
(D@ NLAMBDA NIL (CONS)»T

3.3. Binary Trees. An ADT-specification is implemented in terms of trees if "there are
n-fold continuable operations (see 2.2.2) with n22. We consider n=2, i.e. binary tree
representations.

R-rule R30 generates code for the empty binary tree:

]R30. D BINTREE = D@ FUNCT {NLAMBDA () (CONS)).T
CD4 sets up the structure of tree-operations to be expanded subsequently:

C04. D BINTREE, LET »ACTION BE IREADS DELETES WRITES!,
LET =MODE BE INONE ACROSS FROM!, <1 #0P1 UNDEFINED IF =*Bl>,
<2 #0P1 *ACTION IF %B2>, <3 #0P1 #ACTION =MODE IF #B3>,
«0P1 CHOPS P1 IF B4, =0P1 CHOPS P2 IF #8S,
<1 <2 #B1 IMPLIES (NOT #B2)>>, <1 <3 B3 IMPLIES (NOT #83)>>,
<1 «B1 IMPLIES (NOT *B4)>, <1 «B1 IMPLIES (NOT %B5)>,
<2 <3 «B2 IMPLIES (NOT #B3p>, <2 #B2 IMPLIES (NOT B4)>,
<2 «B2 IMPLIES (NOT #BS)>, <3 =B3 IMPLIES (NOT =B4)>, <3 #B3 IMPLIES (NOT =BS5S}
#B4 IMPLIES (NOT #B5), #0P1 FUNCT:/FORM/

> (COND <1 (=B1 (RETURN (QUOTE UNDEF)))>
<2 (B2 =ACTION FRONT)>
<3 (#B3 #ACTION «MODE FRONT)>
(84 (APPLYx #0P1 (CAR FRONT) PARAMS))
(T _(APPLY» #0P1 FRONT PARAMS))).
Hote Nodes in trees are accessed via prefix-closed strings. An operation that
"works through a tree" proceeds from node to node by CHOPping off a character from
the access-string. Such an operation has the property CHOPS.

Ezxample. As an example, we present the implementation of the usual binary tree specifi-
cation which contains a doubly continuable hidden operation.

DATATYPE: BINTREE D; COMPONENTSORT X; OTHER SORTS: A = STRING(NAT);
OPERATIONS: INSERT: D A X - D, DELETE: D A » D, READ: D A-X;
AUXOPERATION: CONS: D D X +D;
AXIOMS: (INSERT D A X) = (CONS D@ DP X) IF (EQ (FIRST A) 9),
= UNDEF IF (NOT (EQ (FIRST A) 2)),
(INSERT (CONS D12 D22 X2) A X)
(CONS D12 D22 X) 1IF (EQ (FIRST A) 9),
(CONS (INSERT D12 (REST A) X) D22 X2) IF (EQ (FIRST A) 1),
(CONS nlz ([NSERT D22 (REST A) X} IF (EQ (FIRST A) 2),
(DELETE DB A) = UNDEF,
(DELETE {CONS 012 022°X2) A)

"o

DB IF (EQ (FIRST A) 9),
(CONS (DELETE D12 (REST A)) D22 X2)

IF (EQ (FIRST A) 1),
(CONS D12 (DELETE D22 (REST A)) X2)

IF (EQ (FIRST A} 2),

(READ DB A) = UNDEF,
(READ (CONS D12 D22 X2) A) = X2 IF (EQ (FIRST A) )
(READ D12 (REST A))  IF (EQ (FIRST A) 1),

(READ D22 (REST A)} IF (EQ (FIRST A} 2);
Note. FIRST, REST are string operations.
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From this specification, ADTCOMP generates the following LISP-code:

<DEFINEQ  <BINTREE
<NLAMBDA (OP DLIST) (SETQ DLIST (EVLIS DLIST))
(PROG ((URD {CAR DLIST)))
N {RETURN (NEVALA (APPLY (EVAL OP) DLIST) BINTREEs>>
2SETQQ BINTREE
(<READ LAMBDA (D A)
(COND ({NULL (COR D)) (RETURN 'UNDEF))
<(EQ (FIRST A} B) (CAR (CAR (CDR D>
((EQ (FIRST A) 1) (APPLY» READ (CAR (CDR D)) (REST A}))
(T (APPLY* READ (COR D) (REST A>
{DELETE LAMBDA (D A)
(COND ((NULL (COR D)) (RETURN ‘UNDEF))
({£9 (FIRST A} §) (RPLACD D))
((EQ (FIRST A) 1) (APPLY= DELETE (CAR (COR D)) (REST A)))
(T APPLY+ DELETE (CDR D) (REST A) D) .
(INSERT LAMBDA (D A X)
(COND ({AND (NULL (CDR D)) (NOT (EQ (FIRST A) 8))) (RETURN 'UNDEF))
<(AND (NULL {CDR D)) (EQ (FIRST A) §)) (RPLACD D (CONS (CONS X>
({EQ (FIRST A) §) (RPLACA (CAR (CDR D)) X) D)
((EQ (FIRST A) 1) (APPLY+ INSERT (CAR {CDR D)) (REST A) X))
(T (APPLYx INSERT (COR D) (REST A) X))) D)
(DB NLAMBOA NIL (CONS>

4. Final Remarks and Conclusions

4.1. Interactive System Development and Theory Formation. The development of ADTCOMP has
been evolutionary, driven by considering more and more examples, and feeding the program-
ming knowledge necessary to implement the examples into the production bases. To support
codifying and incorporating programming knowledge, ADTCOMP has an extensive interactive
user interface. This interface helps a user to find out why ADTCOMP failed, coding new
rules and experimenting with them, and finally changing meta-rules and the production
control unit after inserting new rules into the production bases. The userinterface

is extremely important for wupgrading the production bases: whenever a new portion of
programming knowledge has been fed to ADTCOMP, it is usually in order to condense rules
into fewer and more general rules. Rule condemsation actually contributes to the
formation of a theory of programming, and we expect such a theory to eventually evolve
from our investigation. ’

4.2, Accomplishments. Previous systems start at a much more concrete level of data
structures such as sets, collections, etc., and implement them at the somewhat more
"concrete” level of lists, arrays, etc. ADTCOMP generates code from representation-free
axiomatizations of all structures previous systems could implement, and in addition
succeeded for about 60 other axiomatizations. ADTCOMP generates clusters of routines
which may be mutually recursive. Previous systems could not introduce recursions.

4.3. Automatic Progr ing Envi: t. ADTCOMP is part of the automatic programming
environment PEN currently under development. In PEN, a user specifies structures in terms
of equations about the behavior of data objects under operations intended to manipulate
them. The system analyses such specifications, and guides the user to make them consistent
and complete. The user then develops algorithms in terms of self-defined or library-
supplied data abstractions, obtaining abstract algorithms to be compiled into efficient
and machine-executable code by ADTCOMP.

4.4, Current Work. ADTCOMP is currently being extended in three directions:
{1) Generating code in other target languages; (2) an extension to generate code from
parameterized ADT-specifications; (3) compiling abstract algorithms.
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ABSTRACT

This paper describes the design philosophy underlying a debug-
ging assistant which will help novice programmers debug arbi-
trary programs of their own design. The assistant synthesizes
plans which are suitable for carrying out a particular set of
intentions. The intentions may either be specified in advance
(by us), or obtained from the student at debugging-time. The
plans are represented in an abstract plan-lanquage, and are
compared agjainst a similar representation of the student's own
code in an attempt to find anomalies. The system focusses
mainly on teleological bugs (unachieved intentions), but can
also help to pinpoint the source of more compiex conceptual
bugs, even though it cannot recommended specific patches.

1. INTRODUCTION AND OVERVIEW

This paper describes work currently in progress on the design and im-
plementation of a 'debugging assisant' for psychology students learning
about artificial intelligence. The approach is novel in that it combines
three aspects of software design: {(a) friendly user-aids of the 'do-what-
I-mean' variety [Teitelman, 1974; Wertz, 19781; (b) expert debuqgers which
know the algorithm for which the student is writing code [Ruth, 1974; Adam
and Laurent, 1977]; (c) domain-independent program understanders which try
to 'make sense' of programs on the student's own terms [Rich and Shrobe,
1978; Lukey, 1978]. The debugqing assistant will be described in terms of
the way we envisaje it working, but it has not yet been implemented.

Background

A course on cognitive psychology at the Open University (UK) requires
each of its 400 students to do some elementary artificial intelligence
programming. The students are given access to a software environment
called SOLO, which can be thought of as a variant of LOGO), with a small
number of primitives for manipulating semantic networks rather than 1ists.
SOLO procedures work by side-effecting a data base of assertions, which
all have the form of associative triples. Thus, SOLO's primitives
correspond to the usual ASSERT, ERASE, and FETCH of assertional data base
packages. As an illustration, the simple SOLO program shown below, when
invoked by typing FRIEMDTEST FRED, will assert the triple (FRED ISFRIEND-
LYWITH SAM) if and only if the triple (FRED DRINKSWITH SAM) is present in
the data base. The variable Y, below, would be bound to SAM as a result
of the pattern-match at step 1:
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TO FRIENDTEST /X/

1 CHECK /X/---DRINKSWITH---> 2Y

1A If present: MOTE /X/---ISFRIENDLYWITH---> *Y; EXIT
1B If absent: PRINT "I GIVE UP"; EXIT

DONE

Students are presented with a handful of cognitive modelling tasks to
challenge their skills as cognitive scientists. For instance, they are
asked to write a program to perform two-column subtraction. Since SOLO
has no numerical primitives, the students must invent a representation for
numbers in the data base, invent all of the primitive operations for work-
ing with pairs of numbers (e.q. fetching the result of X MINUS Y), and
then tackle the problems of borrowing which arise in multi-column subtrac-
tion. .

Design philosophy

SOLO itself is a relatively friendly environment for beginners, since
it traps or pre-empts a large proportion of lexical and syntactic errors.
Our philosophy is that students should spend their time working only on
'interesting' errors in their programs. We foresee students explicitly
requesting help when they are in trouble. Our debugging assistant would
intervene, and interact with the student. The purpose of the interaction
would be to determine what the student was trying to achieve, and to help
to isolate the culprit.

The debugqging assistant is organized into four main modules: an
intent-specifier, an instantiator, a coder, and a translator. The job of
the intent-specifier is to depict the overall aim of the code which a stu-
dent is trying to debug. This aim is typically expressed in terms of
changes to a global data base. The intent-specifier has access to a plan
library , which includes a repertoire of low-level plans for achieving
particular ends, and higher-level plans which specify certain intentions
known to be relevant to problems which our students will be working on.
If we know precisely the problem the student is working on, then we can
supply the intent-specifier with useful domain-dependent knowledge (e.q.
knowl edge about subtraction). If we don't know this, then the intentions
must be obtained from the student at debugging-time.

The job of the instantiator is to work out how best to achieve a par-
ticular intention, given the database representation which the student has
chosen to use. The student's data base is analyzed in some detail, and
the instantiator proposes several possible plans for carrying out the in-
tentions handed down by the intent-specifier.

The coder takes the output of the instantiator, and uses knowledge of
SOLO to produce. a -formal plan suitable for execution by a SOLO virtual
machine {expressed in terms of the conceptual FETCH and ASSERT primitives,
rather than in actual SOLO syntax). This plan is expressed in a plan-
language very similar to that developed by Rich and Shrobe [1976]. The
plan-language itself uses a KRL-1ike notation [Bobrow and Winograd, 1978].

The translator works in the other direction, taking actual SOLO code
produced by a student, and translating it into the plan-language. This
enables the student's code to be compared directly with the abstract plan,
allowing minor perturbations to be ignored. Mismatches between the

'j%ea]‘ and the 'actual' plan are then articulated for the student's bene-
it.
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2. PLANS AMO INTENTIONS

Plan diagrams

A language-independent graphical notation for describing control and
data flow was first used by Rich and Shrobe [1978] to describe LISP and
FORTRAN programs. Our SOLO debugging assistant translates student pro-
grams into a list structure version of that diagram lanquage. The diagram
below depicts our debugging assistant's representation of the FRIENDTEST
procedure described in section 1. Control flow is indicated by cross-
hatched arrows, while data flow is shown by plain arrows:

L

FRIENDTEST  /X/

constants
DRINKSWITH ISFRIENDLYWITH
¥

CHECK=-23  /X/ DRINKSWITH 7Y

oresent ]absent

xy
%‘"’& Z A

NOTE-34 /X/ ISFRIENDLYWITH *Y]‘ PRINT=12 ", "

=

J0IN-6 I

i

Each box above depicts what is known as a 'seqment'-- these are modules
which have behavioral descriptions which specify both their effects and
any sub-segments which are responsible for producing those effects. These
behavioral descriptions are specified in our plan-lanquage notation, a
portion of which is illustrated below:

friendtest =

[a segment with
name: friendtest
steps: (check-23 note-34 join-5 print-12)
indata: (x)
boundvars: (y)
constants: (drinkswith isfriendlywith)
entrystep: check-23
exitstep: join-6]

check-23 =
{a check-unbound with
indata: (a triple with [source: x] [rel: drinkswith] [target: 2y])
occursin: friendtest
effect:
{cases
[present (x drinkswith ?) => successor: note-34]
[absent (x drinkswith ?) => successor: print-121)]
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This KRL-1ike notation is used to describe user programs as well as
library plans of common modules. From this notation the debugging assis-
tant derives the effect of a procedure, considering the effect of each
step which is part of the procedure.

The semantics of primitive SOLO-steps is represented in a similar
fashion, e.qg.:

check-call = [ a SOLO-primitive-call with
name: check
predecessor: {a step) {not (a check-call))]

check-unbound = [ a check-call with
indata: (a triple with .
source: {One-of (One-of [my occursin's constants])
(One-of [my occursin's parlist])
(One-of [my predecessor's boundvars]))
rel: ...
target: ...)
3 each argument is either a constant or a parameter
; of the embedding procedure, or dynamically bound
; at Teast at the preceding step
effect: (cases
[ present(my indata) => successor: (a step)]
{absent (my indata) => successor: {a step)])]

One kind of check-call 1is a check-unbound. The description above
tells how to recognize it, and what effect it has. Each occurrence of
CHECK in a SOLO program is an instance of one type of check-call. Some
bugs can be detected already, if a primitive-call does not match its sche-
ma, e.g. if CHECK had been called with a parameter not occurring in this
procedure.

A library of domain-independent plans

Frequently used sequences of steps are described as abstract schemata
and stored in a plan library. An instance of a 1ibrary plan can be recog-
nized in a particular user program by comparing the effect descriptions.
This is independent of the way a user has broken up the plan into segments
or has specialized it by using constants in place of variables.

An example of a domain-independent plan is 'assigmment' which has the
effect:

(make (The target from (a triple with [source: x] [ret: pl))
(The target from (a triple with [source: y] [rel: ql)))

where the 'source', 'rel', and 'target' of a triple refer respectively to
the first, second, and third elements of an associative data base struc-
ture such as {FRED DRINKSWITH SAM).

There are several possible SOLO programs which all have this effect.
Some are specializations which arise through substitution of the plan-
variables (x, y, p, q) by constants or bound variables.

The effect of a segment can be symbolically derived from the effects
of its parts. This may reveal to the SOLO-specialist the existence of some
bug if the segment has no or only error effects, As an example, consider a
procedure from an actual buggy user program in the subtraction domain.
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TO DECREMENT /TENS/
1 CHECK /TENS/---PRIOR---> 7P
1A If present: FORGET TOPTEN---1S---> *P; CONTINUE

1B If absent: CONTINUE
2 MNOTE TOPTEN---1S---> *P
DONE

This procedure looks up the 'predecessor' of some number in the data
base, If found, it is bound to the variable P. DECREMENT then erases the
triple (TOPTEN IS *P) from the data base at step 1A, only to re-assert it
again at step 2. In other words, it has no actual effect if the 'prede-
cessor' is found. Even worse, if the predecessor is not found, the pro-
cedure carries on to step 2 anyway (via step 18) only to find that P is
now unbound.

The fiqgure below depicts the plan-diagram representation of this pro-
cedure:

/TENS/

DECREMENT

MIRTE R

'm|nﬁh]nnln

constants
PRIOR TOPTEN IS

PIeTY

]
CHECK-24 JTENS/ PRIOR 2P

present [ absent
Z T

TOPTEN IS5 *P

J01N-7F I

NOTE-8 TOPTEN 15 *pl

The effect of this seqment found by symbolic evaluation is:

x

FORGET~13

(cases [present (/TENS/ PRIOR 2>p) =>
(cases [present (TOPTEN IS 2=p) => nop]
{t => error])]
[t => error])

Thus, there is either no effect at best ('nop'), or an error at
worst, and the inevitability of this can be pointed out to the student.
From the plan diagram for an entire program, symbolic evaluation can re-
veal inconsistencies between a segment's actual effect and its intended

effect.
In this example, the intended effect can be obtained from the student

interactively. This is done by first asking the student to specify a typ-
ical invocation of the troublesome procedure:
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PLEASE ILLUSTRATE A TYPICAL USAGE OF DECREMENT, E.G.
DECREMENT FOO
WHEN YOU SEE THE '>>' PROMPT BELOW:

>>DECREMENT 7
Then the student is asked to specify the expected effect in SOLO notation:

WHAT TRIPLES (IF AMNY) WOULD YOU EXPECT TO BE NOTED INTO THE
DATABASE BY DECREMENT?

>>TOPTEN~--1S---6
Step NOTE-8 in the user's program does in fact match the expec&ed effect:
(make (The target from (a triple with [source: TOPTEN] [rel: IS])) 6)
The first step (CHECK-24) retrieves p=6 as
(The target from (a triple with [source: /TENS/] [rel: PRIOR]))

If the triple (7 PRIOR 6) is present in the student's data base (as it
should be), the standard assigrnment plan can be instantiated with
x=TOPTEN, y=/TENS/, p=IS, 9= PRIOR, and used to supply the missing step.

Several of the programming schemata that Shrobe et.al. [1979] identi-
fied in the analysis of Lisp programs have also been found in beginner's
SOLO programs. Some others, particular to programming with associative
nets (e.g. testing for a common target from two source nodes) also have
to be included in the plan library.

3. ANALYZING A PLAN FOR SUBTRACTION

A sample task

One sub-task required of students working on multi-column subtraction
is to write a procedure DIFFERENCE, which finds the difference of two in-
tegers X and Y, each in the range 0-9, provided that X is greater than or
equal to Y. The actual code turns out to be self-evident, once the stu-
dent has decided upon a data regresentat1o One so]ut1on arrived at by
some of our students is to use SOLO'S re]atlonal network to construct sub-
traction tables. This representation constrains the code which the stu-
dent must generate to solve this sub-task, as illustrated by the sample
database and procedure shown below:

7 TO DIFFERENCE /X/ /Y/

R PR 1 CHECK /X/-=-/Y/-=->2D

feenleandb 1A If present: NOTE ANSWER---IS---> *D; EXIT
'een2---25 1B If absent: PRINT "I GIVE UP"; EXIT

---etc.--->etc. DONE
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Some students realize that using numbers as relation names can be
rather Timiting in the Tond run, because they may want to start writing
procedures Lo do addition. In this case, they need a way to discriminate
between addition and subtraction tables. One solution is to use nodes
such as '7SUBTABLE' and '7ADDTABLE' as follows:

7SUBTABLE TADDTABLE
I Iy L WY
teeeland6 LS PN
[P SY faem2---39

~-=-etc.--->etc. ---etc.-~-Detc.
The only trick is to get from /X/ {one of the inputs to DIFFERENCE) to the
appropriate table. This can be done with the following representation:

7 6
' -~ -SUBTRACTION--->7SUBTARBLE '---SURTRACTION--->5SUBTABLE
'---ADDITION--->7ADDTABLE '~--ADDITION--->6ADDTABLE

etc.

Since an extra 1link must be traversed to get from a node (e.q. '7') to the
appropriate table (e.g. '7SUBTABLE')}, we will call this representation an
'indirect table', in contrast to the 'direct table' representation
presented first. There are several other possible representations, but we
will just focus on these two. The 'indirect table' representation, once
chosen, constrains the code which the student must generate to solve the
problem. First the table must be fetched from the input /X/, and then
that table must be used to perform the table lookup. So an additional step
is ncecessary, as shown below:

TO DIFFERENCE /X/ /Y/
1 CHECK /X/---SUBTRACTION---> 2T
1A If present: COMNTINUE
18 If absent: PRINT "UH OH"; EXIT
2 CHECK *T---/Y/---> 2D
2A If present: NOTE ANSWER---IS---> #*D; EXIT
2B If absent: PRINT "MAYBE" /Y/ "IS BIGGFR THAN" /X/; EXIT
DONE

The new step 1 fetches the indirect table, which is used at step 2 as the
'base’ from which an indexed retrieval of the difference D is performed.
The important point here is the way in which representation and code in-
teract. The code derives its meaning from the interrelations among struc-
tures in the data base. Our instantiator is only given a high-level
intent-specification for DIFFERENCE, which it may choose to instantiate in
one of several ways. It does this by developing a plan which is suitable
for the data representation which has been chosen by the student. This
representation is analyzed using specific knowledge about associative net-
works, as described in the next two sections.
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A formal description of the data base

The concepts of 'direct table' and 'indirect table' have the follow-
ing formal descriptions:

direct-table = [a table with
name: (an integer)
base: (my name) ;base and name are coreferential
content: (an alist with
typical-pair: [left: (an integer)
.right: (an integer)])
variety: (one-of add sub mult)
constraint: apply [(my variety)
[ {my base)
(The Teft from
(any (pair = p) of (my content)))}]]
= (The right from p) ]

indirect-table = [a table with
name: (The target from (a tabTeptr with source: (my base)))
base: (an inteqger)
(The source from (a tableptr with target: (my name)))
content:
variety: as in direct-table
constraint:

Using the direct and indirect subtraction tables for the number 7
shown earlier, we may interpret these descriptions as follows: a direct
table has a number base which happens to be the same as its own name ('7',
in this example). The direct table consists of an association list, which
is just pairs of integers. A constraint which must be fulfilled is that
if we apply a function (e.q. 'sub' or ‘add') to two arquments-- the base
(e.g. '7') and the left element of some pair (e.g. '2')-- then the result
should be equal to the right element of that pair (e.q. '5', since
SUB(7,2)=5). The interpretation of indirect-table is almost identical,
with once crucial exception-- the relationship between its ‘name' and
'base’ slots. The name is some item which is specified by saying that it
is the target (i.e. the thing pointed to) from some particular tableptr
(defined below) whose source is the integer base ('7', in this example).
A tableptr is an instance of a triple which relates an integer to a table.
Thus, the relational structure {7 SUBTRACTION 7SUBTABLEY is an instance of

a tableptr.

Instantiating an appropriate plan

In analyzing the student's data base each subclass of table is hy-
pothesized in turn as a possible data representation, and confirmation of
these hypotheses is then sought. Suppose that in this example, our student
is in fact wusing an indirect-table representation. The instantiator
focusses on the 'content' slot of a data base object whenever possible.
Confirmation is initially sought by looking for nodes containing pairs of
integers dangling from them. Such nodes are indeed found, and examination
of the other slots eventually leads to a disconfirmation of the 'direct-
table' hypothesis and a confirmation of the 'indirect-table' hypothesis.
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Mext, the instantiator examines the representation of DIFFERENCE,
which primarily depicts its intentions. It is the job of the instantiator
to generate a particular manifestation of the detailed plan, based upon an
analysis of the data representation the student has already chosen. If
our student used indirect-tables, the instantiator would generate an
idealized plan which used the indirect style of fetching exhibited by the
SOLO DIFFERENCE procedure shown earlier.

The intent-specification of a difference-plan is shown below:

difference = [a plan with
inputl: (an integer) = X
input2: (an integer) =Y
output: (The (access-of Y) from
(a table with
variety: sub
base: X))]

The expression (access-of Y) means that simple slot-retrieval is not pos-
sible, but instead there is some procedure attached to the ‘access-of'
slot of the table which will specify how to perform the retrieval. For
direct and indirect tables the 'access-of' method attached to their sche-
mata is:

access-of i => (The right from
(The pair from
((my content) with left: i)))

To illustrate the use of this method, suppose the direct-table
representation for '7' includes the pair (2 5). If we want to access some
element indexed by '2', then we do that by retrieving the right half of
the pair whose left half is '2'. In this case, the pair (2 5) has a right
half '5', so if we sent the message 'access-of 2' to the instance of
direct-table whose name was '7', the result would be '5'.

From this method the SOLO coder first constructs a description of the
intended effect of accessing each type of table. For a direct table the
intended effect is:

(The target from
(a triple with source: X rel: Y))

For an indirect table the intended effect is:

' outer form'

(The target from

(a triple with ' inger farm!
source: |(The tarqget from |
(a_tableptr with source: X))

rel: Y))

The SOLO coder knows that an instance of fetch will handle the 'outer
form' shown in the rectangle above, so when it processes the intended ef-
fect of an indirect-table, it produces the following virtual machine
specification:

F1 = [a fetch with
inputl: (The target from (a tableptr with source: X)) =T
input2: Y
output: (a node) = A ]
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The 'inner form' is processed analagously, leading to the following virtu-
al machine specification:

F2 = [a fetch with
inputl: X
input2: SUBTRACTION
output: (a node) = T ]

The SOLO coder knows that the final output from a plan can be expressed
either with a print or a data base 'assert' operation, so one possible fi-
nal representation for the idealized plan includes, in its 'effect' slot,
the following:

The effect from
(an assert with
argl: (a constant)
arg2: (a constant)
arg3: (The output from (a fetch with
inputl: (The output from (a fetch with
inputl: X
input2: SUBTRACTION))
input2: Y)))

The translator can map the student's program into a comparable nota-
tion. Mismatches between the student's program and the idealized program
are then dealt with in the same way as those for the DECREMENT example
presented in section 2.

4. DEBUGGING MULTI-COLUMM SUBTRACTION PROGRAMS

The techniques of plan-instantiation described above can be applied
equally well to more complex problems, such as multi-column subtraction.
In this case, the intent specification is depicted as a segment consisting
of about 15 subsegments, representing intermediate plans such as
' FINDCOLUMN' , 'PROCESSCOLUMN', 'BORROW', 'DIFFERENCE' etc. As in the sim-
ple 'DIFFERENCE' example discussed above, the students may implement one
of several possible algorithms. Fortunately, each solutijon s tied to a
particular data base representation. Thus, just as the instantiation of
an ideal 'DIFFERENCE' plan was dictated by the student's chosen data
structures, so is the instantiation of an ideal 'BORROW' plan dictated by
data structures already present when the student asks for help.

The debugging assistant views particular segments not oniy as in-
stances of domain-independent plans (such as the 'assignment' plan), but
also as instances of domain-dependent plans (such as the 'processcolumn'
plan). The data flowing in and out of segments inherit properties from
the more abstract plan description. One benefit of attaching semantic
descriptions to the data flow is the ability to detect type errors. Anoth-
er benefit is that it enables recognition of the user-intended effect of
other modules.

In case the student is working on a subproblem for which the intent-
specification is unknown, the debugging assistant tries to obtain such a
specification, in SOLO notation, through a dialogue with the student.
Typically, this can only be done for a single sub-procedure at a time.
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Once the intentions are known, the debugging assistant can then gen-
erate a refutation, by symbolic evaluation of the plan description, which
shows why the sub-procedure is destined to fail. If the intent-
specification has been supplied by us in advance, then it is also possible
for the debugging assistant to qenerate counterexamples which illustrate
the procedure working improperly.

In case there are seqments missing from an otherwise correct program,
or items are accidentally left out of the data-base, the assistant could
give a counterexample in which the student's solution fails to consider
this case. For instance, the student may not have included cases for x - x

=0 orx~-0=xin his tab]es, and be asked to augment DIFFERENCE to in-
clude these cases or change his tables accordingly.

So far we have been talking about teleological bugs TModel, 1979].
These are bugs where the intentions are known (residing in the plan 1i-
brary or being obtained from the student at debugging time), but the code
fails to fulfill the intention. A far more difficult class of bugs are
‘conceptual’ bugs, where the intentions themselves are improperly con-
ceived. Qur debugging assistant, through the use of an annotated back-
trace, can help the student to see where things have gone wrong. Perform-
ing actual reasoning about these wrongly-specified intentions is still
well beyond the scope of our project, but we see this as an exciting and
important area for future research.
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Abstract: The current state of a Theorem Proving System (The Markgraf Karl

Refutation Procedure) at the Untversity of Karlsruhe is presented. The goal
of this project can be summarized by the following three claims: it 18 pos=—
stble to program a theorem prover (TP) and augment it by appropriate heu-

ristics and domain-gpecific knowledge such that

{Z) it will display an 'active' and directed behaviour in its striving
for a proof, rather than the 'passive' combinatorial search through
very large seavch spaces, which was the characteristic behaviour of
the TPs of the past. Comsequently

(i2) it will not generate a search space of many thousands of irrelevant
clauses, but will find a proof with comparatively few redundant de-
rivation steps.

(741) Such a TP will establish an unprecedented leap in performance over
previous TPs expressed in terms of the difficulty of the theorems
it ean prove. :

The resulis obtained thus far corroborate the first two claims.

O. INTRODUCTION

The working hypothesis of this TP project [Ds77, DS79), first formula-
ted in an early proposal in 1975, reflects the then dominating themes of
artificial intelligence research, namely that TPs have attained a certain
level of performance, which will not be significantly improved by:

(i) developing more and more intricate refinement strategies (like unit
preference, linear resolution, TOSS, MTOSS, ...), whose sole purpose
is to reduce the search space, nor by

(ii) using different logics (like natural deduction logics, sequence logics,
matrix reduction methods etc)
although this was the main focus of theorem proving research in the past.

The relative weakness of current TP-gystems as compared to human performance
is due to a large extent to their lack of the rich mathematical and extrama-
thematical knowledge that human mathematicians have: in particular, knowledge
about the subject and knowledge of how to find proofs in that subject.

Hence the object of this project is to make this knowledge explicit for the

case of automata theory, to find appropriate representations for this know-

ledge and to find ways of using it. As a testcase and for the final evalua-

tion of the projects success or failure, the theorems of a standard mathema-
tical textbook [DE71] shall be proved mechanically.
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In the first section of this paper we give a general overview of the system
as it is designed, albeit not completed. The second section concentrates on
those parts of the system, whose implementation is finished and evaluated.
In the third section experimental results are given and the final two sec-
tions present an evaluation based on the present findings.

1. OVERVIEW OF THE SYSTEM
A Bird's-eye View

Proving a theorem has two distinct aspects: the creative aspect of how to
find a proof, usually regarded as a problem of psychology, and secondly the
logical aspect as to what constitutes a proof and how to write it down on a
sheet of paper, usually referred to as proof theory.

These two aspects are in practice not as totally separated as this statement

suggests (see eg. [S269]), however we found it sufficiently important to let
it dominate the overall design of the system:

15;;____ Supervisor
Data

Bank

Logic Engine
Figure 1

The Supervisor consists of several independent modules and has the complex
task of generating an overall proposal (or several such) as to how the given
theorem may best be proved, invoking the necessary knowledge that may be help-
ful in the course of the search for a proof and finally transforming both pro-
posal and knowledge into technical information sufficient to guide the Logic
Engine through the search space.

The Logic Engine is at heart a traditional theorem prover based on Kowalski's
connection graph proof procedure [K075], augmented by several components that
account for its strength.

The Data Bank consists of the factual knowledge of the particular mathematical
field under investigation, i.e. the definitions, axioms, previously proved
theorems and lemmata, augmented as far as possible by local knowledge about
their potential use.

A View from a Lesser Altitude

The diagram of figure 2 sufficiently refines figure 1 to gain a feeling for
the overall working of the system:

Supervisor

interac~ |Proposal{ Technical Tnduc— other
tive fa- |Genera- |Assistant general

ROV ti X
L/’__lh—"/’/bllltles tor lon ltechnics

Data

Logic Engine Bank

= flow of control and information
- flow of information

Figure 2
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The user types in his problem, gives any possible additional information and
advice and then specifies some of the many options open for the final proto-
col of this session. On the basis of this information the Proposal Generator
(PG), which is part of the supervisor, may decide that the theorem is best
proved by a general technique like induction, in which case the Supervisor
loads the induction modules [CW79] and hands over control. Another instance
for the activities of the PG is the following: in the case of the presence of
equality literals, it discovers this fact and causes the set of clauses to

be transformed into a more appropriate set and hands over control to the Pa~
ramodulation Module. The transformation involves the deletion of certain equa-
lity literals (clauses), which are selected for the rewrite-rule-module [rU77],
[1a77], [DS79]; other axioms are deleted since they are taken care of by the
unification module [DS77], whereas certain other axioms are added (e.g. the
functional reflexive axioms) to ensure that the resulting set iz E-unsatis-
fiable iff the previous set was unsatisfiable.

If none of the general techniques apply, the Proposal Generator generates a
proposal (or several such), which contains heuristic information, of how the
theorem may best be proved (e.g. it contains the definitions and lemmata which
may be relevant, it suggests some proof techniques which are likely to be ap-
propriate, it suggests which assertion or subproblem is best proved first, it
tries to generate a top level plan for the proof if possible and finally it
decides which of the permanent heuristics are to be activated).

The proposals are given one at a time to the Technical Assistant (TA), whose
task is to transform this information, which up to this point is intelligible
for a human user, into technical advice and code, which will then govern the
top level behaviour of the Logic Engine and is for that reason passed on to
the Monitor.

The Monitor governs and controls the global behaviour of the Logic Engine: im-
mediately after activation it checks for an easy proof using the terminator
heuristic (see section 2) and only upon failure activates the full machinery
of the Logic Engine. Typical control tasks are detecting constant reapplica-
tions of the same lemma, detecting a circular development in the search space
and keeping track of the 'self resolving' clauses. A good example how the mo-~
nitor governs the top level behaviour is in its prevention of the unsteady be-
haviour which the system showed during earlier experimentation: The selection
heuristics constantly suggest 'interesting' steps to take and forced the sy-
stem to vacillate between different parts of the search space - very unlike
the behaviour of people, who, if put into the same situation, would tackle an
interesting path until they either succeed or become somehow convinced that it
was a blind alley.

Up to this point the decisions and activities of the PG and the TA are to a lar-
ge extent based on the semantics of the theory under investigation and know-
ledge about proofs in this theory and their top-goal may be formulated as: to

be helpful "in finding a proof". Once they have done so, the top-goal becomes

"to derive a contradiction (the empty clause)" and although this goal is of cour-
se identical to the previous one, it implies that different kinds of informa-
tion may be useful: the original information provided by the PG based on the
gemantics (which is by now coded into various parameters, priority values and
activation modules) as well as information based on the syntax (of the connec-
tion graph or the potential resolvent).

It may be objected that this is the main goal of a traditional TP also. While
this is of course true, there is the important difference that a traditional
(resolution based) TP is not directly guided towards this goal in a step by
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step fashion, as no refinement [L078] specifies which literal to resolve
upon next. For example linear resolution reduces the search space as compa-
red to binary resolution, but within the remaining space the search is as
blind as ever.

The PG, the TA and the Monitor are currently under development and not imple-
mented at the time of writing.

2. THE LOGIC ENGINE

The Logic Engine is based on Kowalski's connection graph proof procedure
[x075], which has several advantages over previous resolution based proof pro-
cedures: there is no unsuccessful search for potentially unifiable literals,
every resolution step is done once at most and the deletion of links and sub-
sequently of clauses leads to a remarkable improvement in performance, which
is heavily exploited in the Deletion-Module. Most crucial to our approach how-
ever is the observation that since every link represents a potential resol-~
vent, the selection of a proper sequence of links leads to the alleged active,
goaldirected behaviour of the system.

Input, Output, Simplification and Evaluation

The Znteractive facilities are too numereous to account for here and in-
stead a protocol of a typical session is presented at the conference. An in-
teresting point to note is that the interaction at this level was only de-
signed for the intermediate stages of development, It is now to an increasing
degree taken over by the Supervisor as it develops, with the intention to mo-
ve the interface with the user altogether to the outside and to make the Su-~
pervisor take most of the low level decisions. Two sets of instructions how-
ever are to stay: the IN-Module is used to set up (and to read) the Data Bank
in a way easily intelligible for the user. It also performs a syntactical and
semantical analysis of the Data Bank, which is of considerable practical im-
portance in view of the fact that it eventually contains a whole standard ma-
thematical textbook.

The PO-Module provides several facilities for tracing the behaviour of the sy-
stem at different degrees of abstraction in order to cope with its complexity.

Once the Logic Engine is set into "prove-mode", the (SS-Module converts the
activated part of the Data Bank into Skolemized clausal normal form and per-
forms various splitting and truth functional simplification tasks [BL71]. The
resulting set of clauses is passed on to the CG-Module, which constructs the
connection graph and if possible performs an evaluation of terms, reductions
or algebraic simplifications of terms with the aid of the ERS-Module. After
these activities the Znitial comnection graph is set up and now the search
for a proof within this graph commences.

This search is locally controlled by the Control-Module, which decides which
link to resolve upon next, based on information provided by the Heuristic-Mo-
dule, the Strategy-Module, the Deletion~Module and others. The Control-Module
turns the initial representation of clauses (the connection graph) into a
proof procedure (based on connection graphs) as it defines a particular selec-
tion function, which maps graphs to links. This mapping is complex and based
on information provided by several modules, but for clarity it is entirely
contained in the Control-Module.

We shall now digress from the description of the actual search and first pre-
sent the heuristic selection functions contained in the Heurigtic-Module.
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The Heuristic Selection Functions

In constrast to the global search strategies and global heuristics, the
heuristic selection functions of the Heuristic-Module are based on Local syn—
tactical information about the graph or the resolvent (paramodulant) respec-
tively [S580]. These heuristics were obtained with two types of experiments:
In the first experiment a human testperson is asked to prove a given set of
formulas by resolution without any information on the intended meaning of the
predicate or function symbols. Then the same set is proved by the system and
in case its performance is inferior, the analysis of the deviation (and intro-
spection of the testperson on why a particular step was taken) can give value-
able hints for further heuristics.

In the second type of experiment the system is set to prove a theorem. In the
case of success, an analysis of the protocol, where in the listing of all steps
the steps necessary for the proof are marked, provides a remarkably good source
of ideas for improvement, particularly if the reason why a certain step was
chosen, is also printed in the protocol listing. During the last two years se-
veral hundreds of such listings were analyzed.

Initially we experimented with about twenty different heuristic features, whe-
re each feature attaches a certain value to every link k in Gj. G; is the
present graph, Gj;q is the resulting graph after resolution upon link k and
Res is the resolvent resulting from this step:

(2) Sum of literals in Gy
(12) Sum of clauses in Gyy
(1i) Sum of links in G
(Zv) Average lenght of c%auses in Gi 1
(v) Average sum of links on literals in G;,7
(vi) Sum (resp. average sum) of constant symbols in G,
(viZ) Number of distinet predicate symbon in G;
(viti) Number of distinct variables in G, ;
(ix) Sum of literals of Res
(x) Sum of links of Res
(xZ) Sum of constant symbols in Res
(xi1) Sum of distinet variables in Res
(xii1) Number of distinet predicate symbols in Res
(xiv) Term complexity of Res
(zv) Minimum of links on literals in Res
(xzvi) Complexity of the most general unifier oj attached to link k
(xvit) Age of Res
(xviii) Degree of isolation of Res
(zix) Degree of isolation of the parents of Res.

+1
1+1

The problem is that although each heuristic feature has a certain worth, the
cost of its computation can by far outweigh its potential contribution. Also

it may not be independent of the other heuristic features; for example fea-

tures {xi) and (xii) both measure the "degree of groundness of Res", but in

a different way. Similarily the values for Res and for Gj;i are not indepen-
dent for certain features (e.g. xiii and vii). Also there are the two problems of
finding an appropriate metric for each feature and to decide upon their re-
lative worth in case of conflict with other features.

The information contained in the heuristic features is entered in different
ways: certain facts (e.g. decreasing size of the graph) have absolute priority
and override all other information (see also the merge feature of TT in [DA78]).
Most of the information of the other features is expressed as a real number in
[0,11, where we experimented with several (linear, nonlinear) metrics. This in-
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formation is then entered in a weighted polynomial and the resulting real
number (the priority value) expresses the relaqtive worth of the particular
link and is attached to each link. In case of no overriding information the
Control-Module selects the link with the highest priority value. Still other
information is entered using the "window-technique": among the links whose
priority value is within a certain interval (the 'window'), the Control-Modu-
le choses the one which minimizes some other feature.

In addition to this information based on the syntax of the graph (or the re-
solvent), we are planning to attach semantic and pragmatic knowledge in form
of small CSSA-programs [RA79] to each link.

The system has been designed such that heuristic features can easily be added
and deleted, however after two years of experimentation the system has stabi-
lized with the following solution {stabilized in the sense that neither the
addition of heuristics from the above list nor the use of different metrics
will significantly change the performance of the system on an appropriately
large set of tests):

1. Complextty of the Graph
1.1 FCLSUM = (X of clauses of Gj41) - (£ of clauses of Gj)
1.2 FLINKSUM = (X of links of Gj+1) - (X of links of Gj)
1.3 FCANCEL = # {P|P is predicate symbol occuring in Gi41}
1.4 FTERMINATE: (see below)

2. Complexity of the Resolvent

2.1 PAGE = Age of Res

2.2 FLITSUM = Sum of literals in Res

2.3 FTERM = Term complexity of Res

2.4 FRESISO = Degree of isolation of Res

3. Complexity of the Parents of Res
3.1 FPARISO = Degree of isolation of the parents

These features influcence the actual derivation in the following way: all steps
that lead to a reduction in the size of the graph have absolute priority and
are immediately executed. That is, every link which leads to a graph with fe-~
wer clauses or fewer links or both is put into a special class, which is exe-
cuted before any further evaluation takes place. The decision whether or not
a link leads to a reduction is based on information from the Deletion-Module
(see below) and is optionally taken for every link or for the aective links on-
ly (see the Strategy-Module below). Note that the reduction in the size of

the graph may lead to further deletions, hence a potential snowball effect
of deletions is carried out Zmmediately, which accounts for the first main
source of the strength of the system.

All other features have a relative priority and are classified as situation
dependent and situation independent respectively, since the cost of their ini-
tial computation and later updating differs fundamentally [ss8ol.

A successful usage of the relative priorities depends on an appropriate metric
for each feature, which expresses its estimated worth. A discussion of why the
following metrics where chosen is outside of the scope of this paper and may
be found in {SS80); but the important point to notice is, that each metricdis-
plays a particular characteristic, which expresses the heuristic worth relati-
ve to its argument.
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3, FAGE
FAGE := 1 - &?93) 2 Characteristic:
max (for D___ = 5)
max
AGE of Res
1 5

Age: max{Age Parentl, Age Parent2}+1
Dmax: user defined maximally admitted depth of derivation

This feature is mainly used to avoid "infinite holes" in the search space.
1 FLITSUM
% of Literals of Res

Characteristic:

FLITSUM :=

2 of Lits

This feature adds a strong "unit-preference-behaviour"” to the system.

1 if no nested terms in Res or no terms in Res

1
=l - — otherwise
S 2
max
. : .th .
where: si: maximal nesting of i term in Res
s : user defined maximally admitted depth of nesting

max
n: number of terms in Res

FCANCEL := LIT(Gi) - LIT(Gi+1)
where LIT(G;) = #{P|P occurs as predicate symbol in Gi}

Note that the value is either O or 1 and this information is useful for a
simulation of Colmerauer's cancellation strategy [k075].

FLINKSUM: has either absolute priority if it decreases or else is entered in-
to the selection process of the CO-Module with the window-technigue

FRESISO: has either absolute priority if Res is pure, else

O each literal of Res has at least 3 links
i= 1/3 there is a literal in Res with 2 links
1 there is a literal in Res with 1 link

FPARISO: similar to FRESISO

Note that FPARISO and FRESISO are useful, since they provide the Control-Modu-
le with the information that after one (or less useful, after two) further
steps another deletion process starts, which potentially leads again to a snow-
ball effect of deletions.

The main constraint for these heuristics is that after each resolution step
the values of the heuristic features have to be updated and it is essential
that the cost of this updating is much less than the cost of performing every
possible resolution. For that reason not every value of the arguments for the
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metrics is computed exactly but estimated by some heuristic estimation func-
tion.

And finally there is the problem that the heuristics have the very limited
horizon of one step ahead but that the computation of a further n-level look
ahead for n > 2, is so prohibitively expensive that it outweighs the advan-
tage. For that reason we implemented in addition a different n-level look

ahead technique, which ckecks at tolerable cost if there is a proof within apre-
defined complexity bound. This terminator heuristic FTERMINATE is akin to

the no-loop-requirement of [SI76 p. 832] and the n-level-look-ahead heuristic
proposed by [KO75 p. 593] and is the second main, source for the success of

the current system. The essential idea is an elaboration of the following cb-
servation: ’

e Rolg

Figure 3

Each box in figure 3 represents a literal, a string of boxes is a clause and
complementary boxes (literals) are connected by a link. If all unifiers atta-
ched to the links in figure 3a are compatible it represents a one-level-ter-
minator, since it immediately allows for the derivation of the empty clause.
Similarily figure 3b represents a two-level-terminator if the unlflers are
compatible (see [SS80] for a detailed presentation).

Searching for a Proof

We now return to a description of the search for a proof: The Control-Mo-
dule locally controls the selection of the appropriate link for the next re-
solution step. This selection is based on information from the Heuristic-Mo-
dule as presented above and from the Deletion-Module, which heavily exploits
the crucial property of this proof procedure that distinguishes it from other
proof procedures based on graphs [SH76], [8I761: the fact that the deletion of
links and clauses can lead to a snowball effect of further deletions. Because
of this effect it is worth every effort to find and compute as many criteria
for potential deletions as possible. At present a clause is marked for dele-
tion if: (i} it is pure

(ii) it is a tautology
(iii) it is subsumed by some other clause [EI80].

Furthermore it is planned to have a deletion process based on models as well as
a deletion process based on particular configurations of links (for example a
circular connection), however because of the potential snowball effect the re-

sulting completeness problems are not at all easy.

Mostly only a small fraction of all links in the graph is declared active. This
is done by the Strategy-Module, which simulates standard derivation strategies:
e.g. if only the links emanating from a clause in the initial set of support
are declared 'active' and subsequently only the links of each resolvent in turn
are declared active and the previous ones passive (by appropriate ‘'on~off-
switches'), the resulting derivation is linear. The Strategy-Module allows to
chose among some of the standard strategies and setting refinements [L078].
This has turned out to be advantageous, since it substantially reduces the num-
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ber of 'active' links and hence the expense for the computation of the heu-
ristic selection functions and the most successful runs were obtained with
this 'mixed approach'. The decision, which strategie to choose, is taken by
the Monitor based on some general heuristics.

However certain features with relative priority as well as the features ha-
ving absolute priority are optionally computed for both active and passive
links. The passive links may be declared active, if their worth exceeds a
certain threshold.

It should not be necessary to say that the complex interplay of the variocus
modules, which 'suggest' which step to take next, prevents of course the
overall deduction from being linear or 'standard' and the respective comple-
teness results do not necessarily hold.

The potential explosion of links is the bottleneck of Kowalski's proof proce-
dure: the following ‘challenge’ proposed by P. Andrews, Carnegie Mellon at
the 1979 Deduction Workshop, provides a point of demonstration:

(3x Qx = Vy Qy) = (3x Vy Qx = Qy).

The initial graph of this formula consists of almost 10 000 links and several
hundred new links are added to the graph for each resolution step. If all the-
se links were declared 'active', the computation of the selection functions
would become intolerably expensive.

In our system the example is split, reduced and subsequently deleted to a graph
never exceeding 50 links and easily proved within a few steps. Even for more
'natural' examples, the number of deletion steps is about one third and some-
times over one half of the total number of steps.

Some Technical Data about the Project

Name of Project: Incorporation of Mathematical Knowledge into an ATP-System,
investigated for the Case of Automata Theory.
Funding Agency: German Research Organisation (DFG) Bonn, De 238/1, De 238/2.

Time Period: 1976 to 1982 (six years)

Machine: SIEMENS 7.760

Minimally Required Storage Space: 6.000 K (virtual memory)
Languages: SIEMENS-INTERLISP [EP75]/cssa [Ra79]
Present size of system: > 500 K of source code

Effort: > 10 manyears for its implementation

With more than 500 K of actual code at present and approximatly 1.000 K under
design for the next two years, the system is the largest software development
undertaken in the history of automated theorem proving and it may be indica-

tive for the changing pattern of research in this field.

3. PERFORMANCE STATISTICS

To gain a feeling for the improvement achieved by the system, figure 3 gi-
ves a sample of some test runs. In order to avoid one of the pitfalls of sta-
tistical data, which is to show the improvement achieved on certain examples
and not showing the deterioration on others, the system is to be tested on all
of the main examples quoted in the ATP literature: [wM76], [Mow76], [Rryku72].
Of all examples tested thus far, the examples of figure 3 are representative
(and worstcase, i.e. all other examples were even more favourable for our sy-
stem) . The examples of figure 3 are taken from the extensive, comparative stu-
dy undertaken at University of Maryland [WM76], where eight different proof
procedures were tested and statistically evaluated on a total of 152 examples.
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The table is to be understood as follows: the first column gives the name of
the set of axioms in [WM76], e.g. LS~35 in line 9. The next three columns quo-
te the findings of [WM76], where the figure in brackets gives the value for
the worst proof procedure among the eight tested procedures and the other fi-
gure gives the value for the proof procedure that performed best. The final
three columns give the corresponding values for the Markgraf Karl Procedure.
For example, in order to prove the axiom set LS-35 (line 9) the best proof
procedure of {WM76] had to generate 335 clauses in order to find the proof,
which consisted of 14 clauses, and the worst proof procedure had to generate
1.521 clauses in order to find that proof. In contrast our system generated
only 9 clauses and as these figures are typical and hold uniformly for all
cases, they are the statistical expression and justification for the first
two claims put forward in the abstract.

Example Maryland Refutation Procedure Markgraf Karl Refutation Procedure
NOC-p NOC-G G-P NOC-P NOC-G G-P
Ances 19 (18)] 62 (943)|0,306 (0,019) 7 7 1
Ew 33 19 (21)| 63 (2585))0,302 (0,008) 8 16 0,5
Prim 21 (20)] 89 (221)10,236 (0,09) 12 27 0,444
Wos 3 7 (7)) 17 (154)]0,412 (0,045) 3 3 1
Wos 7 13 (12)] 241 (244)|0,054 (0,049) 9 10 o,%
Wos 8 12 (12)| 210 (360)|0,057 (0,033) 6 9 0,667
Ls-17 20 (14)] 98 (1273)(0,204 (0,011) 4 7 0,571
Ls-21 12 (12){ 252 (684)]0,048 (0,018) 7 12 0,583
Ls-35 14 (14){335 (1521) 0,042 (0,009) 8 9 0,889
LS-65 17 (17)] 48 (880)(0,354 (0,019) 11 58 0,189
LS-115 13 (13)] 20 (227)]0,65 (0,057) 7 11 0,636
Ls-121 31 536 0,058 i2 30 0,4
NOC-P = Number of Clauses in the Proof NOC-P
NOC-G = Number of Clauses generated G-P = NOC-G
G-P = G-Penetrance
Bigure 4

4. KINSHIP TO OTHER DEDUCTION SYSTEMS

The advent of PLANNER [HE72] marked an important point in the history of
automatic theorem proving research [AH721, and although none of the techni-
ques proposed there are actually present in our system it is none the less the
product of the shift of the research paradigm, of which PLANNER was an early
hallmark.

The work most influential, which more permeates our system than is possible

to credit in detail, is that of W. Bledsoe, University of Texas [BT75]},[BB75],
[BB72], [BL71], [BL77]. In contrast to [BT75] however, we tried to separate as
much as possible thelogic within which the proofs are carried out from the
heuristics which are helpful in finding the proof.

The strongest resolution based system at present is [MOW76], and we have
tested their examples in our system. Comparison with their reported results,
shows that if our system finds a proof it is superior to the same degree as
reported in figure 4.

However, there are still several more difficult examples reported in [MOW76]
which we can not prove at present. The strength of the system [MOW76] Qeri-
ves mainly from a successful technique to handle equality axioms and almost
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all the examples quoted in [MOW76] rely on this technique. For that reason,
as long as our paramodulation module is not fully equipped with proper heu-
ristics there is no fair comparison {(the test cases were opbtained with the

full set of equality axioms and no special treatment for the equality pre-

dicate) .

Finally among the very large systems which presently dominate theorem proving
research is the system developed by R. Boyer and J.S. Moore at SRI [BM78].
Their system relies on powerful induction techniques and although some of the
easier examples quoted in [BM78] could be proved by our system at present, a
justifiable comparison is only possible once our induction modules are comple-~
ted.

A theorem prover based on heuristic evaluation was also reported by Slagle and
Farrell [SF71] however it appears that such heuristics are not too successful
for an ordinary resolution based prover.

5. CONCLUSION

At present the system performs substantially better than most other auto-
matic theorem proving systems, however on certain classes of examples (induc-
tion, equality) the comparison is unfavourable for our system (section 4).

But there is little doubt that these shortcomings reflect the present state of
development; once the other modules (T-unification, paramodulated connection
graphs, a far more refined monitoring, induction, improved heuristics etc)

are operational, traditional theorem provers will no longer be competitive.

This statement is less comforting than it appears: the comparison is based on
measures of the search space and it totally meglects the (enormous) resources
needed in order to achieve the behaviour described. Within this frame of re-
ference it would be easy to design the "perfect" proof procedure: the super-
visor and the look-ahead heuristics would find the proof and then guide the
system without any unnecessary steps through the search space.

Doubtlessly, the TP systems of the future will have to be evaluated in totally
different terms, which take into account the total (time and 'space) resources
needed in order to find the proof of a given theorem.

But then, is the complex system A, which 'wastes’ enormous resources even on
relatively easy theorems but is capable of proving difficult theorems, worse
than the smart system B, which efficiently strives for a proof but is unable
to contemplate anything above the current average of the TP community? But
the fact that system A proves a theorem of which system B is incapable is

no measure of performance either, unless there is an objective measure of
'difficulty' (system A may e.g. be tuned to that particular example). If

now the difficulty of a theorem is expressed in terms of the resources needed
in order to prove it the circulus virtuosus is closed and it becomes apparent
that the 'objective' comparison of systems will be marred by the same kind of
problems that have marked the attempts to "objectify" and "quantify" human
intelligence: they measure certain aspects but ignore others.

In summary, although there are good fundamental arguments supporting the hy-
pothesis that the future of TP research is with the finely knowledge enginee-
red systems as proposed here, there is at present no evidence that a traditio-
nal TP with its capacity to quickly generate many ten thousands of clauses is
not just as capable. The situation is reminiscent of todays chess playing
programs, where the programs based on intellectually more interesting princi-
ples are outperformed by the brute force systems relying on advances in hard-
ware technology.
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ABSTRACT

This paper proposes a descriptive choice model for decisions involving
two alternatives and gives experimental results for twenty-eight decision
makers., For each decision maker a computer simulation model, based on
verbal accounts of subjects' thought processes, was developed. An analy-
sis of these models indicates substantial support for the proposed model.
Additionally, the computer models were found to predict correctly more
than 99%Z of all reliable decisions. An analysis of the incorrect predic-
tions indicates that both the selection of decision rules, as well as
their parameters are partly governed by a probabilistic process.

During the past several years, the understanding of the thought process
underlying decision making behavior has received more and more attention
in the literature. Instead of only focusing on an analysis of the rela-
tionships between decision attributes and choice outcomes by means of
regression analysis [cf. Slovic and Lichtenstein, 1971 for an extensive
review of that literature], students of choice behavior are increasingly
investigating predecisional behavior, like the acquisition, evaluation,
and integration of information [e.g., Svenson, 1979]. Unfortunately,
relatively little research is available that has examined in detail the
cognitive processes of decision makers. Furthermore, few attempts have
been made to integrate empirical findings into a theoretical framework.
Eence, the major goal of this study is to examine in detail the choice
strategies of decision makers, and to develop a theoretical model for
binary choices. More specifically, the plan of this study is to provide
first a short summary of recent work on decision-making processes. Then,
a binary choice model is presented and the results of two experiments are
described and discussed in the light of the findings of other work on
choice behavior.

BINARY CHOICE RESEARCH

There have been several decision making studies which have examined
binary choices [e.g., Payne, 1976; Russo and Dosher, 1975; and Slovic,
1975]. Among those studies, Russo and Dosher [1975] provide the probably
most detailed treatment of decision making strategies for choices among
two alternatives. As a result of the apnalysis of eye-movements and ver-
bal reports, Russo and Dosher identified two major simplifying heuristics
that characterized subjects' choice behavior. These decision rules,
vhich were established for tasks involving three decision attributes,
were called dimensional reduction (DR) and majority of confirming dimen-
sions (MCD) heuristic,

As the name suggests, the major characteristic of the DR heuristic is the
reduction of the number of dimensions being considered during the choice
process. More specifically, Russo and Dosher suggest that at the outset
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subjects eliminate the dimension with the smallest dimensional difference.
Thereafter, the choice will be determined by selecting the alternative
which has the largest dimensional difference on the two remaining dimen-
sions. Obviously, this choice model is most appropriate when the number
of attributes is three. For a larger number of attributes, say six, four
(i.e., six minus two) would have to be eliminated in order to allow the
choice to be determined by ordinal comparisons of two dimensions. However,
the elimination of two-thirds of the available information seems to be an
oversimplification of subjects' decision rules. Therefore, the generality
of this heuristic appears to be restricted to tasks with a small number

of dimensions (e.g., three or four).

The second choice strategy, the MCD heuristic, simplifies the choice pro-
cess by (a) ignoring the magnitude of dimensional differences and (b) con-
sidering only which of the two alternatives is better on each dimension.
Then these simple evaluations of the decision attributes are integrated by
selecting the alternative which is perceived to be better on more dimen-
sions. Like the DR heuristic, the MCD strategy seems to have some major
limitations. First, the implicit assumption that all dimensions are having
the same impact on the choice outcomes (by being equally important) for all
subjects appears somewhat unrealistic, judging from the results of several
studies [e.g., Slovic and Lichtenstein, 1971] which suggest substantial
individual differences in cue utilizations. The second major drawback of
the MCD model is that it does not allow the prediction of a choice when an
equal number of dimensions favor each alternative. 8Slovie [1975] partially
addressed the latter issue, by examining binary choices among alternatives
characterized by two decision attributes. His conclusions were that sub-
jects tend to select the alternative which is better on the more important
dimension. This short discussion shows that, for becoming a more realistic
description of the choice process, several modifications of Russo and
Dosher's [1975] original model seem to be necessary. As a first step in
this direction a decision-process model, called "generalized attribute
dominance (GAD) model" will be presented below.

A GENERALIZED ATTRIBUTE DOMINANCE MODEL

The present model, which provides an integration and extension of the
choice models proposed by Russo and Dosher [1975] and Slovic [1975],
consists of three stages (see also Fig. 1).

1. Determination of the Decision Relevant Attributes (AR)

It is presumed that at the beginning of the choice process the decision
maker (DM) will divide the choice dimensions into important and unimpor-
tant ones. As a result of this classification subjects are assumed to
ignore the unimportant attributes during the remainder of the choice
process.,

2, Dimensional Evaluation of Attributes

Having determined the decision relevant attributes, the DM will identify
for each important attribute which alternative is better or whether both
alternatives are equivalent. The characterization of two alternatives as
being equivalent on a particular attribute also eliminates this attribute
from the decision relevant attributes. Next, subjects will integrate the
results of the dimensional evaluations by calculating for each alternative
the number of dimensions (N) on which the respective alternative is better.
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In particular, Nl and N, denote the number of dimensions on which alterna-
tives one and two are superior.

3. Comparison of Nl and N2

The final phase of the choice model involves the selection of the preferred
alternative by comparing N; and Nj. This comparison process cam be con-
sidered as compensatory (i.e., involving trade-offs between attributes) in
nature. Depending on the results of these comparisons, i.e., whether or
not one alternative is perceived to be better on the majority of the deci-
sion relevant attributes, two decision mechanisms are proposed. In situa-
tions where N; and Ny have different values the model predicts that the
decision maker selects the alternative with the higher N. On the other
hand, when both alternatives are identified as being superior on the same
number of dimensions (i.e., Nj = Nj), a tie-breaker rule has to be acti~
vated. According to this rule, the DM is expected to select the alterna-
tive which is better on the most important attribute contained in AR.

Figure 1
Generalized Attribute Dominance Model

and N2J

lDetermine N

Test whether

)
yes
ey . A

Select the alternative Select alternative 1 if
which is better on the Nl > N2.
m?st important qlmen- Select alternative 2 if
sion contained in AR.

Nz > Nl.

The above model generalizes Russo and Dosher's [1975] MCD model in several
important ways. First, it allows for differential weighting of dimensions
across subjects., Second, it permits the evaluation of alternatives to be
equivalent on any dimension. Finally, the model is capable of generating
a choice prediction when the MCD-heuristic indicates a stand-off between
the two alternatives. The tie-breaker. rule "select the alternative which
is better on the most important dimension', as suggested by the GAD-model,
is very similar to a lexicographic choice model [cf. Tversky, 1972] and
the choice procedure proposed by Slovic [1975]. Specifically, the lexi-
cographic model presumes an ordering of the decision attributes according
to their salience and prescribes the choice of the alternative which is
superior on the most important dimension. If no alternative is perceived
to be better on this dimension, the alternative which is superior on the
second most important attribute is selected. This procedure is repeated
until one alternative is identified as superior on a particular dimension.
Since the dimensions on which both alternatives are perceived to be
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equivalent are already excluded from the decision relevant attributes, no
iterative choice procedure is required for the GAD model.

In order to obtain empirical data which permit direct testing of the GAD-
model, it appears to be necessary to obtain access to subjects' thought
process. Data on only the choice outcomes are unlikely to be capable of
answering most of the above research questions. Therefore, it was decided
to employ in this study verbal accounts of the thought process as the
major source of data to be analyzed.

METHOD
Subjects and Task

Twenty-eight business seniors volunteered to participate in two very simi-
lar decision making experiments in response to several class announcements.
In both experiments subjects were presented with information about pairs of
students that were admitted into a quantitatively oriented graduate busi-
ness program. The task was to decide which of the two students would be
expected to achieve a higher grade point average (GPA) in that graduate
program. The cues being presented for each of the hypothetical graduate
students included some or all of the following pieces of informatiom:

(1) GMAT-Q: The percentile score on a gquantitative aptitude test; (2)
GMAT-V: The percentile score on a verbal aptitude test, (3) Undergraduate
Institution: The name of the undergraduate school, and a rating of the
overall quality of undergraduate education provided in that school; (4)
GPA-Total: The GPA the student has achieved during his undergraduate educa-
tion on a scale from 1 to 4; (5) GPA-Quantitative: The GPA for mathematics
and statistics courses the student has achieved during his undergraduate
education on a scale from 1 to 4; (6) Undergraduate Major: The major field
of study during undergraduate education, and a rating of the major in terms
of suitability for entering a quantitatively oriented business school.

Hypothetical decisions were generated based on the knowledge of the charac-
teristics of applicants being admitted to a particular business school.
Each decision was listed on a different page in the same form as the deci-~
sion shown in Table 1.

Table 1
Example of a Decision Problem
Under- Under-
GMAT graduate GPA GMAT graduate GPA
Verbal Institution Total Quant. Major Quant.
Alternative 1 68 3.2 86 Chemistry 3.1
(3)
Alternative 2 Amherst 2,8 74 Mathematics 2.7
(5) (5)

Since another purpose of the experiments was to examine choice behavior in
the presence of missing information [cf, Fidler, 1979bl, some pieces of
information were frequently unknown (e.g., for the decision in Table 1 the
school in alternative one and the GMAT-V in alternative two were not

known).
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Experimental Procedure

In both experiments each subject was told that s/he would be participating
in a study of human decision making. Thirteen subjects (six females and
seven males) volunteered for experiment 1 and made their decisions in two
parts which were one week apart. In the first part, 44 decisions were made
(including six practice decisions), while in the second part 32 decisions ~
a subset of the part 1 decision -~ had to be made. The fifteen subjects
(five females and ten males) participating in the second experiment had to
make forty different decisions, plus six practice decisions at the begin-
ning of the experiment. All decisions were made in the same session while
thinking aloud.

Think aloud instructions were given before the first decision to be verbal-
ized in both experiments. In these instructions subjects were told to ver-
balize every thought and every detail of their thinking process, including
what information they were looking at, what thoughts they were having about
any piece of information, how they were evaluating the different pieces of
information, and the reasoning which led to their decisioms.

RESULTS

After transcribing each subject's verbalizations, an initial decision
process model, consistent with the assumptions of the GAD-model, was
derived for each subject. First, the decision relevant attributes were
determined., Then, the conditions under which two scores of a particular
dimension are considered to be equivalent or different were identified.
Finally, the choice rules were formalized.

In the next phase of the model building process the inference and decision
rules were translated into a FORTRAN computer program and the predictions
of the computer model were compared with the actual choices. Then, the
verbal reports for incorrect predictions were examined in detail, in order
to detect potential misspecifications of the inference and decision rules.
This detailed analysis of verbal reports for incorrectly predicted deci-
sions frequently resulted in modifications of the decision rules and in
improvements of the predictive quality of the process models.

General Characteristics of the Decision Process Models

A characterization of the decision rules incorporated in the decision pro-
cess models is shown in Table 2. These results substantially support the
GAD-model proposed in this paper. Particularly, the choice behavior of
more than 857 of the subjects was best represented by a decision process
model that is largely consistent with the GAD-model. Five of these sub-
jects also applied a configural decision rule in addition to the decision
rules implied by the GAD-model. The configural decision rules did not
involve trade-off relationships between the decision relevant attributes.
Rather the mere existence of a particular configuration of the stimulus
material on one or two attributes was sufficient for a choice response,
regardless of the information available for the remaining attributes. Two
particular configural decision rules that were identified are: 'When the
GMAT-Q of one alternative has a socre of 90 or higher, while the GMAT-Q of
the other alternative is (i) 85 or lower, or (ii) missing, the alternative
with the GMAT-Q of 90 or higher will be chosen"; and "When one alternative
has a better GMAT-Q and at the same time a one rated major, the alterna-
tive with the better GMAT-Q will be chosen".



FIDLER-6

Table 2
Classification of the Decision-Process-Models
Model Type Number of Subjects
Pure GAD-model 19

Configural decision rule plus GAD-model
Lexicographic choice model

3
Holistic choice model 1
28

The GAD-models varied substantially across subjects. In particular, sub-
jects differed in the relative importances they assigned to the decision
attributes. In terms of the GAD-model parameters, individual differences
were found to exist for (1) the decision relevant attributes and (2) the
salience rankorder of the decision attributes. As illustrations of these
individual differences the choice models for two subjects are presented:

Subject 25: decision relevant attributes: school, GPA-T, and GMAT-Q;
attributes in order of decreasing importance: school,
GMAT-Q, GPA-T.

Subject 2 : decision relevant attributes: all dimensions;
attributes in order of decreasing importance: GPA-T, GPA-Q,
major, GMAT-Q, GMAT-V, school.

Only two pairs of subjects had the same set of decision relevant attributes
with an identical salience rankorder. Thus, even though the underlying
cognitive choice processes seem to be very similar, the parameters of the
choice models differ substantially between decision makers.

The process models of four subjects do not correspond to the decision
strategies outlined for the GAD-model. Three of these subjects were best
modeled by a lexicographic and one subject by a holistic choice model. A
holistic decision rule evaluates each alternative as a whole and compares
the outcomes of the holistic evaluations (e.g., utilities) for determining
the preferred alternative. The particular holistic evaluation strategy
applied by Subject 17 involved (1) the multiplication of each alternative's
school, major, and GPA-T for determining each alternative's "utility"; and
(2) the choice of the altermative with the highest utility score. Lexi-
cographic decision rules do not permit any trade-offs among decision
attributes and, therefore, are inconsistent with the major characteristic
of the GAD-model, i.e., a primarily compensatory nature of the choice pro-
cess. The lexicographic choice models varied substantially between sub-
jects. Specifically, the sequence of the attributes in decreasing order
of importance was as follows:

Subject 13: major, school, GMAT~Q.
Subject 18: GPA-T, GPA-Q, GMAT-Q, school.
Subject 20: GPA-T, GPA-Q, coin toss.

Subject 20, in addition, was the only DM who, when in doubt about which
alternative to choose, determined the "preferred" alternative from the
outcome of a coin toss.
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All process models, except that for Subject 17, can be characterized as
comparative in nature (as opposed to holistic) because they derive their
predictions from comparisons of individual dimensions. This representation
of subjects' choice behavior is also supported by an analysis of the choice
reasons expressed in the verbal reports. Specifically, 88.4%7 of the choice
reasons expressed for common dimensions were comparative evaluations of
attributes. The remaining evaluations were non-comparative in nature and
characterized individual attribute information as being good, high, average,
low, etc.

Consistency of Decision Rules

In order to explore the consistency of the choice outcomes, all decisions
that were made four or two times during the course of Experiment 1 were
analyzed. For each subject the number of inconsistent decisions was deter-
mined as follows: for decisions made twice the number of incomsistencies
was 0 if the same alternative was preferred both times and 1 otherwise; for
decisions made four times the number of inconsistencies was 0 if the same
alternative was preferred each time, 1 if one choice outcome was inconsis-
tent with the majority of choices, and 2 if both alternatives were pre-
ferred equally often. An analysis of the number of inconsistent decisions
indicates that across the 13 subjects participating in that experiment, on
the average, 8.2 out of 62 decisions were inconsistent. The number of
inconsistent decisions ranged between 3 and 15.

The individual decision process models correctly predicted, on the average,
87.6% of the 70 decisions made by all subjects during the course of Experi-
ment 1. This corresponds to more than 997 of the potentially predictable
decisions, when considering that inconsistent decisions cannot be predicted.
For Experiment 2, on the average, 90.7Z of all 40 decisions were predicted
correctly by the process models. Assuming that the consistency of the
choices is very similar for the subjects in both experiments, this result
suggests that also for Experiment 2 the process models provide excellent
predictions. Hence, the decision process models seem to be an extremely
good predictor of the choice outcomes.

An analysis of the verbal protocols provided some interesting insights into
the processes that are responsible for inconsistencies in choice behavior.
The findings of this analysis will be illustrated for two decision makers,
Subject 2 and Subject 16, For Subject 2 nine of the 70 decisions were
incorrectly predicted by the process model. This was exactly the number

of inconsistent decisions. Four of the inconsistent decisions were caused
by a switch to a configural decision rule of the form "if the GMAT-Q is 90
or higher for ome alternative and below 86 or missing for the other alter-
native, choose the alternative with the GMAT-Q of 90 or higher"; for three
decisions a different attribute than that predicted by the model was used
for breaking a tie between the two alternatives; one inconsistency was
caused by the application of an otherwise unused inference rule for missing
information; and the cause of one inconsistency could not be determined
because of the lack of a verbal report for that decision. For Subject 16,
two predictions of the decision process model did not coincide with the
actual choices. While for all except these two decisions that subject
appeared to be using a GAD-wodel strategy with the school, major, and
GPA-T as the decision relevant attributes, for the two inconsistent deci-
sions he simply chose the alternative with the better school without
considering the other two decision attributes.
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In general two types of changes in decision rules were observed: (1)
changes in the type of decision rule being applied, and (2) changes in the
parameters of the decision rule. The above results for Subject 2 provide

a good illustration of changes in the type of decision rules that were
observed for several subjects. Subject 2 used occasionally the previously
described configural decision rule when one of the two alternatives had a
GMAT-Q of 90 or higher. In most decision situations, however, he applied
a decision rule which also took into consideration information on the other
attributes. Therefore, the decision process model does not contain a con-
figural decision rule. Several other subjects also applied infrequently

a configural rule which is not shown in the decision process models.
Similarly, subjects, for which the decision process model indicates con-
figural decision rules, are not consistently applying the same choice
procedure. Thus, they occasionally ignore the specific cue configurations
and determine their choices based on other decision strategies. Another
example of changes in the decision rule is obtained from the subjects
applying predominantly a lexicographic choice model. These subjects not
only appear to be using a probabilistic version of a lexicographic deci-
sion rule (similar to Tversky's {1972] elimination by aspects model) but,
in addition, use sometimes a compensatory choice strategy (i.e., one that
considers trade-offs among attributes) instead of the lexicographic choice
model. Besides applying different types of decision strategies for similar
decisions, subjects also appear to change probabilistically the parameters
of their decision rules. For example, most subjects do not apply the lexi-
cographic decision rules in the same sequence. Furthermore, several deci-
sion makers occasionally changed the set of decision relevant attributes
for their GAD-models. More specifically, subjects sometimes considered a
marginally important decision attribute (e.g., GMAT-V), and other times
not.

A detailed analysis of the inconsistent decision outcomes suggests that
these irregularities of the choice rules do not seem to stem from any
systematic influences, like the order of presentation of the decision
alternatives, the verbalization of the decisions, learning effects, etc.
[cf. Fidler, 1979]. Instead, the inconsistencies of the choice outcomes
appear to be caused by random changes in the decision rules applied to
identical choice problems.

CONCLUSION

The findings of the present study provide substantial support for the
choice model proposed in this paper. However, the current results also
show that human choice behavior cannot be explained completely by one
single choice model. In particular, this research found four major choice
mechanisms: (1) the GAD-model proposed in the present paper; (2) decision
rules dependent on particular stimulus configurations: (3) the lexi-
cographic choice model: and (4) holistic decision rules.

The present results also suggest a conceptual model which views decision
making behavior as a two stage probabilistic process. In the first stage
the decision maker selects a particular type of decision rule, while in
the second stage the parameters of the decision rule are determined. This
conceptualization of choice behavior as being partly governed by a prob-
abilistic process can be considered as an extension of Tversky's [1972]
elimination by aspects model. Specifically, the current model permits the
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selection of different classes of decision rules in addition to that of
the parameters of one particular choice model.

However, more research is needed which (1) examines the conditions under
which subjects tend to apply a particular choice model and (2) investigates
the factors influencing the selection of the choice parameters. For ex-—
ample, the parameters of the decision rules may differ across subjects
because of experience differentials for the specific choice situations.
Particularly, perceptions of attribute salience may be strongly affected
by experience. Further research is also necessary for testing the model
for different decision tasks, in order to explore more thoroughly the
limits of the present findings.
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Abstract :

While building or understanding large LISP systems, many small auxiliary
functions are often subject to errors or misunderstanding, in the case of
very involved recursions. PRAINBOW is a specialized program understanding
system able to reduce automatically such sets of recursive functions to a
form where the goal of these sets are clearly displayed. RAINBOW can
display interactively the goal-forms into two sets of new external
2-dimensional notations: recursive and tinear. Program understanding is
obtained by the translation of the original set of LISP functions into the
open recursive notation, then by elementary symbolic evaluation yielding
closed Llinear forms of the original functions. Those linear forms are
exactly the goals wanted. RAINBOW operates efficiently on a definite class
of LISP functions, and uses an extendable set of reduction rules, which
constitute the symbolic interpreter. RAINBOW can be used interactively if
a user want to verify that a set of functions perform its intended goal, or
can be incorporated easily as a specialized component of a Llarger program
understanding system. This paper shous how BRAINBOW operates on sets of
recursive functions building combinatorial cobjects.

KEY-WORDS :

automatic program understanding, program debugging, NLISP, RAINBOW system,
multiple representations, program transformation, symbolic interpretation.

1. INTRODUCTION

RAINBOW is a specialized interactive program understanding system. [t asks from its
user a set of recursive functions definitions, then extracts and displays graphically
its goal, in terms of properties of lists viewed as sequences.

To display the goal of a definition set, we have introduced two classes of
2-dimensional external notations which are implemented within RAINBOW. The open
notation is a compact notation for recursive programs or data structures, the cTlosed
notation expresses intrinsic properties of linear sequences in term of generic
properties of their elements.

Program understanding is obtained by the transtation of the originat set of functions
into the open notation, then by elementary symbolic evaluation yielding closed forms
of the original functions. The closed forms are exactly the yeals wanted.

Presently, RAINBOU can reason about classes of data-structures as lists considered as
sequences, extensions to recursive LISP functions operating on other classes of
data-structures are considered.

RAINBOW cari be used either as a front-end of a LISP system, or as a specialized part
for louw-tevel understanding of sequences, in a larger program understandiny system.
An analogy with lou-level machine vision is here in order: scene analysis has to
rely upon intrinsic properties of pictures, as incidence, gradient, illumination or
texture. UWe believe that a large program understanding system must also rely upon
intrinsic properties of the data involved in the programs tentatively analyzed.

A programming apprentice system (RICH 1979, MWERTZ 1879, SHROBE 1979), if used
interactively, must have the capability of focusing in a visually understandzble way,
to tower levels of plans for simple modules, which are the most error-prone in  very
large systems. PRAINBOW ailous the user to check immediately, the goal of a set of
functions definitions. The user does not have toc provide any assertion to verify
yabout his definitions set, tecause in a sense RAINBOW is precisely reducing this set
te its assertion.
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RAINBOW is an implemented system uritten in (CHAILLDOUX 1978) running on DEC
Ki-10, and PDP 11/40. The external notations can be visualized on any kind of
display or hard-copy terminal.

2. DVERVIEW OF THE RAINBOW SYSTEM
The symbolic interpreter:

The symbolic interpreter is essentially a production system having an initial fixed
set of reduction rules for the handling of LISP sequences. When a user submits a new
function definition to RAINBOW, the reduced closed linear form obtained as a goal is
incorporated by the system into the set of rules. The interpreter is able to expand
every inner function call with the replacement part of the corresponding rule along
with the renaming of variables when necessary (a-conversion). As in (BOYER 1977),
The interpreter operates iteratively until no more rule can apply to the reduced
form.

The definitions entered can be also called within the LISP iterpreter, and every step
of the reduction c&n_ be interactively reversed, providing an history cf the
reduction. Atlso at user-level, RAINBOW can handle symbolic function calls.

The process of resolution into linear forms uses a set of reduction rules for the
translation of recursive representations into linear representations.

The reduction set of rules for a LISP function is expressed into two new classes of
graphical notations for recursive programs and data, and for linear sequences.

Recursive and linear external notations:
1 tlinear

It is used to express generic results or goals of the analysed functions: it
expresses characteristics of sequences.

This notation is a 2-dimensional specialization of the one used in (TEITELMAN 1957,
GOOSSENS 1879).

n

]
[L Eil =df (Ey E2 ... Ep)

|

1
The letter 7 is an "index variable" ranging from lower to upper indices, here from 1
to n. UWhen one of the indices is 0, the notation denotes the empty sequence. In the

context of RAINBOW, the range of the index variable is the LISP exnression
immediately following it.

EXAMPLES:
n n n
‘CAR [{ ED = E (CDR C{ Bl o E{ Eil
! ! .
n n ' n 1
(CCNS E, [{ Ei) [{ E] (REVERSE [! E:) [{ E.1
} | . ! L

A more complex example is:

n i-1 n

I |

fe [jL; (CONS A L) k Lyll ol
bl |

11 i+

[I(CONS A L) ... Lnd ILy (CONS A L) ... Lnd ... Ly ... (CONS A Lp)11
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2) recursive

It is used to express the recursive computation performed by the function. It has
the general form:

|
oy - 31 3 =df A1 eee On aﬁn v ﬂ1

|

1

vhere o;, PBi, and 3 are parts of LISP expressions as well as linear or recursive
forms. The recursive notation is essentially an indexed contexi-free grammar iule.
It expresses n levels of nesting of function calls terminating with the expression d.
When the RAINBOW system uses the recursive notation, n is the tength of the Llist
which is the value of the recursion variable. The crossing of lines in the noiation
denotes a self-reference to the entire expression with the index variable progressing
one step towards the highest index.

As an example RAINBOW translates interactively, the following function definition
(DE append (X Y)
(IF (NULL X) Y
(CONS (CAR X)
(append (COR X) Y))))
into the recursive form
n | which schematizes the nested expression
]
; (CONS X; I) T (CONS X, (CONS Xz ... (CONS Xn ¥) ... ))
i —
uhere X. translates (CAR (CDR = X))
n n
| |
[j X;1 translates X and i{ Xi1 transilates (CDR X)
|
t i+l

It happens that the goal of the append function is itself expressed into the
reduction rute RC2:

n | T n m
| | !
t (CONS X; - [jY;] jwad [i Xy j Y32
] l—.1] ] ]
1 1 1 1

3. USING RAINBOW: A SIMPLE REDUCTION

RAINBOW can be used interactively for the automatic dosumentation of programs
as’ soon as they are typed, as advacated by (WINOGRAD 1979). In the fellcwing
example, RAINBOW is reducing to its goal a set of tus simple recursive functions.

The user types the following definition, that RAINBOW translates immediately as:

ME f (X Y) n,
(IF (NULL X> NIL | I
(APPEND (g (CAR X) Y) i (APPEND (g X: Y> -> NIL
(f (CDB X) Y))) | _
1
then the following definition is translated into
MDE gAY

n
(IF (NULL Y)> NIL | ]
(CONS (LIST A (CAR Y)») t (CONS [A Y1 - NIL
’ (g A <(COR Y>)))) i
1
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then the user types to RAINBOW the symbolic call
(f (xlistx A) (xlistx B))

which is reduced into the Linear form

j [A: Bj1

r—
Pl e
e B

which yields the goal of the function f:
f builds the cartesian product of its two argument-Llists.

The reduction set of rules which has been used in the previous example is:
~ the definition of the function g itself.

~ the rule RC1 and -~ the rule RAl
n

] |
(CONS E, - ) NIL 17 [;. Eil

n

| ]
(APPEND o: - ) NIL & [; ail

[T — 1
e e T

So the RAINBOW system yields in succession :
(f (xlistx A) (xlistx B))

Lines beginning with "?" are typed directly by the usecr

n - |
i (APPEND (G A; [5 Bs1) 1) NIL
1I ] l—

oK

ap atl
APPLYING... G GIVING...

n

} i | {

; (APPEND { (PONS [A; B;1 -) NIL -) NIL
.

1 1

APPLYING... RC1 GIVIMNG...

[ i )

(APPEND [} [A, B;1] 1) NIL
. { .

APPLYING... RAl GIVING...

[ |

[A, B;11 The final linear form

,...
—————
ot e
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4. UNDERSTANDING COMPLEX RECURSIONS

Sometimes recursion can be quite involved, as in the following square matrix
generator:

whers
(DE vecmat (E) n n
(IF (NULL E> NIL | ]
(CONS E (DCONS a [i EiDD 2 [i (CONS o E;)1
(OCONS (CAR E) | }
(vecmat (CDR E)))))) 1 1

The goal of VECMAT extracted by RAINBOW is:

T, Tl
|

(VECMAT [; E:1D =g [i [; Ell
1 11

The body of VECMAT is slightly generalized to obtain the main reduction rule:

n
| | o |
(CONS «; (DCONS E; - )) NIL ol } (CONS j (CONS E; - ) o - ) NIL
1

| —
1

e ——)

which by the rule RCl is reduced itself to:

L
! !
i j (CONS E; - ) «  (rule RDC&)
|
1

n
‘ |
Now if we sets a; to [T Exl, RAINBOW obtains the linear form for VECMAT by:

i
;-1 | n noi n
| ol |
[ i (CONS E; =) [T E1l = i [f E; k EK11 @ [
J |
1 11 i

i
t? E;1
i 1

Lt |
e e 3

The final result being obtained by the reduction rule RIND2:

-1 n n

V| !

[; X f Xl j=a [t Xl
i

1 i 1

The same reduction process can be used to obtain the goal of the function partinsart,
main component of a recursive partition gsnerator. Though very usual this style of
recursion is rather difficult to visualize, and is very error-prone. The following
example displays a session with RAINBOM.



GREUSSAY~6

The user types the definition

? (DE partinsert (X E)
(OF ULL E) NIL
(CONS (CONS (CONS X (CAR E)) (CDR E))

(DCONS (CAR E) (partinsert X (CDR E)?>)))

that RAINBOW translates into
n

{ n

I ! i
(LAMBDA (X E) i (CONS L(CONS X Ey) j E;1 (DCONS E; -)) NIL)
! |

1 i+l

Then the user provides the symbolic call

? cl (partinsert A (xlistx L))

n
% i }
i (CONS [(CONS A L) j L;1 (DCONS L; ~>) NIL
] ! —_
1 i+l
Then the user asks for all reduction rules
to be applied
? ap al

l
APPLYING... RDC4 GIVING...

-1 n |

n

{ ] 1 | |

i (CONS j (CONS L; -) [(CONS A L) T Lkl =) NIL
|

1

1 i+l

APPLYING... RC1 GIVING...

n i-1 ) n

[{ E (CONS L; 1) [(CONS A L) 1 Lkl
. ! b
APPLYING... RCZ GIVING...

n i-1 n

[{ (% L; (CONS A L)) i Lkl

11 L
OK

The final reduced form is the goal of partinsert

5. CONCLUSION

The 2-dimensional display for formula within RAINBOW
understandable by using intrinsic properties of
relates the- length and order of the sequence tn the
elements.

Along with the powerful reductions from recursive to
the external notations presented here retlect our
and their properties.

In a fast checking situatien, this graphical styte of

is claimed to be intuitivety
sequences: the use of indices
general form of the generic

Linear faorms, ue believe that
intuitive understanding »f tists

verification, displaying the

generic sitructure of dsia, gilves the ussr excellent control over ths goal sbtained

from a functions sets.
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The extendability provided by the incorporation of every new function definition as a
new reduction rule in the spirit of (BOYER 1877) gives a useful tool to system design
and programming methodology: as advocated by (GERHART 1975), the resulting schema
and transfermations that are saved will have to be ultimately organized into
"handbooks of knowledge" about programming.

Presently, RAINBOW is able to reason about classes of data structures as sequences,
ve are considering its extension to arrays using the rules given in (REYNOLDS 1979).
Program understanding with BAINBOW can be viewed as a kind of simplification, and its
extension to several classes of data-structures may involve combination of deciston
procedures for several theories described in (NELSON 1978).

Internatly, RAINBOW is mainly driven, out of the fixad initial set, by user-provided
rules obtained by reduction of previous definitions to their goals. Thus, the power
of BAINBOW is strictty Llimited by the class of expressions that the externat
notations are able to denote. Most of the rules in the fixed initial set are
properties of the function CONS, extended to APPEND and REVERSE.

In the present state of the rules, RAINBOW is restricted to primitive recursive
functions. A single recursion variable is handled within each rule : an obvious
extension to an arbitrary number of recursion variables can be incorporated, each
having the same pattern of seguence as an argument. Another extension is currently
planned to handle iterative schemes.
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hbstract

The stability or change of problem solving strategies, without or with
practice, is considered as an important aspect of human problem sclving.
It is proposed that a strategy is not situation dependent, but reflects
stability in the problem solving skill of a subject. It is assumed that
without practice in a task a strategy should recur in repeated solutions
where the intervals between solutions are 1long. This hypothesis is
investigated in this study. A production system, simulating in detail the
behavior of one subject's solution to a spatial series task, is presented.
The program is based on a think-aloud protocol produced by the subject
while solving the task. The behavior of the program is compared to the
subject's solution of the task one and two years later. These comparisons
show that the subject uses mainly the same strategy or set of rules on the
three occasions, even though the particular solutions on each occasion were
rather different in terms of time to solution and answers given.
Processing errors and rule modification are two factors that can explain
the differences in behavior, rather than switches in the strategies the
subject used. The study gives support to the hypothesis about stability of
strategies.

Introduction

Problem solving strategies have been studied in different task domains from
a developmental as well as a learning point of view. Both these research
areas are mainly concerned with aquisitions, switches, or modifications of
the rules constituting a strategy. The studies are not aimed toward
testing hypotheses about the stability of the strategies they identify.
The changes are the main target of the research.

A third, neglected, approach is considered in this paper. Namely, what
aspects of strategies remain constant and are used again after a solution,
or after repeated solutions, to a given problem. For instance, what would
be expected if the subject of the Anzai and Simon study (1979) was asked to
solve the Tower of Hanoi puzzle once again, a year later? Will she again
begin with forward search, with a recursive sub-goal strategy or with
something quite different? Will she use any of those rules she aquired
through the repeated solution of the puzzle? What about S3 in the
paradigmatic study by Newell and Simon (1972)? Are there any reasons to
assume that he would solve DONAID + GERALD = ROBERT in a similar manner if
he was to solve it now, in 1980, as he did the first time, several years
ago?
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It is assumed that a strategy aquired and used by a subject in one
situation and on a given task must reflect something stable in his/her
intellectual skill. As a working hypothesis it is proposed that strategies
are stable over time, rather than fluctuating from situation to situation.
In other words, the rules used to guide the search (Newell & Simon, 1972°
Newell, 1979) in one problem solving situation should be used again in a
later situation. .

This hypothesis was investigated in a longitudinal case study. Briefly,
one subject solved a spatial series task three times with one-year
intervals. A production system, modeling the subject's strategy, was
constructed on the basis of the first solution. The behavior of the
program was compared to the other solutions, one and two years later. On
the surface of the behavior there were dramatic differences. The computer
model made it possible to analyze these differences and yielded one and the
same set of rules generating the three solutions.

Background of the Protocols

The type of task used in the study is called spatial arrangment tasks and
is extensively discussed by Ohlsson (1980). An example of this task is
given below.

A few persons are sitting in a sofa. Eva is sitting to the right
of Carl. Ann is sitting leftmost. David is sitting immediately
to the left of Eva. Bob is sitting between Ann and Carl. Who is
sitting immediately to the left of David?

This text describes a spatial series of five persons: Ann, Bob, Carl,
David, and Eva from left to right. The problem is to find a particular
relation in this arrangement.

The subject was a male psychology student. He was asked to solve the above
task three times with one-year intervals. He was also asked to think-aloud
during the problem solving. The verbalizations were tape-recorded and
transcribed into protocols. 1In the protocol, the verbalizations were
segmented into fragments. The criteria for separating two ' fragments was
the occurence of a pause. The names in the task were different from
occasion to occasion in order to avoid direct recognition.

Variations in the Solution Processes

Table 1 presents time to solution, number of fragments, and answers given
in each protocol. On the first occasion the subject gave first an
incorrect answer (Bob) and then the correct one (Carl). He also gave an
incorrect answer one year later, but a different one (Eva). Two years
later, the solution did not contain any incorrect answer. As is seen, the
protocols contain a varied number of fragments and the times to solution
are also quite different.

Clearly, the solutions are not identical. That is, there is no stability
in these traditional types of behavioral data, which means that the surface
of the behavior varies from situation to situation. The simplest
conclusion is that there is not a stable strategy behind this behavior, but
completely different strategies. However, Table 1 does not contain any
information about what strategy has been used. It only shows that the
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particular overt behaviors are different. It is the purpose of the next
sections to show that the pattern in Table 1 was generated by one and the
same set of rules, and thus, to reject the above interpretation.

Table 1. Answers, fragments, and times found
in the protocols showing the great
variation in the behavior.

Occasion Ansvier Number of Time to
fragments solution

1 Bob,Carl 61 3:00

2 Eva,Carl 134 7:35

3 Carl 54 2:35

The First Protocol

The protocol can be divided into four episodes separated by three backups.
The entire protocol shows that the subject successively tried to build a
series of the objects or an internal model of the problem situation. Thus,
he used some variant of the Method of Series Formation (Chlsson, 1980°
Quinton & Fellows, 1975). Mainly, the differences between the episodes
consisted of the construction of partial models. For instance, in the
first episode he only built a model of three objects, in the second he
extended that model by one object, in the third, the final model was built,
but the answer was incorrect since he displaced two objects. In the last
episode, he delivered the correct answer after building the complete model
from the beginning. Each episode began in a similar way. The subject read
the first premise and translated it into a series or model. Then he read
the next premise and tried to integrate the new information into a new
series, and so forth. However, he did not extend the model unless he was
sure about its correctness.

The interpretation of the protocol is that a search tree was successively
expanded in long-term memory. If a series was to be extended, the subject
had to recognize it as well-known. That is, if a series existed in the
tree, the subject became certain about its correctness and then he extended
it. Note that he did not utilize the tree in backups, its only purpose is
to recognize and check the current model. A detailed discussion of the
protocol and its interpretation can be found in Hagert (1980).

A Simulation Model for the First Solution
Eight rules of the strategy were identified in the protocol and each of
them is represented as a production. Five of these are purely strategic
rules, containing information about what reading, translation, and
integration is and when to do these operations (Hagert, 1980). Two of them
are rules for backups, i.e., they contain information about when to begin
all over again. A final rule handles the interface between working memory
and the search-tree in long-term memory (Hagert, 1980).
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In addition to the eight strategic rules, a set of inferential productions
are used as background knowledge, i.e., they constitute a hypothesis about
the subjects knowledge of spatial concepts. This knowledge is embedded in
the three main operations which the subject used. These are: (i)
Translate a Proposition (TP) into a model, (ii) Integrate a Proposition
(IP) into the model, and (iii) Answer the Question (AQ). They are also
represented in productions (see Ohlsson, 1980).

The productions were implemented in the PSS language (Ohlsson, 1979). All
in all, the program consists of 169 productions of which 157 are
inferential productions. Thus, the eight rules that constituted the
strategy are translated into 12 PSS productions (see Hagert, 1980).

The run of the program showed that it almost completely reproduced the
first protocol. The wrong answer in the third episode was not simulated.
In this episode the program did a direct backup, rather than trying to
answer the question as the subject did. With the exception of this event,
the program reproduced the contents of the protocol and the backups made by
the subject. 1In other words, the program explains 98 percent of the
fragments in the protocol. Thus, it can safely be concluded that the
present model is a sufficient model of the strategy which the subject used
in his first solution to the task.

Stability and Change of the Strategy

The program will, of course, solve the same task in exactly the same way at
different occasions. However, as already noticed, the subject did not seem
to do so. At least not at a first glance on Table 1. 1In fact, if the
trace of the program is compared to the protocols given by the subject on
occasions 2 and 3, the program only explains about half of the fragments.
However, a close look at and analysis of the differences show two different
factors that change the solution processes without affecting the strategy.
That 1is, the eight rules discussed above are not dramatically exchanged or
transformed. The factor that caused the different behaviors on the second
occasion is called processing error. The other factor changed the behavior
on the third occasion. It consisted in a slight change of one rule in the
strategy, and 1is therefore called a rule modification. They are both
briefly discussed below.

On the second occasion the subject did not evaluate the predicates in the
premises properly. The model he constructed of, for instance: "Eva is
sitting to the right of Carl", was from left to right: Eva Carl. That is,
in the resulting model the objects were ordered as they appeared in the
premise. When this processing error was corrected, it resulted in another
error. The subject detected that he must reorder the objects in the
premise to get a correct model. However, he reordered them irrespective of
whether the predicate was "left of" or "right of". He entered another
processing error. The protocol contains 109 fragments out of a total of
134 in which these two errors prevented him from solving the task. Now, if
the program is executed with corresponding processing errors, it reproduces
90 percent of the protocol. The subject used the same set of rules, but
the particular solution process was changed and affected by a factor in the
situation: the processing errors. Thus, even one year later the program
is a sufficient model of the strategy the subject has aquired and used in
two solutions.

The behavior on the third occasion was also different from that predicted
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or expected by the production system. The factor that changed the behavior
. was a rule modification. As can be recalled, the subject utilized a search
tree to check the correctness of the internal models. However, he did not
utilize it in the backups. In the third solution to the same task within
two years he began to utilize the search tree more effectively. That is,
instead of backing up to the inital state and starting all over again, he
backed up to a more recent model in the search tree and continued to extend
that model. Thus, one of the two backup rules in the strategy has been
modified. The change in the production system corresponds to a slight
modification in the action side of this production. This modification
implies that the program explains 90 percent of the protocol. Thus, even
two vears later the subject used the same set of rules, although one of
them was modified. The stability of the strategy is obvious.

To sum up, three simulations have indicated that a seemingly dramatic
variation in behavioral data does not necessarily imply great differences
in the strategy which generated those data. Stability and generality in
problem solving behavior can be found, but on the level of strategies.
Research into these aspects of strategies is important for the theory of
thinking in general, and in particular, for instruction and education.
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SPONTANEOUS SPEECH AS A FEEDBACK PROCESS

Edward Hoenkamp
Psychological Laboratory
Nijmegen,
. the Netherlands

Abstract

This paper explores some minimum requirements for a sentence generat-
ing program that claims psychological plausibility, in that it can
exhibit the dysfluencies that characterize the spontaneous speaker. A
monitor i1s used to compare what the speaker says, with what he intends
to say. To this end a feedback loop is introduced which contains a
parser, The research reported here is based on empirical evidence in
the literature. The implementation is an effort to use the AI paradigm
for theory building in psychology.

1. Introduction

From a practical point of view, 1linguistics is the study of written
language. There are however phenomena that are rarely met in written
language which occur very frequently in unprepared speech. Such speech
comes in fits and starts. It involves pauses, "uh"s, repeats and correc-
tions. These phenomena indicate cognitive activity commonly assumed to be
present for the benefit of speaking itself. No wonder that virtually all
information about speech execution is derived from data about dysfluencies
(in the literature also refered to as "speech errors" or "hesitation
phenomena". See [Maclay & Osgood, 1959] for a classic account, and [Clark &
Clark, 1977] for an overview. Excluded from my research are slips of the
tongue and stutters). Common types of dysfluencies are:

(1) Silent pause Strike the // return key.
(2) Filled pause Strike ,uh, the return key.

(3) Repeats Strike the return / the return key.
(4) False starts Strike the control / the return key.
(5) Corrections Strike the rubout -~ I mean, the return key.

A language producing program that can account for errors like these may be
said to define a psychologically plausible model of human sentence produc-
tion. In other words, given an input sequence of conceptualizations, the
control structure of the program should determine the kind of errors in a
non-ad-hoc fashion,

The process of sentence production involves content, form, and sound. Con-
cepts come up in the mind of the speaker; in some way he selects to-be-
verbalized conceptual structures. Call this the process of conceptualizing.
To transform these structures into a linguistic form may involve splitting
the structure or assembling several structures into messages. Coding the
messages into linguistic units is called formulating. Eventually, the out-
put of the formulation process is handed over for overt articulation. 1In a
program, one obviously has to pipeline the inputs and outputs of the
processes. In previously existing programs a conceptual structure was input

* This work was supported by the Netherlands Organization for the Advance-
ment of Pure Research (ZW0O), under contract 15-30-06.
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into the generator and a complete sentence was to be produced in one go.
I.e. conceptualizer and formulator worked sequentially. As will be shown in
the next section, it is plausible that in human speech production these
processes run in parallel. This introduces a potential interference. Actual
speech is rather smooth, so the system must be governed by a device that
brings the communication within certain limits. This device is called the
monitor.

2. Monitoring the formulation process

Most people can allude to the sensation of starting a sentence without quite
knowing what they intend to say or how to say it. Consequently, the formu-
lator sometimes makes grammatical commitments that may give rise to problems
when a new conceptual input arrives. A monitor could be helpful at the con-
ceptual level. Another source of interference is the order in which the
conceptual structures are input in the formulator. One cannot a priori
assume that words (or groups of words) are produced in this same order. The
word-order is a grammatical constraint that should not limit the order in
which thoughts arrive. Clearly, the monitor is not only supervising the com-
munication, but also has to watch the end products of all the processes.
Suppose the conceptualizer delivers some structure as input to the formula-
tor (generator). The formulator will then begin producing an utterance that
expresses the given meaning (close enough in the given circumstances). Half-
way through the sentence the conceptualizer comes up with a new structure,
The formulator has to get this new information into the unfinished sentence,
preferably in a grammatical way. To see what the program does in such
situations, look at the following output (the examples were taken from
[{DuBois, 19741:

(a) I want to lease -~ or rather,sublease —- an apartment.
(b) We drove 90 miles -- well, 85 —- all the way to Santa Fe.
(¢) He hit Mary -- that is, Bill did -- with a frying pan.
(d) I really love -~ I mean, despise -- getting up very early.

During the formulation of a sentence, the conceptualizer increments or
amends a conceptual structure. In the program this is simulated by simply
inputting a list' of structures. Take for instance sentence (a). The first
structure that is fed into the formulator indicates that some kind of leas-
ing is involved, properly expressed with the verb "lease." After some time
the conceptualizer produces a structure that gives a more precise sketch of
the action, namely one where the verb "sublease” would be more appropriate.
The monitor now recognises that what was said already, differs only in
nuance from the new structure. This diagnosis is signaled by the phrase "or
rather".

It should be noted that even if conceptual structures have been output, no
corrections are needed as long as these structures are not overtly formu-
lated. Therefore, it would not suffice to compare the succesive structures
produced by the conceptualizer. Instead, the successive conceptual inputs
must first be passed through the formulator; only then the monitor compares
the next conceptual input with (the meaning of) the partial sentence so far
constructed. This is where a feedback from the output is required. The
implementation covers the monitor, the generator, and the parser. As said
before, the conceptualizer is simulated. The next figure may help to clar-
ify the mechanism.
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3. Implementation

The moment one starts programming a system for natural language processing,
it 1is necessary to choose a notation to represent the meanings underlying a
language utterance. The notation used in this implementation is akin to con-
ceptual dependency. However, care 1is taken to separate the functions
depending on this representation from the main control structures of the
system.

3.1. The formulator

Two early ancestors of our formulator are transformational grammar and the
ATN mechanism. Of primary concern for a psychologically interesting system,
however, is that people most of the time want to convey a meaning (or con-
tent), not a form. To do this, a device is needed that transforms a
meaning-representation into a linguistic form. Examples of such devices are
the generator of Simmons and Slocum [1972], with semantic networks as input,
and the one by Goldman [Schank, Goldman, Rieger, 1975] based on conceptual
dependency notation. More recently McDonald [ forthcoming]l implemented a gen-
erator that can even be used for a diversity of meaning representations.
There 1is a way in which these generators are a special case of the present
formulator. Remember that the formulation (and overt utterance) of a sen-
tence starts before a message has been completely worked out by the concep-
tualizer. As a result, one of the goals initially set for the generator was
piecemeal (or incremental) production. More generally speaking, the aim of
the theory was not to use it as part of a Q/A system but to describe a
sophisticated model of human sentence production. This has some importance
for the linguistics encoded in the actual implementation of the program. The
structural flexibility is given precedence over a large vocabulary. This has
two consequences. The program uses grammatical constructions that range over
a fair amount of possibilities (e.g. virtually all interrogatives in Dutch).
The vocabulary itself, on the other hand, is rather small at the time of
writing this paper. It contains a few nouns representing animate and inani-
mate entities. Dutch verbs were partitioned into different groups of simi-
larly behaving verbs. For each group one or two verbs were taken as
representatives. In addition, enough function words were included to make
sentence building possible. The psychological plausibility of the theory is
reflected by the ability of the program to translate a series of cumulative
meaning representations into a piecemeal production of the sentence. To do
so, the program keeps track of the syntactic restrictions posed by earlier
parts of the utterance, while incorporating the new semantic information.
The generator was written for Dutch, but a small version for English was
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used to produce the given examples.

This section does not cover all the interesting aspects of the generator.
E.g. one of the properties of the control structure is that normally consti-
tuents are delivered in their entirety. This explains why in examples (2)
thru (5) the correction starts at the boundary of the noun phrase, which is
in line with the bulk of psycholinguistic findings. All this information,
including a precise description of the generator can be found in [Xempen &
Hoenkamp, 197973,

3.2. The parser.
The parser currently in the system, is a stripped down version of Riesbeck's
ELI. Details are to be found in the Yale AI publications (e.g. [Riesbeck,
1975]1) A new parser is being developed here, which is more in line with the
particular model proposed. It resembles ELI in that it is strongly conceptu-
ally guided, and in that it parses a sentence word-by-word, 1left-to-right
while building a meaning representation. The main difference is that it is
less top-down (1).

Not only the parsing mechanism itself had to be scrutinized, also for the
knowledge base it uses there are some important observations. Speaker and
listener do not access information in the same way, and they use a different
world-model. In the program therefore the strategy is adopted that the
speaker parses his own utterences in a knowledge model he expects to be
available to the listener. This may explain what happened in example (c¢) of
section 2. Using the speaker's knowledge base, the formulator decided to
use a pronoun for Bill., The parser, using a model of the listener's
knowledge base, does not find a referent, The monitor then concludes that
reference-editing is necessary, which is signaled by using the phrase "that
isll . .

An another important point is that the speaker knows what he 1is talking
about. This has two observable consequences, First, the listener often
corrects the speaker, but there is a strong preference for self-correction.
Second, when the speaker parses his own sentences problems of ambiguity or
referent resolution may be absent. Evidence for this is that the 1listener
sometimes notices an ambiguity that is not observed by the speaker.

3.3. The monitor

At the time of writing, the editing is done via a few simple rules that
depend on the specific meaning representation used here. Hopefully a heuris-
tiec will be found to diagnose the different kinds of editing in a more gen-
eral way.

The phrases used during editing ("uh", "I mean", "that is") are more or less
specific for the type of editing. (Try to use "well" for "I mean" in: "Sea
shells, -I mean-, she sells sea shells...") The types of editing the program
can handle are the corrections of the examples (a) through (d), and are
classified as: (a) nuance editing, (b) claim editing, (c) reference editing,
and (d) mistake editing. The last one is the default. Also the wrong phrase
can make a sentence sound less grammatical These phrases probably bypass the
formulator, (and in the program are inserted by the monitor itself). That
people do likewise is suggested by the observation that people speaking a
foreign 1language, sometimes use an editing phrase appropriate to their
native language.

(1) I am very grateful to Larry Birnbaum (Yale-AI), for valuable comments,
especially concerning implementation details,
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(3ome important linguistic issues, such as anaphora and ellipsis, seem to
lie within the scope of the monitoring device, and need not be handled by
the formulator, as the monitor knows what is said).

The programs run as separate LISP images under the UNIX operating system
which supplies the pipes for communication.
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How to Program a Society

Kenneth M. Kahn
MIT AI Laboratory (currently at the University of Stockholm)

ABSTRACT

Conventional programming languages are inadequate for constructing
reasoning systems organized as communities of autonomous
individuals. They lack a means of conveniently describing the
behavior of individuals, the relationships and communication
conventions between individuals and subsocieties.

This paper presents the thesis that "actor" languages are ideal as
an underlying base in the implementation of societies. The language
"Director" is presented as an example of how one can implement
individual reasoning agents as actors and their interaction as
"message passing”. Communication and control conventions are
established between the actors to form composite actors that
correspond to subsocieties. An example of a large actor system
called "Ani" which was implemented in this manner is presented.
Portions of Ani's reasoning in creating an animated film are used
as illustrations of an actor-based societal reasoning style.

INTRODUCTION

This paper attempts to deal with some of the issues of reasoning by
a society of experts by concentrating on a particular example. The
example is drawn from the operation of a program called "Ani" which
was designed to create simple computer animation in response to
vague high-level story descriptions [Kahn 1979a). Since Ani is a
very large and complex system we select just one small portion of
its reasoning in creating an animated version of the story of
Cinderella and analyze it in detail. Ani was implemented in an
actor language called "Director”.

Societal reasoning can best be understood in contrast to the more
conventional "monolithic" reasoning. The conventional metaphor for
an AI program is an individual which can access or modify facts by
searching or modifying its knowledge base. The society metaphor is
a community of individuals each of which can directly access and
modify its own knowledge and must interact with others when that is
insufficient. A monolithic reasoning system's components are very
dependent upon their "caller" for direction, context, and
resources. The components of a societal reasoning system are
independent processes which conceptually are concurrent. The
components of a monolithic reasoning svstem are typically
subroutines and database contexts.

Monolithic systems are implemented with subroutines and databases;
expert systems are constrncted out of "actors" which combine in a
single entity both subroutines and databases. An actor is an active
computational entity consisting of a procedural component called a
"script” and "acquaintances" which roughly correspond its state.
Computation in an actor system consists of actors sending messages
to each other,

Various computer languages have been built upon the concept of
actors. Among them are Smalltalk ([Goldberg 1976] and [Ray 1977)),
Act 1 [Lieberman draft], an@ XPRT [Steels 1979]. Director is the
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actor language that was used in implementing Ani [Kahn 1976] [Kahn
19781 [RKahn 1979b]. Each actor in Director consists of a list of
methods, a database, its own variables, and a "parent". The methods
describe the behavior of an actor. When an actor receives a message
the patterns associated with each method are checked to gee if they
match. If so the action associated with that method is invoked.
Otherwise the message is passed along to the "parent" of the actor.
This "buck passing™ to parents provides simple hierarchical
inheritance of behavior. The parent is also queried when an actor
does not know about an item in a database or the value of a
variable. In this way much knowledge is shared between actors.

AN EXAMPLE FROM THE BLOCKS WORLD

Let us consider a simple Director program from the world of toy
blocks. Initially there are only cubes and a table. We want to be
able to move blocks around and stack them up. The most
sophisticated operation is to put a cube on top of another perhaps
having to clear them off first. We also want to be able to make
inquiries about the locations and relationships of the different
objects.

We can define blocks as follows. Notice that most of the work of
the program is done by recursively invoking the "clear top" method.

(ASK something MAKE block)
;create an actor named "block" whose parent is "gomething™
(ASK block DO WHEN RECEIVING (move to (top-of ?another))
;swhen I receive a message to move on top of another block
(I clear top) ;I clear my top
(ASK “another clear top) ;;:;zlear the top of my destination
(I MEMORIZE (underneath-me “another)))
3:I memorize that the other is below me
(ASK block DO WHEN RECEIVING (clear top)
; swhen asked to clear my top of blocks
(I RECALL AN ITEM MATCHING (on-top-of-me ?something-above-me) THEN
(SCRIPT (ASK ,something-~above-me move to (top-of the-table)))})))
(ASK block DO WHEN RECEIVING (MEMORIZE (underneath-me ?some-other))
:;when asked to memorize that something is underneath me
(I RECALL AN ITEM MATCHING (underneath-me ?something-below-me) THEN
3:If I already think something else is below me T forget it
(SCRIPT (I FORGET ITEM (underneath-me ,something-below-me))
s3and tell that other thing to forget it
(ASK ,something-below-me FORGET ITEM (on-top-of-me ,myself))))
(CONTINUE-ASKING) ;;really memorize it
s;ask the other to remember I'm above it if it doesn't already know it
(ASK “some-other MEMORIZE (on-top-of-me “myself) IF ITS NOT ALREADY))

THE ROLE OF COMPUTER GRAPHICS

Director is not only a language designed for building object-
oriented reasoning and simulation systems but is also a full-
fledged graphics and animation language. Actors provide a very
powerful and convenient means of describing and programming dynamic
graphics. Director has been used to graphically represent complex
structures in an "intelligent® manner, in particular a Director
program called DIAGRAMER which creates diagrams [Kahn 1979a].
Graphics is a great aid in depicting, debugging, and explaining
what is going on in any complex system and so its use in AI
programs in general is appropriate. (And perhaps one day its use
will be considered indispensable.)
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In our blocks world example we would like to be able to see these
blocks as they are moved around. For reasons of space, the
modifications to our little program to show the blocks as they move
has been ommitted. Essentially three changes were necessary:
changing the blocks to be instances of Director's prototypical
graphical actor, adding a method to "Block" giving them an
appearance consisting of a label and a square, and modifying
"Block's" "move to ..." method to also change the position of the
block on the display screen.

A COMPARISON WITH GLOBAL DATABASES

Extending our simple program to include objects such as pyramids
that cannot have any object on top of them or a robot arm that
moves the objects is straight-forward. Blocks can easily be changed
to permit more than one block on top of them. If the table has a
limited area then it can have a method for allocating space. A
history of block movements can easily be kept and used as a source
of explanations. These kinds of extensions are no more difficult,
and often simpler, than in the more monolithic systems that
maintain all this information in a global database.

One difference between this object-oriented approach and a global
database system is its greater efficiency at the price of less
flexibility. Given a particular object what is immediately above or
below it is readily available. Fanning out from there to answer
questions like "what is two blocks above it" is not difficult. We
can add a method for answering such questions as follows.

(ASK block DO WHEN RECEIVING (what is ?n blocks above you)
(COND ((= n 0) myself) ;;I'm no blocks above myself
(T (I RECALL EACH ITEM MATCHING (on-top-of-me ?someone-on-me)
THEN ;;I ask each one above me what is one less above it
(ASK “someone-on-me what is “(1- n) blocks above you})}))))

This contrasts strongly with the way that transitive relationships
are typically handled in an "assertional" database. The above
method is an object-oriented analog of antecedent reasoning.
Consequent reasoning can be handled as easily. One possible
objection to this way of handling transitive relationships is that
it places a much larger burden on the system builder. It also
predetermines whether the piece of knowledge that "above is
transitive" is to be used in an antecedent or consequent manner.
Finally, the fact that "above is transitive" is not itself explicit
knowledge that can be reasoned about. One way to resolve these
difficulties in an object-oriented framework is to create an actor
for transitive relationships and have "above"™ (among many others)
be instances of it. The actor for transitive relationships would
then know how to chain together facts. Actors like "Block" will
call upon it for help when appropriate.

So far we have been concerned with questions that are directed to a
particular object. However, if no object is given then it is often
awkward and expensive to find the one referred to in order to ask
it a question. A question like "what is on top of the big dark
block" to a global database could be answered as follows,

(ASK the~blocks~-world RECALL AN ITEM MATCHING
(on-top-of-me {AND {big ?block} {dark ?block}} ?other-block)
THEN other-block)
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Since by default in Director an actor has a list of all of its
instances we can take a hybrid approach and search through such
lists when necessary. The above example would then be

(ASK block BROADCAST TO YOUR OFFSPRING
IF (AND (big (your size)) (dark (your color))) THEN
(RECALL AN ITEM MATCHING (on-top-of-me ?other-block) THEN other-block})

The major computational advantage of an object-oriented
organization over a more global one is that certain questions can
be answered without any search. The cost is that many other
questions are more awkward or expensive to answer. It is the
implementor's task to anticipate those questions that will be the
most frequent and arrange so that the objects involved directly
know the answer.

What is expensive or awkward on a serial computer sometimes becomes
cheap and straight-forward on very parallel machines. Actor systems
are conceptually parallel and as such much better equipped to take
advantage of multi-processors. A global database, for example, must
be locked to prevent timing errors and as a result becomes a
serious computational bottleneck. With the same knowledge
distributed among many actors only a small subset of them need to
be locked at any one time.

WHAT ANI DOES

Ani is a computer system which, when presented with a high-level
description of a film, attempts to create an animated film based
upon that description. A user presents Ani with partial
descriptions of the personality and appearance of the characters
involved, of the relationships and interactions among the
characters, and of the type of film desired. Ani integrates this
information with more general knowledge and produces a detailed
film description that in turn is run by Director.

Ani is a very large program which performs a complex and creative
task. Since Ani was implemented in an actor-based language it
provides evidence for the claim that actors are useful building
blocks for implementing large AI systems. Inside Ani each animated
character is an actor, as is every descriptor, character
comparison, choice point, plan, method, scene, relationship and
activity. The convenience of being able to place knowledge in an
actor by adding items to a database associated with each actor and
the power of being able to associate arbitrarily complex proyrams
with the same actor were very important in implementing and
modifying Ani. The use of actors eased the task of keeping the
different components and bodies of knowledge of Ani as independent
and modular as possible. Without this high degree of modularity,
Ani would have been more difficult to design, implement, and debug.

The style with which an AI program is implemented is very
important. It affects the ease of program construction and
modification. The style strongly influences what sort of
organization and structure an AI program has. The programming
language used, in turn, strongly influences what programming styles
are practical, convenient, and natural.
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PICKING A SPEED FOR A STEPMOTHER

We now concentrate on a small sample of some of Ani's reasoning
while designing an animated version of the story of Cinderella., In
making this film Ani must make myriad choices about what should
happen in the film and how the different characters should behave.
To help establish the personality and relationships of the
characters of the film Ani constructs a "typical dynamics" for each
character. This describes the normal or default way of moving for a
character. Whether a character typically moves quickly and directly
or slowly in long graceful curves, whether a character moves boldly
or avoids anyone along its path contributes to giving the
characters in the films their own personality. A description of
Cinderella as happy will tend to make her move faster and in "bouncy”
curves. This tendency to move quickly in a bouncy manner can be
negated by other descriptions {e.g. that Cinderella is shy) or
modified by events (e.g. when running to meet the Prince she may
move faster than normal but more directly).

The example we will study in detail is how Ani determines a typical
speed for Cinderella's stepmother. The choice must take into
account the personality of the stepmother and her relationship with
the other characters. The choice cannot be optimally made in
isolation but needs to be made in coordination with other choices,
especially the choices of the speeds of the other characters. Ani
makes this choice by creating "choice points”" which are actors who
are each responsible for a particular choice. The choice point for
the stepmother's speed, for example, is responsible for gathering
up suggestions, trying to make sense out of the suggesgtions
gathered, interacting with other choice points, maintaining the
current state and justifications of any decisions made, and
deciding whether to try to postpone work on its choice.

All that Ani is told about the stepmother is that she is physically
ugly and is mean, selfish, strong, and evil. She dominates and hates
Cinderella who is obedient and tolerant of her stepmother.

HOW HER SPEED WAS CHOSEN

"Choice points" are created to represent the process of picking
typical speeds for each character. The choice point for the
stepmother's speed, for example, begins by asking each of the
descriptors of the stepmother for suggestions for her speed. Only
the description "Strong" replies and suggests a high speed. The
choice point is not happy with just that because there are not
enough reliable suggestions. So it asks permission to be postponed
to wait for more information to become available and it is granted.

When the choice point for the stepmother's speed is reawakened, it
inspects its record of previous activations. It then asks the
choice points for the relative speeds of the stepmother and the
other characters for suggestions. These choice points are created
in response to this request and they choose values (e.g., that the
stepmother be faster than Cinderella because she dominates
Cinderella and differs From her), but cannot make any concrete
suggestions since none of the characters have speeds yet. The
choice point for the stepmother's speed asks permission to postpone
to wait for the speeds of the others to be determined and it is
granted.
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The choice points for the other characters also ask and are granted
permission to postpone. This could potentially lead to a deadlock
in which the four choice points wait for each other to make a
decigion. One of the reasons the choice points don't just postpone
themselves, but instead ask permission first, is to avoid this type
of situation. A postponement manager keeps track of the situation
and will not grant someone permission to postpone for the same
reason twice. A common exception to this is when the choice point
is waiting for other choice points to finish and at least one of
these is making progress. In this case, no one is making progress
so the postponement manager must refuse permission to at least one
of the choice points.

Ani is built upon the principle that as few decisions as possible
be determined arbitrarily. The decision as to who should be refused
permission to postpone has too many consequences to be determined
by something like who asks first. Instead the postponement manager
asks the "focus", which indicates that conveying the personality of
Cinderella is important. The choice point for Cinderella's speed is
refused permission causing the speed to be based on the description
of Cinderella without being constrained to be faster or slower than
the others.

The choice point for the stepmother's speed finally gets
suggestions from the relative choice points. It discovers conflicts
with one of these suggestions and the earlier suggestion it had
received from "Strong" and postpones again. Upon being resumed the
choice point asks the descriptions of the film's style for
suggestions and receives them from the moderate variety level, high
energy level, and low flashiness. Unfortunately they do not all
agree and so the choice point postpones one more time.

When it is reawakened it discovers that there are no more sources
of suggestions and proceeds with what it has. First it attempts to
make compromises between the conflicting suggestions and makes one
that in turn generates a new conflict. Excuses are found for
rejecting some of the conflicting suggestions. The choice point
finally picks a high speed for the stepmother and saves away a
justification for this choice.

A MORE DETAILED LOOK

Consider the first paragraph of the previous section. What do the
sentences mean? How does a "choice point" ask "each of the
descriptors of the stepmother for suggestions for her speed"? How
can one ask "permission to be postponed"? In this section we
present very detailed answers to these questions.

First we consider what the sentence "Choice points are created to
represent the process of picking typical speeds for each character”
means. The choice point for the stepmother's speed is created as
follows,

(ASK absolute~choice-point MAKE (choice-point-of stepmother speed))

This creates an actor named " (Choice-Point-Of Stepmother Speed)"
which is an instance of "Absolute-Choice-Point". This newly created
actor just knows its task is to choose a speed for the stepmother.
When it cannot handle a message it will ask "Absolute-Choice-Point"
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its parent, to handle it. "Absolute-Choice-Point" can handle a few
trivial messages and otherwise passes them on along to "Choice-
Point™ who can handle about ten different messages ranging from
requests for making a choice to receiving and combining groups of
suggestions. "Choice-Point"™ in turn passes those messages it cannot
handle on up to "Something", Director's prototypical actor.

Some actor wants to know what the stepmother's speed is so it sends
the new choice point a message asking it for its choice as follows.

(ASK (choice-point-of stepmother speed) RECALL YOUR choice)

A method for "recall your choice" is found in "Choice-Point". The
real method is long and complex so what follows is a simplified
version. The method was added to "Choice-Point"” as follows.

(ASK choice~point DO WHEN RECEIVING (recall your choice)
(COND ({(I RECALL MY current-choice))
::1 answer with my current choice if I have one, otherwise
(T ;;1I recall what my reasons for previously postponing were
(LET ((postponement-reasons (I RECALL MY postponement-reasons)))
(COND ( (NULL postponement-reasons)
;;There are no reasons so this is my first try
(I combine suggestions
::I combine the suggestions I get by asking
1* (I collect suggestions from
;smyself for suggestions from
;sthe first of my suggestion sources
“{(FIRST (I RECALL MY suggestion-sources)))))
(T ;;If I've previously postponed work on my choice
(I continue to recall my choice
despite “postponement-reasons)))))))
try to continue, taking into account the difficulty. The methods
or handling this gather more information, resolve old conflicts
etween suggestions, or try to postpone work until more is known

\.\.\.
e we e
T rho

The running of this method produces the following series of transmissions.
(ASK (choice-point—~of stepmother speed) RECALL YOUR current-choice)
NIL ;3;NIL is returned indicating no choice has been made vet
(ASK (choice-point-of stepmother speed) RECALL YOUR postponement-reasons)
NIL ;;Returning NIL means that this is first time
(ask (choice-point~of stepmother speed) recall your suggestion-sources)
;;The following is returned after being found in "absolute-choice-point".
((absolute~suggestions ;;These first three sources are grouped together
neighbors-absolute-suggestions ;;indicating that they should be
opposites—-absolute-suggestions) ;; explored together
relative-suggestions global-suggestions)
;;This results in the next transmission
(ASK (choice-point-of stepmother speed)
collect suggestions from (absolute-suggestions
neighbors-absolute-suggestions
opposites-absolute-suggestions))

The last transmission invokes a method in "choice-point" which
collects suggestions of each type by sending messages which invoke
methods such as the following.
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(ASK choice-point
DO WHEN RECEIVING (collect suggestions from absolute-suggestions)
;;when I get a message asking for absolute suggestions
(I ASK MY thing ;;I ask the object I am making some choice about
;31to collect suggestions for the element in question
collect suggestions for “(I RECALL MY element)))

This method causes a message to be sent to the stepmother asking
her to collect suggestions for her speed as follows.

(ASK stepmother collect suggestions for speed)

The method invoked by this transmission had been added to an actor
named "character”, the stepmother's parent, as follows.

(ASK character DO WHEN RECEIVING (collect suggestions for Z2element)
;iswhen I get a message asking for suggestions for an aspect of myself
(I RECALL EACH ITEM MATCHING

ssfor every item in my database matching the following pattern
(description type ? :;;any type of descriptor is fine
descriptor ?the-descriptor ;;call it "the-descriptor"
source ?) ;j;any source
THEN (SCRIPT
(ASK ,the-~descriptor COLLECT ITEMS MEMORIZED MATCHING
23T ask the descriptor to search for items matching
;;a suggestion whose element is what we are looking for
(suggestion element ,element
value ? strength ? source ?)))))

The method above initiates the following transmissions.

(ASK strong COLLECT ITEMS MEMORIZED MATCHING
(suggestion element speed
value ? strength ? source ?))

({(suggestion element speed :;;a high speed is recommended
value high strength medium source strong))
3:"ugly”, "evil", "mean", and "selfish" are also asked but reply NIL

The " (Choice-Point-0Of Stepmother Speed)" returns this suggestion in
response to the message "(collect suggestions for absolute-
suggestions)". There are still two other suggestion sources waiting
to be tapped "Neighbors-Absolute-Suggestions" and "Opposites-
Abgsolute-Suggestions”. They refer to suggestions from the synonyms
and antonyms of the descriptors of the stepmother. In this case
they return no suggestions at all.

The suggestions gathered are then combined with any other
suggestions previously gathered. In this case there is only the one
from "Strong", so no conflicts are looked for, no compromises
sought, or problems postponed. (Combining suggestions is a complex
process that would at least double the length of this section if
included.) This suggestion from "Strong” is added to the database
of "(Choice-Point-Of Stepmother Speed)". The "suggestion-sources"
of the "{Choice-Point-Of Stepmother Speed)® is set to those sources
left, i.e. "(relative-suggestions global-suggestions)".
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We are now near the end of the paragraph. "The choice point is not
happy with just that because there are not enough reliable
suggestions. So it asks permission to be postponed to wait for more
information to hecome available and it is granted.™ An actor called
"Postponement-manager” is consulted as to what to do.

(ASK postponement-manager
should (choice-point-of stepmother speed) postpone with
{{suggestion element speed ;;:this suggestion
value high
strength medium
source strong))
0 conflicts) ;:;and no conflicts
{(postpone not-happy-enough) ;:;is the Postponement-manager's answer
s 3;The (Choice-Point-Of Stepmother Speed) then remembers the reason.
(ask (choice-point-of stepmother gpeed)
add not-happy-enough to your list of postponement-reasons regardless)

At this point the choice point has altered its state so that upon
reawakening it will know why it postponed previously, what sources
of suggestions are left, which ones have yielded suggestions, what
the suggestions have been gathered so far are, and what conflicts
have yet to be resolved. The choice point finally returns

" (postponed not-~happy-enough)” in response to the original message
"choose a value". By doing this it has indicated to the actor that
originally agked it for its choice that it has postponed its choice
until later. This actor can try to postpone or can decide to go
ahead without knowing how the choice point will decide.

Conceptually all the choice points are running in parallel and when
they run into difficulties it is up to them to ask permission to go
to sleep. It is typically to the choice point's advantage to
postpone work when faced with difficulties because upon awakening
more information is available. It is to the system's advantage to
grant permission gince it frees up computational resources.
However, to make sure that some progress is being made it is
necessary to have a postponement manager with a more global view of
the situation which occasionally refuses permission to postpone
thereby forcing the choice point in question to make due despite
its difficulties.

Rather than the more conventional manner of putting processes to
sleep by saving their state and resuming them at the same point
they were interrupted, the choice points save away what state
information they please and are woken by simply sending them a
message requesting a choice. It is up to the choice point to go
back to what it was doing when it went to sleep or to try something
new. The explicit form of "memoization" of partial results and
difficulties by choice points proved to be flexible and general. It
is up to each actor to obtain permission to postpone and to save
away what it wants for its reawakening. The major disadvantage of
this explicit memoization is that any actor that uses it must have
code that asks permission to postpone, that records a partial state
description, and inspects such descriptions upon reawakening. The
inheritance of methods and state from more generic actors greatly
reduces this burden on an implementor however.
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This long description of just the first attempt (out of ten) to
choose a typical speed for the stepmother is still sketchy. I hope
it has served its purpose of conveying what is it is like for a
reasoning system to operate as a society of experts.
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Abstract. This paper presents an implemented system for ths synthesis of tail
recursive programs from input-output examples .The system can be also used
to perform some new recursive to iterative transforams.

1. INTRODUCTION
It nas been shown that one can synthesize non trivial programs from input-output
examples[2,3,6,7,8,9,12,14,19] but little effort has been made in the direction of
synthesizing optimized programs (see however[10]).We present here a system which
optimizes the programs relative to a "tail-recursive” criterion:as far as possible ,
we obtain tail-recursive programs that are either easily transformed into iterative
prograas or directly compiled without stack in V-LISP[5]. It has been shown [1,4]
that recursive to iterative transformations eventually improve also the computation
time as examplified by the Fibonacei furction which has a 2 power n complexity under
its recursive form while it drops down to rn under its tail-recursive form.
The programs we obtain are not always optimal, nor we reach a very large class of
functions because we were mainly concerned by the avoidance of any combinatory
explosion.
Our system divides into two very different parts . Qn2 is used to transform the
input-output examples into computation traces. The second is used to transform the
computation traces into prograas. We will further show how this second part can be
directly used 28 a powerful recursive to iterative program translater.

2. TRANSFORMING INPUT-OUTPUT EXAMPLES INTO COMPUTATION TRACES.

We start from a finite sequence of input-outputs {Xi,Yi} where i is less than an
upper bound 1, where Xi and Yi are lists. We restrict ourselves to "ascanding linear
domains®™ [9] so that the sequence Xi i3 totally ordered. We transform the given
sequence into a sequence of traces {(Pi X},(Fi X)} where(Pi X)= True if X=Xi ,False
if X is greater than Xi. This last sequence can be embaddad into IF...THEN...ELSE...
functions and becomes

(F1 X)=IF (P1 X) THEN (F1 X) ELSE ...

IF (P1 X) THEN (Fl X) ELSE undefined.

The 1limit of (F1 X) when 1 tends toward infinity can be easily shown [19] as
equivalent to a program which can be found by a study of the recurrent properties of
{Pi X) and (Fi X).
By hypothesis on the domain we know that (PLi:+1 X)=(Pi(b X)) where b is a finite
composition of CAR and CDR (thereafter called a reduction function). Section 5 is
devoted to the description of an algorithm which allows to find the recursion
relations that link Fi and Fis1.

Definition.

Let Ai be the ith occurrence of the atom A in the 1ist x and u be the unique
reduction function such that (u x)sAi. Then u is said to be the functional name of
Ai in x.

In order to obtain (Fi X) from {Xi,Yi}, each atom of Yi is given its functional name
in Xi. This leads to (F Xi) and we state (Fi X)=(F Xi).

Example.
Consider the function (F X) where X contains k atoms at its top-level. F
concatenates to the first atom of X, the (i+1)th and the ith for i=1 to k-1. An
input-output sequence is therefore : {(A)->(A), (A B)->(A B A), (A B C)->(A B aAaC
B), (A BCD)-> (ABACBDC),...}. We have shown [11] that (Pi X)=(ATOM(CDRI X))
where CDRI is the ith power of CDR. It follows that (Pi+1 X)=(Pi(CDR X)).
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The functional name of A in X2=(A B) is(CAR X2) and of B in X2 is{CADR X2), since
Y2=(CONS A(CONS B(CONS A NIL))) we have : .

{F X2)=(CONS(CAR X2)(CONS(CADR X2)(CONS{CAR X2)NIL))) and

(F2 %)=(CONS(CAR X)(CONS(CADR X)(CONS(CAR X)NIL))).

One finds in the same way that :
(F1 X) = (CONS (CAR X) NIL} ,
(F3 X) ={CONS (CAR X) (CONS {(CADR X)(CONS (CAR X)
(CONS(CADDR X) (CONS(CADR X) NIL)))))
(FY4 X)=(CONS(CAR X)(CONS(CADR X)(CONS(CAR X)(CONS(CADDR X)
(CONS(CADR X)(CONS(CADDDR X) (CONS{CADDR X) NIL))))))) .

This procedure has been implemented several times [14,15,19].

Remark.

It may happen that some atoms of Y do not appear in X.These atoms are interpreted as
constant functions. For example, let (A)->(A B C) then (F1 X)z(CONS{CAR X)(CONS
"B(CONS °C NIL))).

3.TRANSFORMING A PROGRAM INTO A COMPUTATION TRACE .

A recursive definition contains a recursive syzbol (let us call it F) and the
symbols of auxiliary functions.For instance, a classical program scheme reads :
(F X)=IF (P X) THEN(H1 X) ELSE (H2(G1 X)(F(E X))) where it is supposed that the
auxiliary predicate P takes the value True when E has been applied n times to X and
where H1,H2,G1 and E are the auxiliary functions .
We define the nth trace of (F X) by the result obtained when
1-one supposes that (P(E power i)X)zFalse if i<n-1 and (P(E power n)X)=True.
2-the following computation is carried on :

~the computation of the auxiliary functions is suspended

~the computation of the branches that contain the recursive symbol is carried
on as far as ({(E power n)X) is not reached.
For example, if X is such that (P X)=True then the trace of the above scheme is (H1
A). If X is such that (P(E(E X)))=True then its trace 1s(H2(G1 X)(H2(G1(E X)) (H1(E(E
XNl
In practice, one obtains easily the function FP asscciated to F and which writes
down the trace of F :
(FP X) = (FP1 X 'X)
(FP1 X Z)=IF (P X) THEN (CONS "H1(CONS Z NIL)) ELSE
(CONS "H2(CONS(CONS °G1(CONS Z NIL))(CONS{FP1(E X) (CONS "E(CONS Z NIL)))INIL))))
where P and E are now actually evaluated.

4.BASIC LEMMAS AND THEOREMS.
The definitions of a substitution, a matching, a 1least general term and the
algorithms that compute them can be found in [16,17,181].
We try to find recursion relations that link (Fi X) and (Fi+1 X). This is equivalent
to say that we attempt a matching between Fi and Fi+1 for all i and if

-for all i the matching succeeds

‘~for all 1 the obtained substitutions are the same
then we have reached our goal since the success of a matching implies substitutions
of the type (variable\term), these substitutions induce trivially recursion
relations valid for each i (because the substitutjons are constant for each i).
Definition.
Let Nxi be the number of leaves of the input X such that (P1I X)=True, let Nyi the
number of 1leaves of the corresponding output (Fi X).We shall say thz: F is of
polynomial increase if Nyi is a polynomial jin Nxi. Notice that we demand that the
increase behaves exactly as a polynocaial (i.e. we do not synthesize the whole class
of functions the increase of which is BOUNDED by a polynomial).

Leamma 1.
If F is of polynomial increase and if one can find recursion relations from the
traces of F then these relations involve a finite number of substitutions : one

needs a finite number of variables in order to write these relations.
Pefinitions.
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Let s be a substitution, we shall write V* = {V1,...,Vp} a vector of p variables
modified by s, namely :

s = (VIN(LT VE ), ..., (Vp\(1p V¥ ).

We write Ni the number of variables that actually appear into (1i V#). For instance,
if (VIN(CONS V1(CONS ¥2 NIL))) then N1=2.

Lemma 2.

Let F of polynomial increase. Suppose that we find a substitution s=(VI\(11
V#)),...,(Vp\(lp V¥)), where the terms of the substitution have been ordered by
HiKN2¢. . .«Np ( it follows that the traces of F have the recursion relation (Fi+l
Y=(Fi(11 v#*) ... (1p V¥*}).

then ¥1=0 or 1 and N(i+1)=Ni or N(i+1)=Ni + 1.

Theorem.[19]

Recall the definition of FL in section 2. Let F defined as Sup FL. We suppose that
there exist 2 substitutions :

s1=(¥\{b ¥)), s2=(VIN(11 V%),...,(Vp\{(1p V*)) such that

(Pi+k Y)=(Pi (b Y))

(Fisk VE )2(Fi (11 V® )...(1p V¥))

then F equals

(DE F(Y ¥® ){COND

((P1 Y)(F1 V¥ ))

((Pk Y)(Fk V#* ))

(TCR(b Y)(11 v#) .. .(1p VE)) ) ).

This theorem simply states that a program is obtained from the recursion relations
by adding a counter that expresses the properties of the domain.

This theorem can be easily extended to the primitive recursive embedding [12] where
(Fisk V¥ )=(HL VE (FL (11 V* )...(1p V* )))

It can also be extended to composition [13] where

(FL V® ) = (HL V® (Gi V* )) for all i.

As far as recursion relations ( valid for each i) are found , then the cor-
responding fuanction is known. It remains to be solved the difficult problem of
finding these recursion relations. We name BiWk the following algorithm which gives
a partial aansuwer to this problem when one wishes to avoid a combinatory search.

5. THE ELEMENTARY BMWx ALGORITHM.

5.1. General principle. The general principle of BMWk is strikingly simple : try to
mateh (Fi X) and (Fi+1 X), for 1<ig1-1, if it succeeds with constant substitutions
then the problem is solved. If the matech is a failure or the substitutions do not
remain constant then transform the sequence (Fi %) into the sequence (Gi
V1#),1Ki¢1-1, where (Gi V1%#) is the least generalization of (Fi X) and (Fi+1 X) and
V1# the vector waich coatains the variables issued from this generalization. Notice
that we disposs now of 1-1 examples only.
One attempts to mateh (Gi Vi#*) and (Gis+t Vi®), 1€i€1-2, and , again, it is either 2
success and we stop here or a failure and we gensralize each pair (G1 V1%*),(Gi+1
V1#) to their least generalization (Hi V2%). This process is carried on as far as we
do not reach a "lethal success"(further defined in 5.2.1) or a complete
generalization (all the terams are generalized to a variable ).
Checking that all substitutions are the same is a probleas by itself. This is
generally not the case 30 that we get sequencas of the type (VI\{11i V*) where
114 varies with each 1. We treat it as a new sequence of traces which we try to
reduce to a function (H V%), When this is possible the substitutions take the form
(VIN(H V%)) which is now constant. In other words, non-constant substitutions give
raise to new sub-problems. Recognizing <thase sub-problems nature and their
management will be describsd in the following after a few
Definitions.
We distinguish several types of variables

1-the domaln variable, called Y, and the predicates associated to the domain are
such that (Pi+1 Y)=(Pi(b Y)).
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2-the variables initiated by the initial wvariable X and coming from gene-
ralizations on this X variable are named Xi. For instance one can have (F X)=(FP X X
X) and we define FP by (DE FP(X1 X2 Y)...).
3-the varizables issued from a composition are called XXi.For instance , if (F
%)=(G X{H X)) we then define G by (DE G(X XX)...).
4-the variables issued from a generalization of constants are called Zi. For
instance, if (F X)=(G X 1 NIL) we then define G by (DE G(X Z1 Z2)...).
We therefore have 3 types of vectors that contain X, XX or 2 variables. These
vectors will be named X*,XX¥ or Z¥,
Recall that we match Fi and Fi+1, 1€i€1-1, and that we obtain 1-~1 substitutions
81,s82,...,s81-1,i.e. one substitution for each matching.
There are then 3 possible cases.
-first case. s1=382=...ss1l-1=Failure.
The matching has failed and we try to generalize again.
~second case. si is a success for each 1. The synthesis process begins and is
described in 5.2.
~third case. s1=...=sk=Failure for k<l-1 but sk+1,...,81-1 are successes. The k-1
first traces are considered as particular cases and the function F is written as :
(DE F(X)(COND({P1 X)(F1 X))...((Pk X){Fk X)) (T (G X)) ))
where (G X) is synthesized from the kth to 1lth examples.
5.2. The matchings succeed.
5.2.1. The lethal successes.
5.2.1.1. In the substitution si appears a pair (X\(e X)) and there exists no
substitution e such that b=z=e.c where b is the substitution which characterizes the
domain. If in the data type we are working on, ¢ 1is ,like b, the inverse of a
constructor, then the substitution c "destroys™ quicker than b and leads to
undefined computations after some recursive calls.Example. Let (A B C D)->(A),(A B C
D E)->(C),(A BCDE F)->E),.... We obtain b=CDR while the function traces are (F1
X)=(CONS(CAR X)NIL), (F2 X)=(CONS({CADDR X)NIL),(F3 X)=(CONS{CADDDDR X)NIL),... These
traces lead to (X\(CDDR X)),i.e.c:CDDR and there is no e such that bze.c. One
verifies that these examples stop at(A B C D E F G).
5.2.1.2. The substitution si contains a pair (Xk\(e Xj)) with Jj#k. Either this
happens a finite number of times and we are sent to 5.6 or this never stops and we
would need an infinity of variables.
5.2.1.3. The number of substituted variables must be constant in each si.
5.2.1.4. Supposse that we start from 1 examples anrd that we need 1-2 successive
generalizations, w2 should been left with 2 examples.
5.2.1.5. Define an order of complexity on the terms by the following rules . Let T1
and T2 be CONS trees , we say that T31 is less complex than T2 1-if T1 contains less
CONS nodes than T2 2-if they contain the same number of nodes then T2 contains more
CAR and CDR than T1.
Suppose that a generalization leads to replace a subterm T1 of (Fi X) by a variable
XX1 2nd that XX1 is found to receive the substitution (XX1\T2). This expresses the
fact that (TI\T2). If T1 is more complex than T2,it is clear that this operation
cannot be too often repeated : if T2 is replaced by T3 of less complexity and so on
then the terms would vanish. This cannot lead to constant substitutions.
5.2.2 The building of s such that Fi+1=sFi.One piecks up the constant substitutions
that appear in 81,...,sn-1 and they constitute the first part of s.
The other substitutions will lead to sub-problems.For instance,if one has
in 31 :(XXI1\(H1 X% XX* 7% ))
««s in sn~1 :(XX1\(Hn-1 X* XX# Z®)) then we have a new problem with the predicates
P2,...,Pn-1 and the traces H1,...,Hn-1. If one is able to solve this new
problem,the pair (XX1\(H X* XX* Z* Y)) will be added to the substitution s (notice
that the domain variable Y nas been added in order to obey the theorem of szction
u).
5.2.3 An example.(with a trivial generalization)
We start from the (Pi X) and (Fi X) described in the example of section 2 .
The matching of (Fi x) and (Fi+1 X) fails because one gets substitutions like
(NIL\(G X)) which lead to a failure (recall that a matching succeeds only if all
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substitutions have a variable in the 1left place, and NIL is a function of
O-arity).¥We therefore take the least generalized of (F1 X) and (F2 X) which is (G1 X
Z)={CONS(CAR X) 2Z) (and of course recall that (G1 X NIL)=(F1 X)).The least
generalized of F2 and F3 is (G2 X 2)=(CONS(CADR X)(CONS(CAR X) 2))) and the least
generalized of F3 and F§ is (63 X 2Z)= (CONS(CAR X)(CONS(CADR X)(CONS(CAR
X)(CONS({CADDR X)(CONS(CADR X) Z))))) .The matching betweean (Gi X Z) and (Gi+t X 2)
succeeds with
st= (X\X),(Z\(CONS(CADR X} 2)))
32= (X\X),(2\(CONS(CADDR X)(CONS(CADR X) Z)))
We therefore state : s={X\X),(Z\(H X ¥ Z)) ,where H is given by :
IF (P2 X) THEN (CONS(CADR X)(CONS(CAR X) 2))
ELSE
IF (P3 X) THEN (CONS(CADDR X){CONS(CADR X) 2))
ELSE UNDEFINED
It follows that sH1z (X\(CDR X)),(Z\2)
sH2= (X\(CDR X}))},(Z\2)
and the reader can verify that sH3 is the same : sH = (X\(CDR X),(Z\Z) so that H is
defined by
(DE H(X Y Z){(COND
{(ATOM(CDDR Y))(CONS(CADR X)(CONS(CAR X) Z)))
(T(H(CDR X) (CDR Y) 2)) )))
and F by
(DE F(X) (G X X NIL)) (DE G(X Y Z)(COND
((ATOM{CDR Y)){CONS{CAR X) 2))
(T (G X (CDR Y) (H X Y 2)) )))

Notice that Y 1is always initiated by X since the initial probleam is IF (Pi X)
THEN (Fi X) , that the stopping condition of G is IF (P1 Y) THEN (G1 X Z), that the
stopping condition of H is IF (P2 Y) THEN (H1 X 2), that G and H recur as indicated
by s and sH, that Z is initiated by NIL since one has (Gi X NIL)=(Fi X) for each i.
5.3 The matching fails:non-trivial gensralizations.

5.3.1 We apply first the methodology described in 5.1 : this process aust stop after
a finite time : we can introduce an only finite number of variables.Tne main problem
consists in the 1link to be found between the variables introduced at each
generalization (wh2n only one of them exists,like in S5.3.1 this link is trivially
found) .
5.3.2.An example.
Consider the (ad’hoe) sequence of input-outputs :
{ (A)->(A A &) ; (A B)->((A)(B &) B) ;
(A B C)->({(a))((C B RIBIC) ; (A B C DY->{({{8YN(((DP C B AXC B)C)D) ;
(A B CDE)->(((({8))))(((E D C B A C B)D C)DIE)}
The traces are :
(F1 X)={CONS(CAR X)(CONS(CAR X)(CONS(CAR X} NIL))) ,
(F2 X)=(CONS (CONS (CAR X) NIL)
(CONS (CONS{CADR X)(CONS{CAR X)NIL)) (CONS(CADR X) NIL)))
and we leave to the rezader the computation of F3 and F4.
The matchings fail and we get the least generalizations:
(in order to help the reader some CONS trees will now be written as actual trees a
node of which is always a CONS)
~-generalization of F1 and F2 :

(G1 X1 XX1 XX2) = XxX1

(CAR X1) NIL
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-generalization of F2 and F3 :

(G2 X2 XX3 XX4) =

XX3  NIL

XXy

(CAR X2) NIL

(CADR X2) NIL
~-generalization of F3 and FU : (G3 X3 XX5 XX6) =

XX5

NIL  {CADDR X3) NIL
XX6 (CADR X3)
(CAR X3) NIL

We have therefore :

S
st = (XX1 \ XX3 NIL),(XX2 \ xiz\\““z-~\ 1,{X1 \ (CDR X2))
(CAR X2) NIL
$2 = (XX3\ Xng\ﬁiL),(XKH \ xx{\\““7 ), (X2\(CDR X3))

(CADR X3)
(CAR %3) NIL
5.3.3 We are now able to describe our methodology with the help of the above
example. Recall now the definition of Ni in lemma 2 of section 4 : the substitutions
in si are ordered by increasing Ni.In the example s1 and s2 become :

s1 = (XX1\ xigﬁ\EiL),(x1 \ (CDR X2)),(XX2 \ xxd/h\\‘:7-\\~ )
(CcAR"X2) NIL

P )
82 = (XX3\XX5 NIL),{X2\(CDR X3)),(XXU\ XX6 )
(CADR X3)
. (CAR X3) NIL
By lemma 2 of section 4,when a substitution contains one variable in its left
part and one other variable in its right part, thase two variables must bear tha
same nam2. This allows to give the right name to the substitution with Niz1. In the
example, we know by s1 that XX1 and XX3 must bear the same name,say XX1, then we
know that in s2 XX3 and XX5 must both be called XXt . The same is true for X1,X2 and
X3.Now,again by lemma 2, we know the existence of a substitution with Ni=2 and this
substitution contains at most one of the preceding variables. We give its name to
this variable and this leaves only one unknown variable which is as before readily
renamed.This process is iterated as long as unknown variables are left.In the
example the substitutions to XX2 and XXU& contain X2 and X3 ,known for being equ2l to
X1. We therefore write :

(xxa\ xxm ) (XXUAXXG )

(CAR X1) NIL (CADR X1)
(CAR X1) NIL
and XX2,XX4 and XX6 are identified to only one variable,say XX2. The
generalizations are accordingly re-written :

G1=XX1 G2=
xx2 X
(CARX1) NIL

(CADR X1) NIL

(CAR X1) NIL
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NIL

(CADR X1) NIL (CADDR X2)
XX2 (CADR X1)
(CAR X1) NIL
5.4 Variables initialization.

Fe have now the initial sequence Fi and ths associated sequence Gi of genzra-
lizations : we have to instantiate the variables of Gi from the variables of Fi and
from constants.We mateh Gi and Fi 11€i€l-k-1 if k generalisations have been
necessary and obtain substitutions 21,z2,...,z{(1l-k-1).Recall that from the
sequence Gi we obtained alse s1,s2,...,3(1-k-2) substitutions .In zi we have pairs
like (XX1\(Mi X® XX* Z¥)) and in si we have pairs like (XX1\(Li X® XX* Z% )).If any
is more complex than Li we know that we have reachad the lethal suczess 5.2.1.5 and
we proceed to 5.5 .If not ,we act as im 5.3 and build a unique substitution z
which will be valid for all Gi :
z=(XE\(M1 X%)),(XX#\(M2 X* XX® Z*® )), (Z%\(M3 X¥* XX* Z%* ))

and F is written as a composed function : (DE F(X* XX¥ Z® Y)(G(M1 X¥ )}(M2 X* Xx* 7%
J(M3 X% XX* Z* ) Y)) where G has G1,...,0l~k-2 as traces and the same predicates as
F.

Example.
We use again the above example and match Gi and Fi in order to obtain :
z1=(XX1 \(CAR X)),(XX2 \(CAR X)), (X1\X)
22=(XX1 \(CAR X)), (XX2\(CADR X)), (X1\X)
2z3=(XX1 \(CAR X)),(XX2\(CADDR X)), (X1\X)

it follows that z=(XXI\(CAR X)),(XX2\(H X ¥)),(X1\X) where (H X Y) has the

predicates (P1 Y),(P2 Y),(P3 Y) and the traces (CAR X),(CADR X),(CADDR X) so that (H

X ¥) is defined by :

(DE H(X Y)(COND
((ATOM(CDR ¥)) (CAR X))
(T (H (CDR X) (CDR Y)) )))
and the function (F X) synthesized from the examples is:
(DE F(X) (G X (CAR X) (H X X) X))
{DE G(X1 XX1 XX2 Y){COND
((ATOM(CDR Y))(CONS XX1 (CONS XX2 (CONS (CAR X1) NIL))))
{T{(G(CDR X1) (CONS XX1 NIL) (I X1 XX2 Y¥) (CDR Y)} )))
The reader can =asily find from G1,62,G3 in 5.3.3 that (I X1 XX2 Y) is given by @
(DE I(X XX ¥Y)(J X XX Y NIL))
{DE J(X XX Y Z)(COND
((ATOM(CDDR Y)) (CONS XX (CONS (CAR X) Z)))
(T (J (CDR X) XX1 (CDR Y) (CONS (CAR X) 2)) )))

5.5 Composition and the lethal successes.

The general methodology is again very simple. We find the functional name of the
place at which occurs the lethal success. The tree Fi is then cut into two parts :
the sons of the first CONS above the lethal success and their context.We therefore
obtain (Fi X)=(Gi X (Hi X)) where (Gi X Z) is the context and (Hi X) the sons of
the CONS above the lethal success.We then obtain F as the composition of two
functions G and H obtained from the corresponding traces.This is better understood
on an example.

Consider the sequence of examples :

{ (M)->(A(4)) 5 (A BY->(B A (B)) ; (A B C)->(C B A(C)) ;
(ABCD)->DCBA&(D)) }.
The traces of F are : (F1 X)=(CONS(CAR X)(CONS(CAR X) NIL)NIL))
(F2 X)=(CONS(CADR X)(CONS(CAR X)(CONS(CONS(CADR X) NIL) NIL)))
(F3 X)=(CONS{CADDR X)
(CONS(CADR X)(CONS{CAR X){CONS{CONS{CADDR X) NIL)INIL))))
{F4 X)=(CONS(CADDDR X)
(CONS(CADDR X)
(CONS(CADR X){(CONS(CAR X)(CONS(CONS(CAR X) NIL) NIL)))))
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The generalization of F1 and F2 leads to the substitutions : (XX\{CONS(CAR X)
NIL)) for F1 and (XX\(CADR X)) for F2 which is equivalent to ((CONS(CAR X)
NILI\(CADR X)).The left term is more complex than the right one ,this contradiects
rule 5.2.1.5.

Our system will therefore attempt to replace (CONS(CAR X) NIL) by a new variable
and rewrite (F1 X) as (G1 X (H1 X)) with (G1 X XX)=(COHS(CAR X) XX) and (H1

X)=(CONS(CONS(CADR X) NIL) NIL).The traces of Gi and Hi are now treated as two
separate problems.In fact the system treats this problem exactly as a human
programmesr : the result is thz composition of a reverse function and a function that
CONSes the last atom of the list to NIL.

Notice however that the system never "sees" this composition ,it only happens
here that the place of the lethal sucess coincides with the place where a human sees
a composition.

From an optimization point of view it might be sometimes better to compose even
when there is no such a lethal success.A system which systematically attempts to
find a composition has been deseribed by JOUANNAUD and GUIHO [7) but it is
restricted to traces that have only atoms at their top level and cannot therefore be
used as an optimizer.

5.6 Recursion steps greater than one.

When the preceding attempts fail,one can try to mateh Fi with Fis+k for k=2,3,...

We have described elsewhere [12] how thas polynomial behaviour of the traces
might show what is the value of k to be chosen (the traces no longer increase like
a polynomial but like a family of polynomials defined on a partition modulo k of
the integers).

We give now an example where thz form of the sequence of substitutions si shows
how to choose the value of k.

Consider the sequence of examples given by :

{ (A)->(Aa &) ; (A B)->(A (A)) ; (A B C)->((A)(A)) ;
(A B CD)->((A)((8))) ; (A B CDE->(((A))((A))) }.

After a first genesralization , one gets the substitutions :

81=(X¥%X1 \ (CONS XX1 NIL)),(XX2 \ XX2)
82=(XX1 \ XX1),(XX2 \ (CONS XX2 NIL))
83=(XX1 \ (CONS XX1 NIL)),(XX2 \ XX2) ...

We do not obtain constant substitutions but ,if we match Fi and Fi+2 we indeed
have constant substitutions and one obtains the function :
(DE F(X)(F1 (CAR ¥) X))

(DE F1(XX Y){(COND
((ATOM{CDR Y)) {(CONS XX (CON3 XX NIL)))
((ATOM{CDDR Y)) (CONS{CONS XX NIL)(CONS XX NIL)))
(T(F1 (CONS XX NIL) (CDDR Y)) )))

This is not actually implemented in the present system : the user has to give
separatly the two sequences.

6. RECURSIVE TO TAIL-RECURSIVE TRANSFORMS.

We apply the BMWk algorithm to the traces obtained as described in section 3.A
success shows that a tail recursive expression can be equivalent to tne given
recursive expression. As a matter of fact nothing proves the equivalence of the two
programs and one has to device by hand an induction proof of their equivalence
[131.

The differences between the synthesis method and the transformation method are
simply :

1-The domain is not explicitly given.One has to check carefully the substitutions

on the x type variables do not introduce infinite computation loops.

2-A lethal success introduces a composition but one cannot come back to the father
CONS since we no longer have the CONS function.We have seen that a good rule is to
come back to the first father which is a function of arity greater than 1.It might
be pdssible also to give to the system the name of the wished function.

6.1 First example.

We start from the function : (DE F(X)(FP X X X X))

(DE FP(X1 X2 X3 Y)(COND




KODRATOFF-9

((P Y)(H X1 (G X2 (L x3NHN

(T (H X1 (G X2 (FP (M X1)(N¥ X2)(0 X3)(Q ¥}))) )))
where P is a predicate and H,G,L,M,N,0,Q are supposed to be known functions with no
special properties.

By the m2thod of section 3 wa get the traces :

IF (P X) THEN (H X(G X(L X))) ELSE
IF (P(Q(X)) THEN (H X{(G X(H(M X)(G(N X)(L (0 X)))))) ELSE
IF (P(Q(Q X))) THEN (H X{(G X{H(M X)(G(N X)(B(NM(M X))
(GEN(N X))(LCO X)) N ...

The traces lead to a lethal success which cuts the problem into two parts

Problem 1 : F1z(H X (G X 2))
F2=(H X (G X (B (M X)(G (N X) 2))))
F3=(H X (G X (H (M X)(G (N X} (H (M(M X))(G (N(N X)) Z})))}))
Problem 2 : FP1 = (L X) FP2 = (L (0 X)) FP3 = (L (0 (0 X)))

Problem 2 is readily solved by the substitution (X \ (0 X)) . Problem 1 leads to

the substitutions:
s1 = (X \ X)L{Z\ (H (M X) (G (N XY 2)))
82 = (X \ X),(2 N (H (M(M X)) (G (N(H X)) 2))))

Tne substitution on Z introduces a new subproblem to problem 1 which is easily
solved by a generalization of X into two variables X1 and %2 , and the
substitutions (X1 \{(M X1)),(X2 \ (N X2)),(Z \ 2).

It follows that we obtain a new program F

(DE F(X) (FP X X (FPP X X))})
(DE FPP(X Y){CCND
((p Y) (L X))
(T (FPP (O X) (Q %)) )N
(DE FP(X Y Z)(COND
((P Y) (HX (G X 2Z)))
(T (FP X (Q Y) (FPPP X Y 2)) )))
(DE FPPP(X Y Z)(FPPPP X X Y 2))
(DE FPPPP(X1 X2 Y Z)(COND
((P(Q Y)) (H (M X1) (G (N X2) 2)))
(T (FPPPP (M X1) (N X2) (Q Y) 2) )))

This example brings two comments.

First by following the computation , if H and G are strict and if ths existencs
of an X such that (P X)=true implies the existence of an X such that (P(Q X))=true
then the two (F X) are strongly equivalent.

Second it illustrates well the time-place dilemna since the original F needs a
stack but has a linear complexity while the second F does not need a stack but has
a complexity in X powsar 2. .

6.2 We give an other example where the resulting program is really better than the
the original since it needs no stack and the complexity drops down from exponential
to linear.

If we give the traces of this "Fibonacci-cross-recursive® program :

(DE FIBAN(N) (FIBA N N))
(DE FIBA(N1 N2)(COND
((ATOM ¥1) (FIBA1 N2))
((ATOM (CDR N1)) (FIBA2 N2))
{T (FIBA (CDDR N1) N2) )))
{DE FIBA1(N)(COND
{({ATOM N} ‘B1)
({ATOM (CDR N)) °B2)
(T (B (FIBA1 (CDDR N)) (FIBA2 (CDR N)) ) )))
(DE FIBA2(N)(COND
((ATOM N) °B1)
((ATOM{CDR N)) “B2)
(T (H (FIBA2 (CDDR N)) (FIBAY (CDDDR N)) ) )))
where H 1s any known funztion ,then the system founds FIBAN equivalent to :
(DE FIBAN(N)(FIBA N °B1 'B2)) (DE FIBA N X Y) (COND
((ATOH N) X)
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((ATOM(CDR N)) Y)
(T (FIBA (CDDR N) (H X ¥Y) (H Y X)) )))

7. CONCLUSION .

We present an implemented system (in the REDUCE S-LISP of an UNIVAC-1110) which
synthesizes with no combinatory explosion a tail recursive program from an
input-output sequence of examples. It is an improvement to SUMMERS® methodology [19]
and to the methodologies we have already described [12,14].

The system can be used as a strong recursive to iterative program translater.Ilt
is quite different from the BURSTALL~DARLINGTON system {4] and completes it amore
than competes with it. Cn the one hand our aystem do2s not use th2 function
properties contrary to BURSTALL and DARLINGTON system , when these properties are
really needed ,our system will fail to improve thes program. On the contrary ,it is
able to improve more "difficult® expressions the properties of which are not known.
On the other hand ,some of the eurekas needsd by BURSTALL AND DARLINGTON system are
automatically given by the generalizations of the traces .
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-ABSTRACT-

Several years ago David Marples (1976) proposed an algorithm for deri-
vation of simuitaneous equations in the solution of Mechanics problems.
Although the original intent of this algorithm was to assist his under-
graduate students at Cambridge in solving applied mathematics problems,
it has also proven itself a powerful tool in the MECHO automatic pro-
blem solving system (Bundy et al, 1978, 1979). This paper will briefly
discuss the Marples' algorithm and demonstrate its use with two mechan-
ics problems. Parts of traces of four humans solving the same problems
will be given. Adjustments in the MECHO program are made to show how
close the Marples' algorithm can fit the data of the human subjects.
Brief concluding comments are made on modelling human behavior with a
rule-based Tanguage.

1. INTRODUCTION

David Marples (1976) proposed an algorithm for production of simultan-
eous equations in the solution of mechanics problems. This algorithm
was originally introduced in his tutorial sessions at Cambridge and was
intended to help the students produce a sufficient number of independent
simultaneous equations to solve mechanics problems. The technique is
general and goal driven. It has been adopted as part of the MECHO auto-
matic problem solver.

In Section II, the algorithm will be explained and compared with The
General Problem Solver (Newell & Simon, 1963, 1972). Two problems, a
pulley problem.and a distance/rate/time problem will be introduced and
the MECHO solution of each of these problems presented.

In Section III, parts of protocols of four subjects will be presented,
and in Section IV, logically justified adjustments will be made to the
Marples' algorithm in an attempt to produce a trace similar to the
human protocol. Section V will present some concluding comments.

I1. THE MARPLES' ALGORITHM

The Marples' algorithm is goal driven. It takes the goal or unknown to
be solved for in a problem and searches back through the givens of the
problem in an attempt to find an equation solving for the unknown in
terms of the givens. When this is impossible, it creates intermediate
unknowns, or subgoals, that will solve for the unknown and then attempts
to solve for the intermediate unknowns in terms of the givens of the
problem.
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To see how this might be done in the solving of applied mathematics
problems, consider the usual role of equations in solving a problem:

Equation V=U+A*T for constant accelerations of an object over

a time period

1. U is the initial velocity of the time period

2. V is the final velocity of the time period

3. A is the constant acceleration

4, T is the length of the time period
If one of V, U, A, or T is the unknown of the problem, the Marples'
algorithm tries to assert the equation V=U+A*T by finding values in
the "givens” of the problem for the other three variables. If it can
only find values for one or two of the three it will then assert the
equation, 1ist the one or two values it has plus the original unknown
of the problem as "given" and begin a new search for another {indepen-
dent) equation with the variable it couldn't find as the unknown. And
so the process continues until all the new unknowns can be determined
from the givens of the problem.

The first part of the implementation of Marples' algorithm is a "focus-
sing" algorithm that attempts to direct the Marples' algorithm to a set
of equations relevant to reducing the "givens-goal difference”. For
example, if the final velocity V was the unknown in the problem situation
above then a search would start to find out what V was: namely, the
"final velocity" of a "particle or object" during a “"time". When V was
thus identified as the final velocity of an object during a time period,
equations relevant to this situation would be identified first and a
queue of these equations prepared and tested for possible given-goal
reduction. Thus the Marples' algorithm would not search through all
possible equations that had a V unknown but only those relevant to the
particular unknown situation.

Consider now as examples of the running Marples' algorithm two problems
from different areas of mechanics, a pulley and a distance/rate/time
probiem.
A man of 12 stone and a weight of 10 stone are connected by a
1ight rope passing over a pulley. Find the acceleration of this
man. (Palmer and Snell, 1956).

End 3
LINEI + LINE2 = STRING
LINEl with TENSION]l~— ¢—LINE2 with TENSIONZ
END 1 END 2
with ACCELERATION1 l Pi I IPZ l with ACCELERATION2

FIGURE 1 A representation of the entities created by the pulley schemata.
TENSIONI = TENSION2 and ACCEL1 = ACCEL2 by schema inferencing.
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First, two objecis, the man and a weight, are identified as connected

to the rope hanging over the pulley, each object is assigned a mass and
an acceleration in a direction {c.f. Figure 1). The acceleration of the
man, say Al, is identified as the sought unknown. The focussing algor-
ithm first identifies the unknown Al as the acceleration of the man
during a time period. Al is “bound" to the situation and a queue of
possible equations examined that relate Al to the givens. This list is
examined and all equations rejected because they cannot solve for Al
without introducing new unknowns. The 1ist is then reexamined and new
unknowns allowed. The "resolution of forces" equation F=M*A (c.f.
appendix) is the first in the queue and it is asserted. Originally A
was unknown, M was found to be the mass of the man (known) but F, the
sum of forces acting at the contact point of man and rope cannot be
determined since the tension Tl in the rope is not known. Thus 12*g+Tl=
12*%A1 is asserted Al, 12 and g are known and Tl is the new unknown. The
focussing algorithm then identifies T1 as the tension in the string dur-
ing the time period, a new queue of equations are proposed and the "res-
olution of forces" equation for the contact point of the rope and weight
solves for T1 with no new unknowns, -10*g-T1=10A1 with 12*g+T1=12Al1-
are seen as sufficient to solve the pulley problem.

The tower problem is slightly more complex in that four simultaneous
equations are needed to solve the problem:
A particle is dropped from the top of a tower. If it takes t
seconds to travel the last h feet to the ground, find the height
of the tower.

PATH
DISTANCES TIMES VELOCITY
END1 MOM1  ZERO = VEL (MOM1)
DQl TQ1
DQ¢ END3 TQs MOM3  VEL2 = VEL (MOM3)
DQ2 Q2
END2 MOM2  VEL1 = VEL (MOM2)

FIGURE 2  The representation of .the tower problem created by the
schemata.

The situation is shown in Figure 2. The total height of the tower is H
and H=Hl+h where h is known. Velocity VO is the initial velocity (0),

V1 is the final velocity and V2 the velocity at the end of time Tl and

the beginning of t.

H, the unknown, is identified as the total length of the path of the
falling object, and the Marples' algorithm examines possible equations
for finding H. The equations are given in the appendix, and the progress
of the Marples' alaorithm through the problem is given below. When each
equation is asserted a new list of givens and unknowns is prepared and
the Marples' algorithm and focussing is called again (in this problem
four times).

1. given (g,t,h)

unknown (H) - The total height
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2. assert H=O*T+’/2*g*T2 {No. 6, appendix)
givens (g,t,h,H); unknown (T) - The total time
3. . assert T=T1+t (No. 8, appendix)
givens (g,t,h,H,T); unknown (T1) - The time of top period
4. assert V2=0+g*T1 (No. 5, appendix)
givens (9,t,h,H,T,T1%; unknowns (V2) - The velocity at midpoint
5. assert h=V2*t*+u*g*tZ (No. 6, appendix)
givens (g,t,h,H,T7,T1,V2); unknowns (

The four equations above are seen as independent and sufficient to solve
the problem.

To conclude this section, the means-ends analysis implied in the Marples’
algorithm may be compared to that of The General Problem Solver (Newell

& Simon, 1963). The equations used by the Marples' algorithm are much
Tike the "table of differences" used by GPS to reduce given-goal dif-
ferences. The focussing technique prepares possible equations for the
goal reduction just as GPS considers different given-goal combinations
from the "table of differences". What is unique about MECHO, is that
this is one of the first applications of means-ends analysis to solving
problems in applied mathematics.

I11. FOUR PROTOCOLS OF HUMAN SUBJECTS

In this section parts of four protocols of subjects solving the pulley
and tower problems are presented. The subjects were post-graduate stu-
dents at the University of Edinburgh and all had had some mechanics or
applied mathematics in their undergraduate education.

Protocol A (Pulley problem)

Mechanics problem .,.

We'll treat the man and weight both

as particles ... point masses ... e ;
So man and weight ... Man has a M wt
force of 12 stone vertically downwards ... \ l‘ﬂ
Unknown at the moment .,.

and assuming this frictionless pulley,

T is the same on both sides ... asT
We'll give the rope an acceleration ... ¥
vertically down on the man's side ... M
7. and vertically up on the weight's side ... Lo MY

8. So resolving vertically down for the man: 129 - T =12 a

9. The vertically downwards acceleration

10. And the vertically upwards for the weight T - 10g = 10a

11. so the thing requires the acceleration of the man which is a ...
12. So we just eliminate T from these two equations ... etc.

(S w N =

.TﬂtA

(=)}

Protoco]l B {Tower problem)

1. There is a tower, suppose it has height H Top
2. H is made up of h, the given height bl Y
3. and hl, the unknown portion of the tower | ﬁ‘
4. We also know time t H T
5. Call the total time of falling T, T is made up ] "
of t plus tl where tl is the time for the top part. '
P PP rIFTC T
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6. I need H and I'm given t and h and g the

acceleration of the object SipeX s h
7. 1 know thatH = hl +h PR,
8. Now to get hl, a distance : —t~|—~t—

9. hl equals one half acceleration times t1 squared h1=’/zg*t12

10. and I have an equation with t1 already T = t1 + t

11. but I still need to find T, the total _time ...

12. Now, for the whole period, H = &g x t

13. Reviiwing, 1 have one, two, three, four equations (indicates
each

14, and H,T,hl and t1 are unknowns that should do it ...

Protocol C (Tower problem)

T1 is the time the ball crosses Di
and T2 the time for D2, but T2 is t ...

Now I want D, knowing g is the acceleration
of the ball D = kg T2
4, and I know T: T = Tl + t
5. Sonow I need T1 ... in the top time period
6. The final velocity ... Call it VM ...

7. is acceleration times time VWM = g x T1
8. and now to get Vi1 ...

9. The total distance D ... That won't help ...
10. The distance h and velocities ...
11
12
13

W N\ =
« s .

if VF is final velocity VF = VWM + g x t
and 1 can easily get the final velocity VF:
Because I've already got T ...

Protocol D (Tower problem) ~
1. Do this by energy ...
2. It initially starts with potential energy mg "
3. where m is the mass of the body m is a constant
4, we can forget about m, call it 1 33
5. gx is the initial potential energy
6. when it reaches height h, it will have potential energy gh § k.
7. and it will have kinetc energy gh
8. so it will have gx-hx=lav
9. where v is its velocity at height h
10. we don't know what height ... what speed it is once it hits
the ground
11, ws want to use one of the other constant acceleration ones
ve=u2+25
12. we want to ... an equation relating height, velocity and time,
that is
13. under constant acceleration ah which is S = vt + % at?
1V. FOCUSSING

In Section 1I, the Marples' algorithm for MECHO's goal driven search
was presented and compared to GPS means-ends analysis {Newell & Simon,
1963). MECHO's set of possible equations served as a table of connec-
tions for goal reduction and the focussing mechanism prepared a queue
of possible equations to make the connections,
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In the Pulley problem above the focussing produced immediate results.
In fact MECHO, 1ike the human solver performed very 1ittle search in
coming to the Resolution of Forces formula. Two applications of this
formula and the problem is solved. The Tower problem was much more
interesting. In fact, there are several different sets of simultaneous
equations (and of course permutations within each set) that will solve
the problem. Each solver (B,C,D) produced a different set of equations
and each of these sets differed from MECHO's trace of the previous sec~
tion. .

In this section the focussing technique and table of connections is
altered in an attempt to produce traces similar to the human protocols

of the tower problem. First note what will not be changed. The semantic
knowledge for the Tower problem will not be changed. That is, facts such
as the unknown H the height of the tower and t and h the givens will be
used without change by MECHO throughout this section; similarly V2 will
remain the velocity at the "midpoint". Furthermore, the first part of
focussing that binds situation variables for sought unknowns will remain
unchanged. That is, H will be bound to the LENGTH of the PATH during

the TIME. What will change is the queue of possible equation instantia-
tions for situations and alterations will be made in the equations within
the table of connections. These latter will be seen shortly.

The 10 clauses below are used to form the queue of formulae to be attemp-
ted in any probiem situation. Resolve, relative velocity, etc. refer to
the equation names of the Appendix.

1. relates{resolve; FORCE, ACCELERATION, MASS).

2. relates(relative velocity; VELOCITY).

3. relates(relative acceleration; ACCELERATION).

4, relates(constant acceleration-1; ACCELERATION,VELOCITY,DURATION).

5. relates(constant acceleration-2; ACCELERATION,LENGTH,VELOCITY,
DURATION).

6. relates(constant acceleration-3; VELOCITY,LENGTH,DURATION).

7. relates(average velocity; VELOCITY,LENGTH,DURATION).

8. relates(constant velocity; VELOCITY,LENGTH,DURATION).

9. relates(lenthsum; LENGTH).

10. relates(timesum; DURATION).

After H is recognized as the LENGTH of the path during the episode by the
first step in focussing, the second step prepares the queue by scanning

the 10 clauses above to find which formulae will help solve for LENGTH.
This proposes a queue of constant acceleration-2, constant acceleration-3,
average velocity, and Tength sum. These equations are tried in that order.
Each, of course, fails because new unknowns are introduced. On the second
pass, when new unknowns are allowed, constant acceleration-2 is accepted.
This process continues until the problem is solved.

We hypothesize that the human subject has a stack of equations that re-
late to specific situations. These equations are employed when attempting
to reduce the given-goal differences in a specific problem. In fact, the
stack might be quite similar to that produced by the 10 clauses above.
This clause queue like the table of connections need not contain the full
equations, only their names. These names may serve to reference the ac-
tual equation formulae which are stored with their full sets of conditions
for instantiation.
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This conjectured implementation of the GPS model may be tested by making
simple alterations in the 10 clauses above to see if the different queue
of equations to be formulated can produce a different set of simultaneous
equations. In particular, we attempt to produce traces similar to the
human protocols B,C, and D.

Subject B used the length sum equation with top priority when solving
for LENGTH, and timesum when a DURATION was sought. Thus, if clause 9
and 10 are placed before the constant acceleration clauses the order of
"relates" above becomes 1, 2, 3, 9, 10, 4, 5, 6, 7, 8. When this re-
arrangement of clauses was run in MECHO the following trace occurred:
B' 1. Attempting to solve for H in terms of a,h,t.
2. H=H1l+h solves for H but introduces Hl.
** Hl is a LENGTH, lengthsum cannot be used again, so constant
acceleration-2 is used**
3. H1=0xT1#xg*T1Z solves for H1 but introduces T1
4, T=T1+t solves for T1 but introduces T
** constant acceleration-2 is now the first on the queue for T
since timesum may not be used again, and MECHO always tries
to solve without further introduction of unknowns**
5. H=0*T+4*g*T
6. Equations 2-5 solve the Tower prob]em.
If the ZERD term (initial vel. x time) is removed from 3 and 5 these
equations are exactly those produced by subject B above.

In an attempt to produce a trace similar to protocol C, the "relates”
clause (38) for lengthsum is returned to its original position, (i.e.,

1, 2, 3, 10, 4, 5, 6, 7, 8, 9). The subject of protocol C does not use
the constant acceleration-2 equation to its full potential, that is, he
only uses the equation when the initial velocity is zero. Marples (1976)
comments on this use of eauations by engineering students when he notes
they often apply an equation without knowing its full power. In this
instance, the subject uses constant acceleration-2 for relating accel-
eration, time, and distance and not in its full use of relating initial
velocity, acceleration, time, and distance. If it is conjectured that
this happens with subject C, constant acceleration-2 equation is changed
to this limited used by rewriting 5 above to "relates (constant accelera-
tion-2; ACCELERATION,LENGTH,DURATION)" and removing "U*T" from the isform-
ula clause of constant acceleration-2 c.f. appendix

MECHO is now run with these changes and the following trace results:

c' . trying to solve for H in terms of g,t,h.

. H= ‘,*g*T2 solves for H but introduces T

T=T1+t solves for T but introduces T1.

VEL2 = ZERO + g * T1 solves for Tl but introduces VEL2.

* DBecall that the final velocity at the bottom is VEL1 and the
velocity at the "midpoint” VEL2. The solver using constant
acceleration-2 properly would now be done. Our subject grinds on**

5. VELI = VEL2 + g * t solves for VEL2 but introduces VEL1.
6. VEL1 = ZERO + g * T solves for VEL1.
7. Eguations 2-6 solve the Tower problem.

This trace is remarkably similar to protocol C.

* P LN

The subject of protocol D decided tc use energy equations as was explic-
itly stated. This was not expected by the investigator taking protocols
or designing MECHO to solve distance/rate/time problems. But in principle
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there was no reason why energy equations could not be used. They were,

in fact, already in the system and used to solve de Kleer's problems
(Bundy, 1978). A new entry for the "relates” table was constructed:

No. 11. relates (conserve energy; VELOCITY,LENGTH) and this was given
priority over all other LENGTH relation clauses. Further, constant
acceleration-3 is equivalent to conserve energy and was removed. Finally,
subject D favored constant acceleration-2 over constant acceleration-1
formula for solving VELOCITY problems, so this order was changed. The
"relates" 1ist was 1, 2, 3, 4, 10, 11, 6, 8, 9, 5.

MECHO was run in this situation; its trace:
D! 1. Trying to solve for H in terms of g,t,h.
2. 3 *VEL1Z - % * ZERO? = g * H solves for H but introduces VEL1
** The energy equation is attempted again. This time to solve for
VEL1**
3. % * VEL1Z - i VEL22 = g * t solves for VEL1 but introduces VELZ
4. h=VEL2 *t +1 * g * t2 solves for VEL2
5. 2-4 solve the Tower prob]em
It can be seen that this trace is very close to the protocol of subject D
above. Further comments will be made in the next section.

V. SUMMARY AND CONCLUSIONS

The goal of this paper has been to describe the action of the Marples’
algorithm in MECHO's solution of pulley and distance/rate/time problems.
After creation of a knowledge base, the Marples' algorithm was invcked
and using means-ends analysis, in many ways similar to GPS, produced sets
of simultaneous equations sufficient for solving the problem.

Experienced human subjects solving the same problems were presented with
strategies for producing sets of simultaneous equations sufficient to
solve a problem in many ways similar to those of the Marples' algorithm.
Finally, with slight changes the Marples' algorithm could produce sets of
equations almost identical to those produced by the human subjects.

In the pulley probiem the protocol indicates the subject goes immediately
to the resolution of forces equation. This is used to create the interme-
diate unknown of the tension in the string. Forces are again resolved at
the other end of the string to solve for tension and two simultaneous equa-
tions are produced sufficient to solve the problem. The Marples' algorithm
in MECHO proceeds in exactly the same fashion with the important difference
that the resolution-of-forces equation, the first equation considered, is
rejected because it introduces a new unknown (tension). A1l other equations
in the queue trying to find acceleration for a particle in a time period
are examined and rejected before the return to the resolution-of-forces
equation and introduction of the tension as a new unknown. The difference
between the experienced human and MECHO is obvious and interesting. The
human realizes immediately a new unknown must be introduced, accepts it,
and goes on, while MECHO tries as long as possible to avoid this course of
action. Other than this, the protocol of the human and MECHO's trace are
remarkably similar.

The similarities between trace and protocol are even stronger with the

tower problem where many different sets of simultaneous equations sufficient
for solving the tower problem may be produced. The formation of any set of
these equations depends entirely on the use of the focussing technique, that
is, the queue that is generated for possible equations. The similarity of
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protocal C with the trace of L' of Section IV is striking. Indeed, when

it was hypothesized that if the human subject had been able to use initial
velocity values in constant acceleration-2 equations when the initial vel-
ocity was not zero and had a slightly altered focus, then MECHO's trace
would match exactly the protocol of subject €. In section IV, these altera-
tions were made and the resulting protocols compared. The results indicate
the robustness of the Marples' algorithm and focussing to generate different
sets of simultanecus equations to fit closely the traces of the human sub-
Jects.

One of the principal advantages of writing the MECHO problem solver in
PROLOG (Warren, 1978) here represented by predicate logic assertions, is
that PROLOG actually computes using the predicate logic statements them-
selves. In fact, PROLOG was designed as a predicate logic theorm prover.
Thus facts, inferences, and default values are entered into the program as
the potential for "meaningful bits of behavior”. This allows such actions
as removing a rule from the program, substituting another rule, or simply
changing the order of the rules and then checking the results of these
changes on the running computer program. Thus a PROLOG "fact", "inference
rule”, or "default assignment" may be paired with the corresponding com-
petency in the human subject and the effect of its presence or absence in
the human subject may be simulated by the running program. This can be
seen when the "conservation of energy" equation was added for solution of
the Tower problem (IV). The new rule added resulted in the exhibition of
a new competency, and conversely, the absense of the rule marked the ab-
sense of the related ability.

A modular set of rules also allows general purpose algorithms, such as the
Marples' algorithm, to be implemented and the effects of the presence of
the algorithm to be seen by running the program. In a very similar fashion
Larkin (1978) and Simon and Simon (1977) can run sets of production rules
in an attempt to simulate the difference of skills in the expert or novice
problem solver.

The presence of production or behavior rules also provides a model for the
interpretation of missing or ambiguous behavior of the human subject. In
D, for example, "Do this by energy" indicates an energy equation will be
called to find the vailue for H. D5 states "gx is the initial potential

energy” ... and D 6-7 "when it reaches height h it will have potential
energy gh ..." and finally in D 8-9 "so it will have gx - gh = 4V2 where
V is the velocity at height h ..." - what does this all mean? The pro-

tocol D2 to D10 is at best confusing. Reading MECHO's trace on the same
problem goes a long way towards making sense of these statements. D'2 gives
a full description of gx: "g * H = % VEL1¢", where g * H is gx_and VEL1
the final velocity. Similarly for gh: D'2 has "g * h + % veL 12 - S VEL22,
when VELZ is the velocity at the top of h. Now simply subtract D'3 from
D'2 and line D9 of the protocol is precisely understood. The subject of
protocol D was a particularly bright individual that liked to skip steps
and simplify as he went along. Although MECHO is not able to imitate this
behavior completely - especially the subject's proclivity for short slightly
ambiguous statements - its rule system does give a precise and complete
performance and often provides data sufficient to disambiguate the human
subject's behavior.

There are, of course, many things that MECHO, as presently designed, does
not do that human subjects do quite easily. We have already seen how sub-
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ject D simplified as he went along and omitted "unnecessary" bits of
equations. Similarly, other subjects - this could be easily added to
MECHO- left out terms of equations that were zero. Also MECHO is ex-
haustively thorough in its search while human subjects are not, and this
MECHO will never use five equations where four are sufficient. However,
as noted in Section IV, MECHO can offer an explanation of precisely why a
subject needed five equations when four would have been sufficient.
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Appendix: PROLOG clauses for possible equation formation in Puliey and
Tower problems

Note that words with first letter capitalized, e.g., Object or Direction,
as well as single capitol letters, e.g. M or T1, represent variables.

1. isformula (F = M * A, resolve (Object, Direction, Time)):- mass
(Object, A, Direction, Time), acceleration (Object, A, Direction,
Time), sumforces (Object, Direction, Time, F).

2. isformula (V13 = V123, relative velocity (Obil, Obj2, 0bj3, Time)):-
relative velocity (0bjl, 0bj2, V12, Dirl2, Time), relative velocity
(0bj1, Obj3, V13, Dirl3, Time), vectoradd (Vi2, Dirl2, V23, Dir23,
V123, Dirl3).

3. isformula (A123 = A123, relative acceleration (0bjl, 0bj2, 0bj3,
Time)):- relative acceleration (0bjl, Obj2, Al2, Dirl2, Time}, rel-
ative acceleration (0bj2, Obj3, A23, Dir23, Time), relative acceler-
ation (Objl, Obj3, Al3, Dirl3, Time), vectoradd (Al2, Dirl2, A23,
Dir23, A123, Dirl3).

4, isformula (S = V * T, constant velocity (Object, Time)):- constant
velocity (Object, Time}, velocity (Object, V, Direction, Time),
duration (Time, T), distance (Object, S, Time).

5. isformula (V = U + (A *T), constant accelerationl (Object, Time}):-
constant acceleration (Object, Time), duration (Time, T), initial
velocity (Object, U, Direction, Time), final velocity (Object, V,
Direction, Time).

6. jsformula (S = U * T + (A * (T:2)/2), constant acceleration? (Object,

Time)):- constant acceleration {Object, Time), acceleration (Object,

A, Direction, Time), duration (Time, T), initial velocity (Object, U,

Direction, Time), distance (Object, S, Time).

7. isformula {((Vv:2) + {U:2) = 2 * A * S, constant acceleration3 (object,
Time)):- constant acceleration {Object, A, Direction, Time), distance
{Object, S, Time), initial velocity {Object, U, Direction, Time),
final velocity (Object, V, Direction, Time).

8. isformula (T = Sum, timesum (Time)):- Partition (Time, Points),
duration (Time, T), sumdurations (Points, Sum).

9. isformula (D = Sum, lengthsum (Path, Time)):- partition (Path, D,
Time), sumlength (Points, Sum, Time).

10.  isformula (V:2)/2 -~ (U:2)/2 = g * H, energy (Object, Time)):-
motion (Object, Path, Start, Side, Time), incline (Path, 270, Time),
length (Path, H, Time), final velocity (Object, V, Direction, Time),
initial velocity (Object, U, Direction, Time).

i g is known by MECHO as the gravitational constant **
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ABSTRACT

Psychophysical studies are described which pose a strong challenge to
models of human stereopsis based on the processing of disparity information
within independent spatial frequency tuned binocular channels. These studies
support instead the proposal that the processes of human binocular com-
bination integrally relate the extraction of disparity information with the
construction of raw primal sketch assertions. This proposal implies
binocular combination rules using principles of figural continuity and
cross-channel correspondences to disambiguate at a global level matches
found independently within spatial frequency channels at a local level.
Computer implementations of stereo algorithms based on these rules are
described and found to be successful in dealing with a variety of different
stereo inputs. The constraints presented by objects which are exploited

by these algorithms are discussed. The paper is an abbreviated version of
a paper to appear in a special issue of Artificial Intelligence devoted to
vision (Mayhew and Frisby, 1980c).

1 Introduction

Ever since the introduction by Julesz (1960) of the random dot stereogram

as a research tool, it has become commonplace to consider the theoretical

problems surrounding stereopsis within a conceptual framework that has two
distinctive characterists:

First, it is recognised that disparity information can be extracted using
only low-level monocular 'point' descriptions as the entities which are
binocularly matched. The random dot stereogram is a clear demonstration
that high-level monocular descriptions, such as those dealing with surfaces
and objects, are not a necessary requirement for stereopsis because for a
random dot stereogram these relatively high level scene descriptions appear
only after stereopsis has been achieved.

Secondly, it has become acknowledged that there is a need for mechanisms
capable of selecting the correct binocular point-for-point matches from
amongst the multitude which are frequently possible, most of which are
false matches or 'ghosts'. That is, in the terminology of Julesz, it is
necessary to posit 'global stereopsis' mechanisms to resolve ambiguity
often existing between competing 'local stereopsis' matches.

The clarity of this conceptual framework has spawned a number of stereo
algorithms, of varying type and capability (see Marr and Poggic (1977) for

a review). Given the framework, each algorithm naturally has to face (at
least) two critical design choices, namely what monocular point descriptions
are to be used, and what global mechanisms are to be employed to resolve the
ambiguity inherent within the population of possible local matches. Marr
and Poggio (1876) have pointed out that any worthwhile algorithm must avoid
the trap of ad hoc answers suitable for one type of image but not for others.
They have argued, in the manner characteristic of the M.I.T. computational
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approach to studying visual mechanisms, that they way to do this is to

begin with a precise formulation of the goals of the visual task being
considered (in this case the exact processing goals associated with stereop-
sis). The next step they advocate is to develop a computational theory
specifying useful contraints about how objects behave in the world,
constraints which enable valid processing rules to be formulated for use in
an algorithm capable of achieving the goals in question. We are in great
sympathy with this approach and much of what we discuss in this paper falls
naturally within its scope. Nevertheless, the particular model of human
stereopsis which we describe owes at least as much to the results of our
psychophysical work on stereopsis as it does to computational considerations
~ hence the title of this paper.

2 The BRPS Conjecture

Over the past few years, we have conducted a series of psychophysical
studies of human stereopsis which have led us to the following conjecture:

THE BRPS CONJECTURE: The processes of human binocular
combination integrally relate the extraction of disparity
information with the construction of raw primal sketch
assertions.

We call this conjecture the BRPS conjecture because it amounts to the
proposal that one goal of early visual processing is the computation of

a Binocular Raw Primal Sketch. In this paper we discuss our psychophysical
justifications for advancing the conjecture and we present various computat-
ional studies related to it. We also discuss how the conjecture relates to
the models of stereopsis advanced by Marr and Poggio (1976, 1979). Before
proceeding in detail to these various tasks, however, several preliminary
comments about the conjecture are in order:

(a) It is worth noting that a 'raw primal sketch' is defined by Marr (1976)
as a description of intensity changes in an image, using a primitive
language of edge-segments, bars, blobs and terminations. The selection,
grouping and summarising of these raw primitives leads to larger and more
abstract tokens in a description that Marr calls the 'full primal sketch'.

{b) The most general computational implication of the conjecture is that
the constraints and correspondences between spatial frequency tuned channel
outputs that can be used to compute monocular descriptions of intensity
changes (Marr, 1276; Marr and Hildreth, 1979) together with the grouping
principle of figural continuity, can be applied to advantage at various
stages during the process of binocular combination. The final result is a
set of binocular intensity change descriptions to which are tied disparity
assignments.

Marr's general scheme for obtaining raw primal sketch assertions from channel
outputs has two major steps: (i) certain very low level descriptive elements
(€.9. zero crossings) are extracted from each channel's output independently:
we will call these descriptive elements 'measurement primitives' to dis-
tinguish them from raw primal sketch primitives; and (ii) measurement
primitives from all the various channels are submitted to a set of cross-
channel 'parsing' rules which result in the required raw primal sketch
assertions. The BRPS conjecture proposes that human binocular combination
takes place during both these steps, with initial binocular matches effected
at the level of measurement primitives being disambiguated during the
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application of binocular combination rules whose ultimate objective is the
delivery of binocular raw primal sketch assertions. The need for dis-
ambiguation stems from the fact that a large population of binocular
measurement primitive matches are freguently possible, with only a certain
number of these being correct matches and the remainder being false matches
(see earlier remarks on local vs. global stereopsis).

(c) Alternative processes of binocular combination to those specified in
the conjecture can in principle be envisaged, so that the conjecture does
not embrace all possible models of human stereopsis. For example, it could
be that human binocular combination proceeds in a way which takes no advant-
age of cross-channel correspondences existing between spatial frequency
channel outputs, as for example in Marr and Poggio's (1979) stereo algorithm
in which disambiguation takes place independently within each channel (except
for some coupling via vergence control: see Section 5.3). Also, it is
possible to envisage models of stereopsis in which binocular combination
proceeds after the stage at which raw primal sketch elements are constructed,
models which are nevertheless 'low-level’ in general terms. For example,
Marr and Poggic (1976} suggested that their cooperative disparity-processing
network could be fed with fully-parsed raw primal sketch elements, the net-
work then serving to disambiguate competing element-for-element matches at

a stage much later than that proposed for the initiation of disambiguation
as far as the BRPS conjecture is concerned.

(d) The stereo models of Marr and Poggio just referred to are successful
in dealing with a number of different types of stereo inputs, including
both random~dot and natural scene stereograms, Moreover, the success of
these models is based on an anlaysis of constraints offered by objects in
the world, and on how rules for binocular combination stemming from these
constraints can be implemented in a stereo algorithm which exploits the
constraints to attain correct stereo fusion. The question of what con-
straints are available is, we recognise, a very important one and we will
return frequently in this paper to the constraints on which our own
conceptions of human stereopsis processing might be based.

3 Choice of Monocular Measurement Primitives

3.1 Zerxo Crossings

For the various elegant computational reasons advanced by Marr and Hildreth
(1979), zero crossings discovered in spatial frequency tuned convolutions
seem a good starting point for the computation of a menocular raw primal
sketch. Therefore, given the BRPS conjecture, it is natural to use zero
crossings extracted from left and right image convolutions as at least one
of the set of measurement primitives used for constructing a binocular raw
primal sketch. Moreover, this conjecture implies that only left/right zero
crossings of the same contrast sign and roughly similar orientation should
be binocularly matched.

3.2 Peaks

Despite some theoretical advantages possessed by zero crossings as measure-
ment primitives (see Marr, Ullman and Poggio (1980) for a discussion of the
possible relevance of Logan‘s theorem in this context), it seems to us that
in some situations zero crossings are poor measurement primitives in principle
for extracting disparity information. Thus the strategy of using solely zero
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crossings will fail for those parts of an image where disparity
variations are tied to luminance variations situated in between the
parts of the image which produce zero crossings. We have devised a
stereo pair illustrating such a case (Mayhew and Frisby, 1980c¢)in
which the left and right images are sawtooth luminance profiles with
the same period but with slightly differing shapes. Fusion of this
stereogram produces a percept of a surface undulating in depth where
the peaks and troughs in the luminance profile correspond to the peaks
and troughs in the depth profile. If disparity processing was based
solely on zero crossings derived from the stereo images, then the
predicted perceived depth would be of a flat (or planar tilted)
surface. This follows trivially from the fact that a zero crossing
must reflect a local luminance average and if luminance is confounded
with disparity, as in our sawtooth stereogram, then a zero crossing
can convey only a local average disparity. Therefore, the fact that
the human visual system sees an undulating surface in this stereogram
suggests that it is not relying simply on the zero crossings but that
it also utilises (at least) information carried by the peaks and
troughs of the conveolution profiles as well.

It is worth noting in this connection that Mayhew and Frisby (1979)
and Frisby and Mayhew (1980) argued for peaks being used as measurement
primitives for different reasons than those just described. They
observed that zero crossings for edges exhibit spatial coincidences
which are highly convenient for parsing purposes (Marr and Hildreth,
1972) but that zero crossings from lines and bars do not. For the
latter, it is the peaks which show the desired spatial coincidence
(see later for a fuller discussion of why spatial coincidence is
valuable). This consideration provides another argument for utilising
peak measurement primitives in addition to zero crossings. (The
difference between peaks and zero crossings situation for bars and
edges follows from the fact that the fourier components for a bar are
in cosine phase whereas those for an edge are in sine phase.)

3.3 Orientated or Circularly Symmetric Convolutions?

Should measurement primitives be extracted from orientated or circularly
symmetric convolutions? Marr and Poggio (1979) chose the orientated
option although in an implementation of the key features of their

stereo algorithm, Grimson and Marr (1979) substituted circular for
orientated convolutions.. A full theoretical debate of the computational
considerations surrounding the choice between these alternatives is
provided in Marr and Hildreth (1979).

Interestingly, we have arrived independently at a rejection of the
orientated option (Mayhew and Frisby, 1979; Frisby and Mayhew, 1980)
but mainly for psychophysical rather than for computational reasons -
(although as far as the latter are concerned, we noted the expensive,
indeed almost wanton, use of storage implied by holding in memory many
different spatial frequency and orientationally tuned convolutions, and
also some of the unnecessary and rather ad hoc computational procedures
required to obtain a primal sketch from orientated convolutions which
inevitably smear image features along the axis of orientational tuning).
Our psychophysical studies telling against orientated convolutions for
stereopsis are twofold:

(@) We have discovered that if stereopsis from an orientated texture
stexeogram is masked by adding similarly orientated noise to one field
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then rotation of the masking noise so that it would no longer perturb an
orientated convolution carrying the disparity signals does not succeed in
releasing the stereopsis from the effects of the mask (Mayhew and Frisby,
1978a). This is difficult to understand if local measurement primitives
are extracted from orientated convolutions.

(b) We have pointed out that orientated spatial frequency tuned filters

are in principle poor devices for dealing with rapidly changing disparity
cues (Mayhew and Frisby, 1979). We have demonstrated their difficulties

in this regard using a stereogram portraying a series of horizontal corruga-
tions, as though the observer was looking down on a corrugated roof. Verti-
cally-tuned filters could not in principle extract the depth from this
stereogram: they would inevitably have receptive fields spreading over
several 'disparity rasters' and so smear hopelessly the disparity cues
contained in the stereogram. Predictably therefore, a vertically filtered
version of the stereogram cannot be fused to reveal the corrugations. It
might be thought that the easily-obtained stereopsis from the original

could be mediated by horizontally-tuned units, but the poor quality of the
stereopsis deriving from a. horizontally-filtered version suggests otherwise,
as does the fact that many naive subjects cannot obtain any depth whatsoever
from the horizontally-filtered version whereas they can do so easily for the
unfiltered original. (Note that there are also limits on the disparity
gradients which can be extracted using circular convolutions but these are
less restrictive than those for orientated convolutions: Mayhew et al, 1980),

We conclude from these two studies that orientated spatial frequency tuned
convolutions do not seem to be used in the human visual system as a basis
for establishing local disparity matches, at any rate not exclusively. Of
course, this conclusion does not preclude other types of orientational
selectively embedded 'in the stereopsis mechanism, both at the local and
global levels. Orientation is tied to zero crossings at the local level,
and orientation can be made use of at the global level by a disambiguating
algorithm which incorporates a principle of figural continuity (see next
section) .

4 Binocular Combination Rule 1l: Figural Continuity

If an ambiguity in left/right zero crossing matches arises, those matches
which preserve figural continuity are to be preferred, given the BRPS con-
jecture. This is because figural continuity is an important principle
utilised in obtaining raw primal sketch assertions. Thus the binocular
deployment of figural continuity is one way in which we utilise the overall
objective of obtaining binocular raw primal sketch assertions to constrain
and direct the flow of support between local measurement primitive matches
by way of achieving global disambiguation. (MNote that by their very nature
zero crossings must be figurally continuous for they are the points of inter-
section of a plane with a surface, i.e. they are the points where the DC
plane intersects with the 2D convolution surface.)

4.1 A Binocular Combination Algorithm Using Figural Continuity

A sterec algorithm called STEREOEDGE which exploits figural continuity has
been written (Mayhew and Frisby, 1980a; Frisby and Mayhew, 1980) and it

demonstrates that curvilinear grouping rules can successfully disambiguate
zero crossing and peak matches in both natural and random dot stereograms.

The algorithm returns e&ge-segment and angle assertions to which are tied

disparity assignments.
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Figural continuity is implemented in STEREOEDGE as the piece-wise local
binocular grouping of adjacent peaks or zero crossing matches of the same
contrast sign. Grouping across small gaps in peak or zero crossing con-
tinuity (e.g. those caused by quantisation fuzz) may be admitted if dis-
parity continuity is not grossly violated, if overall orientation is
preserved, and of course if no better grouping is available. Disambiguation
by the colinear grouping of primitives of the same contrast sign is
natural given the overall objective of arriving at binocular raw edge
segment assertions. If two connected binocular edge-segments of different
orientations are present, then STEREOEDGE returns an angle assertion for
the appropriate location. Thus the type of figural grouping employed is
similar to the process of curvilinear aggregation described by Marr (1976)
in connection with the primal sketch.

4.2 Matter is Cohesive: A Constraint About The World Justifying The Rule
of Pigural Continuity

It is easy to justify the use of binocular figural grouping principles in
terms of constraints about the world upon which the processes of binocular
combination must rely. As Marr and Poggio (1976) pointed out in their
analysis of the stereo disparity computational problem, "matter is cohesive,
it is separated into objects”. It is a simple consequence of this fact
that the edges of surfaces, and also surface markings such as lines and
blobs, will be spatially continuous and that therefore their corresponding
intensity changes in the retinal images will also be continuous. This is
the ultimate justification for relying on figural continuity grouping rules
to guide binocular combination.

Note, however, that our use of this constraint about the world is importantly
different from that of Marr and Poggio (1976). Unlike us, they use the
constraint to justify a rule of preferring matches which are disparity-
continuous. This leads them to a cooperative algorithm which relies on
lateral excitation between similar disparity matches. Their later algorithm,
(Marr and Poggio, 1979) also has similar albeit less extensive disparity
facilitation. For us on the other hand, the pursuit of raw-primal-sketch-
type binocular figural descriptions is the overall objective and this does
not necessarily demand the explicit use of similar-disparity information

to guide the selection of left/right matches. In STEREOEDGE, for example,
left/right zero crossing matches can be chosen according to the principle

of figural continuity alone, without any explicit reference to the disparity
continuity of these matches, and with the actual disparity value of selected
matches accessed only after binocular combination has taken place.

4.3 Psychophysical Evidence Supporting The Rule of Figural Continuity

Psychophysical evidence for supposing that figural continuity provides a
guiding role in human stereopsis is described in the full version of this
paper (Mayhew and Frisby, 1980c). In general, stereograms containing tex-
tures which admit of figural grouping are much easier to fuse even though
they may have a greater ambiguity problem in terms of potential false matches.

5 Binocular Combination Rule 2: Correspondences Between Channel Outputs

5.1. The Interpretation of Cross-Channel Correspondences for Constructing
Raw Primal Sketch Assertions

Marr (1976) and Marr and Hildreth (1979) have demonstrated how various
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correspondences between spatial frequency channel outputs can be utilis-
ed to compute the figural type of raw primal sketch assertions (e.g.
whether an edge, line or blob is present and what contrast and width it
possesses). The BRPS conjecture holds that these correspondences are
used during human binocular combination, so that the patterns of between-
channel correspondence which enable figural type to be asserted also help
disambiguate within-channel fusions.

There are two important forms of cross—-channel correspondence to which
Marr (1976} and Marr and Hildreth (1979) draw attention: spatial co-
incidence and spectral continuity.

As far as spatial coincidence is concerned, Marr and Hildreth have shown
that if zero crossings are present in two or more spatial frequency
channels in the same relative locations, then this 'spatial coincidence’

is clear-cut evidence that an edge is present in the image in the appropri-
ate position. Consequently, they have argued that spatially coincident
zero crossings provide excellent points at which to interpret channel
outputs by way of arriving at assertions about the particular type of

edge present. We have added to this the consideration that peaks show ~
equally convenient spatial coincidence when bars are present, whereas

zero crossings tend to spread out for such inputs (see Section 3.2).

Turning to the guestion of spectral continuity, Marr (1976) pointed out
that it is both possible and desirable to use a rule of spectral con-
tinuity to guide the preliminary selection of channel measurements prior
to their interpretation as a descriptive element. Thus if the distribu-
tion of channel outputs is unimodal, a single descriptive element is
parsed; on the other hand, if there is a split into two groups then the
assumption is made that each group comes from a different entity in the
image and a separate description is obtained for each group, so that for
example a sharp line can be parsed as 'sitting on top of' a blurred blob.

5.2 Spatial Uniqueness: A Constraint About The World Justifying The
Binocular Use of Correspondences Between Channels

It is possible to justify our binocular deployment of cross-~channel
correspondences in terms of the constraints imposed by objects in the
woxrld. Here the relevant constraint is similar to Constraint 1 of Marr
and Poggio (1976), namely "that a given point on a physical surface has

a unique position in space at any one time". However, our use of this
constraint is subtlely but importantly different from that of Marr and
Poggio. We prefer to emphasise what might loosely be termed the converse
of Marr and Poggio's Constraint 1. That is, we find it more helpful to
say that "a given location in space can hold only one object at any one
time", a formulation we call the Constraint of Spatial Unigueness. The
straightforward implication of this formulation is that any given disparity/
position location should carry a symbolic description of similar figural
type in the left and right eye views, and that rivalrous matches are
therefore to be rejected. Hence the use of cross~channel combination
rules to guide binocular fusion finds its computational justification
quite readily in terms of constraints imposed by objects.

It is perhaps worth mentioning at this point that the binocular matching
rule which we extract from the Constraint of Spatial Uniqueness is very
different from the rule which Marr and Poggio (1976) extract from their
equivalent constraint. They elaborated a rule which states that "each
item from each image may be assigned at most one disparity value".
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Unfortunately, this rule flatly contradicts the usual interpretation of
Panum's Limiting Case (i.e. the interpretation which assumes that a
feature in one eye's image can be matched to more than one feature in the
other eye's image). Marr and Poggio themselves refer this difficulty
but note that when their unigqueness assumption is violated, then the
algorithm can be made to assign a match which is unique from one image
but not from the other (they cite 0.J. Braddick, in preparation). We,
however, avoid this difficulty altogether simply by avoiding Marr and
Poggio's matching rule. Instead, our formulation of the Constraint of
Spatial Uniqueness and its associated rule of utilising between-channel
spatial correspondences copes easily and naturally with Panum's Limiting
Case. This is because it makes evident sense within out own conceptual
framework to parse out separate descriptive elements existing in
different disparity/position locations when the stimulus input is a
single line in one eye and two side-by-side lines in the other eye!

5.3 Psychophysical Evidence Supporting The Binocular Combination Rule
of Cross-channel Correspondences.

We have reported elsewhere certain contrast summation effects operating
across spatial frequencies at stereothreshold and how these support the
notion of cross-channel global disambiguation processes in human stereopsis
(Mayhew and Frisby, 1978b). We now describe two further studies on this
theme but based on gquite different psychophysical paradigms.

5.3.1. The Case of the Missing Fundamental

One line of evidence which has led us to believe that cross-channel
combination rules play a role in guiding binocular fusion comes from an
investigation we have conducted (Mayhew and Frisby, 1980b) into the bi-
nocular fusion of square wave gratings with a missing fundamental
(figures la and 1lb). Disparate waveforms of this kind present interest-
ing ampiguities about which left/right zero crossing matches are to be
selected. PFor example, consider figure 14 which shows a magnified sample
of the luminance profile on the left eye's image. When convolved with a
spatial frequency channel whose centre frequency is that of the 3rd
harmonic of the grating, zero crossings found for this sample are as
displayed in 1f (channel tuning modelled on the psychophysical data of
Wilson and Giese, 1977). The interesting ambiguity within this sample
is illustrated in connection with one particular zero crossing, that
identified with a vertical dotted line: Note that it derives from the
edge marked with a small arrow in the luminance profile of 1d. Note
also that it can in principle be matched to at least two zero crossings
in the left eye's convolution profile: these are shown in le, also with
vertical dotted lines and again the parts of the luminance profile from
which they derive are shown with small arrows, this time in figure lc.

Now due to the fact that the stereopair of la/lb possesses a fairly

large disparity (greater than half the period of the 3rd harmonic in
fact), the correct zero crossing match (the leftmost one shown in

figures le and 1f) is, as far as Marr and Poggio's (1979) model is
concerned, outside the allowable range for the channel under consideration
Consequently, Marr and Poggio's model would predict that within this
channel the smaller-disparity incorrect match would be the one selected
(the rightmost one shown in figures le and 1f). Therefore, if this channel
was the one critically mediating the perceived stereopsis, the predicted
psychophysical result would be the percept of a grating receding relative
to its surround
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(for crossed-eye fusion of la and 1lb). This argument is borne out by

a computer simulation of Marr and Poggio's algorithm which we have run
on this stereogram and which does indeed choose the receding match.

In marked ceontrast with this prediction, the depth effect which is
actually seen is that of a protruding grating. That is, the human visual
system selects the correct disparity match, despite the fact that it is
of a size that puts it out of range for the type of channel being
considered and despite the fact that an alternative within-range match

is potentially available.

MISSING
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Fig. 1 The missing fundamental stereopair. See Section 5.3.1

for details. A and V¥ refer to positive and negative
zZero crossings respectively.
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Thus what seems to be happening in the case of the missing fundamental
stereogram is that stereopsis is based on the different types of edges
in the luminance profile, rather than on zero crossing matches found and
processed independently within spatial frequency tuned stereopsis
channels. This conclusion is very much in keeping with the BRPS conject-
ure, because it requires that local matches found in all spatial fre-
quency channels are considered jointly and in parallel, in an endeavour
to f£ind the best fitting binocular edge descriptions consistent with

the total data provided by these channels.
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Fig. 2 Measurement primitivesextracted from relatively high and

low spatial frequency channels from left and right
luminance profiles of the missing fundamental stereopair.
See Section 5.3.1 for details.
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This general scheme of binocular combination is illustrated in figure 2.
Samples of left and right luminance profiles of the missing fundamental
stereo pair are shown in 2a and 2f, and in between these are shown peaks
and zero crossings discovered from these samples within two spatial frequency
tuned channels (2b-e)}. Spatial coincidence (defined here as measurement
primitives of the same type found in the same relative locations in both
channels) occurs where vertical dotted lines are shown linking the

channel primitives to the luminance profiles. The E and B symbols refer
to edge and bar assertions which would be extractable in each case. Given
the BRPS conjecture, this process would be effected binocularly, with
consequent elimination of the ambiguities existing within each channel
considered as a separate entity.

Certain possible objections to using the missing fundamental stereo pair
to support the BRPS conjecture do, however, need to be considered:

First,it might be asked whether activity in other channels could provide

a correct resolution of the ambiguity, without recourse to the type of
processing envisaged by the BRPS conjecture. But in this connection, we
note that channels dealing with frequencies higher than the 3rd harmonic
are no better off than the channel illustrated in figure 1 (which is
centred on the 3rd harmonic). Such channels would make just the same
choice, considered as independent entities, with the correct match always
out of range. And as far as channels tuned to lower spatial frequencies
are concerned, channels which would of course have the range capable of
dealing with the correct disparity in the stimulus, the fact that the
stereo grating is missing its fundamental means that these channels would
inevitably be only weakly stimulated (if indeed at all). More importantly,
even if stimulated such low frequency channels would tend to 'see* just a
simple sine wave. Sine waves are notoriously ambiguous stereo stimuli for
which the lowest disparity solution is invariably selected, a fact illustrat-
ed by the lower half of figure 3 which shows the missing fundamental stereo
pair filtered to reveal only its 3rd harmonic¢. In this half of figure 3,
receding depth is seen with crossed-eye fusion - the 'incorrect' solution
for the missing fundamental stereogram itself, a result which contrasts
nicely with what is seen in the upper half of figure 3 in which the

higher harmonics of the missing fundamental waveform are present, with the
consequent result that protruding depth is once again evident.

Secondly, it might perhaps be maintained that correct stereopsis could be
achieved by an independent channels model of the Marr and Poggio kind if
initial left/right zero crossing matches were restricted only to those of
roughly similar slope (adding this restriction to the already existing
ones of similar contrast sign and similar orientation: Marr and Poggio
refer to this possibility briefly in connection with stereopsis and Marr
and Hildreth discuss its advantages more generally). Slopes for zero
crossings within the channel illustrated in figure 1 are not in fact very
different but for higher frequency channels the slopes do become progress-
ively distinct. However, for these higher spatial frequency channels the
disparity to be processed is well outside the range allowed by the model.
Use of slope information is also not without other problems as far as
stereopsis is concerned. For example, it is well known that stereo pairs
of widely differing contrasts can readily be fused and this would seem
impossible if initial local matches were restricted in a slope bound way.
If it be thought that this consideration could be circumvented by some
kind of ‘normalisation' prior to establishing local matches, then the way
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in which this might be done needs to be carefully considered. We would
argue that any normalisation is most sensibly done locally in connection
with arriving at binocular assertions, for example perhaps by seeking
particular ratios of activity in left/right channels. Since it is the
relative activity in the various channels which is used to determine the
raw primal sketch element that is to be asserted, this proposal naturally
leads straight back to the BRPS conjecture.

It is worth noting that 160 msec presentations of the missing fundamental
stereo pair still produce correct stereopsis, so that any important
involvement of the vergence mechanism seems ruled out, and also that we
have done a similar analysis of this stereogram using peaks rather than
zero crossings, with exactly the same conclusions.

Finally, it is worth pointing out that in the case of the missing
fundamental stereo pair, where the ghosts and correct targets show equal
figural continuity, we find that cross-channel correspondences are
sufficient. In most images, of course, the two combination rules could
be applied simultaneously to great advantage.

Fig. 3 Stereogram whose upper half is composed of the
missing fundamental waveform described in figure 1 and
whose lower half is that waveform filtered to reveal just
the 3rd harmonic. Opposite depth effects are obtained in
each half: see Section 5.3.1 for details.
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5.3.2 Spatial Frequency Filtered Stereograms Portraying Corrugated Surfaces

Other psychophysical evidence implicating the use of cross~channel
correspondences by the mechanisms of human stereopsis comes from a

study using the horizontally-corrugated stereogram referred to earlier.
The details of this study are described in the full version of this paper
(Mayhew and Frisby, 1980¢). In brief, the study showed that low spatial
frequency information which on its own was not capable of providing a
solution to the required psychophysical discrimination nevertheless
facilitated disambiguation of the high spatial freguency content necessary
for the discrimination. This was true even in the absence of eye move~
ments.

In the next section we describe a computational experiment which demon-
strates the potential value of cross-channel correspondences for
solving both the missing fundamental and corrugated surface stereograms.

5.4 A Computer Simulation Demonstrating Binocular Use of Cross-Channel
Correspondences

We have devised an algorithm (called FRECKLES: Mayhew and Frisby, 1980a)
which uses peaks and zero crossings as measurement primitives to arrive

at monocular raw primal sketch assertions, and we are presently engaged

in extending this algorithm to cope with binocular inputs in a mannexr
consistent with the BRPS conjecture and as already outlined in principle

in connection with the missing fundamental stereo pair (figure 1).
However,by way cf evaluating the BRPS conjecture in general terms, we now
describe an interim study which demonstrates that cross-channel correspond-
ences can in principle provide a powerful basis for the computation of a
local piece-wise binocular correlation. ’

Figure 4 illustrates a stereo algorithm which takes advantage of cross-
channel correspondences at what might be termed a ’‘pre-parsing’' level.

The algorithm is based upon three monocular spatial frequency tuned
channels (which is probably the sensible minimum to employ: two only

were shown in figure 2 for simplicity). For each location (point) in

one eye's image, a triplet of channel measurement primitives found at

that location (an example is shown at the top of figure 4) is correlated
with all other triplets found for locations in the other eye's image
within a disparity range which defines Panum's fusional area for the
algorithm (what range seems sensible is presently a matter of investigation).
The correlation coefficient which we employ to discover the measure of
agreement between left and right triplets is a fairly crude statistic but
we suspect that almost any sensible weighting for the state of agreement
between individual measures comprising each triplet will suffice. Thus
for each spatial frequency, similar measurement primitives of similar
contrast sign are weighted positively, and mis-matched primitives (i.e.
‘rivalrous' ones of different type) are weighted negatively. Nil entries
are allowed in each triplet (i.e. nil means the absence of a measurement
primitive) and if a nil entry in one monocular triplet is coupled with a
peak or zero crossing in a triplet from the other eye then this too reduces
the correlation score. The details are, however, unimportant: suffice it
to say that this type of cross-channel correlation finds the missing
fundamental stereo pair trivially easy, and it can also reduce to
negligible proportions the population of ghost matches for a 1D slice of

a densely-textured randon dot stereogram (figure 5), even over a disparity
range more than twice as great as that allowed for the lowest spatial



MAYHEW-14

Zero crossings and
Peak Primitives:
Positive <

a spatial High + Negative =
Right Frequency None .
Eye of Medium <+
Triplet Channels

Low .
Triplets
from
Left Eye + - + ' +
(within
fusional + + - + +
range for
Right Eye 4 . — . .
Triplet)

Bi ula
C;::Zspoidence h4 P4 P4 r4
U ‘ U U

X

Fig. 4 A stereo algorithm taking advantage of cross-channel
correspondences at a pre-parsing level. In the upper part of

the figure is shown a triplet of measurement primitives found in
three monocular spatial frequency channels at a particular location
(*point'). Below this triplet is shown a sample of triplets found
in the other field for locations within a given disparity range
that defines Panum's fusional area for the algorithm. 1In the
bottom row are shown the results of correlating the upper triplet
with each of the middle triplets: this bottom row thus displays
the preliminary stage of cross-channel binocular combination as

far as the upper triplet is concerned. It is an easy matter to
weight the kinds of measurement primitive matches found for each
spatial frequency (see Section 5.4 for further comment on this) to
enable selection of the correct triplet match. In the illustrated
case, the triplet on the extreme right is appropriately selected as
'correct' because it possesses only correct matches (M). All others
possess either rivalrous matches (R) or they contain primitives for
one eye's view only (U - uniocular), there being no primitive at all
found in the other eye's triplet. Note that each positive or nega-
tive primitive could be either a zero crossing or a peak and that a
rivalrous match would be logged if primitives of these different
types were found.
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frequency tuned channel in Marr and Poggio's (1979) algorithm.
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Moreover,

we find that it can cope with a corrugated surface of the kind discussed
in Section 5.3.2, with easy selection of correct matches in the peak and
trough zones and degraded but nevertheless adequate performance for the

regions of texture dealing with the slopes linking each peak and trough.
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Fig. 5 A demonstration of binocular cross-chanrel combination

for a 1D slice of a random dot stereogram.

In {(a) is

shown the ghost structure for this slice if potential
local matches are defined simply as black-for-black or

white-for-white pixel matches.

The correct disparity

plane is zero so that the correct matches are those

lying on the diagonal.

As can be seen,

on this basis

the relatively fine texture of the stereogram hides the
correct matches within an enormous pool of possible

matches. In (b),

the same 1D slice is input but now the

ghost structure is shown when each potential local match
is based on the discovery of a matching peak or zero
crossing primitive of similar contrast sign in any and

all spatial frequency channels.

It thus defines the

ghost structure for an independent channels model of

stereopsis.

The filled-in squares of

(b} are those

matches selected by the cross-channel stereoalgorithm
described in Section 5.4 and illustrated in figure 4.
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A full evaluation of our cross-channel algorithm which compares it
against other image-processing cross~correlation techniques will be the
subject of a further report. Suffice it to say for the present that our
preliminary studies have been very encouraging, returning much sharper
autocorrelation functions than classical techniques. Most importantly
for present purposes, the algorithm demonstrates that cross-channel
correspondences can in principle provide an excellent basis for binocular
combination, and therefore that the BRPS conjecture gains considerable
support from this computational experiment. This is particularly so
when it is realised that each channel on its own suffers a fairly dense
ghost structure (figure 5) for the random dot stereogram used to explore
the properties of the algorithm to date.

5.5 Summary

To summarise this section, it seems that the processes of human binocular
combination optimally combine patterns of zero crossing and peak matches
presented in parallel by several spatial frequency channels. Matches

are not chosen independently of their cross-channel context but instead
selected according to cross~channel combination rules and interpretive
constraints forced by the requirement to produce a coherent binocular
description of the local intensity changes in the scene. Our psycho-
physical data challenge any model based purely on the independent
within-channel processing of zero crossings and peaks, such as that of
Marr and Poggio (1979: see also Frisby and Mayhew, 1977), and our
computational experiments demonstrate that cross~channel correspondences
are in fact capable of aiding binocular combination in a powerful fashion.
Whether cross-~channel correspondences that violate the principle of
spectral continuity should be used for disambiguation is currently the
subject of psychophysical investigation.

6 Micropattern Matching vs. The BRPS Conjecture

It might be wondered whether the BRPS conjecture is equivalent to the
oft-cited idea that the stereo ambiguity problem might be resolvable by
matching similar micropatterns in the two eyes' views. Julesz considered
just such an idea at the outset of his research programme using random
dot stereograms but quickly rejected it following a simple experiment.
Thus he found that if equivalent left/right micropatterns were perturbed
by changing the diagonal connectivities between neighbouring points in
one eye's image, then stereopsis survived despite the radically different
appearance of the left and right eye images which this procedure creates
(Julesz, 1960). One might add to this line of evidence Julesz's
demonstration that stereopsis also survives strongly blurring one image,
again despite the remarkably different left/right micropatterns that this
procedure creates (see Julesz(l971)for sterxeoc illustrations relating to
both these experiments). One is forced to conclude that as far as

human stereopsis is concerned, disparity extraction cannot be mediated
solely by matching exactly similar micropatterns in each eye's view. We
would add to this the fact that high pasSs filtered textures which
preserve the micropattern structure of the original are more difficult
stimuli to fuse than would be expected were micropatterns used as match-
ing primitives.

The BRPS conjecture proposes a form of binocular combination that takes
advantage of local figural information, but note that the stereo algo-
rithm described in Section 5.4 and developed with the BRPS conjecture
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in mind does not require identical micropatterns in the two fields for

it to work satisfactorily. At least in principle (and we are currently
exploring details of implementation), the cross-channel triplet matching
we have proposed copes naturally and easily with many kinds of left/right
perturbations which it is known human stereopsis can surmount, such as
those described in the preceding paragraph. That is, this type of stereo
algorithm will find a 'best fit' correlation of the two fields without
insisting that the correlation be perfect. BAll that is required is that
some spectral overlap exists between the left and right textures.
Interestingly, this is just the requirement which human stereopsis seems
to demand, because large spectral differences produce marked binocular
rivalry (Mayhew and Frisby, 1976; Frisby and Mayhew, 1978).

7 Concluding Remarks

We suggest that the local and global combination rules listed above will
be a sufficient basis for obtaining global stereopsis from most stereo
inputs. They will clearly fail in certain situations, however, for
example those involving strictly repetitive sub-patterns of the kind
used to create ambiguous random dot stereograms (Julesz, 1971) and
effects such as the wallpaper illusion. But repetitive patterns pose
problems for any stereo algorithm because alternative coherent and
stable fusions are intrinsic to their design. The human visual system
seems to deal with them simply by choosing that set of disparity
matches closest to the fixation plane (Julesz and Chang, 1976) and

by not allowing fusions which would be spatially incoherent. That is,
at any one moment the human visual system seems to reject binocular
assertions which would amount to positing elements existing in disparity/
position locations that would entail them being masked in both eyes'
views by other elements asserted in other occluding locations. This
need not be thought of as an ad hoc restriction because it could be
based on what might be called the 'opacity constraint' presented by
objects in the world, i.e. 1if a non-transparent entity is asserted in
a given location then it is sensible not to assert other entities
hidden behind it which could not be seen from either eye's viewpoint.
The use of this constraint would not preclude Panum's limiting case
and it is consistent with the limited subset of perceptual outcomes
that appear for stereo inputs of the nail illusion kind.

There are,of course, many other problems to be solved for a

'complete' model of stereopsis. For example, it is necessary to face

the problems posed by the need to interpolate disparity assignments

to those regions of the field of view between binocular raw primal sketch
assertions. This enters the domain of processing required for the

25D sketch (Marr and Nishihara, 1978), a representation of surfaces

and their orientations in depth based upon many cues besides disparity
and a processing objective beyond the scope of this paper.
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SOME PROBLEMS IN EARLY NOUN PHRASE INTERPRETATION

C.S.Mellish,
Department of Artificial Intelligence,
University of Edinburgh,
Edinburgh EH8 9NW, UK

Abstract

How does a piece of text provide the information necessary for generating a
symbolic "meaning" and how can a computer program be organised to pick up
that information? The work described here aims to investigate some of the
constraints on the timing of semantic interpretation. 1In particular, we
are interested in seeing to what extent the meaning can be built up in an
incremental way as the analysis proceeds from left to right. We look at
some problems of noun phrase interpretation in such a scheme and indicate
some representational ideas that help to overcome them. This paper is a
brief summary of a forthcoming PhD thesis [Mellish 801.

Keywords

Parsing, reference evaluation, quantification in  natural Language,
computational linguistics.

Introduction

How would noun phrases be treated in a system for semantic interpretation
that worked strictly Left-to-right? Semantic analysis of a noun phrase
might be expected to immediately determine the set of objects in the world
that it refers to. This is, of course, an impossible requirement, for many
noun phrases in themselves only give incomplete information about their
referents. Even if we make use of the combined syntactic and semantic
context coming before a noun phrase, it 1is still often dimpossible to
determine on the spot exactly what is involved. We consider here two areas
where Left-to-right analysis encounters problems - definite reference
evaluation and the interpretation of indefinite noun phrases. For each, we
indicate how appropriate choices of representation enable the idea of left-
to-right processing to be lLargely retained.

Basic Framework

The ideas presented in this paper are ambodied in a working computer
program [Mellish 791 that was developed as part of a system to solve
mechanics problems stated in English [Bundy 79]. In this system, a model of
the small world described by a mechanics problem is kept in the form of a
database of Predicate Calculus formulae. Objects in the world are
represented here by constant symbols, and possible relationships between
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them by predicate symbols. Since the possible worlds are all finite and the
information conveyed in a mechanics problem is normally fully specific, in
practice the formulae are of a restricted sort. This fact 1is wused in
certain assumptions that our program makes, namely:

- Each noun phrase refers to a finite number of objects.

- It is not necessary to deal with the logical operators ‘or' or
"not' in connection with information about the world (the world
model is a simple conjunction of facts).

- It 1is also not necessary to deal with full quantification (over

sets which cannot be conveniently enumerated) in this context.

It remains to be seen to what extent our work can be extended to handle
domains where these assumptions do not hold.

Definite Reference Evaluation

An important paper by Ritchie [Ritchie 76] discusses some of the problems
of carrying out semantic interpretation on a local basis. Ritchie makes two
majn points, which are closely related to the problem of reference
evaluation. Firstly, whether an interpretation is semantically anomalous
(eg whether an inappropriate referent has been chosen) cannot in general be
decided locally, but can only be evaluated within a global system of
"preference"” [Wilks 75]. Secondly, important "environmental' factors (such
as the relevant time period) may be unknown when a phrase 1is evaluated.
Because of this, it may not even be possible to obtain reasonably sized
sets of candidate referents locally,

While we fully agree with Ritchie's points, we feel that there are
interesting problems 1in local reference evaluation even in examples where
the candidate sets are small and semantic anomaly 1is fairly clear-cut.
Therefore these particular issues will not be considered further here. 1In
our simplified view, definite reference evaluation can be seen as the task
of instantiating a variable with a value that satisfies a set of
constraints. The constraints arise both from the explicit information given
in the definite description and from preconditions ("semantic checks™)
associated with relationships that the referent 1is taking part in.
Consider the referent of "it" in the sentence:

A rod is supported by a string attached at its ends. (¢ D]

Because of what the word "it" means, the referent must be 1inanimate and
singular., Further, because of preconditions for the relationships it is
involved in, it must be something able to have ends, and its ends must be
things physically capable of being attached to the string. Constraints
affecting the evaluation of a reference may arise at many places in the
analysis. Is it possible to arrange for their satisfaction to take place
within a "left-to-right semantics" framework?

We propose a strategy that attempts to keep all its options open until the
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accumulated constraints have narrowed the possible interpretations to one.
This is not a simple postponement of reference evaluation, for it s
possible to use information about partially-evaluated references to
influence which possibilities in the parsing are considered. Nor is this a
simple substitution of breadth-first for depth-first search, for the use of
appropriate partial representations enables common paths to be merged until
a choice is absolutely necessary. Because the method is incremental, there
can be a close interaction between reference evaluation and other
analytical processes, which allows false hypotheses to be rejected early.

In order to carry out incremental reference evaluation it is necessary to
have representations of partially-evaluated references and to be able to
perform semantic operations on these. Semantic routines must be able to
handle unevaluated references in the same ways as they handle other objects
in the world, and so there must be (at a superficial level) no significant
difference between the ways in which these are represented. Hence we are
Led to the idea of having explicit "reference symbols" as well as symbols
corresponding to unique objects 1in the world. Since at a deeper level
there are basic differences between how the two kinds are to be treated, we
must associate extra meta-information with a constant symbol. For a
reference symbol, this information includes the current candidate set and
any constraints that Link its value to that of others. Hence when a new
constraint involving one or more partially-evaluated references is
generated, the implications for all the candidate sets can be followed up
by a "filtering” algorithm [Waltz 72, Mackworth 771.

Interpreting Indefinite Noun Phrases

When we come to an indefinite noun phrase in a left-to-right analysis, we
may be unable to tell how many objects in the world are referred to, either
because of a vagueness in the phrase itself or because a dominating
guantifier has not yet been read.

Small blocks, each of mass m, are clamped at the ends
and at the center of a light rod. : 2

A wooden stool 2ft 2in high consists of a square seat with
a uniform vertical leg at each corner. 3)

It follows that an interpretation in terms of concrete referents is not
possible. However, with a phrase like "some blocks”, although we do not
know how many objects there are, the information we have about each one is
identical. It follows that most kinds of inferences (such as checking the
suitability of the adjective "small") would proceed in exactly the same way
for each one. This justifies considering all the elements of the set at
once, by using a "typical element"”. We have therefore dintroduced typical
element symbols into the world model as possible referents of phrases.
These can, in fact, be used equally well when there is knowledge about the
set's cardinality, as with the phrases "3000 blocks" and *2n blocks".

The way an indefinite NP refers to a set of objects may well indicate more
structure than is conveyed by a simple set representation. It may say
something about how the set decomposes into subsets. Consider the set of
pulleys in:
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A length of rope and two blocks each containing 3 pulleys
are supplied. (4)

In this example, there are six pulleys in total. Firstly, there is a "top
Level” decomposition into three subsets, as communicated by the number in
the phrase. Secondly, each subset decomposes 1into two elements,
corresponding to the two blocks.

Although we can do a lot of work at the level of typical elements of sets,
it is unreasonable to expect that we will never have to deal with
individual elements. So we must keep track of what kind of set a ‘'typical
element' corresponds to — how it decomposes into subsets, what cardinality
information is known and so on. Not all of this will be immediately
available, so it will be necessary to represent partial information that
can be gradually updated.

Our way of keeping track of these matters is to keep a "dependency List"
associated with each constant symbol in the world model. This will be able
to expand as necessary %o record all the seperate dimensions making up the
set of objects. Each entry in a dependency List has information about the
origin of the dependency, the cardinality associated with it and whether it
still corresponds to a division of the set idinto '"indistinguishable”
subsets.

Assertions formulated 1in terms of typical elements must be useable by the
inference system at various times in the semantic analysis. £ach time there
may be more concrete information about the dependencies than the time
before. An indefinite noun phrase referent may start with no known
dependencies, may then accumulate some as a quantifier is discovered, and
finally inferences may be carried out in terms of a very specific element
of the set. At each stage, the very earliest assertions made about the
referent may be needed. The meta-information embodied in the dependency
List provides the basis for interpreting the assertions 1in the correct
amount of detail each time.

Conclusions

In this paper we have introduced representations for partially-evaluated
references and various kinds of typical elements of sets. By eapressing
propositions in terms of these 1instead of "concrete referents"”, we can
often maintain a policy of early noun phrase interpretation without
encountering overwhelming search problems.
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USING DETERMINISM TO PREDICT GARDEN PATHS

Rob Milne
Department of Artificial Intelligence and School of Epistemics
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ABSTRACT

I am interested in making a psychologically valid model of human natural
Llanguage understanding, and especially in a processing model for predicting
when a sentence will be a garden path. while extending the Marcus
deterministic parser to include noun-noun modification, several counter
examples to Marcus' garden path prediction were found. In this paper I
propose that when people encounter an ambigous situation that may lead to a
garden path, they use semantics to decide rather than Look ahead. I will
present an extension to the garden path prediction mechanism of Marcus'
parser to account for this and several experiments to test this theory.

INTRODUCTION

1 am interested in making a psychologically valid model of human natural
Llanguage understanding. Especially 1in the guestion: "Is it possible to
predict which sentences will cause people to garden path?"” A garden path
sentence is a sentence which people cannot properly analyze without the
need to re-analyze (backtrack on) a portion. For example:

[1] The horse raced past the barn fell.
In each sentence of this type there is a point where two possible analyses
are possible (j.e. at raced). The need to backtrack is a result of
selecting an analysis different from that demanded by the rest of the
sentence. For each garden path sentence there is a partner sentence that
does not require backtracking, e.g.

{21 The horse raced past the barn.
This partner sentence has the same two possible readings at the same point,
but the analysis selected is the one demanded by the rest of the sentence.
Such a pair of sentences will be called a pair of potential garden path
sentences. Another pair of potential garden path sentences is:

£3] The building blocks the sun faded are red.

C41 The building blocks the sun.
For sentences [3] and [4], some people would need to backtrack on (3] and
some would need to backtrack on [4]. Neither of these sentences is a
garden path for every person, but each is a garden path for some people.

We would Like our model to analyze without backtracking, sentences which
people don't seem to need to "backtrack'" on. If we build a parser that
never backtracks, then it would analyze non-garden path sentences properly,
but fail to analyze a garden path sentence. This model would then predict
a garden path sentence as being any sentence it is unable to analyze.

For these purposes, an ATN model [Woods 70] is clearly inadequeate. Even
though ATN parsers can be implemented very efficiently, their extensive use
of backtracking eliminates them as a possible model. Instead we take the
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Marcus [1977] deterministic parser as a starting point.
THE EXISTING PARSER

I have implemented a version of Marcus®' original parser 1in Prolog. The
entire system has been designed to be "deterministic". That is it "never
undoes structure that has been built up". Marcus has shown that a Large
subset of natural language can be parsed without the need for backtracking,
if the parser uses two simple techniques. The first of these is 3
constituent Look ahead. The grammar is written such that each rule can
examine 3 "buffers". Each buffer can contain any constituent representable
as a single node. (i.e. a word, a NP, an embedded sentence, etc.) This
technique causes "wait and see'. If it is unclear how to use a certain
word or constituent during the parse, the parser “waits to see'" what it
should be. By using the Look ahead and "wait and see” techniques, it is
possible to analyze properly many sentence forms without the need for
backtracking or undoing structure. For a fuller discussion of determinism,
see Marcus or Milne [1979].

During the implementation of the parser, I extended and modified it to
handle several areas Marcus did not include. In Marcus' original parser,
no facility was included for noun-noun modification. Instead each NP could
have only one headnoun. This prevented the parser from analyzing many
sentences such as:
[5]1 The cover screw is red.

In [5] the complex headnoun (cover handle) could not be built 1in Marcus'
parser. The parser was also not able to deal with words defined as
multiple parts of speech. In order to extend the parser to -allow complex
headnouns, a problem arose determining the end of a NP, which I shaltl call
the "end of constituent’ problem.

END OF CONSTITUENT

In the sentence fragment:

£6] The cover screwS....
The sentence could be completed as either:

[7] The cover screws are red.

[8] The cover screws easily.
In sentence [7] the headnoun is (cover screws) while in [8] it 1is only
"cover'. Detecting this and deciding to attach each possible headnoun, is
an example of the "end of constituent" problem. This problem is especially
important for the question of PP attachment. For, in order to attach a PP
to make a larger NP, the root NP must be located. An ATN parser is able to
choose one possibility and then backtrack, if it discovers this is
incorrect. But a deterministic parser is not able to backtrack, and must
identify the correct end without an error.

For a deterministic parser, a sentence such as [9]) presents no problem
finding the end of the constituent.

[9] The falling bltock is made of wood.
In [91, the word "falling” can be either a verb or an adjective and "block”
can be either a noun or a verb. The general solution to this case is
implemented implicity by the grammar packets. While an NP is being parsed,
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the parser de-activates all rules not dealing with NP elements. That is,
when the parser is expecting a noun for the sentence, no rule dis active
that can recognize a verb, or any part of the auxillary. The adjective
rule will match on "falling", making it an adjective and will never
consider "falling* as a verb. Likewise for "blocks”. Whilst an NP is
being built, words are attached to the Current Node Stack and removed from
the first buffer. Grammar rules can only match the buffers, so eventually
the AUX or a verb will arrive in the first buffer. At this time the only
grammar rule to match will cause the NP to be finished. In this way
ambiguous word in a NP are handled.

THE FINAL S

This first case is trivial and presents no problem. The greatest
difficulty arises when there is a series of words that can be either nouns,
or verbs. The following examples illustrate this:

[10] The soup pot cover handle screw is red.

{113 The soup pot cover handles screw tightly.

*[12] The soup pot cover handles screws tightly.

[13] The soup pot cover handle screws tightly.

[14] The soup pot cover handle screws are red.
Each of the words (soup pot cover handle screw) can be either a noun or a
verb. The end of constituent problem is to find which word is used as a
verb and which words make up the complex headnoun.

In [10] each word is singutar. For this case all words must be nouns and
are part of the headnoun. In £111 "handles” is noun plural. In this
situation each word before it must be a noun. When a noun/verb word
follows it, the word (screw) must be a verb and "handles" is the last of
the headnouns. It is not possible in this situation to use "handles” as a
verb. Sentence [121, with two plural words, is ungrammaticat. This case
will not be dealt with. (Do not confuse plural "s" with possesive "'s"),

Sentences [13] and [14]1 both bhave the same word string until after
"screws”, but in [13] "screws" is a verb while in [14] "“screws" is part of
the headnoun. In this situation where the final word of the series is
plural, each word before it must be a noun. The plural word can be either
a noun or a verb, depending on what follows. Now consider the following
sentences:

L[15] The toy rocks the child vigorously.

C16]1 The toy rocks the child has are red.
These two are a pair of potential garden path sentences, as described in
the dntroduction. They demonstrate that, in the situation of a singular
noun/verb word followed by a plural noun/verb word, it is always possible
to finish the sentence so that it will be a garden path. Deterministic
parsing, as Marcus proposed, will not be able to handle all occurences of
this situation.

PREDICTING GARDEN PATHS

As I explained in the introduction, I am interested in predicting garden
paths. We have just seen, while handling the end of constituent problem a
case that Leads to potential garden paths. Can our model predict when this
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case will be a garden path?

First Let me explain the garden path prediction of Marcus' parser. The
parser consists of a active node stack where partially built items reside,
and 3 buffers. Each buffer contains a word or constituent that can be
represented by a single node (i.e. word, NP, PP, VP, etc.). In the best
situation, an ambiguous word will be in the first buffer and the look ahead
will be two items (Buffers 2 and 3). When an NP is being built, these two
items of lLook ahead will be words and never whole NPs or larger items.
This 4s because a NP is built using an Attention Shift [Marcus 77] and it
is not possible to perform an Attention Shift whilst in another Attention
Shift. At the time the word "rocks" is being analyzed in sentence [15],
the parser state will be:
Active Node Stack: NP the

toy
Buffers: Crocks] Lthel Cchildl
A sentence is predicted to be a garden path if the Llook ahead is not
sufficient to disambiguate the word correctly. The original prediction did
not encompass potential garden path sentences. Instead, for the case of
[151 and (161, it would arbitrarily choose one case always to be a garden
path.

It should be noted that, in the case of:

£17] Have the students take the exam.

[18] Have the students taken the exam?
the look ahead will be: [havel [NP] [take/taken]
since the ambiguous word is not part of a NP. I stated earlier that for
each person either [15] or [16] must be a garden path. -Determinism
predicts that both are a potential garden path, but cannot tell which it
will be. This uncertainty suggests some possible counter examples to the
garden path prediction of determinism.

In fact, the classic garden path:

L1191 The prime number few.
is a counter example to determinism's prediction. When the parser is
analyzing the word "number” the state will be:

Active Node Stack: NP  the

prime

Buffers: Cnumber) [fewl [.]
Since the entire sentence fits into the three buffers, all information to
analyze the sentence 1is available, but people do garden path on this
sentence. I predict the following to be another counter example:

[20] The jeep rocks are red.
Even though the number of words until the error is realized is very small,
people are aware of some confusion whilst analyzing this sentence. Again,
all the information for proper analysis is contained in the three buffers
and it is predicted not to be a garden path.

These two sentences are counter examples to our prediction of garden paths,
but this does not mean that all our predictions are no longer valid.
Sentences of the type [1] will be properly predicted to be garden paths.

I propose the following extension to our theory if garden path prediction
is to handle these apparent counter examples:-—
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When a person encounters a situation such as a noun/verb word followed by a
noun/verb that is plural, instead of using look ahead, they attempt to make
a complex item name of the two words using semantic information. They do
this without regard to the following words in the sentence. If their
preference for this leads to an analysis different from the analysis
demanded by the sentence, then they will garden path. Notice this
prediction now depends on a semantic preference for complex nouns, rather
than on Llook ahead. I will explain this preference more in the following
section.

As the above examples show people like prime numbers, but don't Like jeep
rocks. I believe people will garden path if "prime number” is not a
complex headnoun because it is a common construction, as with '"map pins"
and 'granite rocks". People will use "rocks" as a verb in "jeep rocks”
since it is very difficult to imagine the complex item (jeep rock). People
also will not build complex item names of "boy screws” and "cook handles”.
For each of these, the 2nd word is predicted to be used as a verb. Finally
for the case as in [15] and [16] (toy rocks), both constructions are
equally possible, so some people would garden path on [15] and some on
£163. It 1is also very easy to bias this last case with context, etc.
altering the predictions.

FURTHER WORK

The theory just presented will provide a better prediction of garden paths.
Previously the garden path prediction of determinism was only, "this form
may lead to a garden path'". The new theory will be able to tell us more
accurately which sentences are garden paths and which are not. But this
theory relies on the psychological preference of people to construct
complex named objects, without using look ahead. In order to use the new
prediction, data needs to be gathered to show these biases and determine if
our new predictions are correct. I conducted two experiments to gather
data on biases and test this theory.

TESTING THE PREDICTIONS

An informal survey was first conducted to test the generation of complex
item names, which supported the above proposal. A reaction time experiment
was then performed. The purpose of the experiment was to present sentences
predicted to be garden paths by our new theory, and those believed to be
wrongly predicted to be garden paths by the old theory and test our
predictions. The subject was directed to read the series of words
presented and indicate whether it was a complete sentence or not. Reaction
times were recorded from the presentation of the sentence until the
response. The test examples contained a mix of obvious fragments, obvious
sentences, and a mixture of control and test sentences. The test sentences
included such examples as:

[21]) The jeep rocks are red.

223 The building blocks the sun.

23] The granite rocks during the earthquake.

[24] The granite rocks were by the seashore.
Our theory predicted that sentence [23] will take longer to process than
sentence [24]. This 1is because the reader will have a preference for
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(granite rocks) and hence make an error and require garden pathing in [23],
but not 1in [24]. The experiment confirmed this prediction, but space
doesn't allow me to include the details here.

A POSSIBLE EXPLANATION

It is generally agreed that PP attachment, to be correct, must be done on a
semantic basis. Crain and Coker [1979] have shown that the problem of
“raced”" in [1]1 is also resolved on a semantic basis, rather than using
syntax. I have just proposed that the same is true for ambigous noun/verb
plural words.

In each of these situations, syntax does not provide sufficient information
to prevent a garden path, and in each situation we have claimed semantics
is used for the disambiguation, rather than Llook ahead. This suggests
that, 1in a potential garden path situation, people do not use look ahead,
but resolve the ambiguity using semantics, and this semantic basis can
easily be biased by context. This proposal needs to be further tested and
checked carefully, before we are sure it is true.

CONCLUSION

Whilst extending the Marcus parser to deal with complex headnouns, we came
across a case Lleading to garden paths. This then presented counter
examples to the prediction of garden paths made by determinism as presented
by Marcus. The reason these predictions are wrong, is that when people
encounter a situation that may lead to a garden path, they don't wuse Look
ahead, but instead attempt to disambiguate the situation on purely semantic
grounds. Finally I performed two experiments to test this theory.
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STRATEGY GRAMMARS.
AN APPROACH TO GENERALITY IN COMPUTER SIMULATION

OF HUMAN REASONING

Stellan Ohlsson
Department of Psychology, University of Stockholm,

Box 6706, S-113 85 Stockholm, Sweden

The concept of a strategy grammar is introduced as one of several possible
approaches to the problem of how to express properties which recur over
many simulation programs induced from think-aloud protocols. An example of
such a grammar is presented which is capable of generating several specific
simulation programs which have been verified against human data. It turns
out that additional programs, not corresponding to any observed subject,
¢an be derived from the grammar. If the grammar is interpreted as a
theory, such derivations correspond to predictions about which strategies
people will be found %o use in a particular task domain. Also, it is shown
that not all programs found in human data can be derived from the
particular grammar shown. Thus, a strategy grammar can categorize subjects
with respect to their problem solving sbrategies. Other approaches Lo the
same problem are briefly commented upon.

Introduction

Computer simulation of human thought has become a common-place event (see
Simon, 1979, for a review). One of the problems for the computer
simulation approach is how to abstract out common properties of several
simulation programs, without reverting to the uninformative generalizations
which plagued psychological theorizing in the past. The purpose of this
paper is %to outline one approach to this problem. To make the discussion
concrete, it is presented in the context of a substantive example.

Spatial Reasoning

In the study of problem solving, the tasks used have wusually been either
so-called puzzles, which de-emphasize the role of prior knowledge, or
technical task domains like physics and chess, in which the background
knowledge is learned through a process of explicit training. The work
reported here investigates a well-structured and semantically rich, but
non-technical, knowledge-area, namely spatial knowledge as it is expressed
in the use of concepts like "left", "petween™, “"topmost™, etc.

A number of think-aloud protocols have been collected from students who
were asked to solve spatial arrangement problems (Ohlsson, 1980). Two
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exampies of such problems are given in Figure 1. The subjects solved the
problems in their heads, without any external aids other than the card with
the problem text.

Ihe Block Probl

A child is putting blocks of different colors on top of each
other.

A black block is between a red and a green block.
A yellow block is further up than the red one.

A green block is bottommost but one.

A blue block is immediately below the yellow one.
A white biock is further down than the black one.

Which block is immediately below the blue one?

The Tool Problem

A craftsman has some tools in a row on his workbench.

The saw and the pair of tongs are right by each other.
The jackplane is immediately to the left of the knife.
The knife is further right than the chisel.

The bor is immediately to the right of the pair of tongs.
The jackplane is further left than the saw.

Which tool is immediately to the left of the saw?

Figure 1. 7Two examples of spatial arrangment problems.

In several studies, it has beer found (a) that a majority of the subjects
use some version of what Quinton and Fellows (1975) have called the Method
of Series Formatior, i. e. they try to form a mental model of the spatial
arrangement talked about in the problem text, placing each object in its
proper place, and then reading off the answer to the problem from that
model, (b) that a minority instead employ the Method of Eljmination, i. e.
they try to exclude all objects except one, which is then inferred ¢to be
the answer, and (c) that occasional subjects work with yet other methods.

Several think-aloud protocols from these studies have been simulated by
camputer programs on the form of production systems (PDS:s). Figure 2
shows ore PDS induced from a think-aloud protocol. The notation used was
introduced by Newell ard Simon (1972, p. U4), and is essentially the
standard BNF notation. This PDS encodes a data-driven form of the Method
of Serjes Formation. Briefly, the subject first looks for a particular
pattern, defined by the test-operator FPP, and then translates the
corresponding proposition into an internal model (P5). She then tries to
integrate the remaining premises into that model (P3, P4). She has several
different heuristics for how to access the problem text. In the beginning,
she reads the premises in the order in which they are written, i. e. she
reads the first premise (P10), and continues by reading the next premise
(P9). After she has began to construct a mental model, she instead looks
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P1 <question> <model> ==z=> ANSW{<question>)
P2 new(FAIL GMO) ===> READ(QUESTION)

P3 new<proposition> <model> =z=> FPM(<model>)(=> proposition);
INT(proposition)

P4 new<model> <proposition> =z=> INT(<proposition>)
P5 abs<model> new<proposition>.1 <proposition>.2 ===z>

FPP{<proposition>.1)(=> proposition);
TRNS (<proposition>.1)

P6 imp<model> ==z=> BKUP()

P7 new<expression> (REMAINS = NONE) =z=> GMO(<model>)(=> object);
SCAN(object) (= probe);
READ(probe)

P8 new<expression> <model> ==z=z> SCAN(UNUSED)(=> premise);

READ(premise)

P9 newlexpression ==z=> READ(NEXT-PREMISE)

P10 BEGIN =zz> READ(FIRST-PREMISE)

ANSW(x) Derives the answer to the question x.

INT(x) Integrates proposition x into the current modei.

TRNS(x) Translates proposition x into a model.

READ(x) Reads the x part of the problem text.

SCAN(x) Scans the problem text for the occurrence of x.

GMO(x) Generates the objects not yet included in x.

FPP(x) Finds proposition related to proposition x.

FPM(x) Finds proposition related t6 model x.

BKUP() Backs up.

Figure 2. Production system modelling subject SI6 on the Block
Problem, with explanation of operators.

for unused information (P8). Finally, towards the end of the process, she
instead searches the problem text for information about those objects which
have not yet been placed in the model (P7). If she discovers a
contradiction between her current result and the givens of the problem, she
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backs up (P6). When the GMO operator cannot gererate any more missing
objects, she reads the question (P2) and derives the arswer (P1).

The PDS has been implemented in the production system language PSS,
developed by the author (Ohlsson, 1979). The translation from the informal
notation used here to a running PSS program was straightforward. The PSS
program was run on the same problem as the subject, and solved it in the
same way, except for repetitions of inferences.

P1 <model> <question> ==z=> ANSW(<question>)

P2 new(FAIL READ UNUSED) ===> READ(QUESTION)

P3 <model> new<proposition> ===> INT(<proposition>)
P4 abs<model> new<hypothesis> nte<proposition> ==z=>
TRNS(<proposition>)

P5 abs<model> new<proposition> ==zz> TRNS(<{proposition>)

P6  new(FALL TRNS <proposition>) ===> HYP(<propesition>)

PT new<expression> =z=> READ(NEXT~-PREMISE)

P8 new<expression> ==z> SCAN(UNUSED)(=> premise);
READ(premise)

P9 BEGIN ==z> READ(FIRST-PREMISE)

Figure 3. Production system modelling subject SII4 on the Block
Problem.

Figure 3 shows a different PDS, induced from a think-aloud protocol from
another subject on the same problem. On a very abstract level, the two
PDS:s are similar; they both encode data-driven versions of the Method of
Series Formation. However, on a more detailed level, there are several
differences. This subject reacts to a failure of the TRNS operator by
setting up a hypothesis (P6), which is then used in a renewed effort to
apply TRNS (P5). But she has, on the other hand, simpler heuristics for
searching the problem text: she either reads the next premise (P7} or
scans for unused information (P8).

Several more PDS:s could have been shown, had there been space (see
Ohlsson, 1980).

A Strategy Grammar

How should ore summarize the similarities and differences between such
simulation programs? One clue is given by Young (1976, p. 197), who
summarized a set of programs for piagetian seriation with the help of a
production kit. Such a kit divides the productions in a set of programs
into functional groups, all productions within a group performing
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essentially the same function, but in different ways. A complete program
is assembled by putting together one or more productions from each group.
A rather different approach was taken by Newell and Simon (1972, p. 838).
They characterized different forms of search with the help of what we might
call productjon sghemas from which productions can be generated by
replacing meta-variables with specific mechanisms.

{strategy> ::=z <terminator> <integrator> <{translator>

<<failure-reaction>> <reader> <initiator>
<terminator> ::= <answer-finder> <goal-criterion>
<answer-finder> ::= <model> <question)> ===> ANSW(<question>)
{goal-criterion> ::= new<failsignal> ==z=> READ(QUESTION)
<integrator> ::z {integrate-production> /

<integrate-production> <integrator>
<integrate-production> ::=z

Ktag>> <model> <<tag>> <proposition> ==z=>
<Ltest>> INT(<proposition-description>)
<{test>> ::z <test-operator> (<expression>)(=> proposition);

<proposition-description> ::=z
<{proposition> / premise / proposition
<test-operator> ::z FPM / FPP
<translator> ::= <translation-production> /
<translation-production> <translator>
<transiation-production> ::=
abs<model> newdproposition> <{Kproposition>>.2 ===
<<test>> TRNS(<proposition-description>) /
abs<model> new<hypothesis> ntc<proposition> =s=
TRNS (<proposition>)
{failure-reaction> ::z <correction> /
<correction> <failure-reaction>
<correction> ::= <backup> / <hypothesize>
<backup> ::= imp<model> ==z=z> BKUP
<hypothesize> ::= new(FAIL TRNS <{proposition>) =z==> HYP(<proposition>)
<reader> ::= <read-production> /
<read-production> <reader>
<{read-production> ::=

new<expression> <<{expression>> ==zz>
<<{focusser>> READ(<target-description>)
<focusser> ::z <attention-operator> (=> object);

SCAN(object)(=> premise); /
SCAN(UNUSED) (=> premise);
<attention-operator> ::= FOB / GMO
<target-description> ::= premise / <{probe>’
<initjator> ::= BEGIN ===> READ(<probe>)
<failsignal> ::= (FAIL <operator> <<expression>>)
<probe> ::= FIRSTPREM / QUESTION / NEXTPREM / FIRSTPREM /
LASTPREM / PREMISE.<n>

Figure 4. A strategy grammar for the data-driven form of the Method
of Series Formation.

Combining these two ideas, we get the idea of a strategy grammar, i. e. a
formal system which is able to generate each member of a set of observed
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simulation programs. Figure U4 shows a strategy grammar for the data-driven
form of the Method of Series Formation. This grammar can generate the two
PDS:s shown above, as well as two other PDS:s induced from protocols
delivered by other persons. It is written in BNF notation, with one
extension: double brackets, "<< >>", indicate an optional symbol .
Briefly, +the grammar says that a strategy in this domain is a sequence of
components, responsible for the termination of the solution attempt,
irtegration of new information into the current mental model, translation
of propositioral information into a model format, reacting to failures,
reading the problem text, and initiating the solution attempt,
respectively. Each comporent consists of one or more production schemas,
each of which can give rise to a specific production in different ways.

Such a grammar can be given different interpretations. According to a wezk
interpretation, the grammar is simply a convenient summary of the
commonalities which recur over a set of simulation programs. It
communicates those commoralities in a format which I1s no less precise than
the format used to state the PDS:s themselves. According to a strong
interpretation, the strategy grammar is a theory of human performance in
this task domain. This interpretation implies that (a) each program
derivable from the grammar should correspond to a psychologically real
strategy, and (b) that each program observed to be used by some person
should be derivable from the grammar. Thus, the grammar should generate
tne set of psychologically well-formed programs, as it were.

This implies that, given a new thirk-aloud protocol from the relevart task
domain, one should be able to generate a program simulating that protocol
from the grammar. From this point of view, the grammar appears as a guide
for how to construct a computer simulation in a certain task domain.

P1 <model> <question> ==z=> ANSW(<question>)

P2 rew(FAIL SCAN <object>) ===> READ(QUESTION)

P3  rew<proposition> <model> =z=z=> INT(<proposition>)

P4 newdproposition> abs<model> ===> TRNS(<propositiond)

P5 newlexpression> ==z> FOB{) (=> object);
SCAN(object)(=> premise);
READ{premise)

P6 BEGIN ===z> READ(QUESTION)

Figure 5. A production system derived from the strategy grammar in
Figure 4, which does not correspond to any observed
subject.

Pertairing to point (a), we can observe that it is possible to derive
programs from the grammar in Figure 4 which are differert from the programs
which gave rise to it. Figure 5 shows such a "synthetic" PDS. This
program  solves problems through a chaining-heuristic, in which the program
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always looks for more information about those objects which have already
been placed in the internral model. It also differs from the observed
programs in other ways.

According to the strong interpretation of the strategy grammar, the
derivation of the PDS in Figure 5 should be seen as a prediction that there
exists some person who employs this strategy on these problems -~ or at
least that it should prove possible bto teach this strategy to human
subjects. No data concerning this prediction are available as yet.

Pertaining to point (b), Figure 6 shows an observed PDS which canngt be
derived from the strategy grammar. This program also works with a version
of the Method of Series Formation, but it 1is goal-driven rather than
data-driven, which prevents its derivation from the grammar. This fact
allows us to say, with a precise meaning, that this program is more
different from each of the other PDS:s presented than they are from eacn
other. I. e. the derivability of PDS:s from different grammars impose a
similarity metric on a set of simulation programs, allowing us to compare
them and to categorize subjects into well-defined groups on the basis of
the strategies they use.

Nothing prevents us, of course, from extending the grammar in Figure 4 so
as to incliude the PDS in Figure 6 as well.

Discussion

One approach to generality in cognitive theories is to concern oneself with
system architecture (gf. Newell, 1G73; Anderson, 1976). However,
hypotheses about system architecture must be complemented with specific
simulation programs in order to be interfaced with observations of human
performance. Thus, a level of theorizing between the single simulation
program and the system architecture is npeeded. A second approach to
generality is to define a general problem solver, and then try to see
specific simulation programs as instantiations of that general scheme (gf.
Simon, 1975). However, the diversity of cognitive strategies discovered in
humarn data (cf. Quinton & Fellows, 1975) makes this approach rather
implausible.

The present approach should rather be compared with another idea, which is
similar in intent, but very different in execution. This is the Deductive
Analysis proposed by Hagert and Tarnlund (1979), which utilizes the logic
programming language PROLOG (see e. g. Lichtman, 1975). In this
approach, a set of simulation programs is delimited through an abstract
specification, written in first-order predicate logic. Specific simulation
programs are then constructed by deduction from the abstract specification,
i. e. each simulation program appears as a theorem proved by the standard
tools of formal logic. Such a theorem is immediately executable in PROLOG.
Deductive Analysis seems a promising approach; however, it restricts the
user to a certain programming language, and the derivations are more
cumbersome than those of the present approach.

Conclusions

A level of theorizing hetween the single simulation program and the system
architecture is needed. The idea of strategy grammars was proposed as one
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P1 (read X) new<propesition> ===> POPP()

P2 (read X) ===> READ(X)

P3 (find UNUSED) new<proposition> =z=z> POPP()
P4 (find .. X ..) new(<predicate> .. X ..) ===> POPP()
PS5 (find <object-sequence>) ===>

SCAN(<object-sequence>)(=> premise);
PUSH((read premise})

P6 (infer) new<model> <proposition> ===>
INT(<proposition>)

P7 (infer) new<outcome> =zz=> POPP()

P8 (infer) new<proposition> <model> ==z=> INT(<propositiond>)

P9 (infer) new<proposition> abs<model> ===

TRNS (<proposition>)
P10 (arswer (<predicate> ? <object>))
rew{ <predicate><object>.2 <object>.1) ===>

INS((ANSWER IS <object>.2));
POPP()

P11 (answer <questiond>) new<outcome> ===> EVL(<outcome>)

P12 (answer <question>) (REMAINS = ONE) ===
PUSH( (4infer));
PUSH((£ind UNUSED))

P13 (answer <question>) =z==> FOB()(=> <object-sequenced);
PUSH((infer));
PUSH((find <object-sequence>)
P14 (soive) (ANSWER IS X) ==z=> SAY(X);
POPP()
P15 (sglve) <question> ==z=> PUSH((ansuer <question>))
P16 BEGIN ==z> PUSE((solve));
READ (QUESTION)

Figure 6. Production system modelling subject SII2 on the Tool
Problem.

approach to this problem. Such a grammar (a) provides a way to present, in
a concise form, a set of simulation programs, (b) makes it possible to
speak about the degree of similarity between simulation programs, (c¢) can
serve as a device for categorizing subjects with respect to strategy, (d)
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imposes discipline on the task of assembling a simulation program for a new
protocol, (e) predicts, if interpreted as a theory, which strategies will
be found in data from humans and which will net.
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INTERMEDIATE DESCRIPTIONS IN "POPEYE"

bavid Owen
Cognitive Studies Programme,
University of Sussex,
Brighton, BN1 9N England.

ABSTRACT:=- Some ideas are presented, derived from work on the POPEYE vision
project, concerning the nature and use of different kinds of intermediate
picture descriptions. It is suggested that there are "patural elements” in
terms of which stored models should be defined and that it is of prime
importance to search for those intermediate picture descriptions which are
most characteristic of the expression of such elements.

INTRODUCTION

The POPEYE project is concerned with the interpretation in the domain of
letters and words of pictures of the kind shown in Fig.1 One of the preoccu-
pations of the project has been the didentification of those intermediate
descriptions of the picture data which best facilitate the interpretation of
the scene from which the data has been derived. An intermediate description
corresponds to the identification of a picture object. For example in the
POPEYE program contiguous collinear sequences of dots are explicitly
represented as "line' data~-structures, and pairs of collinear and overlap-
ping lines are explicitly represented as ‘picture bar" data structures.
There are many such objects which may be identified in the picture,
corresponding to the representation of "objects"” and relations between
objects in the different domains involved. (The different domains have been
discussed in Sloman et al. 1978),

What follows is a discussion of some emerging ideas concerning the signifi-
cance of different kinds of picture object and their relation to letter
models. An attempt is also made to relate these ideas to the analysis of
3-0 polyhedral scenes.

A PARTICULAR VIEW OF LETTERS
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A letter is taken to be an abstract object
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(1971). It s also important to distinguish H o , t:"‘:
between  those characteristics of the S L
representation in the expressive domain which v b
express important properties of the abstract

description, and those which are artefacts of Fig. 1

the medium of expression.

A 2-D representation of a letter may be regarded as representing two kinds
of entity, namely strokes and relations betwsen strokes. Further, it is par-
ticular properties of strokes which are of significance and the relationship
between two strokes may be described in terms of the values of some simple
functions (E.g. difference) defined over the stroke properties. A letter
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prescribes for a fixed number of strokes the relative values of the stroke
properties by specifying the values of the set of functions defined over
them. In such a view of letters, a stroke may be regarded as for example an
n-tupte of property valtues including orientation, length, and position of
endpoints.

The significance of using this kind of abstract representation of a letter
is that it is independent of the way the values of the n-tuple and any con-
sequent relationship with other n-tuple values are represented. Secondly the
functions which describe the relations may be continuous, so that in any
representation of a relationship between strokes, the accuracy with which it
accords with that prescribed in a letter definition may be measured.

tetter Depictions:-

What is required of the depiction of a stroke is that it should express a
particular n-tuple of properties so that a collection of stroke depictions
expresses relative values for the properties which may accord with the
definition of a letter. Any picture object from which an approximate major
axis can be found will fulfil this requirement and some examples are given
in Fig.2, of the different ways in which an axis may be definad. )

Fig. 2
(From:-
Earnshaw)

Bl

The relative values of the properties expressed by a collection of stroke
depictions need not conform accurately to those prescribed by a letter
definition, for the letter to be recognisable and Fig.2 includes some exam—
ples in 'which the relative values of orientation, length and endpoint posi-
tions vary considerably from those of the "ideal™ Lletter they depict. In
some of the examples a relatinnship is not accurately expressed because the
corresponding oroperties are only approximately express:d by the stroke
depictions.

A PARTICULAR VIEW OF LETTER RECOGNITION

It may be argued that the underlying theoretical framework of a mechanism
which is to interpret a picture in terms of letter depictions has two parts.
The first is the recognition of instances of the expression of strokes; the
second is a search among those instances for sets of strokes for which the
relative values of the properties of the set members conform to within
acceptable tolterances to those prescribed by a letter definition.

It is the identification of the two types of task in the underlying theoret-
ical framework which is significant for the choice of intermediate descrip-
tions. Thay separate the two areas in which th2 zxpression of two different
types of entity have the potential for great variation, giving rise to the
variety of ways in which letters may be recognisably represented (Fig.2.).
The first entity is the n-tuple of properties which characterise a stroke,
and the second the constraints between sets of strokes corresponding to a
particular Lletter.
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One of the implications of adopting such a model is for the relative impor-
tance of different kinds of picture object which may be found in the pic-
ture. Of prime importance are those which capture instances of the expres-
sion of a stroke which in the case of the POPEYE domain is Picture Bars,
parallel and overlapping pairs of lines. From them values for alt the pro-
perties of a stroke may be obtained, and the relative values for different
strokes may then be used to address letter models.

The other picture objects which are available in POPEYE, for example Line-
junctions, are a manifestation of the expression of a precise relationship
between between two such strokes. As such they are vulnerable; small changes
in the relationship they express will cause them to disappear , without a
similarly targe effect on the recognisability of the total letter(See also
Brady 1978). Their role then, should be as heuristics for limiting the
search for which implicitly expressed relationships between strokes are of
significance.

In some sense strokes have a ''stand alone" meaning, a junction is the pre-
cise expression of a compound meaning.

In the POPEYE program this approach has been
exploited to some extent., Initial attempts
were strongly influenced by the ''linguistic
analogy", with line junctions taken as the
language primitives, and so ideas revolved
around grammars over the kind of objects
shown in Fig.3. However, the discovery of
Picture Bars s now of fundamental impor-
tance, and the evidence in the form of Lline
junctions dJs used more 1in a segmentation
role. The letter models however are still
based on a notion of a letter being composed
of junctions between strokes, expressed in
the form of Lline junctions. An alternative
model system, based on the above ideas, is fFig. 3
being developed.

POLYHEDRAL SCENES

A similar argument applied to 3-D polyhedral scene analysis would suggest
that properties characterising a surface would be the counterpart of
strokes, and that discovering instances of their expression is of prime
importance rather than the manifestations of the expression of a precise
relationship between them; (£.g. Fork or Arrow junctions).

Returning to the “linguistic anatogy" and considering what Becker(1975) had
to say gives this vague notion a little more motivation. Briefly, he argues
that speech is generated by a process of 'stitching together™ appropriate
elements from a phrasal lexicon according to grammatical rutes. However,
the flavour of Becker's paper is an attack on linguists as "frustrated phy-
cisists" for attempting to establish and use grammars only over the primi-
tives of the language, in an attempt to capture the nature of tegal sen-
tences in that Llanguage. Tha ‘'principle” which may be extracted from
experience with POPEYE, and would appear to have some relevance to 3-D scene
analysis, amounts to generalising that criticism of linguistics into the
Linguistic metaphor in vision, and in particular making a proposal as to the
nature of the vision equivalent of the phrases of Becker's lexicon.

Some examples of pnhrases which 3ezker gives are as follows:
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THIS IS NOT TO SAY THAT
WHAT DOES THIS IMPLY FOR
WE MUST CONCLUDE THAT

Each invokes a meaning in its own right all be it incomplete. Only a few
such phrases are required to generate a meaningful sentence, compared with
the number of language primitives in the sentence, and this is an important
part of the motivation given by Becker for his ideas. The implication is
that it is unnecessarily difficult to generate sentences from primitives of
the Llanguage all the "time, that the art which is language acquisition is
about learning new phrases and how to "stitch them together" to convey the
desired meaning, and that the resulting utterance may be understood in the
same way.

The problem with drawing analogies in wvision
is that it is not obvious what the primitives
of the language are (edge features? Llines?
Line=junctions?) and consequently what con-
stitutes a meaningful phrase is equally
unclear., 1In the work of Huffman(1971) and
Clowes(1971) in some sense lines are taken as
the primitives and Lline~junctions seem intui-
tively the most obvious candidates te choose
as phrases which include several instances.
The intuition arises partly because the
affinity between lines is manifest in a most
concrete way - they actually touch. Comparing
them with 3ecker's phrases, do they mean any-
thing in their own right?

Fig. 4

For example consider the FORK junction in Fig. 4 Clearly in the polyhedral
domain this can be taken to ''mean" the corner of a cube. However compare
this with the following sentence:-

THIS IS NOT TO SAY THAT / ALL MEN HAVE / HAPPY LIVES
which can be taken as comprising three phrases.
Now consider the following three words:~

NOT - MEN - HAPPY

Together they capture more of the meaning of the sentence than any one of
the phrases alone because the structure comprising the three words in order
captures some mimimal part of the meaning of each of the three phrases. The
structure 1is not of much general use in constructing or analysing sentences
since it is a characterisation applicable to only a few sentences. More
importantly, untike each of the three phrases it is ungrammatical.

The suggestion here is that the line-junction of Ffig. 4 1is more closely
identifiable with the three word structure than with a lexical phrase, since
together the lines capture some part of the nature of the three surfaces and
how they relate, and that the surfaces are better candidates for being the
parallels of Becker's phrases.

To continue the comparison, in the same way that only a few phrases are
needed to generate a meaningful sentence, only 3 faces of a cube are visible
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compared with 7 Linejunctions. Finally, Becker suggests that speech is gen-
erated by “stitching together” appropriate phrases, and it is interesting to
note that most people when asked to draw a cube, complete surfaces rather
than vertices,i.e. typically a sequence like (a) rather than (b) in Fig.5.

e sl v
=

To return to the comparison with the \letter
domain, the argument is that surfaces have a
stand alone’ meaning and their juxtaposition
expresses a compound meaning as an object.

Some junctions are particular manifestations
of the precise expression of a relationship
between two surfaces and as such may or may {::::}

(a)

—>

not capture the compound meaning (E.g. Fig.
6) and are not suitable primtives from which
to construct an object model.

) Fig. 6

CONCLUSION

Regarding all vision as involving the addressing of stored models, it s
suggested that models should be defined in terms of relationships between
"natural elements" which have meaning in their own right, rather than in
terms of objects derived from the manifestation in the picture of relation~
ships between such elements. This implies that it is of prime importance to
search for those picture objects which are most characteristic of the
expression of such "natural elements'. It does not imply that other picture
objects cannot be exploited, but rather that their usefulness Lligs in what
they imply for the relations between the '"natural elements'.
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UNDERSTANDING ENGLISH DESCRIPTIONS OF PROGRAMS

Allan Ramsay
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1. ABSTRACT

A considerable amount of work has been done on verifying that computer

programs fit their specifications. However, providing formatl
specifications is itself a difficult and tedious task, so that
programs are generally only documented incompletely and imprecisely.
This paper presents a computer system which accepts English
descriptions of procedures and relates them to LISP programs that are
supposed to implement them. This system is intended to jllustrate how
"informal™ techniques may be used to provide a rough analysis of a
program for which incomplete specifications are provided.

Keywords - automatic program verification,symbolic evaluation,
natural language programming

2. WHAT DOES SH4 DO ?

The system SH4 described in this paper is used for relating English
descriptions of procedures and LISP programs that are supposed to
implement those procedures. What "relating programs and procedure
descriptions” means here is that the system creates two sets of
records to represent the description and the program and then suggests
and investigates Llinks between records 1in the two sets. It is
recognised that it is not very useful to provide a wuser with quite
large sets of records with links between them, saying "Here you are,
this is how your program works.' Hence, when the system has built up
these sets, it uses them to derive a copy of the object program
annotated with comments derived from the description, and a set of
flow charts representing the described procedures, with fragments of
code attached to show how the procedures are implemented.

The inputs that the system accepts for a very simple program and the
output that it generates are given in Figs. 2.1 - 2.4. This example
is not the Limit of the system's ability to deal with programs, it is
the [imit of what can be shown in a paper this Length.
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There 1is a procedure called testmember. This procedure takes an
object called target and a set called pool. If the set is empty then
the procedure returns false. 1f not then it gets an object caltled
testobj from the set. If testobj and target are equal then testmember
returns true, If not then it performs testmember on target and the
rest of pool.

Figure 2-1: Input Procedure Description

[DEF TESTMEMBER
CTARGET POOL]
CCOND CEQUAL POOL NILD
FALSE
CEQUAL TARGET L[CAR POOLI]]
TRUE
[TESTMEMBER
TARGET
£CbR POOLI 3 3 12

Figure 2-2: Input Program

comment TESTMEMBER implements testmember
comment TARGET represents target
comment POOL represents pool

L DEF
TESTMEMBER
[TARGET POOL]
£ COND
[EQUAL POOL NILZ if set is empty
CFALSE] then testmember returns false
L EQUAL if target and testobj are equal
TARGET
[CAR POOLD 3 then it gets object from set
CTRUE] then testmember returns true
L TESTMEMBER then it performs testmember on
TARGET target and rest

CCbR POOL]Y 3 ] 1] rest of pool

Figure 2-3: Commented Version Of Program

if set ——————3then it gets
is empty object from set
LEQUAL POOL NIL) C[CAR POOLI]

then testmember if target and———————3 then it pérforms testmember
returns false testobj are equal on target and rest
CFALSE] CEQUAL TARGET [CAR POOL]] C[TESTMEMBER TARGET [CDR POOL]]

then testmember returns true
CTRUE]

Figure 2-4: Flowchart Illustrating Implementation
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3. THE SYSTEM

The system starts work by interpreting the English description as
follows. The text is dealt with sentence by sentence. Each sentence
is parsed by a fairly orthodox top-down Left-to-right fastback parser
~ see [Ramsay 19803 for details - and then the parsed structures are
interpreted by choosing and instantiating schemes from a fixed,
predefined set to represent the items referred to by the noun groups
and possibly the main verb group of each clause, and applying a set of
rules associated with the verb of the main verb group to construct
Links between the various instantiated structures. This process
builds up a network of records of various fixed types, connected by
pointers from slots in records to other records. A similar network is
built to represent the object program. Given these networks, the
problem of relating English sentences to LISP expressions becomes a
matter of suggesting Links between items in the two sets of records.

In this context, where we have two unconnected sets of records
representing the procedures we are interested in and the program that
we hope implements them, it is impossible to make any use of program
verification techniques such as recursion induction [McCarthy 19601 or
structural induction [Burstall 19681 to show that the program fits its
specifications = the whole problem is that at this point we do not
know which parts of the program are supposed to fit which
specifications. Similarly, it is hard to see how the system could use
any form of symbolic evaluation [Sussman 19701, [Goldstein 1974] to
find out what the various parts of the program are supposed to be
doing, since this technique is only really useful if you can describe
what the environment is expected to look like; and again, we simply do
not know this yet.

3.1. Making Guesses

In order to find out enough about a program for symbolic evaluation to
be useful, we use a collection of "hypothesisers"” - routines that wuse
superficial characteristics of programs and procedures to suggest
Llinks between them. These hypothesisers use ideas such as Looking for
recursive functions in the program to link with recursive procedures
in the description, or Looking for non-atomic data structures in the
program to Llink with non-atomic objects referred to in  the
description. Several of them use links suggested by others, e.g. by
connecting a procedure and a function on the grounds that the inputs
to the procedure have already been Linked to the arguments of the
function. They are all fairly unreliable, so the system has to be
able to cope with cases where items have been linked incorrectly.
However, the only part of the system that can check Llinks, the
symbolic evaluator (see Section 3.2) cannot be invoked until links
have been suggested for most of the procedure set and the program, and
even then it can only check Links between procedure descriptions and
function definitions - it cannot say anything about hypotheses Llinking
objects and data structures, etc. This makes it difficult to maintain
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a useful, coherent tree showing the dependencies between hypotheses.
Instead, we allow the system to build a set of hypotheses without
keeping track of how they were derived, and without worrying about
whether they are correct or even whether they are consistent. The
interactions of the hypothesisers are controlled by a scheduling
algorithm derived from ideas used in vision and speech understanding
systems [Stoman et.al. 19781,LErman & Lesser 1975],[Woods 19761. The
scheduler makes sure that hypothesisers that use subsidiary hypotheses
behave sensibly, and it also notices when sufficiently many links have
been suggested for analysis via symbolic evaluation to be practtical.

When this happens, the scheduler 1invokes a module that checks
hypotheses by evaluating the code along "paths" [King 19691 through
functions (a function is split into paths by considering the possible
sequences of expressions that may be evaluated when it is called;
Loops are dealt with by turning them into conditional expressions with
virtual recursive function calls on their main branches). In SH4, the
snapshot environments described by the symbolic evaluator are defined
in terms of actions that have been performed. The system tries to
deal with function calls by considering them as single complete
actions and Llooking for procedure calls that have already been
connected with them through hypotheses. This is similar to Ruth's
[1976] approach of matching "actions'" 1in a description of a general
algorithm against expressions in a particular object program, with the
difference that Ruth's system knew exactly which action it was trying
to match against each expression, whereas SH4 only has hypotheses
about which procedure call a function call is supposed to implement.

4. SUMMING UP

SH4 is seen as a complement to systems that check program correctness
by proving assertions that must always (or possibly sometimes [Manna &
Waldinger 19761) be true at various points in the execution of the
program. These systems can be awkward to use, as they require the
programmer to provide precise specifications for his program, which
can sometimes be hard and is always time~consuming. They also require
considerable theorem proving powers. Gerhart [1979], for instance,
describes a system which recognises that the deductions needed for
verifying significant programs are too complex for contemporary
theorem proving systems to deal with in an acceptable time, and hence
works in conjunction with the user by applying deductive rules as he
suggests, and maintaining for him a tree that shows what steps were
taken where and what the result of taking them was.

SH4 is intended to show how to use Lless detailed, Lless precise
descriptions of programs to get an overall picture of what is supposed
to be going on, either for its own sake or for use with a formal
program verification system. The procedure descriptions that the
system works with are, unfortunately, too detailed for it to be a
practical tool as it stands. Furthermore, there are a number of
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important aspects of programming that it does not deal with at all,
notably the definition of new types of data structure. Nonetheless,
it does indicate how programs may be analysed in terms of informat
descriptions, and it has been used on several non-trivial programs
(e.g. a simple garbage collector and a package of standard set
manipulation functions).
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1. ABSTRACT

This paper presents a technique for parsing English text according to
a grammar specified as a set of rewrite rules. The paper cescripes a
compact way of renresenting such a grammar and presents a progran
which uses this representation to parse text without backtracking 3nd
without repeating work that it has already done.

Keywords - deterministic parsing, control structures

2. REPRESENTING SETS OF REWRITE RULES

The program described in this paper deals with granmars scecified as
sets of rewrite rules, with properties of the main structure and its
constituents described by values for sets of labhels. This forzalisn
is very similar to the Direct Clause Grammars cescribed in [Pereira &
Warren, 19791, It is possible to represent a grammar specified as
such a set of rewrite rules in a compact manner that.~akes it easy <O
delay decisions about which rule applies to a piece of text until
enough of it has been parsed for the correct rule to te chosen. If we
Llook at a rule as a description of a path through a piece of texi, it
is evident that we do not want to choose which of two rules cescrioes
the correct path through a given piece of text until the twc diverge.
For instance, consider a grammar that contains the following two
rules.

vgroup [tense 7t voice !actv]
<= aux [atype !be tense ?t] participle [tense !presentl

vgroup [tense ?t voice !pass]
<= aux [atype !be tense ?t] participle [tense !past]

Figure 2-1: Two Similar Rules

where the first rule describes the first verb group in the sentence "I
was walking home on Saturday night when I was beaten up szain" arz tre
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second rule describes the second verb group in this sentence. The
right hand sides of these rules are identical apart from the final set
of Labels, so that it is not possible to find out which of them
applies until the participle has been found and studied. However, if
their simitarity is recognised when they are read in, they may be
represented by the following tree.

[tense ?t voice lactv]l
[tense !present]

vgroup <= aux Latype !be tense ?t] participle

Ltense !past]
Ctense ?t voice !pass]

Figure 2-2: Combination Of Two Rules Into One

Using this rule, NRP has no need to decide which branch to take until
it has found an auxiliary and checked its type, and has found 3
participle and is ready to look at its Llabels.

Thus by representing the rules of a grammar in such a way that similar
rules are combined, the system is able to defer choosing between rules
until it has available to it the information that it needs to make the
decision.

This technique, which is similar to GSP's treatment of ambiguities in
the parse tree itself [Kaplan 19731, enables the system to act
"deterministically”" once it has chosen a tree representing what was
originally a famity of rules. However, there is no guarantee that all
the rules describing the decomposition of some type of structure will
form a single family. In order to see how the system copes with the
uncertainty that is introduced when it has to build a structure for
which it has several trees of rules, we will have to consider its
control structure.

3. CONTROL WITHIN NRP

A coimmon strategy for top down parsers is for the parser to call
itself recursively, asking for constituent structures, until it has
built up a complete legal structure or found that it cannot dc so, and
to return either the structure that is has built or a flag saying that
it has failted to build anything [Yoods 1970]1,LWinograd 1972],IKey
19733 ,fRamszy 1980]. This technique leads to problems when it is not
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clear what sort of structure is required as the next constituent of
the current partially built structure, particularly if it is possible
for a structure to be constructed and returned incorrectly. Parsers
that follow this strategy sometimes build the same intermediate
structure several times, if it occurs as a constituent of several
structures that are partially buitt and then abandoned, and they
generally have to keep a trace of (at least some of) their decisions
and the state of the parse at the time when the decisions were made,
so that they can backtrack when things go wrong.

NRP's strategy, on the other hand, is as follows. It starts with a
"request" for some sort of structure, where a request consists of the
following parts:~ the partially built structure to which the requested
structure is to be added, the tree of rules that is to be used for
building the new constituent, the position in the sentence that the
structure 1is to start at, and a list of all the requests that are
waiting for the partially built structure to be completed.

When such a request is issued, the system looks through two stacks of
requests that it maintains. One of these stacks contains reguests
that are waiting to be processed and the other contains ones that have
been processed and are waiting for a constituent to be built. If the
system finds, in either of these stacks, any request which has the
same position and same tree of rules as the given one, it simply adcs
the higher Llevel request that initiated the current one to the list of
requests that are waiting for the one that was found in the stack.
Only if nothing that matches the current request is found in either cf
the stacks is it added to the stack of ones that are waiting to be
processed. ’

The system then takes the first request from the stack of ones that
are waiting to be processed. It Looks at the "chart"” [Kay 19731 that
contains altl the structures that have been built so far to see if it
contains anything suitable; if it does, then this 1is added to the
partial structure contained in the current request and a new set cf
requests is issued for all the possible ways of continuing the nezw
partial structure. Otherwise, requests are issued “or all the
possible initial constituents of the currently requested structure.
In either case, any new request is treated as described above.

Eventually the parser will process a request whose tree of
continuations is null. This dindicates that the partial structure
associated with the request 1is complete. In this case, the now
complete structure is acdded to the chart. 1In addition, .the reguests
that were waiting for the current one to finish are accessed; for each
of them, if the new structure has features that fit the request's rule
then a new partial structure containing the request's old partisti
structure and the newly completed one is constructed, and reauests fcr
items extending this new structure are issued.
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4. SUMMING UP

The above algorithm may sound complex and Lliable teo Llead to
combinatorial explosion, with enormous stacks of recuests being built
up. However, the representation of sets of rules as trees provides a
strong constraint on the number of requests that will be made at any
point. Furthermore, the search through the stacks for similar
requests whenever a new one is issued guarantees that no dintermediate
structure will be built more than once; the fact that all possible
requests are always issued means that it is not necessary to keep
track of decisions and the state of processing when thcse decisions
are made - any Llegal parse will necessarily emerge, while wrong
decisions will not have any 1ilt effects; and finally, since the
routine that processes requests is not recursive, it 1is possible to
write efficient code to implement it.
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The fuzzy set fallzcy
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Abstract

"Fuzzy set theory" and "fuzzy logic"™ have been preposed tc  be
useful for applications in pattern recognition and zrtificisl
intelligence. It is argued that the concept of a "fuzzy set" is
due to an intuitive fallecy incduced by a threshold probability
distribution. A& sketch of an zlternative medel for dealing with
applications considered to be "fuzzy" ones so far is presented.
The problem of handuritten character recognition is wused &s an
example.

feywords and phrases: knowledge reprcsentation, reasoning with
vague concepts, recognition of handuritten chareacters, concept
learning.

1. Introcduction

Fuzzy set theory initiated by L. Zadeh [1965] has been proposed
as uon  useful tool for artificial intelligence and pattern

recognition. Its main advocate goes so far as to claim  "that
cnce it  (fuzzy lozic P.C.) is understood, it will be widely
adopted.” [Zadeh, 19C%]1. I doubt that. Cn the contrary, I

believe thel all  issuoss  addressed by fuzzy set thecry can be
aandled within the frameworli of classical logics and probability
theory. flowever, anyone who doubts the intuitive base for fuzzy
sets theory should provide with an alternative model useful for
practical applicetion. Accordingly, I shall give

- an explanation cf what I should like to call the "fuzzy set
allacy"®

- give an outline of &n alternative model

- give a sketch of a procedure for dealing with the phenomena
considered as '"fuzzy" <cnes so far, using the recognition of

handuritten characters as an example.

2. The roots of the "fuzzy set fallacy"

Let's briefly recap the main ideca of a "fuzzy set". In everyday
as well as in scientific cognition, it is often difficult to
decide, whether a certain individual belongs to a class defined
by a predicate or itscope withit is rather difficult if not
impossible to give a precise extensional definition of a
predicate. There are aluays borderline cases. L. 7adeh tried
to cope with Dboth phenomenz by creating "the dialectical
synthesis of continuously graded degrece of membership to a set...
a natural generalisation of the characteristic function...™

[19761.
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What is the fallacy in this seemingly nice idea? Firstly, Zadeh
tries to capture a fundamental uncertainty as to membership by an
arbitrarily precise continuous membership function. How can  we
be sure that uncertainty starts at a certazin point and ends at a
certain point on a scale? liow can we be sure that the membership
degrec 1is exactly , say, .7 on a certain point on the scale? If
we fix the borderline cases this way, we have to answer the
question about the uncertainty of the boundary of the borderline.
This leads to an infinite regress. Thus, we fail to capture
uncertainty at aill,

A well understood means for describing uncertainty adequately is
probability theory. Let wus look at the problem this way using
the familiar example of "tall men". If we take the physical
measuring scale for height, it 1is impossible to locate the
boundary between "tall"™ and "not tall" with certainty. The
reasons for this are, shortly, the impossibility to recognise
height to an arbitrary degree of precision on the one hand, and ,
on the other hand, the 1lack of an explicit definition, which
would be required for a scientific experiment, but is useless in
everyday 1life because of the huge variety of contexts. However,
if people are forced to make a yes-no-decision - and mostly they
force themselves to do so -~ their behaviour will not be
consistent, but probabilistic.

Asking people to indicate the boundary on the scale of height in
a sufficiently restricted context would typically yield a
Gaussian distribution . Asking the more natural question "Is

this man tall?" |, and showing a sample of men to a sample of
subjects should be expected to yield the cumulative normal
distribution, theoretically . Obviously, each subject

considering the boundary to be to the left of the height value
represented by a certain man will answer "yes", Experiments of
this sort were conducted by Hersh and Caramazza {1976] yielding
the expected distribution. Unfortunately, Hersh and Caramazza
being inspired by fuzzy set theory interpreted the proportion of
"yes"-responses for a sample object as "grade of membership".
However, their experimental results are in ' favour of a
probabilistic interpretation.

A

- ﬁc@ﬁt
Typical theoretical (a) and empirical (b)
agreement probability distributions

The objective probability distribution of verbal behaviour is
reflected in some way as a subjective probability distribution in
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the individuals (see below). In other words, subjective
uncertainty pertaining to the applicability of a vague predicate
is fallaciously interpreted as an cbjective degree of membership.
This 1is the root of the "fuzzy set fallacy", i.e., the intuitive
appeal of the concept of a continuous membership function.

3. Outline of an alternztive thecry

The bzsic idea or postulete is that subjective uncerteainty 1is a
matter of degree, and that it can be mesasured. Although such a
measure can be defined within the f{ramework of probability theory
{Schefe, 197¢1, the subjective "behaviour", i.e., evaluation of
evidence in a certain context, as to compound statements is
different from "ordinary" probability theory, e.g., the max- and
min-operators apply to disjunction and conjunction of "apgreement
events", respectively. We are assuming that a reasonable person
will "behave" according to this model. Primarily, these measures
are attached *o factual propositions, i.e., they are epistemic
indicating a degrece of belief in the truth or falsehocod of a
proposition. Fuzzy set theory, however, is aiming at providing a
semantics of vague predicates. This is a different issue. In
the agreement-probabilistic model, vagueness is interpreted as
subjective uncertainty pertaining to the applicability of a
predicate in a certain context ("Is 'tall' applicable to John?"),
and not to the truth of the proposition containing this predicate
("Is John tall?"). The difference could 21so be described by the
contrasted pair "assertional - definitional®. Definitional
uncertainty must not be confounded with semantics. ‘!owever, it
has to be coped with in AIl-systems.

I would state the hypothesis that the cumulsztive probability
distribution exhibited by the observable linguistic behaviour is
similar o the subjective certainty <distribution generated by
self-assessment, and that differences are due to thresholding.

4. Do we need fuzzy set theory for applications?

The answer to the above question is clearly "lNo, on the contrary,
because 1t may be misleading". tlowever, we need a special
prcbabilistic application model for subject areas that are
considered "fuzzy", intuitively. E.g., pattern reccognition of
handwritten characters should not be dcalt with by the same
procedures  uhich are used in thit recognition of natural objects.
Instznces of Thandwritten charactors cannot be considered as
possible members of a class X, but as objects that can possibly
be ascribed the mcaning of "being the character 'X'", 1i.e., of
being idinside the tolerance space represented by 'X'. This is a
crucial difference.

Consider tuo instances of handwritten "H" and "A", which may be
physically =zalwmost undistinguishable in isolation but interpreted
correctly in =an appropriate context. Thus, a contextfree
recogniticn  precedure should not be based on parameters derived
from the statistical distribution of the whole pattern or its

: Hoke Rt letters are meenings, there are contrastive

irs 1iv or ricre than one dimension. Thus, uncertainty is
1ot about  stoeh:=stic deviations from an ideal geometric pattern
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(if it is existing at all), but about borderline cases. E.g.,
there is no uncertainty of "being a 'H'" with instances, in which
the two lines are connected in the “typical" way but varying in
length or proportion of lengths. However, inclination is a
crucial aspect, because there is the contrastive 'A°', Hence,
what is needed 1is =2 probabilistic decision procedure for
borderline cases in the various dimensions ('H' and 'N' are also
contrastive e.g.). Since Zadeh's [1976]1 "fuzzy membership
functions® conceived of on purely intuitive grounds is a good
approximation to the cumulative normal curve, pattern recognition
procedures based on this concept are 1likely to be successful.
However, this is not meant to be a success of fuzzy set theory.
s

5. Sketch of a "fuzzy" decision and learning procedure

The framework for solving the problem of "fuzzy" pattern
recognition is given by the linguistic approach , especially the
semantic view as outlined by Clowes [1971], and the 1learning
paradigm of the "near miss" proposed by Winston [19751].

I use the example of recognizing the letter "T". Firstly, the
letter is parsed syntactically into two strokes, A, and B, say.
Secondly, these elements join into certain semantic relations,
and have to meet certain semantic restrictions, e.g., the strokes
have to be connected, they have to be straight, the angles have
to be equal, etc. Using the programming language FUZZY
{LeFaivre, 19771 , these predicates can be interpreted as
patterns invoking DEDUCE-procedures, which compute the
probabilities that "being equal®, "being straight" can be applied
to the instances, e.g.:

((STRAIGHT A) . 0.7)
((STRAIGHT B) . 0.9)
((EQUALANGLE AB BA) . 0.9)
ete.

How can these probabilities be learned? Firstly, the program may
be given a description representing the “ideal® "T" or a
prototype, from which it can generate the description. To get
the range of pQssible expressions of a "T", "near misses" are
presented to the program. For example, we may have a difference
of angles of 30 as a near miss of "being equal®. Then, the
program generates a heuristic probability function assigning the
value of .5 to 30 ,and, similar to the approximations, as used by
Siy and Chen [1974] or Kickert and Koppelaar [1976], assigning .1
to 0 , and 0. to 60 , say.

How shall one deal with the probabilities assigned to features,
in order to get the probability for the pattern? There is no
point to take the product for the resulting probability, as is
done in the Bayesian approach to class assignment. Instead, to
take a conservative decision - of being 1inside the tolerance
space indicated by ' the near misses - I will commit myself only
and exactly to the minimum of the probabilities of being inside
the tolerance space 1in one dimension. In other words, the
probability of error is at worst the maximum of the probabilities
of being outside the space in one dimension.
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ind, if there are alternative spaces indicaited by
atures, I can commit mys~lf to the meximun of the
o © being in one of & spaces. In this cuse,
n : y error is at worst the minimum prebability of being
cutside cne of the spaces. Thus, the min and max operators of
"fuzzy sets theory" have a well founded probabilistic base.
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WHY VISUAL SYSTEMS PROCESS SKETCHES

Aaron Sloman and David Owen [*1]
Cognitive Studies Programme,
School of Social Sciences,
University of Sussex,
Brighton, BN1 9GN, England

Abstract
Why do people interpret sketches, cartoons, etc. so easily? A theory is
outlined which accounts for the relation between ordinary visual
perception and picture interpretation. Animals and versatile robots
need fast, generally reliable and "gracefully degrading" visual systems.
This can be achieved by a highly-parallel organisation, 1in which
different domains of structure are processed concurrently, and decisions
made on the basis of 1incomplete analysis. Attendant risks are
diminished in a "cognitively friendly world" (CFW). Since high Llevels
of such a system process inherently impoverished and abstract
representations, it is ideally suited to the interpretation of pictures.

1. 1s the study of impoverished pictures relevant to 'real' vision?

Al vision —work concerned with pictures, including digitised photographs,
straight-line drawings and cartoons, etc. has recently been criticised as
irrelevant to visual perception of objects in the environment, Clocksin £19781.
Related themes can be found in Horn [19781. It can be argued that studying
impoverished pictures with great local ambiguity leads to overemphasis on top-
down, knowledge-guided visual processes, as in Shirai [1975] and Minsky [1975],
and on complex control structures, as in POPEYE (%21, tLack of detail 1in
artificial images causes difficulties of interpretation which, it may appear, do
not arise in ordinary perception, where disambiguating detail 1is provided by
colour, stereopsis, optical flow, etc. Admittedly images interpreted by most
A.1. programs lack many features available even 1in monocular perception of
static scenes, from which wuseful information can be extracted with powerful
algorithms and computationaL resources. [Marr 1976, Horn 1978 and papers cited
thereinl, Horn's claim: ‘we may have closed our eyes to the raw image for too
long', is reasonable, and supported by his own excellent work on images. But we
mustn't now close our eyes to all else.

Extraction of low lLevel image and scene features is but a sub-process of the
visual mechanism. That a powerful subsystem is normally used does not imply
that it is essential for vision. Stereopsis certainly occurs, and needs to be
exptained, but our ability to perform everyday tasks with just one eye also
needs explanation. Similarly, we can often recognise things when detail is
missing, or spurious information added, through poor visibility, eye defects,
strong back-tighting, restricted view angle, or intervening  shruberry.
Normally, we use perceived detail to segment the scene into objects, but
sometimes the grouping must go beyond consideration of image continuities and
discontinuities because of occultation of some objects by others, camouflage,
shadows or spurious juxtapositions. ALl this suggests considerable modularity:
various sub-systems produce information, perhaps partly duplicated by other
sub-systems, and less precise information may suffice if the ideal is not
available. This modularity could allow a component which ideally should be
driven by the data, to be driven instead by prior knowledge activated by other
data. This might explain both our facility with impoverished pictures and the
occurrence of misperceptions even in excellent conditions (well-known examples
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are the holliow mazk [Sregory 19703, 2nd the triangle containing "“PARIS 1IN THE
THE SPRING').

How can we function sc well when so much detail is ilost? Recognition of sketchy
drawings can be rapid and effortless [Hochberg 1978, page 193, citing Ryan and
Schwartzl. Perhaps, when we look at pictures, intermediate results of the
interpretation process are similar to some intermediate (sketchy) results of the
processes of normal perception? Perhaps normal perception uses mechanisms with
built-in characteristics designed to cope with abnormal, specially difficult,
situations? Our central idea is that visual systems process many different
domains of structure 1in parallel. So analysis of relatively "high-Level”,
abstract, incomplete, representations, sometimes occurs in parallel with
detaited anatyses of visual data. [*3] Higher level processes would then be
driven in part by prior knowtedge of specific sorts of objects (e.g. generalised
cylinders, humanoid figures), Lower Llevels mainly by very general (implicit)
knowledge about 3~D surfaces, lighting, motion, etc. Occasionally such high-
level processes would reach conclusions which are overturned by more detailed
analysis, e.g. the 'double take". However the different processes would
normally produce compatible results, making possible the modularity referred to
above. How?

A basic assumption dis that the visual system has evolved to work in a
"Cognitively Friendly World", & CfW, (which may be very unfriendly in other
respects). Here are examples of cognitive friendliness:

(A) The optic array is rich in useful information about the environment -- as
noted above. This is due in part to the sorts of surfaces objects have, in
part to a plentiful supply of short wave-length radiation and a transparent
atmosphere. (N.B. the last two conditions are very variable.)

(B) The space of physically possible objects and processes 1is sparsely
instantiated in the actual world (unlike science fiction), i.e. there is
limited independent variation of features and relations: this makes images
redundant . This s dllustrated by planarity, continuity, rigidity, etc.
(Marr [19793) and the fart that no animal has the ear of a 2zebra and the
body of a giraffe.

(C) Confusing coincidences (e.g accidental alignments and juxtapositions) are
rare. This depends both on the kind of environment and on the low
probability of such viewpoints for any given scene.

To make use of (A) a visual system needs good detectors for features of the

optic array. Since these depend on laws of physics they don't vary much from

one part of the world to another and tan be usefully compiled into hardware. If
we have evolved mechanisms to take advantage of (A), might we not also have
evolved mechanisms tc take advantage of (B) and (£)? Using (B) requires using
knowledge of what sorts of objects actually occur, e.g. knowing about cylinders,
about rigidity, and about zebras and their ears. Some of this (e.g. many
objects are Llocally rigid) is useful in nearly all environments, and might be
built into genetically determined mechanisms, whilst some (e.g. what sorts of
plants, animals, or buildings, are common) will vary considerably and must be
left to individual Learning. Making use of (C) 1involves having good process
organisation, to find the 'best' percepts [Hinton 19771.

A consequence of (B) and (C) is that usually any good interpretation of a visual
image will be wunigue, and therefore the best one. (B) and (C) could also
justify higher level processes jumping to knowledge-guided conclusions on the
basis of partial results from lower Levels. This could enable good decisions to
be made in poor viewing conditions, and in good conditions would enable
decisions to be made faster. (ALL of this is demonstrated in a very simple
world, by the Popeye program [*21.) So, assumption (A) is of use in good viewing
conditions where objects are unfamiliar, whilst (B) and (C) are of use where
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tonditions are bad but objects are familiar. A system designed with this
flexibility might acquire a speed advantage where all of (A) (B) and (C) are
satisfied, if different sub-systems work in paratlel. It would still have to be
basically data~driven (bottom-up) if serious mistakes are to be avoided, but it
need not be pass—oriented, with each layer waiting for lower Llevels to
“complete” their analysis (if completion has any meaning).

If higher level systems can operate thus on impoverished data available in
adverse conditions, and on incomplete, partial, results of lower levels in good
conditions, they should also be able to interpret some highly impoverished
artificial data, such as we find in pictures. If so, the interpretation of
pictures is not merely a culturally specific, Llearned, process. If ordinary
perception of objects and relationships requires learning, then interpretation
of pictures of the same objects will not normally require additional Llearning,
on this view: toddlers we have observed respond naturally to cartoon drawings of
familiar situations, without anything Like the struggle which characterises
learning to read. [Cf. Hochberg and Brooks 1962.1 This is not the theory
criticised by Gombrich [1960]1 and Goodman [19691 that realistic paintings and
drawings produce the same visual stimulus as the things depicted.

2. VUnarticulated, semi-articulated, and articulated representations.

We have claimed that vision requires far more than efficient detection of
features of the optic array, and that several different domains of structure are
processed. To explain why, we must ask: what is vision needed for? An animal,
or robot, uses perception to make decisions in pursuit of its goals and to tell
whether they have been achieved. It also needs to detect unexpected dangers and
opportunities. ALt this requires construction of representations which
articulate the envircnment into objects with properties and relationships of
varying sizes and degrees of abstractness. Rarely will the detection of a
particular feature in a particular location on the retina be very significant.
Similarly, huge data-bases of wunarticulated 1information, Llike depth~maps,
surface colour or texture maps, surface orientation maps, primal sketches [Marr
19761, can be of little use without considerable further processing. They are
effectively new, enhanced, images, even though they may contain 3-D information,
Though important for further processing, these unarticulated databases are not
directly useful for decision and action: only generalisations related to global
image statistics can be learned or invoked e.g. 'lots of green', but not 'plum
on tree', might be recognised.

To some extent groupings of fragments of information into larger wholes can be
achieved by parallel "local” computations, e.g. relaxation techniques linking
items subject to constraints [Hinton 1977, Radig 1978, Frisby and Mayhew this
conferencel. If the links exist without explicit description of the properties
and relations of the linked groups, the database is semi-articulated. The
process of growing such Llinks may enable some useful global statistics to be
collected, but represents objects only implicitly. Though providing a useful
intermediate stage, a semi-articulated database does not explicitly represent
one object as above, inside, between, or able to fit idinto, others. Such
information is then not available for deciding, planning and learning. (Compare
Marr's ‘principle of explicit naming' [Marr 1976]. The same point was made in
Minsky [19611.)

Further study of visual articulated representations requires analysis of types
of actions performed by different animals. (Some birds can learn to use a foot
to depress one end of a lever, exposing food behind the other end. This
probably dinvolves articulating the Llever into parts, e.g. ends, capable of
different though causally linked motions.) It seems unlikely that a small number
of mathematically simple structures (e.g. generalised cylinders) with a small
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number of mathematically simple relationships (e.g. equations Llinking co-
ordinates) will suffice for human perception. Besides crumpled newspapers
(despaired of by Marr [19791) we see fields and forests. Similarly, cluttered
scenes made even of "clean”" cylinders will have messy structure at larger
scales, like large sets of axioms in a theorem-prover's database. To discern
significant objects and relations in large and messy collections of image and
scene features we need a much richer descriptive vocabulary than AI vision
programs have hitherto incorporated. This is why multiple domains are
important.

3. Multiple domains

Clowes L1970,7971] and Stanton [19701 stressed that visual perception and
picture 1interpretation do not simply involve description of image structures.
They described "mapping rules” Llinking different non-isomorphic domains. A
domain is a class of structures defined by a "grammar" or set of axioms (e.g.
3-D Euclidean geometry). Scenes have quite different "grammars" from images.
This needs to be generalised (as in Hearsay and Popeye) to allow many domains,
with different though possibly overlapping grammars. Very briefly, this is
because using many different domains allows: (a) ‘'structure sharing' between
processes of recognising different sorts of objects, (b) intermediate results of
processing to be relatively secure even if back-tracking is required at higher
levels, (c) higher levels to recognise important scene features before Lower
level processing is complete (see below) (d) high level recognition despite poor
low~level detail, (e) data derived from an image to be wusefully structured
(compare 'Scripts' and 'Frames'), (f) goal-directed activation or de-activation
of large chunks of knowledge (e.g. 'mental set'), and (g) communication between
different sensory modalities.

A.I. vision work has so far focussed on a small number of mathematically
tractable special cases. A good survey of the different domains of structures
useful in visual perception is still lacking. Likely relevant domains include
2-b arrays of changing colour and intensity, 2-D configurations of lines and
regions and of texture, domains involving patterns of motion in both 2-D and
3-D, overlapping 2-D silhouette shapes [Paul 19761, curved and flat 3-D
surfaces, both 2-D and 3-D stick figures [Palmer, 19751, various domains
involving forces and a variety of cause-effect relations, intentional actions
etc., properties Llike flexibility, rigidity, elasticity, hardness, etc. Besides
plane surfaces, edges, vertices and generalised cylinders for representing
shapes, we probably need generalised spheres, hemispheres, bags, tubes, strings,
etc. In addition we need models for significant parts of such objects and their
surfaces, Llike: hollows, grooves, holes, lumps, ridges, openings, rims, etc.,
and models for relating one to another (the groove runs across the hollow).
Features and relations invariant under non-rigid transformations are
particularly important in our world. We also need a large collection of schemas
for types of motion and action: moving towards, moving away from, moving into,
flattening, twisting, folding. Compare - Hayes on ‘'naive physics' [1979].
Studies of pictures and cartoor movies can yield useful 1dnsights dinto the
structures deployed 1in perception [Draper 1920]. 0f course, it is hard to
specify how such models may be represented, invoked, etc. in a working, system.
Is all this "cognition" relevant to vision? A major feature of visual learning
is linking new domains into the visual system - e.g. Llearning to see the
muscular structure of human bodies, for artistic or medical purposes, learning
to see when it is safe to cross the road. There is no sharp boundary between
practically useful vision and cognition.
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4. The domain of images

The “structure of the 2-D 4image domain 1is important for both picture
interpretation and normal vision: why? Goodman L1969 p.381, rejecting the idea
that pictures and objects produce similar visual input, accounts for the
"realism” of some pictures in terms of familiarity. But this fails to explain
why even a two year old child can learn some pictorial styles, whilst others,
though mathematically equally adequate, seem much harder. The human visual
system does not work with arbitrary combinations of image elements, but, as the
Gestalt psychologists noted, is largely constrained to use continuity,
proximity, smoothness, concurrency, symmetry, containment, and other geometric
and topological relationships, for Linking low-level features into cues which
invoke more abstract or global representations, which may themselves be
similarly treated. A grasp of such relationships is required for interpreting
pictures also. However, much richer image description Languages are required
than existing Al programs can handle: many can only describe the topology, and a
few metrical properties, of networks of straight Llines or picture regions.
Others provide a simple semi-articulated description with no grasp of the
implied structure [e.g. Radig 19781.

Further, articulated 3-D interpretations, required for planning actions, can be
linked to image structures to facilitate processing. For instance, to answer the
question "What is Y going to hit?"”, "Will I pass near A if I go straight towards
B?" one can "traverse" the relevant part of the image to find the relevant bit
of the 3-D interpretation. Moreover, our theory implies that 1in visual
perception and in picture interpretation, descriptions of parts of a complex 3-D
scene are built up in paraltel. The Llinking of dincomplete descriptions of
different parts of the scene to form lLarger structures, will be facilitated if
the 3-D structures are closely related to the network of descriptions of 2-D
image structure - the Llatter providing indexing or addressing routes. [*41.
This applies to both real vision and interpretation of pictures. (More on this
below.)

So, against Goodman we claim that "familiarity"” of pictorial representations is
not a matter of frequency, but depends in part on the way 2-D relationships are
used in normal vision. Of course, mere similarity of domains does not suffice
to explain facility with pictures. Maps also make use of 2-D structures and
relationships, yet learning to use a map to find one's way around is harder than
interpreting pictures. This is partly because our stored knowledge of objects
is addressable by means of the kinds of articulated representations produced by
both retinal 1images and artificial pictures, whereas our 'cognitive maps' of
familiar surroundings are not normally addressable by the kinds of structures
created when we look at maps. Things might be different if we could fly!

5. Reasons for using impoverished articulated representations

There are additional reasons why impoverished picture structures might be
related to normal vision. We have already given a general reason why a visual
system needs to be able to cope with impoverished representations: articulation
of the scene implies reduction of dinformation. Other reasons concern
processing, the purposes of vision and the environment:

5.1. Some details may interfere. Much of the detail available to the eye
arises ~from variable conditions, including Llighting, atmosphere, viewpoint,
non-rigid motion, and changing relations. The use of abstract schemas implies
less memory space, faster matching, smaller searches among stored specifications
and enables recognition of individuals or types (abstracting from individual
details) in novel circumstances. It also provides the basis for forming
generalisations.
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5.2. Some details aren't needed in a "cognitively friendly” world. It may be
possible to distinguish objects on the basis of only a few features. E.g. &
colleague once remarked that he could recognize a zebra with Jjust its ear
visible. In a CFW where the space of possible structures is known to be
sparsely instantiated ((B) zbove), inferences can be made from fragmentary
evidence.

5.3. Details may be missing or spurious. As already noted, poor visibility,
natural” or artificial camouflage, eye defects, rapid motion, or the presence of
visual obstacles, can produce degraded images. Injury can remove stereopsis.
Optical flow 1is not always available. Stereopsis and optical flow don't help
with distant stationary scenes. Extracting global features (e.g. silhouette
descriptions) from such degraded data sometimes enables recognition of useful
cues to overcome the difficulties. Once again, this depends on friendliness:
e.g. important objects having distinctive outlines from most views. This
requires assumptions (A) and (B).

5.4. Shared structure in memory entries. The system may share recognition
processes between different objects by using a discrimination net. As partial
specifications are built up, the set of remaining possibilities narrows. [Birch
1978 describes such an extension to Popeye.l Different recognition processes
thus share significant sub-processes, minimising back-tracking or breadth-first
searching. This uses incomplete descriptions, i.e. intermediate nodes in the
discrimination net.

5.5. The need for speed. Even in a CFW, unfriendly circumstances may demand
rapid decisions. The next section discusses the relevance of incomplete data.

6. Speed and the processing of incomplete representations B

Complex articulated representations cannot be created instantaneously. Fast
paratlel processing at low levels depends on each processor being concerned with
a relatively small well-defined portion of the data, and being able to work
independently or co-operate with a relatively small set of neighbours. Thus,
even data-flow channels can be 'hard-wired'. (Such mechanisms permit certain
non~local interactions, via information propagated through the net.) But
locality and independence do not characterise the process of articulating a mass
of data into objects whose contributory regions change from one image to
another. Portions of images relevant to a triangle or tiger vary in size and
shape, and may be split into separate regions by intervening objects. Hence
data-flow cannot be pre-~determined, and organising data from particular images
will therefore take a significant amount of time, compared with Localised
paratlel computations. Though detectors for all possible edges may be ‘'hard
wired' in advance, detectors for all possible triangle or tiger shapes could not
be similarly pre-determined, partly because of the explosion of connections,
partly because not all environments dinclude them. The task of segmenting,
aggregating, recognising, and building useful scene descriptions 1is therefore
inherently much stower than Llow-level tasks. Thus there are limits to the
speed-up available from hard-wired parallelism, and other mechanisms to speed
things up could be wuseful: milliseconds may matter when life, or food, is at
stake.

Cues invoking previously computed information can speed things up. This old
idea [le.g. Roberts 19651 is now associated with the 'frames' theory [Minsky
19751. Compare the idea of a ‘phrasal lexicon' [Becker 1975]. But the theory
leaves many questions unanswered: on encountering a new scene where should one
start looking for cues in the image? At which Llevel of analysis (in which
domain) will the most useful cues be found? How can cues be recognised rapidly?
The last question is very difficult, and will not be answered here. OQur answer
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to the first two is that as far as possible analysis should proceed
simultaneously in many Locations and at many levels, since the location or
domain of the most useful cues cannot be predicted. This should be concurrent
with general purpose image processing. Analysis of higher-level domains cannot
begin until after some flow of data from lower—levels, but it need not wait for
completion. The structure of such a network of processes will vary from image
to image, so time and resources may be saved if its growth can be constrained,
eliminating or suppressing portions which are not required, and giving priority
to those yielding useful results -— e.g. activating and deactivating whole
domains. This can be achieved if high-level structures (where the networks are
relatively small) can be recognised whilst Llower Llevel networks are still
incomplete. Thus construction of the network of communicating sub-processes
which interpret the image, may itself be controlled by partial interpretations.

If, at any level, there is a lot of partially processed information, things may
be speeded up by treating the partial results as a new image, in which gross
features provide useful higher—level cues: using redundancy in a CFW [Sloman
1978, ch 91. A specific purpose (e.g. finding a tool) might be achieved using
this gross structure, without waiting for details [*5]1., So, in some CFu
environments, allowing many domains of structure to be analysed in parallel,
could speed up actions. Even marginal advantages may influence biological
evolution when resources are scarce, or predators plentiful. There is a kind of
recursion in our argument, and possibly also 1in biological evolution. Where
speed is important, the pressure towards further decomposition into parallel
sub-systems is great, provided images have sufficient redundancy, i.e. provided
it is a CFW.

We have not claimed that higher level processes can influence Llower Llevels,
except perhaps by aborting, or re-directing them. But it may be useful for
partial results to affect some thresholds or even the invocation of specific
forms of analysis, at low levels. Alternatively, cognitive processes may simply
control the direction of attention, without modifying the nature of the
processing. Even if animal physiology permits no direct downward influence on
the processes which generate, say, a primal sketch, there might still be good
reasons for designing artefacts differently. It would be no different in
principle from making high levels influence direction of gaze, dilation of
pupils, convergence of two eyes, etc. atl of which affect the low-level image.

7. Some implications

In a CFW, multi-layered processing can improve flexibility, graceful degradation
and speed. This applies to any kind of activity requiring intelligent analysis
and interpretation of a large amount of data, based on expertise in the field,
e.g. solving a complex mathematical problem, debugging a program, etc. One
consequence is that demands on sub~systems are relaxed. For “instance, if
processing of Llevel P has to be completed before processing at level Q@ can be
begun, then it is important that P terminate. However, if Q@ can get started
early, then it does not matter if P refines its analysis indefinitely! 1In
vision, input is continuous, so lower levels cannot “finish" their analysis.
Thus higher levels must in any case operate in parallel with them.

Moreover, in a CFW, mistakes at lower Levels can be tolerated without disaster.
The system must be conservative about transmitting dtems to higher-level
domains, i.e. only sending well-supported reports. Then occasional mistaken
reports witl not combine usefully with other reports received at that level:
(compare the role of 'impossible fragments' in Birch 1978). If a relatively
large object is recognised on the basis of several different fragments reaching
a high level, then the chances of it being a mistake will be small, assuming
limited independent variation of object features. So the system need not
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guarantee finding the best interpretation of any image, as in Woods [19771],
since any good one will normally be unique, as we noted above. So it will often
pay to accept a high level decision, abandon lower level analysis, and re-direct
attention to the next task [x51.

AlL this depends on knowledge enabling fragmentary evidence to dinvoke specific
larger  structures, i.e. the principle of Llimited independent variation.
General-purpose knowledge about 3-D structures and the principles by which they
map into 2~D images does not constrain the space of possible scene structures so
as to permit the inference that any good interpretation of an image is probably
the best one. E.g. it does not rule out the existence of animals combining
features in bizarre ways. Without specific knowledge of the wortd, detection of
a zebra's ear would not rule out an animal with a trunk, six legs and two tails.
The world would then not be a CFW. (This is Like employing freguently useful
theorems as well as axioms, to controt search for proofs in a theorem-prover.)
OQur argumsnts are not relevant to the design of a machine whose visual system
will never need to act quickly, which will always have perfect viewing
conditions and which will often be transferred to a totally new environment
where only the most general and primitive knowledge of 3-D structure, lighting,
etc. will be of use to it.

0f course, our parallel, schema driven, system will sometimes make mistakes: but
people make mistakes and sometimes Learn from them. How? Decomposition into
sub-systems processing different classes of structures provides opportunities
for learning about new rules for Llinking the different domains, and for
inhibiting the idnvocation of schemas, as well as defining new types of
structures in terms of previously known substructures.

8. Problems of incompleteness

This theory raises many unanswered questions. Frank 0'Gorman has pointed out in
an unpublished manuscript that in a pass-oriented system, where each level of
analysis is completed before the next begins, incompleteness of information at a
certain location and Llevel has a definite meaning: i.e. it represents the
absence of something in the image. We have found it important to distinguish
two sorts of incompleteness. It is not too difficult to cope with a gap in a
known structure, for instance a hypothesised letter "E”, for which the Lower
"ell" junction has not yet emerged from lower levels. We call this explicit
incompleteness: a filler is missing for a slot in a frame. Here there are only
two candidate letters "E" or "F", and the word-recogniser can decide which is
correct on the basis of other letters which have emerged - even if they too are
ambiguous. This depends on Llimited independent variation of letters in the
domain of possible words. Implicit incompleteness occurs when trying to Llink
features together to form cues to drive recognition =- for instance two
previously unattached strokes to form a stroke—junction. Whether such features
should be linked often depends on which other features are present nearby. From
the absence of neighbours it cannot be decided whether this is because there is
no evidence at Llower levels, or because processing in that region has not yet
finished.

In early versions, every level of Popeyel#*2] simply used whatever information
had already emerged, and then relied on context, or later bottom-up processing,
to correct mistakes. Errors were reduced by delaying processing of any one Llevel
until a certain amount of information had been received at that level, using
thresholds determined by image statistitcs. But even this Lleft the garbage~
collection problem of undoing mistakes and their consequences. So higher levels
confronted with this incompleteness were allowed to ensure that everything up to
that Llevel, within a restricted region of the image, had been processed, making
use of image-related addressing routes. This caused the focus of attention to
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jump about, centering on qimportant image features such as junctions between
"bars". A better, more psychologically realistic solution, might be to let each
Level constantly recompute its hypotheses on the basis of the most recent
information from other processes. This would be a generalisation of mechanisms
using local co-operative processes, like relaxation. It could be very expensive
on current computers, and hard to control.

9. Testing the theory experimentally

The Fact that very young children Llearn to interpret cartoons and other
'impoverished' pictures so easily seems to support this theory. More detailed
studies of what they find easy might be helpful. There dis some additional
evidence for our claim that higher level processing begins before lower Level
analysis is complete. People often think they've recognised a person or object,
then spontaneously realise that a mistake has been made, even after the object
has passed from view. Informal experiments with messy pictures of overlapping
capital letters forming a word suggest that people often see the word before
seeing all the letters. More detailed studies could provide clues as to domains
and analyses being processed in parallel, in ordinary vision. Studies of brain
damage might indicate which domains of structure (section 3) can be selectively
disabled. Useful evidence should come from a study of visual errors. Our
theory predicts that even in good visibility, humans and other animals moving
rapidly will make more mistakes in an environment containing unfamiliar sorts of
objects. (Testing this could be difficult, expensive and dangerous!)
Experiments could test whether increasing familjarity improves performance {(of
survivors!), Different mixtures of familiar and unfamiliar features could be
used, to find out if more obvious familiar features lead to errors concerning
the other features. Additional experiments would vary lighting, foggy
atmosphere, etc. as well. 1In poor viewing conditions, our theory would predict
that visual judgements (especially at speed) would be more accurate when the
environment contains familiar objects. Comparative studies might show that only
some animals with visual systems possess the ability to process a variety of
different domains in parallel.

FOOTNOTES

[*1] Acknowledgements:

This work is supported by the U.K. Science Research Council. We have benefitted
from discussions with: Geoffrey Hinton, Frank 0'Gorman, Steve Draper, Margaret
Boden, Max Clowes, Monica Croucher, Steve Hardy, Christopher Longuet-Higgins,
David Hogg, Larry Paul, Phil Pettitt, John Rickwood, Robin Stanton and Sylvia
Weir, among others. Mike Brady and an anonymous referee made useful comments on
a previous version. Judith Dennison helped with production.

[#2] Preliminary reports on POPEYE can be found 1in Sloman and Hardy [1976],
Sloman et. al. [19781, Birch [1978], and chapter 9 of Stoman [1978], See also
Owen [1980]1. Popeye analyses artificially generated dot pictures representing
words made of overlapping cut-out capital letters. It can recognise words
whilst much of the Lower Level processing is dincomplete. Details will be
reported elsewhere. The 1978 conference paper discusses differences between
Popeye and the Hearsay system [Erman and Lesser, Hayes—Roth and lesserl, which
have much in common. In particular, both process different domains of structure
in paratlel, though Popeye eschews the ‘blackboard' concept. A similar
philosophy has been used in the 'Visions' system (IJCAI-5, pp 642-647).

[%3] Marr makes a similar but different claim in justifying his theory of the
‘primal sketch', Ce.g. Marr 1979]. He postulates a progression, from image to
primal sketch to 2.5D sketch to 3D model, whereas we propose many more domains,
processed in paraltel. In Popeye, the domains mainly form a hierarchy, but
there are two main routes from image data to letter hypotheses and both feed the
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word recogniser. We suspect that real visual systems require a far more
elaborate network of routes through domains.

[*4] In Popeye the need for this arises often, e.g. when two parts of a Lletter
are separated because of occlusion. The two parts can sometimes only be related
by using a combination of <(a) geometrical relationships and (b) partial
recognition of the letter, since there are no image cues for linking, like
'back-to-back' tee junctions. So having recognised what may be, say, an E or an
F, the program works out roughly where in the image evidence of a missing bottom
stroke might be found, and this constrains searching.

[*5] In Popeye, processing can be aborted when the highest level decides it has
recognised the depicted word; lower level analysis will often be incomplete.
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THE ROLE OF wORLD KNOWLEDGE I[N PLANNING

N.S. Sridharan, C.F. 3cnaidt, and J.L. Goodson
Departments of Computer Science and Psychology, Rutgers University
New Brunswick, N.J. U3A 08903

Abstract: Comamon-sense planning demands a rich variety of world
Knowleage. We have examined here the view that world knowledge can
be structured to form the interface between a hierarchy of action
types and a hierarchy of types of objects. World knowledge forming
this interface includes not only the traditional statements about
preconditions and outcomes of actions, but also the normal states of
objects participating in the actions and normative actions associated
witn the objects. Comaon-sense plans are decomposed into
Zoal-directed, preparation, and tne normative components. This has
neuristic value and may serve to simplify the planning algorithm.
Tne algorithm invokes world knowledge for goal customization, action
specification, computation of preconditions and outcoames, object
selection, and for setting up subgoals.

In a recent survey of research on tacties for problem solving
3acerdoti (3acerdoti, 1979) concludes that "... the best strategy for
advancing the state of the art might well be to focus on integrated systems
for plan generation, execution and repair." While agreeing with this
conclusion we also note that attempts have been made to 'design integrated
planning and execution systems as far back as 1973 (Nilsson, 1973).
However, aside from the work of the SRI-AI group, little research in this
area has gained prominence.

Implicit in the quotation above is the suggestion that the agent
executing the plan and tne agent generating/monitoring the plan are one and
the same - as it would be in an integrated robot system. In tackling the
problem of one agent monitoring the plan execution of another agent,
without explicit and prior communication of the plan, wWe retain the
challenge of dynamic plan repair and goal resetting. In addition, we
invoke a ricn set of tasks concerned with revising assumptions about the
knowledge structures shared by the two agents.

Qur research on the task of plan recognition, how an observer
interprets another's actions, was started in 1973. In the initial period
emphasis was placed on the gtrycture of motives for everyday actions
(Schmidt & D'Addamio, 1973) and the progess of inferring a goal from a
xknowledge of what motivates people to act. After a brief attempt at
explicating the structure of social {(interpersonal) action (Bruce &
Schmidt, 1974), recent work has concentrated on an observer process that
hypothesizes and revises plan structures for single actor physical action
sequences {(Schmidt, Sridharan & Goodson, 1978).



Previously at tais confeégﬁggRAgé?ies, Wwe nave reported on our
representation of Tnaierarcnical, non-linsar plans (3chmidt, 3ridnaran %
Goodson, 1976) tnat a) provides the zenerality needed to monitor and revise
pians and gosals; and D) logically <couples the representation to the
attributed bzliefs, xnowledge and intentions of the actor.

Most recently (Sridnaran & 3mita, 1973), we reported on tne design of
a pilan nypotnesizer tnat generates plans eamphasizing the teleolozical order
aaong the components of a plan. The temporal orderinz was represented by 2
set of ordering constraints computed by <¢critics similar to tnose of
Sacerdoti (1975). ‘However, (a) we permitted more than Dbinary constraints
(e.g. X not-between y and 2), and (b) we employed as critics, logical
definitions of ¢he constraint predicates.

In this paper we share with the readers our recent understanding of
tne role of world <«nowledge 1a planning in a common-sense domain. Tne
problems we discuss are aot manifest in tidy domains and tnus have not

arisen in the earlier ressarch on planning. However, we feel thess
problems <cannot be avoided if we retain ambitions of 2xtending
goal-directed planning techniques to real problems (Raphael, 1976, pl!53).

Wwe invite tne reader to consiger a few of the complications arising from =2
coamon-sense domain and to share our ideas for dealing witn tnem. The
central role of common-sense reasoning in human tninking makes it an
important form of reasoning to study and descripz.

1.0 WHAT I3 WORLD KNOWLEDGE?

Tne problem environament rfor a problea solvar such as S3TRIPS or NOAH
consists of a description of an initial sifuation and a set of gperators
for transforming one situation into another. A task for the problea solver
is specified by a z20gal statement. Tne problem solver attempts to produce a
plan of acvion tnat would transform tne initial situation into one in whicn

the goal statement is true. The problem solver uses world knowledge
broadly classifiable into action knowledge (operator descriptions) and

ohiegct xnowledze (a conjunction of statements in first order predicate
calculus). Action knowledge usually associates witn each named operator
its parameters, praconditions, outcomes and a goal designation. The
plannar's knowledge of the specifiz situation at hand contains
identification of objects relevant to tne situation, the type of objects
they are and tneir attributes, and relationsnips they bear to other objects
in tne situation. Tnis specific and changing knowledge we refer to as the
workd amaodel (WM). Sometimes the WM may contain general properties of
predicates or general physical principles true in all situations and these
may be used to deduce other facts in the WM, For example, a coamon
statement used in the BLOCKS world is

(Forall x y z) [On(x,y) & At(y,z) => At(x,z)].

In tne context of common-sense planning, knowledge used about actions
and objects takes on a much richer structur:z. The objects mentioned in tne
Wi may be ciassified variously according to observable or structural
characteristics shape, size, color, material, location, contents,
components and so on. The object types are often hierarchically setup
Our plan generator (Venkataraman, 1979) is implemented in the language

AIMD3 (Sridharan, 1978).
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providing a variety of levelg of descriptions and jnherifance rules across
tnese levels. Actions and tneir case structures are also typed and
nierarchically arranged into levels. The action hierarchy gets jnterfaced
to tne object hierarcny by means of the attributes of the objects mentioned
in tne preconditions and outcomes of the descriptions that are associated
at any level. Tane body of general world xnowledze (WK) so relating objects
and actions is ricn and substantial. It is advantageous to view it apart
from and as augaoenting the world model.

A plan imposes a functional point-of-view over objects and places,
rendering tne name of an object or place to be of little importance. Wnat
is important is thne role that the object or place plays within the plan.
For example, an object 1is needed to cut another object, or an object is
nseded to contain a liquid object, a place is needed on which to cut an
object, and so on. In tnis way, a plan provides expectations concerning
tie properties tnat the objects entering into the plan will satisfy.
However, we rarely infer the functional characteristics of objects from
tneir observable c¢naracteristics. In fact, many of thnese functional
cnaracteristics are not readily inferable by visual inspection. Rather, we
are taught that some objects are edible and others are not, some objects
make good contaimers for some liquids and others are ill-suited as
containers. This is, of course, what is coamonly referred to as '"world
Kknowledze."

Aside from suchn generic knowledge about objects and places, our world
knowledge also includes aore specific knowledge about the normal or typical
aspects of objects or places, about the norms that specify how objects or
piaces 3nould ve, and values that specify desirable aspects of objects and

places. We discuss in the subsequent sections the representation of world
knowiedge in a form readily useable for common-sense planning and discuss
the ways in which the planning algorithm invokes this knowledge. The

action sequence presented below provides for this paper the context from
wihiich the main examples are drawn.

Fred is in the living rooa.
Tne lights go out.

Fred reaches into nis pocket.
Fred takes out a matchbook.
Fred lignts a match.

Fred lignts a candle.

Fred takes tne candle.

Fred zoes to the basement.
Fred approaches the fusebox.
Fred opens tne fusebox.

Fred flips the circuit breaker.
The lights come on.

Fred closes the fusebox.

Fred goes to the living room.
Fred puffs out the candle.
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2.0 COMPONENTS OF CUMAOH-SENSE PLAHRS

A plan consists of the primary Zoal-directed coaponant, the
preparatory coaponent, and the noramative coaponent (Figure 1). The primary
component is the part wnich is well-understood in AI and contains a goal
and a set of subgoals foraming a partial order. Tne actions (plan units)

mentioned in the plan may differ in the level of detail they convey. Tne
final action will hnave as zoal tne goal of the entire plan, e.g, lights
are sinining (see figure). Eacn subgoal for wniecn no action is planned

indicates that tne actor believes thos2 subgoals will obtain at tne time of
execution, e.g. the circuit-preaker switcn will be off.

In the exaample, tne goal-directed actions require visibility of the
local area as a precondition and the preparation plan achieves this by
lighting a <candle and then adding other a2tions to maintain this
visibility, 1i.e. by <carrying the candle to the passmsnt. Note that the
preparation condition is not a subgoal for any plan unit 1in the primary
pian but is a condition tnat needs to be achieved and az;aintained
taroughout.

The normative component includes actions whicn do not contribute to
the main gZoal but are included out of considerations such as safety,
economy, politeness, or the role assumptions of the planner, e.3.
customer, aanager, sa2curity guard, etc. A szt of norms and conventions

-including setting and role inforamation 1is required for coammon-ssanse
understanding of human actions.

We have rejected the desizn option of extending each action with
preparation conditions and normative rules in favor of viewing the whole
plan as being dissected into components. Tnis choice is motivated by our
desire to reduce the structural complexity of the overall plan ani to
control the coamplexity of tne reasoning processes involved in planning.
Since the same preparation coandition, visibility, 1is needed for every
action in the goal-dirascted component, it is more economical to 1let this
condition ©pe planned for just once. Tne actions in the goal-directad
component may falsify the preparation (e.g. going to tne basement) and we
add actions needed to maintain the preparation condition (e.g. take the
candle). Further, in a planning situation where the search that coanstructs
tne goal-directed component requires backtracking, our Jdesign strategy pays
off. The preparation actions are not involved during this search and

simplify the search. This strategy is a heuristic one and may force a
penalty snould it turn out subsequently that the preparation condition
could not be wmaintained througnhout a fully developed goal-directed

component. The known fact tnat 1lights went off drives the planning
mechanism to set up "visipility™ as preparation condition for any plan i.e.
any goal. It is interesting tnat this preparation condition is wused =even
when the main goal is to get the ligats back on! (See Section S.1). By
using a fact-driven set up for preparation, rather than a goal-driven one,
we avoid 1listing a large number (%) of needed conditions that would
normally be true in the WM, and which would noramally be irrelevant to
subgoal generdtion.

Note that the actions in the normative component are temporally
constrained only weakly in relation to the actions in the main parts of the
plan. The plan monitoring algorithm can <compute the needed additional

(%) Some argue that such a list can never be complete.
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constraints and these are not discussed ncere.

3.0 REPRESENTATION OF ACTIONS ARD THE IWPLICIT HIERARCHY

Tne meaning of tnz verd "to ligat® captures th= general meaning of a
divers2 collection of spzcialized actions. Lizhting a maten froa a
matecabook requires preconditions sucn as tnat the agent should nold a
matcabook, the matcenbook shnould nave an expossd striking surface, and so
on; waereas lignting a candle With a maten requires preconditions such as
tnat tne agent snould hold a lignted mnatcn, tne candle snould be accessible
and so on. We require the action represeantation to peramit the specific
acaning (preconditions, goal, outcomes, norms and otner information) to be
custoamized for the various attributes of objects and locations
participating in tne action.

To give a naae for eacn possible combination of action type
specialized by paraaeter types would 1lsad to serious coabinatorial
esplosion apart froam yielding a representsation that is somzwnat unnatural.
Tnis approacn 2aas been adopted in controlled tidy domains where it is

feasibie. Inis yields acts such as LIGHT-CANDLE, LIGHT-MMATCH,
GU-WiTH-CANDLE-I#HAND etc, (ef. PUSH, PUSH-BOX, PUSH-BOX-THRU-DOOR etec.
in tane STRIPS worlid). W2 have cnosen to represent actions at a 1lewvel of

generality tnat corresponds to the £nglish vsrbs TAKE, OPEN, LIGHT, GO, GET
and so on. We create an iagplicit specialization hierarchy by defininz a
ianguaze 1in which specialized actions may be described. Such descriptions
are used for indexing into a rule base for calculating the reconditions,
outcomes and other xnowledge associated wita any action. Tne conjunctive
semantics 4iven to the descriptions provides 3 simple mechanism of
inneritance Jdown tn2 specializatvion nierarcay.

Tne process of action modelling nas been extended so that the
precondition, goal, and outcome calculatiens are done and the act is
customwized using available knowleage. In programming this wmechanism, we
nave carefully separated tae mecnanism from the collection of statements
apout objects and acctions that are accessed by the mechanism. This peramits
us to e¢xalhine how varying available knowledge 1influences the plan
aypotn2sizer and pian recognition programs.

s

3.1 Mecnanism for Act Customization

Tne meaning of the act is computed by retrieving a set of rules whose
left sides are patterns that test attributes of the instances (objects,
locations, and persoas) mentioned in the case relations (arguments) of the
action, Tane rignt sides (afver appropriate substitution for variables)
yield the set of preconditions. Consider as an example our gspecification
of the preconditions for tne action LIGHT. Similar rules are stated to
describe tne Goal and OQutcomes.
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case Relations: LIGHTing of an OJBJECT
with an OBJZCT
at a LOCATION
by an agent PZR3OA.

Precondition ruies:

'. (LEGHT of (OBJEZCT o type MATCH
in (OBJECT B type MATCHBOOK))
by (PERSON P))
=> (P nolds B)

2. (LIGHT of (OBJECT C type CANDLE)
with (OBJECT ¥ type MATCH)
by (PEZRSON P))
=z> (P nolds (OBJECT M status LIT)
has-accessto )

3. (LIGHT of (OBJECT U type PIPE)
by (PER3SON P))
=> (P holds (OUBJECT O (contains (3SUBSTANCE type TOBACCO)))

Rules are presented above in a simplified syntax, with 1lower case
words giving the relations. Consider thne first precondition for LIGHT. It
has M,B and P for variables which will be bound during matching. In
matening a given action, M and P will be bound from the case relations of
the action. Tne object bound to M i3 tested further in the WM yielding a
bindinz for the variable B. If a given action matches the left side, a
precondition (P nolds B) will be included after substitution for the

variables. Note that as a result of using nested descriptions on the left
side a precondition is introduced about B which is not an object directly
involvea in a ecase relation. Tne second precondition rule exhibits a

nested desceription on the rignt side waich is treated as a conjunction.
Additional example:

Case Relations: POURing by an agent PER3ON
from an OBJECT
to an OBJECT
of a SUB3STANCE.

Precondition Rules:
. (POUR by (PZRSON P)
from (OBJECT 0))
=> (P nolds 0)

2. (POUR by (PEZRSON P)
to (OBJECT C))
=> (P nas-accessto C)

3. (POUR from (OBJECT O type COVERED-CONTAINER))
=> (0 status OPEN)

4, (POUR to (OBJECT C type (AMONG GLAS3 CUP)))
=> (C on (OBJECT T type (AMONG TABLE COUNTER)))

5. (POUR from (OBJECT 0) of (3UBSTANCE 8))
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=> (0 contains S)

4.0 AUGMENTED WORLD MODEL

Tne world model is always a partial specification of the planner's

current beliefs about the state of the world. Tnz planner augments this
with his expectation of wnat ths "normal" values of attributes are. A
precondition may be neither true nor false in the world model, i.e. it is

unknown in the WM. Knowledge of normal states can be used to decide
whetner to plan for acnieving the precondition as a subgoal. For exaaple,
in a plan to drink water ne may assume there are glases in the cabinet, he
may assume thney are clean and thus not plan for these two propositions, yet
he must assume tnat cabinets are noramally closed and add a plan wunit for
opening the <cabinet door. Taus, it should be evident that knowledze of
norwal states determines greatly the contents of a common-sSense plan.
Wnereas tnz2se assumptions do contribute to the fallibility of the plan,
there are poras we follow to help promote reliability of such assumptions.
Tnere are a very rich set of norms including sincerety, honesty, politeness
for interpsrsonal actions; however, in the restricted case of a single
psrson carryingi out a sa2quence of everyday physical actions, many of the
normative actions can be explained by one norm: restore objects to their
normal state if an action in thne plan will alter them. Some of the common
injunctions a planner follows are: 1if you tura it on, turn it off; if you
pluz it in, unplug it; if you open it, close it; and so on. The role of
wihat is normal in the world is essential to this form of reasoning.

5.0 PLANNING TACTiCS AND ALGORITHM

Tne planning algorithm we use works on the same broad principles as
that of Sacerdoti (1375). Tne given goal is wused to select a plan
expansion and tne expanding plan forms a network of actions. The
structural connections of the network indicate, in our case, which action
serves to accomplish wnicn subgzoal of other actions, The temporal
constraints are coaputed after eacn round of expansion and are maintained
as a3 list of constraint assertions. The critics Wwe use are primarily the

"Resolve conflicts" and the "Redundant subgoal" critics which compute
ordering coastraints. These are stated using assartions of the form "P not
next to Q" and "P not Dbetween Q and K". We have found that the "Use

existing objects" critic leads to premature and unwarranted optimization of
tne plan for amonitoring purposes and thus we do not wuse it. Most
optimization Jdecisions are left to the algoritnm that uses the plan for
aonitoringz observed actions.

The discussion below avoids certain important aspects of the planning

algoritna, i.e. tne interaction between the plan hypothesizer, the action
monitor and tne hypothn2sis revision mechanism. These will be discussed
elsewanere; Tne focus here is on ways in which additional world knowledge

is invoked by the planning algorithm and tine influence this has on the
planning algoritha.
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5.1 Goal Customization Rules And Action Specification

Tne goal statements admitted in the represesntation of common-sense
plans nave the same generality and loossness of meaning as that associated
witna actions (discussed above, Section 2,0). Action specification is the
familiar technique of selecting the action to be used to achieve a
particular goal and is done using rules stated in the foram similar to those
apbove for preconditions etc. Some goal propositions require further
customization in order to generate an action specification. For example,
to achieve tae goal "(OBJECT A) near (OBJECT B)" one may move A to where B
is, or aove B to where A is, or even move A and B to some new location.
Tne c¢noice depends on cnaracteristics of the objects A and B and the
locations of A and B. Tne more easily moveable object will be moved. If
tnere is not enougn room to put one object next to the other, both may be
moved to a suitable third location., When both objects are easily moveable,
convention (norm) may dictate which should be moved. Let us say B is to be
moved to LA, the location of A. We make the action specification in two
decision steps: (goal customization) (B loe LA) and then (act
specification) (MOVE object B dest LA). Goal customization is done through
a rule set that makes choices by examining the characteristics of the
objects mentioned in tne goal proposition and the current state of the
world model., It provides a specialized goal proposition that is considered
appropriate to the situation at hand. The customized proposition is then
used for action selection.

Using goal customization has a notable consequence. In common-sense
plans, it is possible to adamit circular subgoals, i.e. a goal G is
achieved by means of. an action sequence 3 one of whose subgoals is also
stated to be G. In traditional planning algorithms, detection of
circularity prompts failure of the last selection made. We do not permit
failure so readily. For example, to attain the goal "visibility" one may
choose to light a candle; yet to light the candle one may have a general
statement about the visibility of the room as a subgoal. (Formulating the
actions to avoid circularity is possible and would be wuninteresting as a
solution). We admit the circularity but require that the subgoal, on its
second occurrence, be customized to a more narrow propoesition. Lighting a
match gives enougn visibility to satisfy the subgoal set up by lighting the
candle, which gives enough visibility to satisfy the subgoal set wup for
turning the liznts back on.

5.2 Object Selection Rules

Tne action selected from the customized goal proposition is often a
partially aspecified action, for example "Light a candle". The choice of
wnich candle to light does not involve world knowledge but is based on the
heuristic of picking one that is available or readily accessible. World
knowledge is used to select a match or lighter as the candidate object
clagsses for the instrument to be used in "Light a candle", An example rule
is given below. Object selection rules cannot mention (by name) any
specific 1instance of an object in the world model, but refer to objects in
the world aodel by descriptions., These descriptions are taken as
specifications for finding an object and the heuristic of wusing an
available one then is applied to pick an instance.
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{(LIGHT of (0BJECT C type CANDLE))
(convention
(LIGHT with (OBJECT L type LIGHTEK status LIT))
(LIGHT witnh (OBJECT L type HMATCH status LIT)))]
((DRINK of (OBJECT L typzs LIQUID status HIT))
(cleanliness
{DRINK froa (O0BJECT C type CUP status CLEr«)))]

The alternatives available are grouped and tazged with the nora that
governs tns selection. Presantly anorms are not taken into account by our
prograa; if available tney are used only to offer an explanation for the
choice of tne object. A forthncoming extension of the prozram will plan
under Jdifferent settings of tne norms sucn as 2conomy, safety, cleanliness
ete. that may govern tne formation of one-person physical action plans.

6.0 CONCLUSION

Common-sense planaing demands a ricn variety of world knowledge. We
nave examined here the view taat world knowledge can be structured to fora
tne interface between a nierarchy of action types and a hierarchy of types
of objects. World knowledge forming tnis interface includes not only the
traditional statements about preconditions and outcomes of actions, but
aiso the naormal states of objects participating in the actions and
normative actions associated with the objects. Cominon-sense plans are
decoaposed into goal-directed, preparation, and the normative coaponents.
Tnis nas neuristic value and may serve to simplify the planning algoritnm.
Tna algoritnm invokes world knowledgze for g2ecal customization, action
specification, computation of preconditions and outcomzs, object selection,
and for setting up subgoals.

Qur representation of world knowledge is tailored to the planning
algoritnm yot is separate froam it (of. Fahlman, 1974). Othsr researchers
nave descriped representations suitable for various comprehension
(Carbonell, 19793 Cnarniak, 1978) and recognition (McCarty & Sridharan,
1383) tasks.

W2 note tnat currently we parmit fuanctional attributes of objects such

as "edible", "food coatainer", "rusebox", and so on to be introduced into
tne wH. Thus tne functional attributes requircd by tne plan are tested
directly against tanz WM. We are now =ndeavoring to restrict the WM to

contain only strictly observable or structural attributes and to require
the action @monitorinz and aypotnesis revision processes to provide an
inferential bridge between thz observable and functional attributes.

Agknowledzement: Our work on plan generation has benafited directly
fron the participation of Don 3mita and K.H. Vengataraman. Tnis research
was supported by drant RA-643 to ths Rutgers Rasearch Resource on Computers
in biocmedicine from the BRP, Division of Resszarcn Resources, NIH.
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AN ALGORITHMIC ACCOUNT OF ENGLISH MAIN CLAUSE CONSTRUCTIONS

M. J. Steedman & A. E. Ades
Department of Psychology Max Planck Gesellschaft
University of Warwick Berg en Dalseweg 79
Coventry, ENGLAND CV4 7AL Nijmegen, NETHERLANDS

*The fundamental aim in the linguistic analysis of a language L is to
separate the grammatical sequences which are the sentences of L from the
ungrammatical sequences which are not sentences of L and to study the
structure of the grammatical sequences. The grammar of L will thus be

a device that generates all of the grammatical sequences of L and none of
the ungrammatical ones.” (Chomsky, 1957)

1, Introduction

Transformational Grammar (TG) proposes that the grammatical constructions
of a language are those which can be generated by a base grammar of context-
free phrase structure rules, augmented by a set of transformations. Trans—
formations are rules which map the sentence-structures generated by the

base onto other structures, and ultimately onto surface grammatical struc-
tures of the language in question. For example the following sentences
are regarded by transformationalists as being derived via different trans-
formations from a single canonical deep structure generated according to

the base grammar.

(1) a. I will marry her. b. Will X marry her? c¢. Her I will marry!

The suggestion has a considerable appeal. The canonical deep structure,
which is rather similar to the surface stxucture of (la), can be thought

of as directly related to the propositional content which all of these
sentences share, and which they respectively assert, question and con-
trastively emphasise the object of. Quite apart from purely formal justif-
ications for such rules, it is tempting to identify the idea of the trans-
formation which produces (1lb), for example, with the process of relating
such a question to the proposition which must be verified by a hearer if
they are to answer the question.

However, as the Transformationalists themselves were the firxst to point out,
such an analysis raises as many questions as it answers. If there are
transformations in the grammar of English which produce the sentences of

(1), why are there not transformations which generxate (for example) the
following constructions?

(2) a. *Will her I marry. b.~ *Will marry her I. c. *Marry will her 1I.

A transformation is a rule which can map any structure into any other. It
follows that there is nothing to prevent such a rule being devised to
perform any of the twenty-four possible arrangements of these four elements.
Yet nobody could seriously propose that the five or so grammatical arrange-
ments are a random selection from among the twenty four. The non-
grammaticality of such non-sentences as the above therefore remains unex-
plained by the basic Transformational theory of grammaticality.

Because of the non-existence of all but a tiny fraction of the possible
transformations, and because of other considerations, such as the complexity
of the task of acquiring a Transformational Grammar, and certain unexplained
constraints upon the application of the transformations that do occur in
English, such as Relativisation, Transformationalists have produced a wide
variety of generalisations about constraints upon the form and application
of transformations. Such generalisations constitute, in part, the data upon
which the present study rests. However, until they are shown to emerge as
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inevitable consequences of a particular device or mechanism, the job of
explaining the facts of grammaticality remains unfinished. In the present
paper, we shall largely confine ourselves to the question of parsing English
main clauses, although we believe that our account has implications for the
analysis of complex sentences, for models of production, and for languages
other than English. In particular, we confine ourselves to roughly that
class of constructions which Emonds (1976) has characterised as being derived
via "root" transformations. We believe, like Bresnan (1976) and other
adherents of the Base-generation hypothesis, that many of the remaining
constructions, such as passive and "tough movement”, should be directly
handled in the base rules. However, unlike the Base~generativists, we
concur with the standard TG account in viewing sentences such as (1) as
being in a sense rearrangements of one another. We shall show that dis-
placed constituents can be restored to their canonical relationships using
nothing more powerful than a certain kind of left to right parsing algorithm,
operating upon a single push~down store, or stack.

2. The Stacking Constraint

It is unanimously agreed that whatever else may characterise it, the human
parsing mechanism works from "left" to "right" - that is, from the earliest
parts of the sentence to the latest. There are a number of ways of parsing
sentences left to right according to grammars of Context Free Power - for
example, the recursive transition network parser which is the basis of the
ATN. But how could such a parser be augmented in order to allow it to
parse the constructions involving displaced constituents, which motivated
the introduction of transformations? One simple way would be to provide
the parser with a store in which to keep constituents which are displaced.
When in its left-to-right traverse of the sentence it encountered a con-
stituent not in the canonical position defined by the CF grammar, the parser
could put it into this store. When, later on in the sentence, it failed

to find that constituent in its canonical position, it could retrieve it
from the store,

If the main clause constructions of English are examined in the light of
such a model, two striking generalisations emerge. Consider for example
the five grammatical arrangements of a subject, an auxilliary, a transitive
verb and an object.

(3) a. I will marry her d. her I will marry A
b, will I marry her? e, whom will I’marrya

c. (marry her! I will 1

All of these constructions can be restored to canonical form with such a
parser., That is to say, they all involve what a Transformationalist

would call "leftward movement® of the displaced item, which is exactly the
kind of displacement that such a parser can handle. The restoration of
the displaced constituents to canonical position is indicated by a conven-
tion in which an arrow represents the transfer of the constituent to the
temporary store and its re-emergence into canonical position. It is also
striking that in the case of sentence (3e), the order in which the displaced
object whom and auxilliary will enter the store is the reverse of the order
in which they are retrieved into canonical position. The last in is the
first out, as can be seen from the fact that the arrows do not cross.

Both of these observations turn out to be quite general. That is to say
that all English main clause constructions can be explained in terms of
"leftward movement", which is what would be expected if they had to be
parsed by such a mechanism as the one under discussion. What is more,
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it is always the case that, when more than one constituent is displaced,
the last item to enter the temporary store is the first to be retrieved.
No rearrangement of the elements of (3) which violates these constraints
is grammatical. For example,

(4) a. *Will her I rxy Co *Marry will her I
| T—— §==:§Ei___j [ i._..i::::34§"—‘3

b. *Will mairy I? 1ber

And all of the remaining single clause constructions characterised by
Emonds (1976) as root~transformed appear to obey the constraint.

5 . Al 2 b
{3) a 0£g cape Jones 4 4

b. (Far more seriousz was the hole in the roof 4 )

c. Seldom haxe I,Eeard a more revolting suggestion

d., (Leaning against the bedpost} w3s a policeman 4+

Even the non-standard poetic or archaic constructions of English seem to be
subject to the same constraint, as for example:

(6) (In Xanaduz did Kubla Khanj.(a stately pleasure dome! decree 4 s

Such a constraint is of course exactly what would be expected if the
particular store in question were a push-down store, oxr stack.

The mechanism that we have just described is a generalisation of the way in
which the ATN handles another leftward movement transformation, namely
relativisation, and is in keeping with certain suggestions of Woods (1973)
However, although parsers of this kind will parse all the main clause con~

structions of English, it is not the case that they will parse only those
constyuctions. For example, they will allow the following sentence.

(7) *I magry willa her

There are good reasons to suppose that no language will ever be found to
require the kind of rearrangement that such a construction would involve,
It is clear that this type of mechanism is still too unconstrained.

It is, of course, the case that a parser for a recursive context free

grammar also requires a stack, so the machine that we have described above
has two stacks, one for parsing and another for storing displaced constituents.
In the next section we present a left to right parser that only uses one
stack for the two purposes of storing displaced constituents and accomplishing
context-free parsing, and uses no other store. The additional constraints
that explain the ungrammaticality of sentences like (7) emerge as a

corollary of this dual function of a single stack.

3. The Model

Five rules for the combination of morphemes, words and constituents will be
presented in the following pages. The rxules are of a predominantly
“bottom-up" nature, rather than top-down and predictive as the ATN is, and are
a variant of a “shift and reduce" parser using a Categorial Grammar, A
Categorial Grammar has the same power as a CFPS grammar, and takes the form
of a series of lexical entries specifying the syntactic role of each

morpheme in the language. The entries will be given in the following form:
(8) <morpheme> : X/V

Such an expression means that the morpheme is the "leftmost edge" of a
constituent of type X, and will combine with the constituent Y. For example,
transitive verbs bear the category VP/NP. For certain primitive categories,
Y may be null: the category of a noun is simply M.

A category X/Y is to be thought of as a function, For example, the category
VP/NP identifies a transitive verb as a function which maps NPs onto VPs.
Each  jitem, whether it is a primitive item like a verb, or a compound
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category like a VP, has such a category associated with it. Each item

is also to be thought of as being associated with a meaning representation.
The nature of such meaning representations is not our immediate concern;
they may be thought of as deep structures, or procedures, or anything else.
It will become clear later that we have in mind a semantically interpreted
meaning representation, rather than an autonomous syntactic structure.

Since the only store the machine has is the stack, the most basic rule is
one which introduces the next word of the sentence to the top of the stack.
{9) Rule l: The Input Rule

Place the next word on the Top of the Stack.

The second rule is the basic rule for combining stacked items.

(10) Rule 2: The Forward Combination Rule
If the topmost item on the stack is a Y, and the item
beneath is an X/Y, ("an X lacking a Y"), then combine the
two to yield an X, and return it to the Top of the Stack.

Rule 2 can be represented pictorally as:
(11) Y -] X%
/Y

Consider for example the following fragment of a categorial lexicon:
(12) her : NP

marry : VP/NP
In parsing the phrase marrxy her, the words marry and her are put onto the
stack in order, by successive operations of Rule 1. TAt this point, the
condition for the Forward Combination Rule 2 applies: (the semantic inter-
pretation of) a VP is constructed from (the semantic interpretations of)
the words marry and her, and is replaced on top of the stack, as in the
following diagram:

(13) NP vP
VP/NP

Rule 2 is a general-purpose rule for combining objects of all categories
and their associated semantic representations, rather than an expansion of
a particular category, like a rewrite rule. It is the words and the con-
stituents themselves that determine the category of the result.

The category of the tensed verb will is slightly more complex. It inherits
the category from a combination of the category of the verb stem and that
of tense itself, of course, but in the present paper we shall ignore this
part of the process. The category that results is the following:

(14) Will + present : (S/VP)/NP

Such a category defines tensed will as a function from (subject) NPs onto

a function from VP's onto sentences., (In short, it is something that
combines a subject and a verbphrase, in that order, to give a sentence,)

If the sentence Vill I marry her is subjected to the rules given above, they
can parse it in the following sequence of operations., First the words

will and I must be put onto the stack in succession to yield a configuration
to which Rule 2 can apply, to yield a sentence lacking a verb phrase.

(15 NP . s/VP
(S/VP) /NP !

Next, the words marry and her can be put on the stack by rule 1, and can
combine as before to yield a VP, leaving the stack in the following state,
in which rule 2 can again be applied to yield a complete S.
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(16) vp s
s/ve |7

We have deferred all discussion of the algorithm that applies these rules.
However there is only one order in which they can apply in this example,
and only one result that they can yield.

The subject may precede the tensed verb, as well as succeed it. In fact,
there is a widespread tendency for certain combinations to occur both in
left-right and right-left order. {Compare 3a and c, for example). It
follows that there is a need for a second combination rule, where a function
combines with an argument which is beneath it in the stack. The appropriate
combination can be effected by the following rule:
a7 Rule 3: The preposed Constituént Rule

If the topmost item on the stack is a 8/X, {("an S lacking

an X"), and the item beneath it is an X, then combine

the two to yield an S, and return it to the Top of the Stack.

The rule can be represented with the usual sort of diagram:
(18) | s/x s |

= >
X

It is restricted to sentences, unlike Rule 2, since nothing else appears in
English to be able to take its arguments from beneath - that is, to have
them preposed. Noun phrases like frog the are not well formed, and nor
are verb-phrases like the frog eat.

Rule 3 can be made to handle all cases of preposing if Rule 2 is generalised
in a certain way. The form of Rule 2 given above implies that, for a
right-branching structure such as a verb-phrase, no combination can occur
until the rightmost lowest word has been entered to the top of the stack,
as in the preceding analysis of Will I marry her. However consider the
Topicalised object her in
(19) Her I will marry
If such a preposed object, once stacked, were separated from the verb by an
arbitrarily long sequence of constituents, it could only be recovered by a
device capable of looking arbitrarily far down the stack, and extracting
the object NP. Hence, since the stack is the only storage space available
to the mechanism, there is no alternative to making I will marry, I might
have married, I might hawve been marrying, and soc on, be single entities of
the type $/NP - that is, functions from (object) NPs onto sentences. Such
objects can be constructed with the following generalisation of the Forward
Combination Rule:
(20) Rule 2 : The Forward Combination Rule

If the topmost item on thé stack is a Y /%

(*a ¥, possibly lacking a 2"), and the item beneath it
is an X/Y ("an X lacking a Y"), then combine the two to
yield a X /%}("an X, possibly lacking a Z"), and return

it to the Top of the Stack.

This can be pictorially represented as:

(21) | vz " xf/z
xké} => {¢}

N S A— . .
Such a rule subsumes the earlier version, as a special case where Y is

complete - that is, where /2 is null, Like the earlier rule, it is to be
thought of as combining the semantic representations associated with the
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two items to which it applies into a single semantic representation, In
the most general terms, what the rule does is to compose the two functions
X/Y and Y/%Z into a single function X/Z.

The claim that there is an identifiable stage in the parsing when a semantic
representation is built for the incomplete sentence John will have should
not be mistaken for a claim that such an object corresponds to a constituent.
A parser of this kind could be made to build the familiar kind of syntactic
structure, with all the usual constituency relations. The claim would then
be simply that there are stages in parsing where incomplete constituents

are assembled.,

Such a construct may find its object immediately above it on the stack, and
may combine with it by the Forward Combination Rule 2. Oon the other hand,
the object may be underneath it, as in (19) in which case it may combine by
Rule 3, However, Rule 3 is unlike Rule 2 in that it does not generalise
to the case where the preposed item is incomplete. This restriction is
necessary to prevent the mechanism accepting such anomalous sentences as
(22) *Marry I will her,

vwhere such incomplete categories as VP/NP are preposed.

Two further rules are required to complete the main clause parser, We
shall not discuss these rules in any detail here, and refer the reader
elsewhere for a complete presentation (Ades and Steedman, 1979). First, a
rule is required which will achieve the aforementioned combinpation of a
verb stem with an affix, such as Tense, or the participial affixes -en and
—igg;_ (Such a rule was taken for granted in the earlier analysis of Will,
where its category (S/VP)/NP was assumed to derive from the application of
such an affix combining rule to Tense and the modal stem). Second, it is
notorious in the Transformational literature that there is something special
about noun-phrases with respect to so called movement. By and large, you
cannot move things out of nounphrases (Bach & Horn, 1976). So, although
you can (in the terms of TG) move an cobject NP out of a verbphrase - as in

(23) Her I will (marry,)
- you cannot move a noun out of the corresponding position in a nounphrase
(24) *Frog I will eat (they)

Our explanation of these phenomena is that verbs are in fact functions from
nounphrase referents onto verbphrases, The article EEE' on the other hand,
is categorised as a function which maps nouns onto nounphrase senses, written
(25) the : NPS/N

Since a sense is a different kind of object from a referent, and NPS is not
the same symbol as NP, Rule 2 can only apply once the nounphrase sense is
complete, so that the referent can be found and replaced on the stack as an
object of category NP. Then and only then can a verb combine with it.

The conversion of a complete nounphrase sense into a referent is accomplished
by a fifth rule, which assumes an account of reference similar to that
pioneered by Winograd (1972). The rule renders impossible ggx_so—called
movement out of noun phrases, such as those producing the anomalies which have
provoked Transformationalists to introduce a number of constraints

on transformations, such as the Complex NP Constraint of Ross (1967). Again
. we must refer the reader to the fuller account of the model.

The five rules are instrinsically unordered. Since in this paper we are
solely concerned with questions of grammaticality and not with questions of
resolution of local ambiguity during parsing, we can assume the trivial
nondeterministic algorithm "apply any rule you can, until no further rule
can apply". (However, a more efficient algorithm does exist, and has been
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programmed) . We cannot emphasise too strongly that questions of local
ambiguity are logically quite separate from questions of grammaticality,
and in concentrating on the latter, and excluding the former, the present
model is to be contrasted with such accounts as Marcus (1978) and Frazier

& Fodor (1978) which are predominantly concerned with local ambiguity. It
is guite simply neutral as to which among mechanisms such as "backtracking"
or "waiting and seeing" are the more appropriate.

4. Basic Sentence Patterns

The simple model outlined in the previous section will, given appropriate
and on the whole uncontentious lexical categorisations, accept a wide
variety of grammatical English main clause constructions. More important,
it will refuse to accept virtually all of the non-grammatical rearrangements
of the same elements. As an example, we shall consider exhaustively the
arrangements of a simple clause including subject, auxilliary and transitive

verb phrase,

In Section 2, some time was devoted to considering why certain arrangements
of the words I, will, marry, and Eﬁi are allowed in English, while others
are not. In order to demonstrate the model advanced in Section 3, it will
be useful to consider in detail the workings of the algorithm on all of the
twenty-four possible orderings of these four words. The categorles of T
and her are assumed to be NP, that of marry to be VP/NP, and that of tensed

w1ll to be (by the Affix Cancelling rule) (S/VP)/NP.

In the following examples, the working of the algorithm will be illustrated
using the convention that, where two items are combined under a given rule
to yield a given result, then those items will be underlined. The result
of the combination will be written beneath the line, which will also be
indexed with the number of the rule in question. Of course; the result
may itself be combined with something else by a further application of a
rule, indicated by the same underlining convention, Thus, the successive
underlinings down the page represent successive stages of the parsing.

Since the original words are put on top of the stack in strict left-to-right
order, the operation of the Input Rule 1 is not indicated in these examples,
and nor is the operation of affix Cancelling. Consider first the "canonical®
form of the sentence

(27) a. I will marry her
NP (S/VP) /NP,
s/vP -

The NP I is first placed on the Top of the Stack (TOS) by Rule 1, In this
situation the only rule that can apply is again Rule 1, so will is entered

on TOS. Now the condition for Rule 3 applies: there is a preposed NP, which
is absorbed into the S-node as specified in the rule, leaving S/VP on T0S.
The only rule that can now apply is Rule l, so marry is entered to TOS:

(27) a'. I will marry her
s/vp vP/NP
vl
S/NP -
The conditions for Rule 2 are now met and the partial combination with marry
is performed, leaving S/NP on TOS. The only rule that can apply next is

Rule 1, which places her on TOS, so that the final combination can be made,
under Rule 2,

(27) a'r, 1 will marry her
S/NP NP
S 2

The analysis of the question form is very similar.
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(27) b. Will I marry her 2
(s/vVP) /NP NP2 vP/NP NP
s/Vp .
S/NP - .
5 2

The process is just the same as for (27a) except that will and I are
combined by Rule 2 (Forward Combination) rather than by Rule 3 Tbreposed
Constituents). Indeed, it is clear that the Subject and the Tensed verb
may occur in either order, as long as they are adjacent.

(27) c. Her I will marry d. Who(m) will I marry
NP S/VP ©___vp/up, NP s/vp VP/NP,,
S/NP - S/NP -
s - S i

(As it stands, of course, the model does not explain why (27d) is only
possible with a WH-element, as opposed to ?Her will I marry, which is com-
prehensible, but archaic. Neither does it explain why the subjects of

(27e), and indeed of (27c) must be "given" anaphors such as pronouns,

rather than "new" NPs. Such questions are in the domain of thematics,

rather than syntax). The parser handles the remaining standard construction,
Verbphrase preposing, as follows:

(27) e, Marry her I will
VB/NP NP, NP (S/VP)/NP,
VP s/VP ¢
S 3

The model allows just one further construction, and no more. Although it
is not standard in modern English, the following is accepted,
(27) £. ?Marry her will 12

VP s/vp

3 3

It should be obvious that no model of this kind which will accept (274, e) -
that is which will allow VP preposing and the Object Wh-question construction
- will rule out (27f). We suggest that the unacceptability of the above is
directly parallel to the "unacceptability" of ?Her will I marry. That is,
whatever thematic fact it is that makes construction (27d) be a Wh-question
has the same effect on (27f). However, since there is no Wh-pronoun for a
VP, there is no grammatical construction of this form in standard English,

Not one of the remaining eighteen permutations of the four words is accepted
by the algorithm. The reason is that the form of the rules imposes very
powerful constraints on possible rearrangements, which appear to correspond
directly to the grammatical possibilities. The most important constraint,
which immediately eliminates most of the eighteen ungrammatical construc-
tions, is a direct consequence or corollary of the fact th:at both of the
combination rules operate only upon the two adjacent topmost items on the
stack, and that the same stack is used both for movement and for building
constituents. It is the following:
(28) The Adjacency Corollary

The rules will be unable to combine two items which are separated

on the stack by a third, unless that intervening item can first

be combined with one or the other of them.
(It is to be stressed that this is a corollary of the model, not an additional
assumption) . Because all tensed verls have a category of the form (S/X)/NP,
(where X is the category that the verb requires as its complement), once
tense and verb have combined under the Affix Cancelling Rule, the next item
to combine with the S node must be the subject NP, But because the model
imposes the above general constraint, it follows that if any item intervenes
between Subject and Tense, neither rule 2 nor rule 3 will be able to combine
them and the analysis will block. (We are ignoring adverbials such as
frequently, merely for the sake of simplification).
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Among the eighteen remaining permutations, the following are predicted to
be ungrammatical for just this reason: some item is interposed between

Subject and Tense. (In several cases there are other reasons as well).
(29) g. *I marry her will m. *Will her marry I

h. *I marry will her n., *Her I marry will

i. *I her will marry o. *Her will marry I

j. *I her marry will p. *Will marry I her

k. *WilI—harrz her I q. *Marry will her I

1. *Will her I marry r. *Marry I her will

Another consequence of the Adjacency Corollary and of the form of the rules
and categories is the following: Any complement of a verb, such as an
object NP, must follow the verb immediately, unless the verb is already
absorbed into the S—~node and the complement is topicalised, as in Wh-
Question and Topicalisation (27c & Q). This is because marry her in isola-
tion must be parsed by the Forward Combination rule 2, since: (a) the
Preposed Constituent Rule 3 applies only to S/X,

(30) s. *Her marry I will u., *I will her marry
t. *Her marry will I v, *Will I her marry
and (b) Rule 3 will only allow complete constituents to be preposed.
(31) w. *Marry I will her X. *Marry will I her
VP/NP S/vP NP VP/NP S/VP NP

5. Conclusion

The rules together with the given lexical categories, predict exactly which
of the 24 strings are grammatical and which are not. We show elsewhere
(Ades & Steedman, 1979) that a similar result can be obtained for the permu-
tations of the other main clause constructions., With some minor exceptions,
the rules accept all and only the grammatical constructions.

Some of these exceptions show that the model has room for improvement. In
particular, the system's acceptance of

(32) a, ?Slept John? b. ?What eat they?

shows that our treatment of tense, affixes and auxilliaries is imperfect,
and its acceptance of

(33) a. ?Her will I marry. b. *This book her I gave.
indicates further questions concerning the meaning of such thematic construc-
tions as topicalisation. and it is clear that, although the model general-
ises readily to some constructions involving subordinate clauses, a number
of further problems remain to be solved. (For example, although all main
clause constructions can be described as arising from "leftward movement",
certain complex sehtences have been ascribed by transformationalists to
"rightward movement". It remains to be shown that the mechanism that we
have described will handle such movements.) Nevertheless, it is perhaps
worth pointing out how straightforward some extensions, at least, are. The
"movement" of relativised constituents in relative clauses can be handled
with no extensions at all to the rules as presented. It has already been
pointed out that the acceptance of these constructions will be limited to the
ones allowed by such constraints as the Complex NP constraint. The same
apparatus will also handle the "unbounded" extraction of constituents from
embedded sentential complements. For example, on the plausible assumption
that the category of the tensed verb believes is S/S/NP (a function which
combines a subject and a complement S in that order to yield a sentence),

it will accept the following

(34) A. John ‘'she believes Mary will marry
W NP _S/S/NP . NP S/VP/NP. VP/NP
S/s - s/vP '2’
s/vVP é
S/NP

w
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B. John she believes will marry Marxz
NP s/8 S/VP/NP2 VP
S/Vp/NP
S/VP -

s 2

Interestingly, it will correctly not accept the extraction of the tensed
verb from such complements, as in

(35) *Will she believes3 3ohn maxry Maxy,
s/vp/NP s/s NP vP
*

It is a hitherto unexplained constraint upon movement theories of these
constructions that the movement of tensed auxilliaries is, unlike the others
we have been considering, "bounded" to a single clause.
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DESCRIPTION TYPES IN THE XPRT-SYSTEM

Luc Steels
MIT, A.I. Lab.
ABSTRACT (currently at Schlumberger-Doll Research
Ridgefield, Connecticut 06877, USsA)
The XPRT-system has been designed as a basis for implementing knowledge-based expert systems. This
paper introduces the description types that are currently available for communicating with this
system.

PREFACE

The XPRT-system is a collection of LISP-programs designed to serve as a basis for implementing
knowledge-based expert systems. The system is fully documented in Steels (1979a). It contains
mechanisms for building up constraint networks, for performing reasoning over these networks in
order to solve particular problems and for communicating with a potential user. Two kinds of inter-
actions are possible. The user can supply new information by giving general properties of objects
or by describing specific problem situations. We will call these interactions predications. Or he
can ask questions: (i) informative, or wh-questions, (ii) non-informative, or yes/no questions,
and (iii) questions for justification. Predications cause the formation or expansion of constraint
networks used to represent knowledge inside the system. Questions cause queries, expansions of the
network based on consequent reasoning, etc. What these networks look like and how they are formed
will not be discussed here. Instead we will concentrate on the communication language itself. An
important feature of this language is that it is natural language like.

The introduction of natural language like constructs has become an important feature of recent
knowledge representation languages. The prime reason for incorporating such constructs is to make
the language easier to use. It is hoped that the linguistic intuitions of the user will help him to
learn the language, think in terms of it, understand or remember more easily what is being expressed
etc. Once this position is adopted there are two ways to proceed. The ideal, of course, is to use
a parser that takes genuine natural language expressions and a producer that is able to report back
in natural language. But although this seems theoretically feasible, the required cost in manpower,
resources and time which is required to construct such systems exceeds at present the resources and
time limits in expert-systems research. There remain two options. Either we can use keyword
parsers which can be very crude like the one used by Davis (1977) or more sophisticated as the Yale-
systems. Or we can gradually incorporate natural language like constructs like articles, case
mechanisms, etc. in an artificial language. This path has been explored by Bobrow and Winograd
(1977), Hewitt, Attardi and Lieberman (1979) and has also been adopted in the present system.

The reason is as follows. Although the unrestricted natural language input is achievable with key-
word parsers, they are not 100% reliable (at best they yield an educated guess). This is intoler-
able in real world applications. Using artificial languages with natural language like constructs
we can approximate natural communication but the communication remains at all times accurate. There
are also certain dangers with this approach. A user may have other intuitions about the workings

of a particular natural language, or out of the range of meanings a certain word can have, only one
particular meaning might be used in the artificial language. That is why it is important to give
clear descriptions of the semantics of each construct that is being incorporated.

There is another point. The introduction of natural language like features is a powerful way to
study the semantics of natural languages. Indeed by learning how to incorporate the communication
tools used in natural language we gradually obtain a better understanding of natural language itself
(and this will help us to deal with unrestricted natural language later). The important thing is
not so much that the syntax is similar but that the underlying semantic mechanisms are the same. A
similar position is taken by logicians such as Montague (1971) or Creswell (1973) who try to treat
portions of natural language as a formal language.

The rest of the paper is organized as follows. First I will discuss frames and how descriptiovs
are related to them. Then I will discuss some important properties of frames that are the basis
for heuristics in finding the referent of a description. Finally T will discuss variOU§ types of
descriptions and conventions for each type and conclude with a hrief comparison to predicate
calculus and other Al-systems.
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INTRODUCTION

LAMES

le communication language of the XPRT-system is a frame-based language. A frame is a set of
iportant questions about a certain subject matter. This subject matter can be anything that is
.ewed as a conceptual unit: an object, an action, a relation, a situation, etc. The questions of
frame are called its aspects. The aspects can be such things as parts, arguments, important
operties, or related entities. Thus a frame for RESISTOR could have aspects for a resistance and
io terminals. A frame for SUM could have aspects for the addend, augend and result. A frame for
te action of putting a block on another one could have aspects for an actor, object, begin-situa-
.on, end-situation, old-support and new-support. Each frame has also a self-aspect which is the
.tuation (object, relation, ...) covered by the frame. In the case of a ROOM-frame the filler of
e self aspect could be the room itself, in the case of a PUT-ON frame the PUT-ON action itself,
.

1e structure of a frame is denoted as follows
‘RAME <name-of-frame>
{WITH <aspect-name-1> ) ... (WITH <aspect-name-n>))
3 in
‘RAME PUT-ON
(WITH SELF)
(WITH ACTOR)
(WITH BEGIN-SITUATION)
(WITH END-SITUATION} ...)

1e next question is what kind of things can function as answers to the various questions posed by
frame. In other words what kind of entities can "fill" an aspect of a frame. We will employ two
inds of entities: individuals and prototypes. Individuals are members of the domain of discourse.
wever the individuals we will use here differ from those used in logic because they lack the
1iqueness property. So each individual is a member of the universe of discourse but at any time

: may turn out that it is equal to other individuals. The individuals will therefore sometimes be
11led "anonymous objects'. A prototype is an abstraction that functions as stand-in for a whole
lass of entities which inherit properties from this prototype. The union of all individuals and
I1 prototypes constitutes the domain of objects of the representation system.

particular frame determines a set of n-tuples from all possible sets of n-tuples formed with
>jects from this domain. The tuples determined by a frame with n aspects are n-tuples. For
tample, the set of tuples of a frame for FATHER with aspects for the self and the child consists of
1irs of objects which are in the father-child relation. Each tuple in this set specifies a set of
>jects that are in the relation the frame is about and because the tuple is ordered what role each
rject plays in the relation. The set of tuples of a frame is furthermore divided into two subsets:
10se which contain only anonymous objects (further called instantiations) and those which contain

t least one prototype (further called specializations). Each of the latter type of tuples stands
:tually for a (possibly infinite) set of tuples.

ESCRIPTIONS

description is a construct used to refer to an object by saying that it fills a certain position
1 a tuple of a frame. The aspect associated with this position is called the view. So a descrip-
ion has two functions: (i) it picks out one n-tuple of the set of n-tuples of a frame and (ii) it
icks out one element of this n-tuple.

appose for example that the set of tuples for FATHER includes (JOHN, JAMES), then there could be a
sscription that picks out this pair. Suppose furthermore that the view of the description is self
hen this description would further pick out JOHN. If on the other hand the view is child, the
escription would pick out JAMES.

estrictions on fillers can be provided to help pick out what tuple is intended. The restrictions

re expressed by supplying descriptions of those fillers. For example the child aspect of a tuple
f the FATHER frame could be further specified by saying that it is described as JAMES. Then only
1irs of the form (?,JAMES) are potential candidates for the tuple referred to by this description.
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The syntactic structure of a description is:
<description > := (<first-article> <iew> OF <second-article> <frame-name>
(WITH <aspect-name-1> <description>) ...
(WITH <aspect-name-n> <description>))
as in
(THE FATHER OF A FAMILY (WITH CHILD JAMES))
FAMILY is the name of the frame, FATHER is the aspect which functions as view and JAMES is a furthe:
restriction on the filler of the child aspect of the n-tuple referred to by the description. In
the present paper the <first-article> will always be THE. Moreover if the view is self, we will
leave out THE SELF OF. For example we will write
(A FATHER (WITH CHILD JAMES))
instead of
(THE SELF OF A FATHER (WITH CHILD JAMES))

In another paper {Steels, 1979b)I will show how we can use prepositions, verbs and adjectives to get
more condensed (and more natural language like) descriptions, so that we get expressions like
JOHN SELLS (A CAR) TO JONES FOR (30 DOLLARS)
instead of
JOHN IS (THE AGENT OF A POSSESSION-TRANSFER
(WITH OBJECT (A CAR))
(WITH RECIPIENT JONES)
(WITH TRANSFER-OBJECT (30 DOLLARS)))

2. ASPECT SPECIFICATIONS

There are a number of properties of frames that are important for dealing with descriptions based
on these frames. These properties will be shown to interact with certain articles in order to
determine the meaning of a certain description.

PROJECTIVITY

First of all we observe that it is usually possible to divide the set of instantiations of a frame
into groups, termed instantiation-groups. Each instantiation in such a group has a certain set of
aspects in common.

Here is an example. Consider a frame for family with aspects for the mother, the father and a
child. Because every family has only one mother and one father, but possibly many children, it makes
sense to divide the instantiation-set of the family frame into groups where each group corresponds
to one family. All instantiations in this group have the same father and the same mother. They
differ in that the child-slot could be filled by a different individual. We will call the aspects
that have the same filler in a given instantiation-group projective aspects. The other aspects are
called non-projective. It is important for the reasoner to know this because as soon as it knows
one instance of an instance-group it can infer the slot-fillers of the projective aspects of all
members of that group. It turns out that this knowledge is crucial for two reasons: (i) it is an
important aid in determining whether a description is definite and in consequently finding the
referent of the description, and (ii) it is one of the tools with which two objects can be shown

to be identical.

For example, if a certain person is described as

(THE MOTHER OF A FAMILY (WITH FATHER JOHN))
and a little while later this same person is described as

(THE MOTHER OF A FAMILY (WITH FATHER MR-JONES))
then we know that John and Mr-Jones are referring to the same person because the father aspect of
a family frame is projective. This means that either if Mr-Jones was already known to be a certain
object and John was already known to be a certain different object, then from now these objects
should be considered identical. We say in such a case that the two objects are merged. Or if
Mr-Jones was not yet known, then the description Mr-Jones should be predicated for John or vice-
versa.
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In the present paper I will assume that all aspects are projective, In a separate paper devoted
to sets, their representation and use, I will discuss nonprojectivity.

CRITERIALITY

Now how does the reasoner know under what circumstances two instances belong to the same instan-
tiation group? In other words, how do we specify what the criteria for dividing the set of instan-
tiations into groups is? Another property of aspects takes care of this. Often a certain aspect
can only once be filled by a certain individual. Somebody can only be the mother in one family for
example. We say in such a case that this aspect is criterial. But sometimes more than one aspect
has to co-operate in order to find what instantiation-group is intended. 1In a frame of LINE-SEGMENT
like (FRAME LINE-SEGMENT

(WITH SELF)

(WITH BEGIN)

(WITH END)

(WITH LENGTH)},
begin and end are criterial because there are no two line-segments with the same begin and the same
end. Moreover there might be different collections of "criterial aspects'. In the same frame the
self aspect is also criterial. But the begin aspect on its own is not criterial, because there can
be many lines with the same begin.

The importance of knowing what collections of aspects are criterial is that they provide essential
information for finding the instantiation group of a description.

Take for example the following description:

(A LINE-SEGMENT (WITH BEGIN POINT1) (WITH END POINT2))

In order to find out what line-segment is referred to, the reasoner looks at a series of aspects
that are criterial and for which the description contains specific information. In the example -
given here the reasoner knows that begin and end are criterial, it can therefore look whether the
objects pointl and point2 are described already as the begin and end of a line-segment. If that is
so it knows already about this particular instance of the line-segment frame and can infer the other
individuals in this instantiation.

Criteriality is also the prime mechanism to know whether two descriptions have to be merged or not.
Two descriptions are merged if they refer to the same individual. For example, when a particular
object is described as

(A LINE-SEGMENT (WITH BEGIN POINT1) (WITH END POINT2))
and later it is described as

(A LINE-SEGMENT (WITH LENGTH 3_CM))
then we know that each time we are talking about the same line-segment. We know this because the
SELF-slot of line-segment is criterial and therefore the object can only once be described as a
line-segment.
In contrast,

(A FATHER (WITH CHILD GEORGE))
and

(A FATHER (WITH CHILD JOHN))
cannot be merged because somebody can be the father of more than one child.

UNIQUENESS

A strong from of criteriality is when it is not only the case that an individual can only once fill
a certain aspect in an instance but that there is only one individual in any domain or world that
can ever fill this aspect. In such a case we say that this aspect is individuality. We will call
a frame whose self-aspect is individuating an individuating frame. Descriptions based on such a
frame function as rigid designators.

The importance of knowing whether an aspect is individuating is that it tells the reasoner which
descriptions refer to a unique individual. The reasoner builds up a list of individuals which are
accessible by way of these individual descriptions, so that the referent can be retrieved when the
description is encountered.
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Properties like projectivity, criteriality and uniqueness are called the properties of a frame.
They are defined when the frame itself is being defined by adding specifications of the form
(<type-of-specification> <range-of-application>)
after the list of aspects. The<range-of-applicatiom» indicate$the aspects (or lists of aspects)
having a specification of that type. The type-specification is
CRITERIAL if the range-of-application indicates series of aspects which are criterial.
NON-PROJECTIVE if the range-of-application indicates non-projective aspects.
INDIVIDUATING if the range-of-application indicates individuating aspects.
The default for projectivity is projective. The default for uniqueness is non-individuating and
the default for criteriality is non-criterial. Here is an example
(FRAME MOTHER (WITH SELF) (WITH CHILD) (CRITERIAL (CHILD)))

3. DESCRIPTIONS

We adopt the subject-predicate structure familiar from natural language for expressing predications
or questions. Thus for predications we write

<subject> IS <complement>
for non-informative questions we write

IS <subject> <complement>
and for informative questions we write

<question-word> IS <complement>
Question-words include WHO and WHAT.
An important property of the system is that predications may themselves act as objects in the
system. This capability will however not be discussed in this paper. A <subject> and a <complement>
are both descriptions. In this section we discuss the various types of descriptions currently in
use.

First we make a distinction between referential and predicative descriptions. Referential descrip-
tions are used to refer to a particular entity (which could be an individual or a prototype). Predi-
cative descriptions are used to say that some object is an instance of some other object.

Subjects of a predication are alwyas referential. For example in

JOHN IS A PERSOM
John is used referentially. Or in

EVERY PERSON IS MORTAL .
"Every person' is used to refer to the prototype of person. When the complement of the predicate
has a particular object as its referent then it is referential, otherwise predicative. For example
if we say

JOHN IS A PERSON
"a person" is a predicative description. John is said to be an instance of person. On the other
hand if we say

JOHN IS THE FATHER OF GEORGE
the complement refers to a specific individual (George has only one father) and is therefore
referential. In this case we do not say that John is an instance of "the father of George'" but
rather that JOHN IS the father of George.

Note that descriptions that are “attached" to the aspects of another description are actually
complements. Thus in

(A FATHER (WITH CHILD (A GIRL)))
"(a girl)" is used predicatively. The description is viewed as a shorter form for

(A FATHER (WHOSE CHILD IS (A GIRL)))
Some descriptions are always referential whereas the function of others depends on the environment.
First we discuss referential descriptions.

3.1. REFERENTIAL DESCRIPTIONS
PROPER NAMES

The simplest class of descriptions are the proper names. Proper names are descriptions whose
underlying frame is individuating. Proper names are written without articles.
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Thus we simply write JOHN
based on the frame
(FRAME JOHN
(WITH SELF)
(INDIVIDUATING SELF)
Proper names always have a particular individual in the model as referent. Note that being an
individual does not imply existence, existence is considered to be a predicate.

GENERIC DESCRIPTIONS

Let us call a frame-name together with a set of restrictions on the fillers of some or all of its
aspects a description-structure. With every description-structure ever used there corresponds a
unique tuple of prototypes which is called the prototypical tuple of that description-structure.

Thus assuming a frame for FATHER with a self and a child aspect then for the description with no
restrictions there is a pair containing a prototype for every father and a prototype for the child
of a father. Or if we have a description-structure based on the father frame with the restriction
that the child is a girl, there would be a prototypical pair containing a prototype for 'every
father whose child is a girl" and a prototype for the child of such a father. If the restriction
on an aspect in a description-structure is an individual that aspect is not filled by a prototype
but by that particular individual itself.

There are clearly two ways in which a description-structure can be used: to refer to the proto-
typical tuple or to refer to a specialization or instance. Descriptions of the first type are
called generic descriptions. A generic description is a description whose tuple is the proto-
typical tuple of its description-structure. Generic descriptions will be represented with the
article EVERY.

Thus the description
(EVERY FATHER)
picks out the prototypical tuple corresponding to a description-structure with no restrictions
attached, and picks out the filler of the self aspect in this tuple.
(THE CHILD OF EVERY FATHER)
picks out the filler of the child aspect of the same tuple.

There is no distinction in behavior between a generic description used predicatively or referen-

tially. Thus assuming a frame for LOVER with aspects for the self and the loved-one, we can say
(EVERY WOMAN) IS (A LOVER (WITH LOVED-ONE (EVERY MAN)}))

to express that every woman loves every man. The filler of the loved-one aspect is the filler of

the self-aspect in the prototypical tuple of man. The referent of "(every woman)" is the filler of

the self aspect in the prototypical tuple of WOMAN.

English also uses THE, A or AN, ALL and plurals to indicate generic descriptions. Such descriptions
have to be paraphrased here. For example,
The president has lived in the White House since 1800
has to be paraphrased as
Every president has lived in the White House since 1800.
And
A bird is an animal
or
(AI'l) birds are animals
have to be paraphrased as
Every bird is an animal.

DEFINITE DESCRIPTIONS

A definite description is a description that contains fillers for each member of one set 9f c?ite-
rials as restrictions on its aspects. For example, the child in a frame for father is criterial
because a child can have only one father. If we therefore have a description where a specific child
is attached, this description is definite because the instantiation can be identified. So the
following description is definite:
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(A FATHER (WITH CHILD JAMES))

Definite descriptions are written with A or AN (and the reasoner will check whether the description
is definite or not) but in order to improve readability, the user is also allowed to use THE instea
of A with definite descriptions, as in

(THE FATHER (WITH CHILD JAMES))
or

(THE LENGTH OF THE LINE-SEGMENT (WITH BEGIN POINT-1) (WITH END POINT-2))
The latter description is definite because begin and end form a criterial set and this enables us t
identify which line-segment is intended. It must be noted however that the use of THE is not taken
into consideration by the system, i.e. it is syntactic sugar.

INDEFINITE DESCRIPTIONS

An indefinite description is a description whose tuple is an instance of its underlying tuple. But
the tuple cannot be recognized uniquely (and therefore "anonymous" individuals have to be postulate
Indefinite descriptions are written with the article SOME.

For example if we want to say that there is a person which is the agent of a buy-event, we can say
(SOME PERSON) IS (THE AGENT OF A BUY-EVENT)
The referent of (SOME PERSON) is an anonymous object which is a person. Similarly we can express
that there is a particular man which is the loved-one of every woman by saying:
(EVERY WOMAN) IS (A LOVER (WITH LOVED-ONE (SOME MAN}))
The filler of the loved-one aspect in this case is a particular anonymous individual which is the
loved-one of every woman. In other words every woman loves this same man.

3.2. PREDICATIVE DESCRIPTIONS

As said before, a predicative description expresses that the subject of the predication fills an
aspect in an instance of the prototypical tuple underlying the description structure of the descrip-
tion. The aspect it fills is the view of the predicative description. A predicative description
is written with the article A or AN, as in

JOHN IS (A PERSON)
which expresses that John is a filler of the self-slot in an instance of the prototypical tuple of
PERSON. Similarly in

X-1 IS (A LINE-SEGMENT (WITH BEGIN (A POINT)))
the begin of the line is described as an instance of the prototypical point.

A final example will make the various distinctions clear. Suppose we abbreviate
IS (A LOVER (WITH LOVED-ONE ...))
as LOVES (the mechanisms for doing that will be fully explained in Steels (1979b)),then we can say
(EVERY WOMAN) LOVES (A MAN)
to express that for every woman there is a man such that she loves him. It does not follow that
this man is the same one for every woman. The description only predicates of the loved-one that he
is a man. Compare this with
(EVERY WOMAN) LOVES (EVERY MAN)
vwhich expresses that every woman loves every man, and
(EVERY WOMAN) LOVES (SOME MAN)
which expresses that every woman loves the same particular man.

3.3 ANAPHORIC DESCRIPTIONS

A final class of descriptions contains those which correspond to indefinite pronouns in natural
language. These anaphoric descriptions refer to objects which were mentioned somewhere else in the
text. Natural language has no good solution to the pronoun-problem. Instead it relies on the
intelligence of the reader to see that referent is intended. Obviously a different solution is
required here.

We introduce two types of anaphoric descriptions: Anaphoric descriptions based on the frames in
which the object plays a role and anaphoric descriptions based on unique-names introduced elsewhere
in the text. In principle using anaphoric descriptions based on unique-names constitutes a general
method that will work in all cases. The first type is introduced to improve readability.
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NAPHORIC DESCRIPTIONS BASED ON FRAMES

1e structure of a frame-based anaphoric description is

(THE < NAME-OF-ASPECT> OF THE <NAME-OF-FRAME> }
rere <name-of-frame> 1is the name of a frame used somewhere in a certain text i.e. a sequence of
nteractions, and <name-of-aspect> is the name of an aspect. When the <name-of-aspect> is SELF
2 simply write

(THE <NAME-OF-FRAME> ).
he referent of an anaphoric description is the object that is filling the aspect indicated by the
name-of-aspect> in the latest description that used the frame with name <name-of-frame>.
hen there has been no description that used the frame in an anaphoric description, the descriptior
ill be considered to be indefinite.

o if we have the following conversation:
> X-1 IS (A RESISTOR)
> {THE VOLTAGE OF THE TERMINAL
(WHICH IS (THE TERMINAL1 OF THE RESISTOR))) IS 0.0

hen the referent of (THE TERMINAL1 OF THE RESISTOR) is the terminall of X-1 because the only
esistor mentioned so far is X-~1. Or if we say

(EVERY FATHER) IS (A PARENT (WITH CHILD (THE CHILD OF THE FATHER)))
hen

(THE CHILD OF THE FATHER)
s an anaphoric description which refers to the filler of the child aspect in the prototypical
ather-tuple invoked earlier. The predication expresses that the child aspect of the father-
pecialization is co-referential with the child aspect of the parent-specialization.
inally in

(EVERY GRANDFATHER)

IS (A FATHER
(WITH PARENT
(A PARENT
(WITH CHILD (THE GRANDCHILD OF THE GRANDFATHER)))))

he anaphoric description

(THE GRANDCHILD OF THE GRANDFATHER)
efers to the filler of the grandchild-aspect in the grandfather tuple invoked by

(EVERY GRANDFATHER)
NAPHORIC DESCRIPTIONS BASED ON A UNIQUE-NAME

f the same frame occurs more than once in a text, one can assign a name which is unique within
‘hat piece of text to the tuple we want to refer to later. This is done by writing a string after
‘he frame-name used to introduce the tuple. The syntax for referring to this tuple later is
(THE <NAME-OF-ASPECT> OF <UNIQUE-NAMEs)
thich will pick out the element filling the aspect with name <name-of-aspect, in the tuple assigne
10 <unique-name>. If the aspect is the self aspect we write only the unique-name. For example,
1sing the more elaborate language of Steels (1979b) we can say
> (EVERY OBJECT
(WHICH IS
(MOVED TO (A LOCATION B)
(AT (A TIME T)))))
IS (IN B (AT T))
3 and T are anaphoric descriptions based on unique names.

1. CONCLUSION

[n this paper I have introduced the description types that are currently being used in the XPRT-
system. Of course I only discussed one part of the story. The other part is concerned with the
napping into the network representation and the behavior of these various constructs in the reason-
ing system. This matter will not be taken up in this paper.
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\ fairly straightforward mapping can be constructed to translate expressions from predicate calculus
.nto the present language and back. Universal quantifiers translate into generic descriptionms,
'xistential quantifiers into a predicative description if governed by a universal quantifier, other
/ise into an indefinite description. Definite description correspond to functions and proper names
:orrespond to constants.

he most striking difference with classical predicate calculus is that we have adopted a new ontol-
gy. In predicate calculus only individuals of the domain of discourse are allowed as referents of
erms. The present system operates on the basis of “anonymous" individuals and prototypes. The
doption of a different ontology allows us to remain syntactically closer to natural language. How
ver more important than these syntactic issues is the importance of this new ontology for reason-
ng. Whereas axiomatic proof theories (such as Gentzen's natural deduction system) are a natural
hoice for mechanizing predicate calculus based formalizations, the ontology presented here has lead
owards systems based on model theoretic proof theories. This will be discussed more extensively

n other papers.

he language discussed here builds further on object-oriented representation systems such as Simula
Dahl, 1970) and Smalltalk (Goldberg and Kay, 1976) and frame-based knowledge representation effort
cf. Minsky (1974), Bobrow and Winograd (1976), Martin (1979), a.o.). Detailed comparisons are
owever beyond the scope of this paper.

any shades of meaning used in natural language articles are not present in their usages here. For
xample EVERY has the connotation of referring to the collective - as opposed to EACH which stresses
ndividuality. Nevertheless I believe that the shades of meaning that were incorporated have been
dentified and used properly. Another paper is in preparation that discusses other articles, such

s definite numbers (like 3) and indefinite ones (like "a few"). This can only be done within the
ontext of representation and reasoning mechanisms that deal with sets. Still another paper will
eal with negation leading to articles like NO. There it will be shown how we can deal with this

n an object-oriented system by postulating '"negative inheritance links'.
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Abstract:

We propose to develop a computer aided design tool which can help an
engineer deal with system evolution from the initial phases of design
right through the testing and maintenance phases. We imagine a design
system which can function as a junior assistant. It provides a total
conversational and graphical environment, It remembers the reasons for
design choices and can retrieve and do simple deductions with them. Such
a system can provide a designer with information relevant to a proposed
modification and can help him understand the consequences of simple
modifications by pointing out the structures and functions which will be
affected by the modifications. The designer's assistant will maintain a
vast amount of such annotation on the structure and function of the sys-
tem being evolved and will be able to retrieve the appropriate annota-
tion and remind the designer about the features which he installed too
long ago to remember, or which were installed by other designers who
work with him. We will develop the fundamental principles behind such a
designer’s assistant and we wWwill construct a prototype system which
meets many of these desiderata. .

Keywords: Computer-aided design, integrated circuits, VLSI, dependen-
cies, constraints, engineering problem solving, layout.
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The Problem

The integrated circuit revolution has led to a vast increase in the
complexity of the electrical artifacts which can be constructed monol-
ithically. In the design of hardware systems, we are rapidly approach-
ing the complexity barrier which has for long been apparent in the
design of software systems. The turn—around time for realization of a
new design, from conception, through synthesis and debugging has become
excessive; hence we are not developing new designs at a reasonable rate.
This is not particularly a problem of integrated circuits, or of pro-
gramming systems, but rather a fundamental problem which can best be
viewed 1in a larger context. There are inherent limitations to the com-
plexity that the unaided designer can control in any engineering situa-
tion - from a complex electrical system to a space vehicle or a nuclear
power plant. The thrust of our proposal must be viewed as attacking the
problems associated with dintegrated systems from this larger context.
13
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The evolutionary nature of large engineered systems is a crucial
feature of their complexity. The specifications change, the design
changes, and as bugs are discovered, the implementation changes to
correct them. The changes are required because it is not possible for
the designers, or the potential users of a system, to foresee all of the
opportunities for using the system. Also, the environment in which the
system will operate is itself subject to change. Besides this external
reason for the evolutionary nature of large systems, there is also an
internal reason. If all of the relevant constraints were considered at
once in order to arrive at a perfect solution in the first place, the
details would overwhelm the designer'’s cognitive abilities. A more
effective strategy is to start with a solution which is reasonably close
to correct and modify it repeatedly until an acceptable solution is
reached. [2]

What is needed is a computer aided design tool which can help an
engineer deal with system evolution from the initial phases of design
right through the testing and maintenance phases. We imagine a design
system which can function as a junior assistant. It provides a total
conversational and graphical environment. It remembers the reasons for
design choices and can retrieve and do simple deductions with them. Such
a system can provide a designer with information relevant to a proposed
modification and can help him understand the consequences of simple
modifications by pointing out the structures and functions which will be
affected by the modifications. The designer's assistant will maintain a
vast amount of such annotation on the structure and function of the sys-
tem being evolved and will be able to retrieve the appropriate annota-
tion and remind the designer about the features which he dnstalled too
tong ago to remember, or which were installed by other designers who
work with him. We will develop the fundamental principles behind such a
designer's assistant and we will construct a prototype system which
meets many of these desiderata.

Engineering Problem solving

One necessary subgoal of our integrated system research program is
to further develop our theory of how skilled people (such as engineers
and technicians) understand deliberately constructed technological arti-
facts. In most engineering disciplines there is already an extensive
theory of how the physical principles which underlie the operation .of
the artifacts are applied in any particular design. In fact most of the
formal knowledge taught in engineering classes is a (mathematical)
theory of how the artifacts work -— how their behavior may be derived
from fundamental physical principles. But an engineer knows much more
than just the physical principles and their consequences. He has a great
deal of "tacit knowledge" which allows him to apply his physical
knowledge efficiently to solve problems of design, synthesis and
analysis. This tacit knowledge is not taught explicitly 1in engineering
classes nor is it written in engineering texts. It is usually considered
informal and unteachable, except by actual experience.

There is almost no formalized theory of how the engineer himself
operates -- how he must proceed in evolving a design when given a set of
requirements or even how he must proceed in understanding an existing
design. There is a "competence theory'" of the engineered structures, byt
there is no "performance theory” of the engineering process [3J. This is
not surprising. The performance theory is fundamentally imperative, but
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before people began to study algorithms as a subject there were no for-
mal languages in which it was convenient to express such a theory. In
fact, before this time it was not even realized that such lLanguages were
necessary. The advent of programmable computing machines placed great
emphasis on the development of convenient and expressive formalisms for
describing procedures. We have developed performance theories for some
aspects of engineering. Such a theory is a set of rules which guide the
behavior of engineers. We test our theories by implementing computer
programs based on these rules which model the behavior of engineers.
Successful theories are directly of practical value because they auto-
mate newly understood parts of the engineering process and can thus be
turned into engineering tools.

The development of a theory of engineering performance knowledge is
of considerable significance.

1. Understanding this currently tacit knowledge will
result 1in the construction of powerful computer-aided
systems for automating the routine aspects of design,
construction, testing, and maintenance of complex sys=-
tems. Such aids cease being luxuries and quickly become
essential as the complexity of systems increases. We are
already beginning to hit the complexity barrier 1in the
long turn-around time for design of integrated circuits.
We have long been on the wrong side of this barrier in
the design of large software systems.

2. Making the tacit knowledge of engineers more explicit
will result in the development of more effective design
methodologies. We are now in the descriptive phase of
development of our theories. Predictive results will
improve both computer driven and human performance in
developing complex systems.

3. Making the tacit knowledge of engineers more explicit
Wwill improve our ability to describe, explain, and teach
the process of engineering.

4, Engineering design is an almost ideal domain in which
to learn about how experts reason, and how students
learn to be experts. Much of the actual competence
knowledge 1is already formalized. Answers produced by a
performance theory are thus testable. Much of the struc-
ture of, and the motivation for the performance theory
is already in place as engineers have an extensive voca-
bulary of informal descriptions of what they are doing.

5. Results obtained in the study of design methodology
for digital dintegrated systems may be applicable in
other problem domains.
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Why We Need A Sophisticated Theory of Design

The basic strategy of coping with a complex problem is to find or
impose structure on the problem which allows breaking it up into manage-
able pieces. Each piece can then be worked on separately. This must be
done so that a solution to the whole can be composed from the solution
to the parts of the problem. Often a system can be partitioned into
pieces which are more or Lless disjoint and which together cover the
entire system. The total system can be understood by combining our
understanding of the pieces and our understanding of the composition by
which the pieces constitute the system. Similarly, each piece may be
futher partitioned. In this way we derive a single tree~like decomposi-~
tion of the system -- a hierarchy.

This observation has resulted in a plethora of shallow methodolo-
gies which are collectively called "structured design”.[4] In structured
design the system under development 1is conceptualized as a single
hierarchy where the system 1is recursively broken into parts, each of
which represents a particular segment of its ultimate structure. These
theories provide considerable power 4n organizing the thoughts of
designers and in structuring computer-aided design systems, but they
must ultimately break down in sufficiently complex real designs.

The problem is that, in sufficiently complex systems, at any stage
there dis wusually more than one way of usefully partitioning a segment.
If this is so, then a single hierarchy does not suffice to indicate all
of the conceptual pieces of interest in the system. Pieces whose sub-
pieces are localized by one decomposition will have those sub-pieces
widely dispersed throughout another. Additionally, a single sub-piece
may play several roles in each decomposition it appears in. (5]

For example, when designing a simple microprocessor, one way to
proceed is to think in terms of a state-machine controller which is used
to control a set of registers and data paths. The state machine may be
implemented as combinational Logic and a state register. In some techno-
logies, e.g., two—phase clock dynamic MOS, a register may be expanded as
a pair of linked, clocked inverters and a portion of the combinational
logic may be done on each phase of the clock. Thus, in this technology
there may be no single physical realization of the state register local-
ized on the chip.

Suppose, further, that we want the register which are controlled by
our state machine to be bussed together. The bus is a real conceptuatl
entity about which the data paths are organized. We must have a descrip~
tion of the vregister array in which the bus is a localized concept so
that we can say specific things about it. For example, we may want to
make assertions which constrain the communications conventions. However,
in a structural hierarchy there is no particular Llocale for the bus
because the bus 1is structurally distributed throughout the register
array.

Even worse, consider the high level block Llabelled "instruction
decoding” in a hierarchical description. Not only is the logic for this
box physically distributed, but it is also implemented with techniques
which overlap other aspects of the decomposition. A good example is™the

selective gating &f clock signals, overl ppigg a%\clgck_ gistri?u ion
function with a decoding funttion. Other decoding may De integarated as
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part of other functional modules in the system. The decoding of the
arithmetic function field, for instance, may be an integral part of the
structure of the arithmetic logic unit.

Thus one aspect of developing a more powerful theory of the design
process than "structured design" is the development of descriptive
mechanisms which capture the power of the decomposition strategy without
the restrictions on what can actually be expressed imposed by a simple
hierarchical development. These problems with structured design
theories are not 1in any way restricted to the world of digital
integrated systems. Engineers in any discipline need to examine the sys-
tems they are designing from many points of view. An electrical circuit
designer is often interested in the bias model of a circuit, the incre-
mental model, the low frequency model of the incremental model, and the
high frequency model of the incremental model, the noise model and - the
power distribution model. Each of these viewpoints imposes its own
decomposition of the system under examination, and each provided struc-
ture and information to processes working from other viewpoints.

Our Developing Theory

We are developing a performance theory of engineering design, that
is, a set of rules which characterize the way in which engineers behave
when confronted with a design problem. In order to express this theory
we are developing a methodology adequate to capture these rules. We call
this the Design Procedure System because we will use it to express the
procedures which an engineer will go through in the routine development
of a design. The design language has two components: the design
procedure language and the design plan language. The design procedure
language is a very high level language for expressing design procedures
-- the sequences of actions a designer goes through in evolving a
design. The design plan language provides special data structures for
representing the state of a design. These are used for representing the
data on which the design procedures operate.

The design plan is essentially a data structure which describes the
object being designed at many levels of detail and which captures the
various models which are applied to it. The design plan provides locales
to hang 1information such as why a particular goal, say a multiplexer,
was implemented in a particulary way, rather than wusing alternative
approaches. The design plan contains active data structures, called
constraint boxes, which autonomously check and criticize certain aspects
of the evolving design and which compute some properties of the design
as consequences of others by a process we call propagation., [6]

The Language of design plans is crucial to the success of this pro-
ject. It must be rich enough to allow the description of complex enti-
ties which are not entirely hierarchical. It must be possible to capture
the various decompositions of a system that a designer wants to think
about. An entity may be described in terms of several alternate decom-
positions into parts. In fact it may have different names from different
viewpoints. Additionally, we must be able to specify that a structure is
an instance of a prototype which is an element of a previously defined
class from which it inherits structure, appropriate procedures, and
decompositions, and that classes may themselves be subclasses of other
classes. [7] We already have considerable experience with the develop-
ment of a lLanguage of design plans in two domains which are related to



SUSSMAN 6

integrated systems — electrical circuits and LISP programs that manipu-
late data bases.

The design procedure language is concerned with formalizing the
particular tasks that must be performed when attempting to develop a
design plan. These tasks are described in terms of rules.The Llanguage
provides design procedure primitives and means of combining simple
design procedures to make compound ones. It also provides abstraction
mechanisms which allow one to wrap up and generalize a particular design
procedure developed in a particular design. Some of the rules that must
be expressed are synthesis rules which tell how particular goals may be
implemented. Other rules are for information gathering. These perform
analysis on partially instantiated structures. Other rules impose con-
straints or critics. A critic watches for and complains about violations
of rational form or violations of constraints that must be enforced.
Other constraints are used to deduce some design parameters from others
by propogation of constraints.

Every deduction made by any design procedure or constraint must be
annotated by the name of the procedure which made the deduction and the
data which went into that particular deduction. We believe that it s
essential that the design system which we are envisioning be thoroughly
responsible for its behavior. This is essential to the debugging of the
design procedures and also it is essential to the control of the deduc-
tive system so that we can retract any assumption and all of its conse-
quences. It dis c¢ritical in the context of evolutionary design. These
dependencies are also very useful to a user who wants to discover why
the system believes that it does about his design -- especially if it is
reminding him of some detail which we has forgotten. We have had consid-
erable experience now with dependency-controlled data bases.

The language of design must be powerful enough to capture such sub-
tle notions as a methodology. For example, the single Level polysilicon
NMOS process places enough restrictions on relationships between wire
levels that we can quickly develop an idea of a 'reasonable" geometric
methodology. The ground and VDD wires carry power, and except perhaps at
their deepest branches, are required, for reasonable voltage drops, to
be run in low resistance metal. The direction of these ground and VDD
lines defines a local coordinate axis. Other metal lines must be routed
parallel to the power wiring, to avoid crossing it. We need a set of
wires which can locally travel at right angles to the metal wiring.
Either polysilicon or diffusion would serve the purpose. But, in the
silicon gate technology, transistors are formed wherever there is
polysilicon over diffusion. If both poly and diffusion are to be used
as wires, their predominant axes must be parallel, Llest unwanted
transistors will be formed at their crossovers.

Lead bonding constraints locations of 1/0 pads to the periphery of
the chip. Long standing convention defines the location of certain
pads, such as power, ground, and clocks.,

With a few simple constraints, we have arrived at a very clear pic-
ture of what the major wire orientation of almost any large NMOS circuit
is likely to be. We will develop a way to express such geometric con-
ventions, in the same way we describe a methodology for logic design. In
the NMOS design situation, the choice available in this methodology is
very small. With multi-level metal or a different process, the designer
may independently be able to specify a process, a geometric design
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methodology, and a logic design methodology.

Our Design System

Our computer—-aided design system is to be built around the design
procedure system and an appropriate library of design procedures and
design plans. We expect that designers using our system will develop
additional plans and procedures which will be added to the library and
thus shared with other members of the design community. A designer may
at any time either generalize or specialize a procedure or plan for his
immediate use. Each element of the library will be indexed for easy
reference, and will be annotated by information describing how it was
derived, by the application of procedures to other design plans and pro-
cedures.

The design plan/procedure languages form an extensible base upon
which the designer builds a vocabulary of cliches -~ a new language
which he then uses to describe his system. This is not just a hardware
description language, though it is certainly powerful enough to describe
hardware structures. In fact it is a language in which one describes
methods of design. The designer tunes the methodology to meet the archi-
tecture being implemented. Part of the design specification is generated
automatically by instantiating customized abstractions. These fragments
can be the basis of a library of commonly used functions and procedures.

One way of providing flexibility in either Layout or logical struc-
ture 1is by associating design procedures with generic design plan frag-
ments. The design languages allow one to write custom design procedures
that are local to a fragment. In this way it is possible to craft very
general abstractions. Simple methods may in fact be just the instan-
tiating and interconnecting previously defined chunks of hardware. One
may define more advanced methods such as "the method of running a power
wire through a particular kind of register cell" or "the method of com-
puting the pull-up ratio for driving a particular capacitive load".

This is preferable to having a macrocell library consisting of a
plethora of minor variations on one theme. The design procedure language
provides expressive constructs for developing appropriately tailored
instantiations of the general concept. It has control structure, a sub-
part naming mechanism and a vocabulary of methods for synthesis and
modification. A design procedure may either construct an expansion or
modify a prototype according to the parameters of the call. For example,
the generic concept "multiplexor” should suffice to implement instances
that vary in the number of bits, control buffering, or select decoding
method. There should also be flexibility in the layout to accommodate
different spacing in the array of input lines.

The design plan language is used to represent the state of a
design. We envision the designer as using design procedures to manipu~
late the current design plan. He may refine it, modify it, extend it,
study it, analyze parts of 1it, and use it to help debug and test
hardware described by the plan, The design state of a functional block
is a mixture of the instantiation state of the fragment, associated mask
layout, constraints relative to other structures, design decisions,
annotations, and violations. Some parts of the design may be completely
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specified, but others may only exist as uninstantiated or even unspeci-
fied fragments. A group of elements can be represented by an abstraction
that captures the important external shape and connections, or by an
abstraction which captures the essential functionality, but suppresses
the internal detail. Deductions such as rough estimates of propogation
delay or chip area can be made in the face of incomplete information.
This allows the designer to use a top—down approach to a complex design
problem when this is appropriate.

In order to allow general design procedures there must be a uniform
naming mechanism by which a conceptual entity may be referenced relative
to the some current focus of attention. To this end every conceptual
entity, be it a physical object or location, or a functional object, has
an explicit data structure which designates it. This data structure may
have several names, but it has at least one name by which it may be
referenced in a uniform manner by any design procedure. Thus there are
no "hidden variables” or implicit references in the system. This allows
us to attach information (assertions, properties, constraints) to any
object, facilitating complete documentation of the design plan.

Any fact or value known by the system has a justification which
describes why the system believes 1it. These justifications must be
either that the fact was tendered by a user or that it was derived by
some design procedure (or corstraint) from other known facts. These jus-
tifications make it possible ‘or a user or design procedure to consider
or make incremental modifications to a design, without disturbing
features of the design which are not dependent wupon the incremental
modification. They allow the user, in an evolutionary setting, to con-
sider consequences of minor modifications. They also allow a user or a
design procedure to determine what assumptions any fact depends upon,
and how.

The system allows multiple alternate representations of the same
entity, and it allows these representations to communicate. In many
cases some of the representations are the result of applying design pro-
cedures to other representations. For example the maze router may be
applied to a partially specified layout of a circuit segment to produce
a further specified layout of that segment. Each of these representa~
tions is, however, indzpendently manipulable by further design pro-
cedures (or by the user calling the design procedure primitives)., So if
the engineer really doesn't want a particular wire routed by the router
to go where it put it, he can change it in the representation which was
the output of the router. This will have the effect of updating the jus-
tifications in the connections between the two representations so that
the new representation will be thought of descending from the old
representation through the maze route except that the particular wire
was changed.

An Example of Design

de now display an example of the type of behavior that we expect
from our proposed computer aided design system. While we are not
entirely sure of the detailed implementation of the capabilities which
we indicate, we feel confident that they are feasible.
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Consider the problem of designing a parallel multiplier-accumulator
which might be a component of a signal processing chip. The designer
first produces a rough data path diagram (see below) showing the inter-
connection of instances of fragments such as registers, adders, and mul-
tipliers. This captures one decomposition that seems to be functionally
appropriate and which perhaps will reflect the physical lLayout of the
device as well. However, certain information is missing or incompletely
specified.
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Some deductions can already be made to fill in some of the missing
information. For example, consider the adder in the middle of the block
diagram. It is shown to have a 35 bit input and a 32 bit input. The
adder fragment type can immediately infer the length of the adder chain
and thus estimate the maximum time delay, the approximate area that the
adder will take wup, the power that will be needed to fuel the adder,
etc. These approximate deductions can be made without further examjna-
tion of the details of the adder chain because of default assumptions
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stored with the adder fragment. Similar deductions can be made about
other blocks 1in the block diagram. This information can be combined to
give estimates of total delay, power consumed, and area needed --all
without further refinement. In fact, we can simulate the circuit at this
level of detail enough to determine that the proposed design actually
has a chance of working.

Simple qualitative analysis of the c¢ircuit at this level of detail
can point out potential problems and situations which will have to be
attended to later. For example, critics associated with the adder frag-
ment will notice that the instance shown does not have the same number
of bits on both inputs. This either is an error or will require that
the designer decide how to rectify the anomaly. The system will notify
the designer of the problem and add it to the queue of pending problems
which must be solved before the device is considered ready for cooking.

Next the designer directs the system’s focus to a particular part
of the design. Normally this is what he thinks will be the most con-
straining segment. For example, one common design goal in consructing
circuits 4s to compose regular arrays of Logic by abutting them. This
requires that a common pitch be found. The designer is now going to try
to think about his structure in terms of the pitch of the regular sub-
structures which he will have to come up with. This 1is a different
decomposition of the problem from the original one, and will impose dif-
ferent submodule boundaries on the overall device. The first stage is to
examine the pitch of the default layouts of the fragments which exist in
the original conception of the problem.

We now enter geometric layout space where we are given a bunch of
pieces which are the external boundaries of the default layouts with the
associated pitch indicated. We place the pieces in such a way as to try
to Llimit the problem of interconnection. A good first idea (which is a
default layout that the system starts us up with) is the layout implied
by the block diagram. We now abut the pieces and try to adjust the pitch
of the abutting pieces so that they match. We do this by communicating
the constraint imposed by the unit with the largest pitch to the other
fragments, which will perhaps modify their default cell Llayouts. This
constraint s noted so that any later changes to one of the fragments
witl trigger a check for violations of the pitch correspondence.

A fragment has a choice of techniques by which to respond to a
request to adjust its pitch. There may be a general expert that can
stretch simple cells, preserving their functionality. Failing that, the
fragment may contain a specific design procedure that can modify the
placement of some parts in the layout prototype in order to produce a
new layout with the needed pitch. Or the designer may have specified
internal seams in the specification of the cell where it may be
stretched without interfering with the functionality, and where wires
that pass through the cell may be added. Or it may choose among a set of
predefined cell layouts that the community of designers arranged to be
available under the generic fragment type. Finally, the designer can
interactively modify a cell to produce a new layout with the correct
pitch. Of course, this interaction may be postponed at the designer's
choice, with the system maintaining a record of deferred problems.

White the abutting strategy will complete many of the signal con-
nections, there are others that will require explicit routing. For some
of the cases where not much optimization is possible or desired, a
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simple maze router is provided. In other cases, such as the interconnec-
tions among the output register, dts preload control, and output
buffers, some preplanning is required. Here, a small set of bus signals
is shared among the fragments in such a way that we suspect that merging
the three orignial blocks into one will eliminate the need for explicit
interconnecting wires. We create a new cell type by editing together
the corresponding layocuts of the cells that we are merging. Note however
that this will change the basic pitch of the system, triggering the
adjustment of the pitch of the coupled fragments.

Observe that this merging operation has apparently destroyed the
module boundaries implied in the original block diagram. This does not
mean that this block diagram is wrong or shouid be discarded. It 1is
stitt the right way of describing the functionality of the device, but
the same simple hierarchical decomposition no longer suffices to
describe both the Llogical and physical structure, The system must be
able to menage this and, for instance, he able to give the correspon~
dence between signal nodes in the togical and physical representations.

ALl through this process we assume that the system 1is monitering
various distributed constraints. For example, the actual propagation
delay 45 compared to the design goal value. The dimensions of the pouer
distribution Llines depend upon the current estimate produced by the
etectrical modelling of the system. Changes may result in a readjustment
of the Lline width or a design problem complaint. This monitoring is
motivated by an assumption that it is probably effective to start with
legal layouts and preserve the design correctness by the enforcement of
constraints,

We have used such notions as “the adder fragment” without ever giv-
ing an example of what we expect such a piece of the design plan
language to look like. Let us now examine the adder fragment in some
detail to get a more concrete idea of what we have in mind. At the block
diagram level an adder abstractly has three terminals, each of which is
a word composed of a number of bits., The number of bits in each words is
the same. The three terminals are called the addend, the augend and the
sum, The addend and augend are inputs and the sum is an output. There is
an extra bit coming out of the adder which is the carry—out and there is
an extra bit coming in called the carry-in. We notate this block~diagram
level description as follows:

(body adder (model: block-diagram)
(parts: (addend word input) ; dectaration of parts
(augend word input)
(sum word output)
(carry-out bit output)
(carry=in bit input))
(constraints: (= (length addend) ; a constraint
(length augend)
(length sum))))

This fragment made use of another fragment, WORD, which is an
ordered sequence of bits whose length is the number of bits.
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(body word (model: block-diagram)
(parameters: (length number)
(bottom number)
(top number))
(sequence (enumerator: n)
(lLow: bottom)
(high: top)
(generic: (parts: ((bit n) bit))))
(constraints: (= (- top bottom)
(- tength 1))))

The adder fragment has associated with its block-diagram Llevel
several implementation strategies. The simplest is the sequence of full
adders such that the carry-out from each significant bit enters the
carry=-in from the next significant bit. Another implementation strategy
is the carry look-ahead adder. We will only show the simple strategy
here. Each strategy is attached to the fragment in the same way.

(implementation adder (model: block-diagram)
(strategy—-name: simple-sequence)
(sequence (enumerator: n)
(low: 0)
(high: (- (length addend) 1))
(generic: (parts: ((f n) full-adder))
(= ((bit (+ n(bottom addend))}) addend)
tal (f n)))
= ((bit (+ n{(bottom augend))) augend)
(a2 (f n)))
= ((bit (+ n{bottom sum))) sum)
(s (f n))))
(between: (= (co (f xlower*)) (ci (f *upper*)))))
= carry-in (ci (f 0)))
= carry-out (co (f (- (length addend) 1)))))

~
1

~

r-rrs

You may have noticed these descriptions of various aspects of an
adder have parts that seem procedural. This is not accidental. There is
a fundamental duality between object descriptions and procedures. Here
we see that some aspects of an object involve design procedures which
describe how to make a data structure describing that aspect of a par-
ticular object..

Complex Design Procedures

The unique aspects of our approach to the computer-aided design of
integrated systems are illustrated by the use of design procedures which
are considerably more complex than ones which just instantiate parts and
connect them together. For example, we can make design procedures which
assign propagation delay constraints to the full adders in the implemen-
tations shown above to make it possible to get estimates of the propaga-
tion delay for the adder. This can be used to decide among the implemen-
tations when weighed against other measures such as real estate taken up
on the chip and power consumed.

One powerful kind of design procedure is for editing layout struc-
tures. These procedures allow us to generalize logic cells and enhance
our ability to achieve close packing and Logical geometric layout of the
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cells.

A way to generalize a fixed geometry is for the designer to include
within the cell's definition a class of Layout hints. These hints may be
specified either when a cell is initially defined, or later, when a more
general version 1is necessary. Some of these hints might concern the
options available for connecting this cell with other cells. For exam~
ple, in  the trivial ratioed inverter, the output node is available on
any of the three mask levels, metal, poly, or diffusion.

A more useful hint is the concept of a seam. A seam indicates
places 1in the layout that have flexibility for expansion and shows how
the expansion is to be done. Seams are conceptual dividing Llines in a
stick cell layout along which the cell may be expanded and through which
specified color stick wires may be routed. The seam specified the manner
in which cell is to be expanded to make room for the newly routed wires.
Seam expansion may require cell modifications such as transitions of
interfering signals from one Layer to another, but in the most common
case, merely involves knowledge of what parts of the cell geometry
expand in which directions. For example, if a seam goes vertically
through a diffusion, the diffusion may be expanded in the direction per-
pendicular to the seam. Each seam describes what materials can be run
through without shorting to a feature of the cell or manufacturing a
parasitic component.

Suppose that we had to run a signal up through each cell of the
adder in the multiplier-accumutator. We would invoke a design procedure:

(for-each cell ((f ?n) (accumulator-adder multiplier-accumulator))
(invoke Run-Through cell Vertical Poly))

This iterates the application of the Run-Through procedure over each
part of the accumulator-adder whose name matches (f ?n). These are the
full-adders created by implementing it. Run-Through examines the verti-
cal seams of the full~adder fragment, looking for one which can be used,
If none can be found a failure message is produced which will inform the
caller that he had better Llook for another way to accomplish his goal or
that he should try to edit the full-adder cell to install a seam which
can do the job. If there is an appropriate seam, the cell is stretched
and the poly is run through. This changes the pitch of the cell and the
interdependent objects are informed that they had better adjust to the
new condition. Actually, here, things are pretty complicated. We cannot
run polysilicon over a2 diffusion without creating an active transistor.
Thus, the design procedure may only do this by changing the wire to a
metal one, but this takes up lots of space so it can only be done if
there is enough space at the desired pitch.

We can certainly anticipate that a moderately clever program could
automatically generate seams within existing logic cells. The use of
seams as "hints" to the design system is one example of how we intend to
gradualty develop a sophisticated design system. In the initial design
system we avoid the requirement that very complex programs exist, are
debugged, and are practical to use. These design system hints can gradu-
ally be augmented by sophisticated programs as they develop, but the
success of the design system is not dependent on their development.
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Our Initial Efforts

There are several reasons why we feel it is important to adopt an
evolutionary approach to the development of the design system, starting
with the implementation of a sophisticated interactive graphic design
editor. First, it 4is important to have some capability to design
integrated circuits in the early part of the research project. It is
impossible to create the advanced design environment while working in a
vacuum. The early design exercises will test the significance of our
ideas and also allow us to develop more insight into the nature of
integrated system design. Secondly, an evolutionary growth will enforce
the principle that each major module must have a clean interface so that
it can later be combined with more powerful system components.

Initially we will construct an interactive design editor. We will
start from the example of ICARUS. [8] Our editor will handle structural
models such as logic diagrams, mask layouts, and design descriptions in
a text form. It will be capable of editing several design files simul-
taneously with a display organized as multiple windows. Both color and
high resolution black and white screens will be used.

The editor commands will be interpreted as calls to primitives of
the design procedure language which will be operating on various models
in the design plan. The interactive component will have a clean inter=~
face to the design procedure system. The design plans are constrained to
represent meaningful structures. Thus connectedness information from the
logic schematic is used during mask editing to insure that the geometric
operations don't inadvertently destroy the logical function of the cir-
cuit. Paths of diffusion or polysilicon will be stretched and re-layed
out as pieces of the structure are moved. The correspondence between
nodes in the Llogical structure and the geometric layout will be main-
tained automatically. '

Incremental corrections that require insertion of new structures
will be aided by automatic editing operations that move collections of
objects while preserving layout design rules.

The layout model will consist of multiple representations, such as
mask geometry, STICKS schematics [9], and Llogica schematics. These
representations can be mixed on a single page, where the more abstract
representations stand for what will eventually be mask geometry on the
chip. A STICKS compiler transforms _the non-metric representation into
mask artwork that obeys the process layout rules. Simple design pro-
cedures will be included for regular structures such as PLA's and ROMs.

Some VLSI System Projects

We will develop several projects involving the design of particular
VLSI chips. These projects cover a large range of difficulty, specula-
tiveness and utility. Some of our projects are simple extensions or
developments of existing technology which will give us some familiarity
with the medium and some perspective with actual designs. We belijeve
that it is useless to try to build tools to aid the engineering process,
or to study the engineering process in the abstract, without some con-~
crete projects to develop real engineering competence and taste.



SUSSMAN 15

For example, we have already developed a prototype LISP interpreter
chip which has been through design and fabrication once. [10] We intend
to use this chip and its successor —- a full sized interpreter and
storage management system -- as a benchmark project to test some of our
computer~aided design tools and methodologies as they emerge.

We also wish to design and fabricate a local-network interface
chip. This is a similar "service project” chip which will help us
improve our computer facilities and which will provide similar engineer-
ing exercises.

The MIT WLSI effort will build some considerably more complex sys—
tems using our computer-aided design technology. These projects will
exercise our systems and methodology. Most of these projects have direct
application to real world problems. We expect to support and learn from
our interaction with these efforts.

We will also be interested in some specific chips for use in artif-
icial intelligence research. One area that seems ripe for consideration
is the problem of implementing processes that operate on very Llarge
stores of semantically related information, such as the semantic nets
studied by Fahlman {11]. Fahlman was concerned with the fact that most
problem solver programs have to labor over very simple deductions which
seem instantaneous to a human. For example, if we learn that Clyde is an
elephant, we can immediately answer questions such as whether Clyde is
grey, or whether he can climb trees, as well as the answers to hundreds
of other default facts about him. Fahlman worked out a scheme by which
an important subset of these shallow but numerous deductions could be
done very efficiently with specially constructed parallel hardware in
the form of a network of simple, identical processing nodes with static
interconnections. Fahlman's proposal is communication-intensive with
almost no processing or memory at the individual nodes. ALl computations
in a Fahlman net are done by "marker propagation". The nodes just have a
few bits of memory which are used to store markers which are propagated
in parallel along the static interconnections.

Implementation of marker propagation networks would be easy except
for the enormous number of nodes required to construct a useful system.
We estimate that a useful Al system requires at Least 10 nodes. We do
not yet know how to build the programmable connections, on the scale
required by such a machine. Therefore, to investigate their properties
these systems must be simulated, currently on general-purpose computers.
Unfortunately the simulations are far too slow to be adequately tested,
let alone be used as a support for other parts of a problem solving sys-
tem,

We have some ideas about how such a system might be implemented and
we expect that we will want to work on such an exotic architecture as
part of our artificial intelligence research (in cooperation with Fahl-
man, who is now at CMU). One helpful constraint is that the computation
is decomposible into essentially independent computational nodes such
that each node's communication with other nodes is Limited. When this is
true, we may be able to configure a machine so that the computational
nodes are altlocated to segments of hardware with communications lines
allocated to interconnect them. We will investigate a spectrum of such
configurable architectures.



SUSSMAN 16

If the computational nodes and the communication channels to be
established among them can be allocated at the outset, and if the set of
nodes which must communicate with a given node is small, we may think of
the computational problem as simulating a "wiring diagram”. In fact, one
interesting problem which breaks up in exactly this way is the simula-
tion and analysis of systems which may be characterized by lumped-
parameter models, such as electrical circuits. [12] In a more general
setting, one can think of systems of algebraic constraints as networks
which can be studied as if they were electrical circuits. A configurable
architecture for such problems 1is constructed from a set of general-
purpose processors, each of which is given the computational task of one
component of the system. The architecture also requires a "patchboard”
which programs the interconnectivity of the components for a problem.
The patchboard may be a physical entity, such as a sorting network, or
it may be virtual, such as a packet-switched network. One wuseful task
for such a "“circuit machine" is as a high-performance digital logic
simulator, which can be used for experimenting with wunusual computer
architectures.

A class of architectures that we will investigate are network simu-
lators. We do not really understand how to make completely parallel net-
work machines, but there is an intermediate position. We imagine a
hybrid between the conventional sequential architectures that we under-
stand and the fully parallel architectures that have not yet been
developed. With a machine of this type we can at least perform experi-
ments on proposed parallel designs before they are constructed. A module
in such a simulator consists of two parts--several large memories defin-
ing node types, node states, and interconnections, along with a VLSI
interpreter engine that makes a sequential pass performing a processing
step on all nodes. With several such modules interconnected, networks of
a million nodes can be simulated 2 or 3 orders of magnitude faster than
can be done on purely sequential machines.

The performance advantage of the hybrid network simulator comes
from several sources. First, the parallelism of the simulator modules
provides a straightforward factor of 8, 16 or so. Second, a dedicated
memory structure internal to the module provides several times the band-
with of the memory on a conventional machine. At each processing tick,
the node's state and the state of its topological neighbors are fetched
in a continuous stream of data pipelined into the interpreter engine. A
network simulator in stream mode enjoys much the same advantage over
conventional machines as vectorized arithmetic processors such as the
Cray=1 enjoy over scalar processors. Third, unlike an instruction stream
driven processor, each step of the simulator engine is interpreting an
indepandent node. Thus pipelining and overlap can be freely used without
the need of complicated interlock hardware. This freedom allows cascad-
ing several microcodable processing stages so that a multi-step node
interpretation can be performed in one cycle.

Such network simulators are well suited to experimentation with
proposed designs for parallel machines having large arrays of nearly
uniform nodes. Some of these problem areas are digital logic simulation,
marker propogation in semantic nets, and pattern matching for Al data
base systems. However, in addition to being a research vehicle for
parallel architectures, the hybrid sequential/parallel computer is a

novel architectural paradigm that may have applications in many domaina
where the natural formulation of computation is object based as oppose
to function based. We may find such possibilities in areas suc as
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signal processing and discrete particle simulations.

Notes

1. This cognitive complexity barrier has been apparent for some time in
the design of large software systems. The development of very high level
languages is one approach to controlling this complexity. Software
engineers have also developed methodologies such as "structured program-
ming"” L[Dahl, Dijkstra & Hoare 19721 to help cope with the problem. Our
Engineering Problem Solving project is an outgrowth of another approach
concerned with the construction of intelligent design tools C[Winograd
19731. We are engaged in related research on the computer-aided design
and analysis of analog electrical circuits U[Sussman 19772l and of
software systems [Rich, Shrobe, Waters, Sussman, & Hewitt 1978].

2. Sussman [Sussman 19731 [Sussman 1977al introduced a theory of problem
solving, called Problem Solving by Debugging Almost-Right Plans, which
is based on deliberately making simplifying assumptions which may intro-
duce "bugs" into the solution. The resulting solution is then debugged
until it 1is right. This theory was induced from observations of
engineers and programmers in the process of design.

3. The distinctions between a "performance theory™ and a " competence
theory” for describing aspects of the behavior of humans was introduced
by Chomsky [Chomsky 19651 in the context of natural linguistics. Loosely
speaking, a competence theory concentrates on the factual issues of a
domain whereas a performance theory is concerned with the jssues of con-
trol and heuristics.

4. The power of a structured theory of design is demonstrated by Mead
and Conway in their beautiful book [Mead & Conway 19791 on the design of
VLSI systems. They have isolated a level of language which is natural
for the design of interesting classes of NMOS chips. They speak in terms
of '"state machines”, "programmed Llogic arrays", bussed register
arrays", ‘"multiplexers" and other concepts which are primitives of a
much higher level language than the AND, OR, NOT, JK flip-flop level of
detail which most digital designers are used to. Using their ideas, stu-
dents are able to design very complex VLSI systems with only a small
amount of practice. Structured programming [bahl, Dijkstra, & Hoare
19721 has had a similar but more controversial effect on the work of
programmers.

5. The use of a special formalism for describing an electrical circuit
from several points of view simultaneously, so that an automatic deduc-
tive system could make use of information deduced from each model was
introduced by Sussman [Sussman 1977b]. Steele and Sussman [Steele &
Sussman 1979al have generalized the notion to be useful for the descrip-
tion of other "almost hierarchical systems” which result from engineer-
ing design.

6. "Propagation of constraints" was originally invented as a generaliza-
tion of "Guillemin's method" of analyzing electrical ladder circuits. It
was used in the analysis programs EL [Sussman & Stallman 1975] and ARS
[Stallman & Sussman 19761, and in the synthesis progfram SYN [de Kleer &
Sussman 19781. The basic idea of the method was first described in
[Brown 19753 as part of a method for localizing faults in electrical
circuits. De Kleer also used propagation analysis 1n his fault localizer
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[de Kleer 19761. Sutherland [Sutherland 1963] appears to have developed
a similar technique (the "One Pass Method") for constraint satisfaction
in Sketchpad.

7. SIMULA [bahl & Nygaard 19663 introduced the "class" as an abstraction
mechanism in a programming language.

8. ICARUS is a minimal automated geometric draftsman developed at Xefox
PARC by Fairbairn and Rowson [Fairbairn & Rowson 78].

9. STICKS is a semi-geometrical graphical representation of the layout
of an integrated design. Features on various mask layers are represented
by Lines of appropriate color. STICKS diagrams show all topological
information and approximate layout, but they suppress most metric infor-
mation.

10. Qur chip [Steele & Sussman 1979b1 dis an interpreter and storage
manager for a dialect of LISP called SCHEME. It was part of the MIT pro-
ject set for the Fall of 1978, Lynn Conway of PARC was teaching at MIT.

11. Fahlman's semantic memory scheme is described in [Fahlman 1977].

12. John Kassakian [Kassakian 19791 has a neat new approach to the simu-
lation of complex electronic systems which he calls the "Parity Simula-
tor". The basic idea is that he automatically configures a set of
universal elements so that each simulates a device in a network and he
configures the interconnection between them to be 1isomorphic to the
interconnections in the network being simulated. This turns out to be
better for many applications than the traditional approach of simulating
the behavior of the equations resulting from an analysis of the network.
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ABSTRACT

This paper describes a computer model of f£irst language acquisition,
program SNPR14, which is a development of an earlier model, MK10/GRAM1S,
described elsewhere [Wolff, 1978a and Db]. Like the earlier model,
SNPR14 shows some success in discovering a phrase-structure grammar from
an unsegmented, semantics-free, language-like text given only that text
as data. SNPR14 is designed to remedy certain weaknesses in
MK10/GRAM15. 1In particular it provides a tentative answer to the
problem of how it is that children, in forming syntactic
generalisations, can distinguish 'correct” generalisations from
overgeneralisations and can eliminate the latter whilst retaining the
former.

The notion that language development and data compression are intimately
related has been extended here: it is suggested that language
development is, in part, a process of building a grammar in such a way
that the effectiveness of the grammar as a means of compressing
cognitive data is maximised for any given size of grammar.

INTRODUCTION

This paper describes in outline a partial and tentative theory of first
language acquisition incorporated in a computer model, program SNPR14.
The theory and the model are described in more detail in another paper
(in preparation). Other work in this and related areas has been
reviewed by Biermann & Feldman [1972], by Fu & Booth {1975] and by
Pinker [1979]. Also relevant are studies by Anderson [1977],
Cook & Rosenfeld [1976], Coulson & Kayser (19787, Gammon [1968],
Hamburger & Wexler [1975]1, L.R. Harris [1977], 2Z.S. Harris [1955],
Kelley [1967], Kiss [1973], Knobe & Knobe [1976], Olivier [1968],
Power & Longuet-Higgins [1978], Salveter [1979] and Stolz [1965].
Reference to some of these other studies will be made at appropriate
points below.

The main aim of work to date has been to construct a discovery procedure
which, given only an unsegmented, semantics-free language-like text as
data, can retrieve the grammar used to generate the text. It has been
assumed that a solution to this "target" problem would be a useful step
towards an empirically adequate theory of language development. An
example of the type of grammar used and a sample of the text generated
by it are shown in Fig. l. Segment markers have been omitted because it
seems unlikely that there are sufficient cues of this sort in natural
language to reveal segmental structure reliably and it has been thought
heuristically valuable to see what can be achieved without them.
Semantic information probably plays a much bigger part in children’s
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discovery of language structure but, again, it has been thought useful
to see whether grammars can be discovered without i1it. A working
assumption is that insights gained using semantics-free data may help us
to understand how children discover non-linguistic cognitive structures
[see Wolff, 1976] and may ultimately lead to an integrated model for the
acquisition of syntactic and semantic structures.

Fig. 1. A Phrase-structure Grammar and Sample of Text

——> (1)(2)(3)]| (4)(5)(6)
~-—> DAVID|JOHN

———> LOVES |HATED

—-—> MARY|SUSAN

——> WE|YOU

—--> WALK|RUN

—-—> FAST|SLOWLY

P W N SR

Sample: JOHNHATEDMARYDAVIDLOVESSUSANYOURUNSLOWLY...

A solution to the target problem has been found in a pair of programs,
MK10 and GRAM15, which have been designed to discover segmental
(syntagmatic) and disjunctive (paradigmatic) Ilinguistic structures
respectively. GCRAM15 operates on the "dictionary" or grammar derived by
MK10 from a sample of text and, together, these two programs have proved
capable of discovering the grammar used to construct texts like that
shown in Fig. 1 [Wolff, 1978a and b]l. As a model of language
acquisition processes in children MK10/GRAM15 has a number of
weaknesses. SNPR14 has been designed to remedy two of them and to
provide an answer to a theoretical problem which has not previously
received serious attention in this project or, apparently, elsewhere.

One weakness in the earlier model is the rigid separation of processes
for discovering segmental structure from processes for abstracting
disjunctive relations. It seems likely that in children these two kinds
of process are integrated. MK10/GRAM15 is also unsatisfactory because
it can only discover grammars successfully if MK10 is stopped exactly at
the spot where all "sentence" types in the text have been isolated and
no larger structures have been formed. A realistic model of acquisition
processes should not depend on panual intervention of this sort.

Apart from providing remedies for these two weaknesses SNPR14 differs
from the earlier model in that it can "generalise" -- 1t can form
grammatical rules (including recursive rules) with a generative range
greater than the set of character strings from which they were derived.
This is a necessary feature of any model which is to account for our
ability to produce and comprehend an infinite variety of grammatically
acceptable sentences when we hear only a finite sample of sentences
during childhood. The theoretical problem which arises when
generalisations are introduced into the system is to find well-motivated
principles for distinguishing '"correct" generalisations which must be
retained in the developing grammar from "incorrect”" generalisations
which must be eliminated. [Chomsky, 1957, 1965]). This is part of the
general problem of deciding why it is that among the many grammars which
can generate any given corpus it is usual to f£ind one or more which are
much more obviously appropriate than others. This 1s not merely a
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problem of theoretical linguistics: a prominent feature of young
children’s speech is the occurrence of "overgeneralisations" like hitted
and mouses which drop out of use in the course of language development.
How it is that children realise that these are wrong while other
generalisations which have an equal (zero) frequency of occurrence are
right is the problem to be solved. Program SNPRI4 and the theory on
which it is based provide a tentative answer.

COGNITIVE ECONOMY

A basic supposition of this project has been that some aspects at least
of linguistic and cognitive development are manifestations of
data~compression principles which have the effect of minimising
information storage requirements in the brain or information
transmission requirements or both. This supposition derives in part
from the notion that the human nervous system is the product of
evolutionary processes of natural selection which are 1likely to have
favoured principles of efficiency in information handling [Von Bekesy,
1967; Barlow, 1969].

Efficiency is a broad term embracing information storage and
transmission costs, and also such concepts as reliablity, accuracy and
speed of operations. It would be wrong to suppose that data compression
is universal and that redundancy has no place in brain function ~--
several trade-offs operate under the rubric of efficiency [Wolff,
1978a). This said, it is still of value to explore the possible role of
data compression principles in language acquisition. Three such
principles have been considered previously [Wolff, 1978a] and will be
reconsidered here together with two others.

Data Compression Principles

1. A body of data like ABCDPQRABCDABCDPQRABCDPQRPQR may be recoded as
(x) (V) (x) () (y) (%) (y)(y) where x ---~> ABCD and y ---> PQR.

2. Two or more sequences like ABCIJKDEF and ABCLMNDEF may be recoded as
ABC(X)DEF where x ---> IJK|LMN.

3. When segmental and disjunctive groupings are being chosen in 1 and
2, frequent groupings are preferable to rare ones (principle 3a) and big
ones are better than 1little ones (principle 3b). The product of
frequency and size should be maximised.

4., If a pattern is repeated as a sequence of contiguous instances then
the sequence may be reduced to one instance of the pattern, coded for
repetition, perhaps also with a record of the number of instances.
Recursion is a coding device of this sort.

5. A crude but effective means of economising on data storage or
transmission is to discard data or simply not record it. Crude as it
seemingly 1s this principle of economy is related directly to
generalisation as will be seen.

Amongst the evidence for the psychological relevance of principles 1 and
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3 is the fact that program MK10, which is based on those principles,
successfully identifies word segments in natural language texts and
mimics aspects of vocabulary growth in children [Wolff, 1977].
Principles 2 and 3 have been applied by Rosenfeld et al. [1968] and by
Kiss [1973] who have demonstrated that word groups derived from shared
contexts coincide quite closely with the part of speech categorizations
traditionally recognised by linguists. Grammar discovery by MK10/GRAM15
depends on the application of principles 1, 2 and 3.

So far in this discussion we have not specified what body of data is
being reduced by the application of these compression principles. The
grammar being built by a child clearly takes up some storage space and
there 1s presumably some advantage in minimising this space (the size,
Sg, of the grammar). However, the grammar can itself serve as an
encoding device for cognitive data and we may suppose that there is also
an advantage in creating a grammar which encodes such data as
economically as possible. The effectiveness of a grammar or part of a
grammar for compressing data (termed its "compression capacity” or CC),
may be defined as (V-v)/V where v is the volume, in bits, of a body of
data after encoding by the grammar and V is the volume of the data in
unprocessed form. As a general rule there seems to be a trade-off
between Sg and CC: small grammars tend to be inefficient coding devices
and vice versa. Given this trade-off it is not obvious at first sight
what relative weights should be attached to CC and Sg; a priori we do
not know the relative importance, biologically, of these two measures.
However this problem may be shelved if we suppose that children start
with a small set of innate perceptual analysers which is equivalent to a
primitive grammar and then add to this grammar in such a way that for
each increase in Sg there is a corresponding increase in CC. We may
suppose that grammar construction stops when the balance between Sg and
CC 1is optimal and we may further suppose that this optimum varies from
one person to another.

Whatever the balance may be for any individual, it seems clear that
there is always an advantage in trying to maximise the ratio of CC to Sg
for any given Sg. If a grammar is built in this way it seems that the
gains in CC for unit increase In Sg will tend to be greatest in the
early stages and decrease progressively as the grammar becomes larger.
Additions to a grammar should tend to become progressively less
"profitable"” in terms of increases in CC and this may explain why the
pace of language development is apparently greatest in the early years
and decreases throughout childhood and beyond. Program SNPR14 will now
be described in general terms to try to show how this kind of effect may
be achieved using the five data compression principles set out above.
This description is also intended to show how generalisation,
overgeneralisation and corrections of overgeneralisation may be fitted
into this scheme.

DESCRIPTION OF PROGRAM SNPR14

The general format of SNPR14 is like that of MKIO [Wolff, 1975, 1977]
but it contains additional features designed to remedy the shortcomings
of MK10/GRAM15 which were described above. Like MKI10/GRAM15, SNPR14
starts with minimal (M) elements and creates elements of two main types,
SYN elements which encode sequential or syntagmatic relations in the



WOLFF-5

text and PAR elements which encode disjunctive or paradigmatic
relations. The term SYN element covers simple (S) elements and complex
(C) elements. Each of the former is a string of two or more M elements
and each of the latter is an element which contains at least one PAR
element or at least one C element amongst its comnstituents. Since PAR
elements may themselves contain M, S or C elements it is clear that C
elements may be arbitrarily complex.

Program SNPR14 is, at the outset, provided with a primitive grammar of M
elements which has the form # --~> A|B|C|...|Z|##. This grammar allows
it to encode any (alphabetic) text by repeatedly choosing one character
from the set of characters specified in the single recursive disjunctive
re-write rule. This grammar illustrates the fifth compression principle
because it can be regarded as a very compact (if crude) statement of the
structure of the input corpus. This paucity of Information about the
structure of the text leads the grammar to generalise to an infinite
variety of other alphabetic texts. The compactness of the grammar
contrasts with its dinability to introduce any compression into its
encoding of the sample text -- its CC is zero. (This primitive grammar
may be compared with another primitive grammar with one re-write rule of
the form: # ~--~> the complete sample of text. Unlike the first
example, this primitive grammar is not at all compact and does not
generalise, but it can encode the sample text wusing just one bit of
information. A "realistic" grammar for a text sample is some kind of
compromise between these two extremes.)

Like MK10, program SNPR14 scans its text sample repeatedly, keeping a
count of the frequencies of contiguous pairs of elements and, at the end
of each scan, picks out the most frequently occurring pair and adds it
to its "dictionary" of elements -- its grammar. In subsequent scans
this pair behaves as an indivisible unit, segment or element.

On every scan a parsing system assigns segments to the text in
accordance with the current state of the grammar. By always selecting
the largest element that matches any portion of text it tends to
maximise the average size of segments in any parsing in accordance with
principle 3b.

The program thus "builds" elements and adds them to its grammar in such
a way that frequent elements are selected before rare ones and, for any
given frequency, elements are built to be as large as possible
(principles 3a and 3b). The effect of this is that gains in CC for umit
increase in Sg tend at all times to be maximised and it seems also to
mean that elements are, in general, added to the grammar in descending
order of CC.

SNPR14 differs from MK10/GRAM1S in that a "folding" process like GRAMI15
operates after every scan so that the two processes are interwoven and
interdependent. This is the integration which was missing from
MK10/GRAM15. The process of finding and incorporating PAR elements is
essentially the same as in GRAMI5 but with one important point of
difference to be described below. As in GRAMI1S5, the "contexts" of any
element are derived from those other SYN elements which contain it:
ABC*DEF 1s a context for LIMN derived from ABCIMNDEF. A systematic
search is made to find those two elements (if any) which have the
highest frequency of occurrence in shared contexts. This pair is formed
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into a PAR element and the reference number of the PAR element is then
used to modify the elements from which the shared contexts were derived:
ABCIJKDEF and ABCIMNDEF both become ABC(x)DEF (where x ——~> IJK|LMN) and
one of the two instances is deleted. Again, as in GRAM15, this process
is repeated until PAR elements have been built to be as large as
possible and no more PAR elements can be found. The overall effect of
this operation (which is an application of principles 2 and 3), is to
reduce Sg without materially affecting CC.

The important point of difference between this process and that in
GRAM15 is that substitutions are made not only in those SYN elements
from which the shared contexts of each PAR element were derived but also
in all other SYN elements which contain one or other of the constituents
of that PAR element. An element like QRSLMNTUV would become QRS(x)TUV
even though x (with the structure IJK|LMN) was derived from ABCIJKDEF
and ABCLMNDEF. This extension of the range of application of PAR
elements is one of the two ways in which SNPR14 forms generalisations.
It is an example of a principle proposed by Cook & Rosenfeld [1976]:
whenever one production in a grammar "covers" another production (i.e.,
vhen the first production can generate the same range of terminal
strings as the second production, and more) then the first production
may replace the second production in the grammar. It is also an example
of principle 5: we have discarded some information from the grammar and
have at the same time predicted that the string QRSIJKTUV is part of the
language. This prediction may or may not be true (see later). If it
turns out to be true then there will be a gain in CC despite the
reduction of Sg: the ratio of CC to Sg will be improved.

The generalisation mechanism which has been described has the potential
for forming recursive structures without ad hoc provision because any
element in which a PAR element 1is incorporated may itself be a
constituent of that PAR element, either immediately or at depth.
Consider, for example, a grammar containing elements A, B, C, BB, ABC
and ABBC amongst others. A PAR element (x) with the structure B|BB may
be formed from ABC and ABBC and then both of these elements will become
A(x)C (and one of them will be deleted). BB will be modified to become
(x)(x) so that structure x will therefore be B|(x)(x) which is
recursive. Such strings as ABBBC, etc. would then fall within the
generative range of the grammar. Recursion is an example of the fourth
compression principle.

Program SNPR14 as it has been described so far is a system which forms
S, C and PAR elements from the earliest stages of processing. This
means that the parsing system has to be able to recognise elements of
all types as indeed it can. It also means that when new SYN elements
are formed by concatenation at the end of each scan, each of the two
elements which are joined together may be of any type -- M, S, C or PAR
elements. This feature of SNPR14 is the second of the two ways in which
the program may form generalisations. A C element like (m)X(n)Y (where
m ---> A|B and n --~> P|Q) may be created by concatenation of (m)X and
(n)Y when the text contains only AXPY, BXPY and AXQY amongst the four
possible terminal strings of this element. The string BXQY is a
generalisation predicted by element (m)X(n)Y. As with the previously
described mode of generalisation, this operation can have the effect of
improving the ratio of CC to Sg.
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Correction of Qvergeneralisations

The two generalisation mechanisms which have been described produce an
increase in the range of terminal strings which SYN elements can
generate beyond the range of strings from which those elements were
initially derived. Basic information theory indicates that the
specification of one item out of a small set requires less information
than specifying omne item out of a larger set. So if the generative
range of a grammar extends too far beyond the corpus from which it is
derived we may expect losses in CC. There may, therefore, be some
advantage in putting a limit on the generalisation process so that
generative range does not become too big. In the following paragraphs a
simple "rebuilding"” mechanism is described which has the effect of
"ecorrecting" certain "overgeneralisations" while leaving other
generalisations untouched. It is proposed as a tentative explanation of
how a child eliminates utterances like hitted and mouges but retains
many other generalisations as a permanent feature of his linguistic
competence inspite of their zero frequency in the speech which he has
heard. It seems likely that the overall effect of these mechanisms for
forming generalisations and correcting overgeneralisations is to improve
the ratio of CC to Sg-.

Rebuilding mechanism. For a C element to be identified during a scan of
the text, each constituent PAR element, at any level, must be identified
by the occurrence in the text of one of the constituents of that PAR
element. For example, the C element (m)X(n)Y (where m ---> A|B and n
--=> P|Q) can be recognised if the string AXPY occurs in the text and in
that case m 1is realised as A and n is realised as P. Part of the
rebuilding mechanism is a system which keeps track of these realisations
for all PAR elements contained within all C elements identified during
each scan of the text. At the end of each scan a check is made, for
each C element, to see whether any of the constituents of any of its
constituent PAR elements have failed to occur in the text. When that
happens the PAR elements which have not been fully realised within a
given C element are "rebuilt" by removing the non-occurring constituent
or constituents. Corresponding adjustments are then made in the
structure of the C element (and any "lower level” C elements which may
be implicated). These adjustments are made in such a way that they
effect only the structure of the given C element(s). Consider, for
example, the strings AXPY, BXPY, AXQY and BXQY which would identify an
element (m)X(t)Y (where m —--> A|B and t -—-> P|Q|R). If these were the
only instances of the element in a text sample then the PAR element t
would be rebuilt as an element with the structure P|Q which would
replace t in the C element. If the PAR element P|Q already exists in
the grammar as, say, n then the C element would become (m)X(n)Y. If P{Q
does not already exist then it would be given its own number, say p, and
the C element would become (m)X(p)Y.

The same point may be illustrated with a more real-life example using
phonetic symbols (in which certain complexities of phonological and
semantic conditioning have been glossed.) A structure like /(h)ez/
(where h —-=-> bokslmatjlkislmausl...) would correctly generate words
like /boksez/, /matfez/ and /kisez/ but would also produce the childish
form /mausez/. If h is reduced to i (where i ~—-> boks|matf|kis]...)
then the new structure, /(i)ez/, will not overgeneralise in this way.
The adult form /mais/ may be built up independently and then at some



WOLFF-8

stage, presumably, it would be incorporated in a PAR element 1like
J{lez|mais| .../

The attraction of this kind of mechanism is that it can eliminate some
generalisations but leaves others permanently in the grammar. If the C
element (m)X(t)Y (where m —~-> A|B and t ---> P|Q|R) is identified by
the three strings AXPY, BXPY and AXQY, and if the string BXQY fails to
occur in the text then t will be reduced to P|Q as before and BXQY will
remain as a permanent gemneralisation because the three strings contain
all of A, B, P and Q in the context of the C element.

Summary of SNPR14

This program may be seen as a set of interwoven processes designed to
build a grammar in such a way that CC is maximised for any given Sg.
The "building" process (which resembles MKI0) adds elements to the
grammar in approximately descending order of CC and the storage
requirements of each element tend to increase as the program proceeds so
that gains in CC for unit increase in Sg become progessively smaller.
The "folding" process (like GRAM15) apparently has the effect of
reducing Sg more than enough to compensate for any resulting increase in
CC and thus helps to raise the (C/Sg ratio. The two generalisation
processes seem to have the effect of producing further gains in the
CC/Sg ratio. The rebuilding process may produce some increase in Sg (if
new PAR elements are produced) but we may suppose that these costs are
outweighed by the benefits of reducing excessive generative range in the
grammar . Quantified tests of these proposals have not yet been
attempted .

RESULTS

A text has been prepared like that shown in Fig. 1 but without any
instances of the sentences JOHNLOVESMARY and WEWALKFAST. 1In the early
scans of this text the program forms S elements only. Words like SUSAN,
HATED, and DAVID are built up as ((((SU)S)AIN), (H(((AT)E)D)) and
(D({CAV)I)D)). At the stage when the grammar contains SUSAN and UN
(part of ROUN), the first PAR element (reference number 42) is formed
with the structure U|SUSA. (Both U and SUSA share the context *N.)
SUSAN and ©UN are both converted into (42)N and one of them is deleted.
On the next scan, element (42)N is built into R(42)N, a structure which
can generate RUN and the overgeneralisation, RSUSAN. On the following
scan the monitoring and rebuilding process converts R(42)N to RUN and it
also restores element (42)N to SUSAN. In this way the
overgeneralisation is corrected. Other examples of
(over)generalisations occur as the program proceeds which arise both
from building, as in the above example, and also from substitution of
PAR elements in elements other than those from which they were derived.
All overgeneralisations are rapidly corrected.

The first "correct" PAR element to be formed is JOHN|DAVID (ref. 69),
derived from the S elements DAVIDHATED and JOHNHATED. The two S
elements are each converted into a C element, (69)HATED, and one of them
is deleted. The program proceeds quite soon to create a C element with
the structure (69)(74)(72) (where 69 ---> JOHN|DAVID; 74 ———>
HATED|LOVES and 72 ---> SUSAN|MARY). This is identical in form to one
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of the two sentence patterns in Fig. 1.
creates another C element

(where 77 ——-> WE|YOU; 75 ——-> RUN|WALK and 70 ——> SLOWLY|FAST).

is the same as the other sentence pattern in Fig.

two patterns have been built up despite the omission from the

Soon after
(ref. 76) with the structure (77)(75)(70)

that, the program
This
Notice that these
text of

1.

JOHNLOVESMARY and WEWALKFAST; the rebuilding mechanism cannot eliminate

these generalisations from the grammar.

These two sentence patterns are built up without the need
But SNPR14 has, at present,
allowed to
sentence patterns within larger
internal structure is preserved within these containing structures.

program manually at any particular point.
no natural stopping point and, if it is
incorporate the

to stop the

run on, it will
structures: their
At

any stage after the two sentence patterns have been created, a parsing

of the text by the program clearly reflects the

structure which the

original grammar would assign to the text and in this sense it can be

said that SNPR14 successfully retrieves the original grammar.

large number of elements which were formed in the
the sentence patterns cease to have any function
identified at the top level, or as constituents of
non-functional elements are "garbage" which may be

SNPR14 has been run on texts other than that shown

A fairly
course of building up
either as elements
those elements. Such
discarded.

in Fig. 1. dncluding

a text whose grammar has an hierarchical organisation and one whose
grammar shows recursion. The program has been less successful in these
cases apparently because of a general weakness in the program and not
because of the hierarchy and recursion features per se: for reasons
which are not yet fully understood, the program sometimes fails to form
key constituents and then it is unmable to build the larger structures
which contain them.

Concluding Remarks

Program SNPR14 is a partial model of first language acquisition which
seems to offer some ingight into how children may discover segmental and
disjunctive groupings in language and how they may generalise beyond the
language which they hear, correcting any overgeneralisations which
occur. The program comes close to meeting the criteria of success which
were set. It seems to offer an explanation of certain phenomena in
child language other than those to which it was originally addressed,

but space does not permit a discussion of these here. The immediate
task for the future 1s to improve 1ts performance sufficiently for
meaningful results to be obtained with natural language so that

comparisons between the model and children may be made in more detail.
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1. Introduction

-At the Fourth Workshop on Automated Deduction in Austin, Texas 1979,

Peter Andrews presented the following valid formula in first-order logic,
which, because of the seven equivalence connectives, caused difficulties
for theorem provers while trying to show the non-satisfiability of the
negated formula: (3xVy(Px e Py)e(3xQx=VyPy)) < (IxVy(Qx« Qy) « (IxPxewvyQy)).

In the meantime at least two implemented theorem provers have been able to
hand1€ this formula successfully: Dennis de Champeaux's implementation at
the University of Amsterdam and Jorg Siekmann's at the University of Karls-
ruhe [33. In the latter case, based upon connection graphs, splitting rules
were used which generated two connection graphs, each consisting of about
70 clauses and 9000 links. Although both empty clauses were quickly derived
much time and space had to be placed into setting up the initial graphs.

In [8] the semantic tableau method of Smullyan {731 was used to present a
modified Kripke [51 proof procedure for higher-order modal logic. An imple-
mentation of this procedure [4]1 for first-order logic suffered from a large
demand for memory space when eguivalence connectives appeared’iin the formu-
las to be proved. One aspect became particularly apparent.in this procedure
however, and that was the obvious redundancy of information produced in the
finished tableau whenever there were initial equivalence connectives in the
given formula.

The path-testing methods of Bibel [2] have the advantage over resolution
and semantic tableau methods of not requiring very much more memory space
once the given formula has been transformed into the non-normal form matrix
- with one exception however - provided the given formula contains no equi-
valence connectives. So in order to solve this problem we have modified the
semantic tableau and path-testing methods, as will be shown in sections 4
and 5.

2. Notation and Definitions

In the sequel the expression consistency tree (or tree for short) will
often be used synonymously for semantic tableau. The reader not familiar
with this theorem proving approach or propositional logic is referred to
Leblanc and Wisdom [61 or Smullyan (71,

The logic used in this paper is propositional logic. An atom (atomic formula)
is a formula containing no logical connectives. A literal is an atom or the
negation thereof. The formula ~(A«B) will sometimes be written as (A#B)
and ¢ referred to as a non-equivalence connective. An equivalence operand

is a formula of the form (A°B), where °€{e=,#} and A, B are formulas. Given
a formula (A°B), where °€{v,Aa,»,»,4} and A, B are formulas then A is called

the first operand of (A°B) and B is called the second operand of (A°B).
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Given a formula & then the set Operands defined iteratively by: Operands:={d};
while one of the elements @' of Operands is an equivalence operand then
Operands:={Operands U{first operand of @', second operand of &' \g, is called
the set of equivalence-free operands of @ provided card (Operands)>1.

An element of the set of equivalence-free operands of © is called an
equivalence-free operand of @. A sign s for an equivalence-free operand of
an equivalence operand @ is an element of {0,1}.
1f A {or ~A) 1s an equivalence-free operand of an equivalence operand @
then signed A js defined as
~A if the sign for A is 0; . A if the sign for A is 0;
A if the sign for A is 1, respectively ~A if the sign for A is 1.

A branch is a sequence of formulas in a tree, such that the origin (the
formula at the top (root) of the tree) is in every branch which is in the
tree and that every formula which is below the origin is a successor of
some previous formula. A branch is closed if it contains both a formula

of the form A and a formuTa of the form ~A. A tree is closed if every branch
in that tree is closed. A branch (tree) is open if it is not closed. A for-
mula is ‘checked if one of the rules for truth-functional connectives has
been applied to it. Otherwise it is unchecked.

A finished equivalence tree of an equivalence operand @ is a tree such that
@ 1s at the origin of the tree and that at every other node in the tree
there is either an equivalence operand, which must be a subformula of @
and checked, or an unchecked equivalence-free operand of ®, which is either
negated or not.

The signs for the p equivalence-free operands in the branch of a finished
equivalence tree is an ordered p-tuple of’s1gns, written as the word

representation aldz,..di...dp with di € {0,1

Sg is the set of (p) q-combinations of the p signs for the p equivalence-

free operands such that g of the equivalence-free operands are given the
sign 1.

In section 5 we introduce the path-testing approach in which the following
definitions as presented in Bibel [11 are used. It should be noted that we
are using matrices only in the negative sense of Bibel [13.

Matrices are defined inductively by: (i) any literal is a matrix;
(i7) 1T A is an equivalence operand then A is a matrix; (iii) if MI’MZ"“’M
are matrices then the set {Ml’MZ""’Mn} is a matrix. n

Given a matrix M={C1,C2,....Cn} then the C.,i€{1,...,n} will also be called
the clauses of M. 1
If LI’EZ are matrices then LlaaL2 and L1¢L2 are equivalence operands.

The formula represented by a matrix is defined inductively as follows:

(i) 1f the matrix is a literal A then the formula represented by the matrix
is p, if A is p; ~p, if A is p; (ii) if the matrix is an equivalence operand
A then the formula represented by the matrix is the equivalence operand A;
(iii) if Fl"""Fn are the formulas represented by the matrices of a clause

C={M1,....Mn} of a matrix then the formula (F,v...vF ) is represented by C;
(iv) if Fy,...,F are the formulas representeé by the clauses of a matrix
M={C1,...,Cn} then the formula (F1 A AFh) is represented by M.
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3. Some Combinatorial Results

In Wrightson [91 it was shown that there are certain regularities in the
combinations of the word representations, which are the signs for the equi-
valence-free operands in the branch of a finished equivalence tree. These
regularities can be illustrated by the following tree.

(he9) 401 (095)
((AeaB) # C) ((AﬁB) e C)
L J N
A=B A#B A=B AéB

/\ /\ /C\ AN

K. K ~A A ~A K A
AR A A A A A
d//'vD D ~D D ~D D ~D D ~D D D ~D D ~D
~F E ~E E ~E E ~F E E ~E E ~F £ ~E E ~E

This example illustrates a finished equivalence tree where A, B, C, D, E are
metasymbols. By interpreting the negation in front of a metasymbol as a O
and the absence of a negation as a 1 then the word representation for the
last five metasymbols in the order A, B, C, D, E in each branch is obtained.
The ordered 5-tuple for the branch on the far left is 11010, the second
branch from the left is 11001, etc. The following is an enumeration of the
signs for the metasymbols.

11010, 11001, 00010, OOOO1, 10110, 10101, 01110, 01101,
11111, 11100, 00111, 00100, 10011, 12000, 01000, 01011

What is interesting about this list is that all ordered 5-tuples occur of
five ones distributed on five places, three ones distributed on five places
and one one distributed on five places i.e. the combinations given by

5 5 5

55 U S3 U S1 .
For the general case these regularities can be captured in the theorem and
corollary below which were proved in Wrightson [9].

Theorem: Given the n equivalence-free operands of an equivalence operand ©.
If the number of non-equivalences found during the construction of the set
Operands is even, resp. odd, then the set of work representations of signs
for the equivalence-free operands in the branches of the finished equivalence
tree of ® is given by

n/2 n {(n-1)/2
1. u S . for n22 and even, 2. U s" .. for n23 and odd
320 n-2i 320 n-2i ?
respectively

n/2 (n+l)/2
3. 191 Sn-(Zi-l) for n22 and even, 4. igl Sn—(Zi—l) for n23 and odd.
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Torollary: The number of combinations in each of the sets 1. to 4. of the
Theorem is given by
(n-1)/2

n/2
n _ on-1 n _ ,n-1
LT 6‘2b =2 2. T 6_21.) =2
. n/2 n n-1 (n+1)/2 n n-1
*h (;‘(Zi‘lb " Yh (;'(21‘1» "

4, A Modified Semantic Tableau Proof Procedure

The following proof procedure PROOF is based upon that for semantic tableaus
as developed in Leblanc and Wisdom [6] and incorporates the ideas shown in
the previous section, i.e. the two truth-functional rules for equivalence
operands are excluded. Instead, all branches which would otherwise be genera-
ted and stored by the use of these two rules, are now generated but not stored.
A1l that is stored is the set of Operands and the information needed for com-
puting the combinations of signs for each branch.

As is also the case for the next section, PROOF and the various procedures
called by it are primarily intended to reflect the logical structure of the
approach and aspects of programming techniques are only secondary.

At the top level, once the negated formula ® has been entered to the pro-
cedure, PROOF calls the procedure PROVE.

PROOF (@)

if PROVE(®) then return "negation of @ is valid" -
‘eTse return ™negation of ® is not valid"

END-OF -PROOF

PROVE (@)
@ - TREE; APPLY-RULES(TREE); return true

END-0F -PROVE

PROVE calis APPLY-RULES after first having placed ©@ at the origin of the
consistency TREE. As long as any of the truth-functional RULES (as in [63}
but without the two mentioned above) are APPLICABLE-TO the TREE then these
are applied by APPLY-RULES. Those BRANCHes which do not contain an unchecked
equivalence operand are now TESTed for CLOSURE. If one is not closed then
the value 'false’ is returned and the whole PROOF procedure terminated.
Otherwise the mechanism for handling equivalence operands is initiated. This
first CHECKs the equivalence operand in question @', and then calls a pro-
cedure to DETERMINE the COMBINATIONS, the OPERANDS, the NUMber of OPERANDS,
the NUMber of COMBINATIONS and the PARAMETERS for the UNION as given in the
theorem, section 3. The OPERANDS are then APPENDed to the BOTTOM OF the
BRANCH CONTAINING @'. For each combination the SIGNS are GENERATEd on the
OPERANDS in the TREE' and this results in a new TREE' which, if it is not
closed, causes the return of false.

APPLY-RULES(TREE)
while RULE-APPLICABLE-TO(TREE) do APPLY-RULE(TREE) - TREE;
while TEST-BRANCH-APPLICABLE-TO(TREE)

do [TEST-BRANCH(TREE) - CLOSURE; if CLOSURE equal notclosed then return falsel
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while UNCHECKED-EQUIVALENCE-OPERAND-IN(TREE)
do [SEEK-UNCHECKED-EQUIVALENCE-OPERAND- IN(TREE) -
(®', BRANCH-CONTAINING-@'); CHECK (@');
DETERMINE-COMBINATIONS (@' ) -» (OPERANDS ,NUM-OPERANDS ,NUM-COMBINAT IONS
UNION-PARAMETERS) ;-
AT-BOTTOM-OF ~-BRANCH-CONTAINING-®@' ~APPEND ( BRANCH-CONTAINING-0* ,
OPERANDS) - TREE* ;

while NUM-COMBINATIONS not equal O
do [GENERATE-SIGNS-ON-OPERANDS- IN-TREE'(TREE* ,UNION-PARAMETERS,
- NUM-OPERANDS) - TREE ' ;
if not PROVE(TREE') then return false;
NUM-COMBINATIONS -1 - NUM- COMBINATIONST;] return true;
END-OF-APPLY-RULES

DETERMINE-COMBINATIONS calls DETERMINE-OPERANDS which computes the OPERANDS,
the NUMber of NON-EQUIVALENCE connectives and the NUMber of OPERANDS according
to the definition of Operands in section 2. Then the PARAMETERS for the UNION
of the combinations and the NUMber of COMBINATIONS are produced as given in
the theorem and corollary.

DETERMINE-COMBINAT IONS (®)
DETERMINE OPERANDS (@) - OPERANDS, NUM-NON-EQUIV, NUM-OPERANDS;
if EVEN(NUM-OPERANDS) and EVEN(NUM-NON-EQUIV)
then (N,N-21,0,N/2)—=UNION-PARAMETERS;

if ot EVEN(NUM-OPERANDS) and EVEN(NUM-NON-EQUIV)
~ Then (N,N-2I,0,(N-1)/2)=UNION-PARAMETERS;

if EVEN(NUM-OPERANDS) and not EVEN(NUM-NON-EQUIV)
then (N,N-(21-1),1,N72) > UNION-PARAMETERS ;

if ot EVEN(NUM-OPERANDS) and not EVEN(NUM-NON-EQUIV)
™ Then (N,N-(2I-1),1,(N+1]7Z >UNION-PARAMETERS ;

SUMTNOM-OPERANDS ) > NUM-COMBINATIONS

END-OF -DETERMINE-COMBINAT IONS

5. A Modified Matrix Path-Testing Procedure

In this section a matrix path-testing approach similar to that in [2] is pre-
sented. The differences, as can be expected, are caused by the treatment of
the equivalence operands, particularly with regard to the testing of 'pure’
literals. It became necessary to introduce recursive procedure calls at cer-
tain places because the systematic approach of algorithm 4.1 A in 2] could
not always be maintained at those places in which equivalence operands
occurred.

As in section 4, the formula to be tested for validity is first negated and
the result @ is then entered to PROOF. PROVE, now a recursive procedure, is
then called. PUSH, which acts upon the stack WAIT, is the same as that in
Bibel's original algorithm with one exception, namely, whenever an equiva-
lence operand has to be PUSHed. In this case the equivalence operand, ACT
and M are placed on the stack along with information calculated by
DETERMINE-COMBINATIONS (as in last section) which is called by PUSH. POP
also has the extra job, whenever it has to POP an equivalence operand, of
initializing the generation of the next combination of signs (similar to
GENERATE-SIGNS-ON-OPERANDS-IN-TREE, in previous section) and returning the
signed operands as a clause C. Of course, all the other details of reducing
NUM-COMBINATIONS by 1 and noting the last combination of signs generated
for the next POP call, must also be handled by POP.
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PROVE (@)
1 - M;
2 ACT-@; while non-empty(WAIT) do POP(WAIT); PUSH(WAIT,"Im");
3 choose a clause C from the matrix M; M<M\C;
4 1f C is an equivalence operand then [PUSH( WAIT (C,ACT ,M)};
POP(WAIT) - (C,ACT,M); if PROVETC ACT M) then goto 20 else return false]
5 choose a matrix M' from C; if C\M' # P then“T7_74(WK_T (C\NT,ACT, MY Y
6 1f M" is not a literal and not an equivalence operand
then [ PUSH(WAIT, “1m") M<M' UM; goto 20]
7 M'" is_not a literal but is an e ujvalence operand
- then [PUSH(WAIT, “lm“) PUSH({WAIT,(M',ACT,M)); POP(WAIT) - (C,ACT,M);
:f_FROVE(C ACT,M) then goto 3 else return fa]se]
8 L+M'; ACT<ACTUL;
9 if M=@ then return false;
10 if there is no clause C€M such that either L or [ occurs in C
then [while POP(WAIT)}# "1m" do POP(WAIT); POP(WAIT); goto 3]
11 if there is no equivalence clause C€M such that K occurs in C for some KEACT
then [while POP(WAIT)# "Im" do POP(WAIT); ACT «@; goto 3]
12 else [choose K€ ACT such that K occurs in M; L<K]];
13 choose a clause C€M such that if neither « nor ¢ occurs in C
then L occurs in C else L or L occurs in an equivalence operand in Ci;M«M\C;
14 (same as line 4)
15 choose a matrix M'€C such that if neither « nor ¢ occurs in M'
then [ occurs in M' else L or L occurs in an equivalence operand in M4C <« C\M}
16 if M’ is an equivalence operand then [PUSH{WAIT,(M',ACT,M));
POP(WAIT) - (C,ACT,M); if PROVE(C,ACT,M) then goto 20else return false]
17 for each C' €M such that C' consists of a single Titeral K#L do
Tcheck each entry on WAIT (except those whose C-parts are equivalence
operands) from the top until the first occurrence of "Im" whether for
its_C-part, C", we_have KecC"; if this is true then cancel this occurrence
of K; if even C"={K} then remove the whole entry from WAIT];
18 among the matrices of T delete those which are 11terals K such that K€ ACT;
19 if C#P then PUSH(WAIT,{C,ACT,M)); if M'#L then [PUSH(WAIT, "Tm" ;goto 23]
20 while POP(WAIT) = "Im" do POP(WAIT); if EMPTY(WAIT) then return true;
21 if NEXT(WAIT) is an equivalence operand then [POP( WAIT)—»( ACT,M);
if PROVE(C,ACT,M) then goto 20 else return false]
22 else [POP(WAIT)e(C ACT,M); goto 7]
23 choose a clause CEM such that if neither e nor ¢ occurs in C
then L occurs in C else T or L occurs in an equivalence operand in C;
M« (M'\C) UM;
24 (same as line 4)
25 choose a matrix M' €C such that if neither « nor ¢ occurs in M’
then L occurs in M! else L or L occurs in an equivalence operand in M';
C+C\M';
26 (same as line 16)
27 goto 19

END-OF -PROVE

The reader is referred to Bibel's paper in these proceedings for an
explanation of the notation in the above algorithm.
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6. Conclusion and Prospects

1t can easily be seen that the above approach reduces the storage demands
from 0(2") to O(n) except for a small constant overhead. In principle the
approach can be transferred to first-order logic [101 although the saving
will not always be as great. An implementation of procedures similar to
those in sections 4 and 5 but for first-order logic are currently being
carried out by the authors of [41.
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