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Foreword from the Convention Chairs

The AISB’11 call for symposium proposals particularly  encouraged events drawing more strongly 
on the cognitive science aspect of the AISB remit. The result is a coherent programme with a very 
strong interdisciplinary  character, which is also matched in the choice of plenary speakers. The 
three symposia looking at the interaction between Computing and Philosophy, the prospect of 
machine consciousness and the quest for a new, comprehensive intelligence test, form a coherent 
unit where the eternal questions of who we are and what makes us so are asked from a dual Human-
Machine perspective. The Symposia on Active Vision, Computational Models of Cognitive 
Development and Human Memory  for Artificial Agents demonstrate how better understanding of 
the nature and basis of cognitive processes can advance work on Artificial Intelligence and, 
inversely, how computational models of these processes can help better to understand them. The 
prominent multi-agent design and modelling paradigm links the Symposium on Social Networks 
and Multi-agent Systems with the one on AI and Games. Finally, the Symposium on Learning 
Language Models from Multilingual Corpora, which brings together some of the first attempts in 
this area, can also be seen through the prism of such a general notion in Philosophy and Linguistics 
as semiosis, and the dual role of sign and interpretant that text plays in translations.

We are delighted that after another ten successful years in its long history, the AISB convention is 
returning to the University  of York. The 2011 convention takes place on the brand-new Heslington 
East campus, the result of a multi-million pound expansion that  is now the new home of the 
Department of Computer Science, and hosts the Excellence Hub for Yorkshire and Humber, a new 
incubator for interdisciplinary research and interaction between academia and industry. The last few 
years have seen a strong involvement of the Computer Science Department in such interdisciplinary 
collaboration through the York Centre for Complex Systems Analysis (YCCSA), and we hope that 
this convention will provide a boost for more synergy between York departments, with other 
institutions conducting AI-related research in the region, and beyond. As the programme shows, we 
have also made an effort to promote cooperation with industry and use the convention to support 
school outreach. The convention format makes it  perfect for establishing dialogue and collaboration 
in new areas of research, as well as across disciplines, and we hope that this year, it will play again 
this role to the full. We want to thank everyone who has contributed to it or otherwise made this 
event possible and wish all participants a fruitful and enjoyable time in York.

Dimitar Kazakov and George Tsoulas
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Introduction
Computer  games  form  an  important  sector  of  the 
digital economy, and they are sophisticated in many 
ways. The need for better AI in games is deeply felt, 
however,  and  recognised  by  the  industry. 
Conversely,  games  offer  new  challenges  and 
excellent application domains for AI technology and 
research. They are increasingly used for education, 
serious games or game-based learning, where story 
and  AI  techniques  create  a  believable,  engaging 
experience for learners.

This  symposium  focuses  on  the  application  of 
artificial  intelligence,  or  intelligent  techniques, 
frameworks  and  theories,  to  create  interactive, 
engaging, intelligent games.

There  are  academic  papers  on  AI  algorithms, 
including  Monte-Carlo  search  techniques,  and  the 
application  of  Natural  Language  Processing  to 
giving  better  tutorial  advice  situated  in  a  game 
context.  Other  papers,  from  academics  as  well  as 
from leading AI developers working in the industry, 
are about techniques to make more intelligent game 
characters and environments.

Paolo Busetta (who is  Principal  Architect  of  the 
AOS Group,  Cambridge) gives the keynote speech, 
about  the  CoJACK system,  which  adds  to  beliefs, 
desires and intentions, more psychological primitives 
to simulate agents with greater believability.

Finally  there  are  some  more  speculative  papers 
that propose ways to apply emotion brain-computer 
interfacing  to  virtual  reality  environments,  and  an 
application of established AI technologies to serious 
games for cultural education.

We  would  like  to  thank  the  Programme 
Committee members for their interest, their reviews 
of the submissions, and their helpful suggestions to 
the  authors.  Thanks  also  to  the  AISB  convention 
organising team, at the University of York.
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Industry day

The AI & Games Symposium this year is happy to 
include an AI & Games Industry session, at which 
companies from industry are invited to showcase 
their games and which also includes a presentation 
from a venture capital fund. The purpose of the 
session is to help academia and industry to network 
together and commercialise new ideas. The Industry 
session has been organised with the assistance of 
Dimitar Kazakov (University of York).

Sponsorship by Namaste

We are grateful to Namaste Entertainment Pvt. Ltd., 
of London and Kathmandu, for supporting two 
students to attend the Symposium. Thanks to 
Rodolfo Rosini in particular for his efforts and 
interest in AI & Games.

http://namasteevents.com/
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Keynote speech by:                 Paolo Busetta

An introduction to CoJACK

CoJACK is an extension of JACK, a computer language for the development of multi-agent systems, 
used in simulation and training especially to model sophisticated behaviors and tactics. CoJACK 
extends the BDI paradigm implemented by JACK with a set of primitives (interpreted by or 
embedded into its execution engine and controlled via configurable mathematical formulae and 
parameters) to represent "sub-rational" aspects of human performance - e.g. speed and order of 
memory recall, errors and confusion during recall, different utility of alternative courses of action, 
neglecting of commitments, and so on. These primitives can be used to model certain non-rational 
aspects - fatigue, emotions, drug intake, personality traits and level of experience - without directly 
affecting the representation of "ideal" behavior, e.g. tactics written according to doctrine. CoJACK 
has been recently inserted in a list of reference cognitive architectures published in 2010 (see 
http://bicasociety.org/cogarch/ ) by the Biologically Inspired Cognitive Architectures 
Society.

In this seminar, we will provide a quick introduction to CoJACK and show some examples of VR-
based training systems for a specific domain (anti-terrorism training).

The first part of the talk will provide background information on the BDI (Belief – Desire – 
Intention) paradigm, will motivate the need for cognitive extension, and will introduce the 
architecture of CoJACK.

The second part will show examples built using VBS2 by Bohemia Interactive. VBS2 is a 
virtual reality / serious games platform, popular for military training; we used CoJACK for 
animating the avatars involved in the game.

Paolo Busetta 
Principal Architect
AOS Group
Wellington House, East Road Cambridge CB1 1BH
T: +44 1223 308 000
www.aosgrp.co.uk



 



Procedural Quests: A Focus for Agent Interaction in
Role-Playing-Games

John Grey and Joanna Bryson 1

Abstract.
In current videogames non-player characters’ (NPCs’) abilities to

be active, dynamic agents are typically constrained to a bare mini-
mum. Agents have very local behaviours to deal with actions, which
can combine in limited ways with global game mechanics to deal
with repeated behaviours. Here we present a systems-AI approach to
designing NPCs. The proposed NPC design is capable of dynamic
dialog, with context generated from both episodic memory and emo-
tional valence towards previous social interactions. The NPCs can
be allowed to run independently of users to develop a believable so-
cial network of friendships and grudges, with memories supporting
such opinions. Additionally, NPCs can spread information in a more
realistic manner than the current standard, global mechanisms. This
information fomrs a culture, which then serves as the motivation for
quests offered to other characters and the user that encounters these
societies.

1 Introduction
In Role-Playing-Games (RPGs) gameplay is typically structured
through quests. Moira Brown’s task to kill some raiders and loot a lo-
cal mall in Fallout 3 is one example of a quest. Quests serve the pur-
pose of directing player action, while also advancing a narrative. Side
quests are types of quests with reduced narrative complexity, which
serve to advance the game in relatively basic ways, for example by
giving a character more experience or weapons. However, in many
games the narrative component of side quests is not just reduced,
but missing entirely. Without a narrative context, such sidequests can
be unmotivated and tedious for players. Additionally quests often
limit the methods of interaction between the player and the world,
and between the player and the non-player characters (NPC) they
encounter. Players’ choices are constrained, and Quest Arcs (col-
lections of quests that create a larger narrative) offer choice only at
branch points in the narrative. Such choices do not affect the gen-
eral world that surrounds the player, or, when they do, this generally
takes the form of global morality meters — single variables that in-
dicate a value known to every character in the game. As such, in a
large number of modern RPGs, killing an NPC will instantly reduce
the player’s global moral standing in the world, even with NPCs who
could not possibly know of the relevant action. All police (or what-
ever the game equivalent may be) will converge to arrest or fight the
player. This is so prevalent a form of interaction in games that it has
entered into videogame humour as:

The Guy in the Street Rule:. No matter how fast you travel, ru-
mours of world events always travel faster. When you get to any-
1 University of Bath, UK, email: johngrey4296@gmail.com,

jjb@cs.bath.ac.uk

where, the people on the street are already talking about where
you’ve been. The stories of your past experiences will spread even
if no witnesses were around to see them. [20]

Believable Social Agents (BSAs) offer a mechanism for reducing
the constraints and rigidity of side quests and increasing the level of
player engagement in computer games without substantially increas-
ing the cost of their production. Such agents autonomously gener-
ate complex social networks of friendships and grudges leading to
a more interesting social landscape when approached by the player.
This gives both the player and NPC more to talk about, automatically
generates variation in game play, and provides more narrative moti-
vation to the quests needed by the player to increase their character’s
status.

Here we present a methodology for developing Believable Social
Agents, as an option to add context to games without the author in-
tensive requirements. We begin with a brief review of quests and
believability. Then we describe our approach and a quest generator
completed under that approach. Finally we describe the developer’s
experience of building in our system, with mention to how we have
extended on the current state of the art for AI representations under-
lying quest generation.

2 Believability and Narrative Quests
We have developed the idea of generative procedural quests from
a variety of literatures relating to games and AI, including story
generation and computational creativity. Of particular importance
are the areas of Quests, both ‘traditional’ and procedural, and AI,
specifically the typical characteristics of videogame AI and suitable
methods for videogames. Quests are most usefully described by Jeff
Howard as the intersection between gameplay and narrative [24]. In
this way, particular patterns of action are combined with a story that
gives context to that action, typically killing someone or something
(a kill quest), or getting an item (a fetch quest).

2.1 Agents
Artificial intelligence has been used in videogames in a wide variety
of forms for many years. These uses of artificial intelligence are gen-
erally concerned with the control of enemies, in the form of individ-
ual enemies in First-Person Shooter games, or overall teams in strat-
egy games. In academic research meanwhile, artificial intelligence
has dealt with a wide range of issues, from learning to natural lan-
guage processing to robotics planning. However, NPC artificial in-
telligence has generally been a lot simpler, with World of Warcraft’s
[7] NPCs being prime examples. In World of Warcraft, NPCs stand in
one spot, an exclamation mark above their head indicating they have



a quest available, and are otherwise non-reactive. NPCs of this form
are one form of ‘obviously stupid’ agents that are identified by Bates
as ‘perhaps the primary impediment to fully suspending disbelief’
for a virtual world [5, p2].

Bates [6] goes on to note that there is a difference between the
requirements of traditional artificial intelligence and BSAs, in that
one focuses on high competence and realistic behaviour, while the
other merely requires that an agent ‘not be clearly stupid or unreal’
[6]. This shift of perspective is a very important difference between
interactive fiction perspectives and more traditional AI perspectives.
Blumberg [8] points out that the classic era of animation contained
many characters that are believable — that is, immersive and emo-
tionally engaging — without being even slightly realistic. They com-
municate emotional state with grossly exagerated gestures and ac-
tions, yet maintain our identification and sympathy. This description
is congruent with Mateas’ [25, p8], and also Barros arguments [4]
which highlight a very specific difference between the two styles.
In traditional AI planning of behaviours, the emphasis is generally
on the optimality of the solution, as discussed in [9]. In ‘expressive
AI’ [25, p5] there are ‘softer’ dramatic constraints [4, p35]. Current
agents in games that will stand in the same place for the entire game,
or run screaming for 2 metres when the player kills someone, but then
turn around and continue calmly on their way, is very clearly stupid
and unreal, thus supporting Bates. In the present work, we generate
side quests procedurally, based on both local events and local knowl-
edge of historic events. In so doing, we utilize research into agents
and AI in a constrained context, making the actions and behaviours
of NPCs emerge naturally from the dynamics of the game, in con-
trast to either isolated or overly global supplements. This increase
believability.

The approaches available for implementing the sorts of agents
needed for quests are divided into two main categories by Mateas
[25], who makes a distinction between ‘Classical’ agent approaches,
and ‘Interactionist’ approaches. Classical approaches attempt to
model mental processes, while Interactionist, or Behaviour Based
approaches focus on the results of intelligence. Mateas and others
have concluded that interactionist approaches are more useful in ap-
plication to believable game and story agents, both because of their
dynamic nature — responding in a natural way to environmental con-
tingencies, and because they are easier to develop in [28, 8, 33, 13].

The interactionist approach — dynamic, behaviour based or some-
times ‘reactive’ AI — is sometimes denigrated as being too simple
to carry a narrative plot, because the individual agents ‘only’ react
to their environment and the opportunities is presents. In both indi-
vidual agents and game AI more generally, many have felt a need to
reintroduce the structure of a more formal planning system “on top”
of the behaviour based system, in order to guarantee structured, co-
herant plans [14]. This approach allows the combination of low-level
behaviours and dynamic / reactive plans that do not require compu-
tationally expensive searching, and computationally expensive con-
structive planners which run less frequently but perform the global
reasoning for an overall plan. Examples of this approach include
interactive story generators such as Mateas’ Facade [25] or Hayes-
Roth’s woggles [22]. These include a drama manager that closely
resembles a typical constructive planner, but also include individual
character agents. Drama managers are also simiarl to Game Masters
in traditional Pen and Paper RPGs [3]. These views, combined with
Brom’s work in Emohawk [10] suggest that autonomous characters
require more than just basic behaviours and reactive plans at the in-
dividual agent level to create sufficient dynamic worlds, despite the
variety of character-focused methods of story generation. On a re-

lated note, Bryson [13] has previously argued that the best approach
to game design is to in fact facilitate authors in creating characters
that will drive the narrative for themselves.

Despite their emphasis on narrative, Mateas and Aylett both fo-
cus on engaging interactive stories, and thus miss the side-quest as
an avenue for more structured game narratives. We believe that in
fact the narrative needs of a side quest provide enough context for
a meaningful dynamic world without requiring the encumberment
of an overarching managers that resemble the story generation pro-
grams mentioned earlier. This is the approach taken in the present
work.

2.2 Procedural Quests and Social Agents
Actual attempts at, and considerations of, procedural quests are few
and far between. Calvin Ashmore’s work on Charbitat is an impor-
tant exception, generating procedural worlds with spatial quests of a
key-lock form [2]. However, that work does not deal with creating
meaning, either in Howard’s or Salen’s conception. Anne Sullivan’s
work on the GrailGM takes an alternative path from that of this work,
and uses a Quest manager instead of agents [35]. Although this ap-
proach can work, it should be noted that procedural quests are simi-
lar to computer-based story generation, in that both may take either
story or character-centric approaches [32]. Story-centric managers
can provide greater narrative coherence, while character-centric ap-
proaches can enable more believable and understandable actions by
characters.

Meanwhile, there have been experiments with procedural quests
in videogames. Notably the game Yoda Stories, which generates both
the worlds and the story to be followed in each play through of the
game. Similarly Din’s Curse enables enemies that live long enough
to become unique, which then triggers quests to kill that particularly-
important enemy. Additionally, Din’s Curse operates through having
archetypes of characters within a town, rather than named characters,
allowing quests interrupted by a death of a character, to trigger a new
quest of finding a new instance of that archetype.

Related work deals with Believable Social Agents in interactive
contexts, but this is also relatively limited. Per Persson deals with in-
teractivity, but the requirements of interactive narrative would appear
to be greater than those needed for the creation of contexts for quests,
and as such would unnecessarily complicate matters [30]. Michael
Mateas’ work, both on Facade [27], and The Prom [26] are the pri-
mary works concerning social behaviours as a part of game mechan-
ics. However, these place relatively complex agents at the forefront
of a game’s dynamics, and are as such described as Social Games,
in that the main game mechanics revolve around social interactions,
which is quite different from the intended genres of this current work,
which is RPGs.

3 NPC Design for Believable Social Agents
In this section we introduce our approach to creatin gthe social an-
gents that will in time generate a beliveable society to engage the
player. The principle design elements for Believable Social Agents
are:

1. A set of general-purpose priorities for the agent.
2. Individual memory and perception.
3. Conversational ability.

An implemented Believable Social Agent can then instantiate
quests as necessary, which requires particular considerations for the
design of such quests.



Figure 1. A typical view in the prototype game

3.1 General Prioritised Action Selection
NPC and Agent design is a broad area that may utilise a number
of approaches. Recently particular emphasis has been given to the
use of Behaviour Trees and Hierarchical Plans for agents in games
[23]. Although neural nets have been used in some games such as
Creatures [18], Behaviour based approaches appear to be favoured
in modern videogames due to their modularity, ease of creation, revi-
sion, and their relatively light processing requirements [19]. We have
chosen to use the Behaviour Oriented Design (BOD) approach to
develop our NPC [17]. BOD provides a set of heuristics and an itera-
tive development strategy for creating both character behaviour and a
hierarchical control the Prioritised, Ordered, Slip-stack Hierarchical
(POSH) dynamic plans, which are similar to behaviour trees. BOD
has previously been applied to video games and has been featured in
some game AI design tools [12, 1].

BOD addresses the requirements of BSA in the following way:

1. A set of general-purpose priorities for the agent. We encode these
in terms of BOD’s POSH plans, although any hierarchical AI plan-
ning structure could be used.

2. Individual memory and perception. Under BOD (like OOD [21])
the capacity for memory is specified in behaviour modules which
also provide methods for generating and accessing that memory,
and further methods for acting on it.

3. Conversational ability. BOD does not provide these specifically,
but rather we customised a set of general-purpose language abil-

x

〈
(Strong / Scary Enemy Nearby)⇒Flee

(Suitable Enemy Nearby)⇒Designate to Attack
(Target Designated)⇒Attack

(NPC Designated)⇒Talk
(Item Designated)⇒Pickup

(Suitable NPC Nearby)⇒Designate to Talk
(Suitable Item Nearby)⇒Designate to Pick up

(Quest in Memory)⇒Quest Action Designation
()⇒Process Memories

〉

(1)

Figure 2. The BSA Drive Collection

x

〈
(Strong / Scary Enemy Nearby)⇒Flee

(Target Designated)⇒Attack
(NPC Designated)⇒Talk
(Item Designated)⇒Pickup

(Suitable Enemy Nearby)⇒Designate to Attack
(Suitable NPC Nearby)⇒Designate to Talk
(Suitable Item Nearby)⇒Designate to Pick up

(Quest in Memory)⇒Quest Action Designation
()⇒Process Memories

〉

(2)

Figure 3. The original, easily interruptible, BSA Drive Collection

ities, utilising the memory capabilities of the agent extensively.
These are described below.

In BOD, the top of the plan hierarchy is the Drive Collection,
which determines which of the behaviours available to an agent
should be executed at any particular instant. In this article we illus-
trate single levels of a POSH hierarchy, which from this perspective
are very similar to a STRIPS plan or Nilsson’s Teleo-Reactive Plans
[16, 29]. Within each sub-component of the hierarchy, each possible
action is guarded both by a necessary precondition which the agent
must sense, and by a priority. If more than one action can be exe-
cuted, the highest-priority one of these is executed.

Figure 2 shows the drive collection for all the BSAs in our so-
ciety. What differs between agents are not their abstract priorities,
but rathere their experience, memory, and physical location. The ac-
tions derived from the drive collection form the basic abilities from
which quests can be constructed. These actions are sequenced by the
interaction of the POSH planner and its environment — the plan el-
ements are arranged in an order such that they will generate action
and change in both the character and the world. As the current fo-
cus for quests are killing and fetching, this short list of behaviours
is sufficient. The general pattern for quest activities is to talk to an
NPC, receive a quest, then move to a target location, either kill an
NPC or pickup an item, and then return to the original NPC. Thus,
the Quest Action Designation behaviour merely queries a quest and,
according to the state of the quest, deals with the target, or returns to
the original giving NPC.

The ordering of behaviours, placing the designation of talking and
item targets lower in the priority of the plan as a group, while having
attack designation higher than the attack action, is to ensure believ-
able behaviour. If the drives were arranged as in Figure 3, agents
could move across the world to attack a particular individual, all the
while being under attack from others enemies. This is undesirable
for combat, but slightly more desirable for communication and item
behaviours.

3.2 Episodic Memory, Emotions and Perception
The memory and emotional capabilities of the NPCs are used to pro-
vide context for generated quests. The general concepts of the design
are based on Brom et al’s episodic memory [11]. Memories are a par-
ticular data structure, based on a Memory Primitive (MP) that holds
any information that the system may want to recall, such as the NPCs
involved in the action, the type of action, and any items involved in
the action. Specialising the memory in this way may seem restricted
compared to general-purpose Cognitive Architectures such as SOAR
[31], but such restriction helps keep the design clear and the game
AI light-weight. The essential element of a MP is that it has an ac-



Figure 4. Structure of Agent Memory

tion variable which can describe whatever high level actions an agent
can take. Thus, for all main drives in the drive collection (attacking,
fleeing, talking, picking up items) there is an enumeration that can
be inserted into the action variable. Coupled with variables to store
the actors in that memory, there arises a simple data structure that
can describe anything (Bob killed Alice, Bill picked up orange etc)
an agent can do quite simply. As capabilities are added to the agents
Drive Collection, the enumeration of actions grows as well. Add a
drink ability, there is a need for a drink enumeration and so forth.

Emotions form another data structure in the overall memory de-
sign. Each NPC has one instantiation of the emotion data structure
associated with every other individual character it knows. They hold
basic integer values to record particular strengths of opinion, such
as fear and hate. In this system, emotions are not a transient state as
often understood in research [36]. Rather here, emotions are labels
for long-term valence directed toward a particular individual, using
such emotional terms as hate, friendliness, and fear. As events are
perceived (described below), the emotional values for the perceived
actors are adjusted as necessary.

The actual structure for the memory is relatively simplistic, with
the entire memory shown in Figure 4. Memories are received through
a regular perception of local events, or generated based on the agents’
own behaviour, and added into a short term memory (STM) object.

x

〈 (Turn to Speak)⇒Speak
(Turn to Listen)⇒Listen

(Turn to Wait)⇒Wait
()⇒Sort Conversation Turn

〉
(3)

Figure 5. The Conversation Competence

y

〈 (Moving and Close to NPC)⇒Stop Moving
(Has said something previously)⇒Clear Text

(Has nothing selected to say)⇒Select Something to Say
(Has something selected to say)⇒Set Speech Text

()⇒Finish

〉
(4)

Figure 6. The Speak Sequence

The low priority element of the Drive Collection Process Memories,
seen in Figure 2, assesses any MPs in the stack. Memories that oc-
curred recently are processed sooner, enabling potential functional-
ity for if too many things happen, older memories that have not been
processed are removed and forgotten without being processed. The
assessment of items in the STM does three separate things:

• Changes the emotion values of all involved parties of the MP
based on general rules of behaviour (eg: random attacks will de-
crease friendliness and increase fear, giving items will increase
friendliness).

• Adds the MP to the long term memory if it is of a type important
enough.

• Removes the assessed MP from the STM.

Additionally, when added to the long term memory, each MP ini-
tialises a decay value, which is regularly decremented if it is not ac-
cessed. If a memory is accessed and used, its decay value is reset. If
an MP’s decay value reaches zero, the memory is removed, and thus
‘forgotten’. Memories provide, among other things, specific reasons
for the creation of quests (“Bob killed Bill so I want Bob killed”),
while emotions provide a more general context (“I really hate Bob
so I want him killed”). Additionally the two may be combined (“Bob
killed Bill, who I liked, so I want Bob dead”).

The emotion system gives agents reasons for actions, without hav-
ing specific memories to support such quests. This serves a twofold
purpose. Firstly, it can provide initial conditions for the generation of
quests prior to the generation of memories. Secondly, it allows mem-
ories to be forgotten, reducing actual memory requirements and la-
tency of the program, while keeping the effects of the actions through
the emotion variables.

3.3 Communication

Communication between agents, or between the player and an agent,
is an interaction using the conversation competence, which is con-
tained in the Drive Collection of the NPC. The BOD elements nec-
essary for conversation are the competence seen in Figure 5, and the
memory of the participants of the conversation (described above).
The method of conversation is separated into the passing of under-
lying, conversational primitives (CP), and the conversion of those



primitives into human understandable text. CPs are passed between
agents in a ‘Pull’ model, from the speaker to the listener, in the Listen
action in Figure 5. Meanwhile, to make conversation understandable
to humans, CPs are converted into text in the Set Speech Text action
in Figure 6.

CPs are essentially a subclass of the primary Memory Primitive
with additional variables to define the type of statement, and al-
low conversation to refer to particular memories, other conversa-
tional primitives, additional agents and items etc. The conversion
process from Conversational Primitive to human understandable text
is straightforward. Based on the type of conversational primitive (e.g.
Greeting), a particular string is retrieved. Then, any variables in that
string (such as ‘NPC I AM TALKING TO’) are replaced by the ap-
propriate value (like the name ‘Bob’), eventually resulting in the hu-
man readable text (‘Good Morning Bob’), which, in the prototype
game, is displayed above the agent’s sprite. This basic level of vari-
ability in statements can provide a surprising amount of freedom with
a minimum amount of work.

Although BOD has previously been proposed as a mechanism for
dialog planning [15], the present work represents the first application
to our knowledge of POSH to conversational agents. Typically, con-
versation in computer games take the form of Conversation Trees, as
can be seen in the Fallout 3 GECK. In the present work, conversation
is ordered into two POSH competences: one for giving and one for
receiving. Receiving is the simpler capability, in that it takes the last
CP from the agent being talked to, and stores the information in the
short term memory. The giving capability deals with selecting a new
CP to offer up for the talk partner to receive, and add the relevant de-
tails to it. This decision process can be surprisingly simple through
use of nested competences. The current implementation though has
just a limited number of statement possibilities in a single layered
plan, seen in Figure 7.

3.4 Quest Design

For the agents to be able to give and complete quests, the archetypes
of quests from which instantiations are built need to be designed ap-
propriately. In this work, there are just two quest types, but with ad-
ditional game mechanics to utilize, additional quests archetypes can
be designed. The essential parts of the quest design is to ensure:

• Quest Archetypes are understandably linked with the contexts that
justify them (hating someone results in wishing them dead, not
wanting them to have an apple pie).

• Quest Archetypes have defined structures (go there, kill/pickup
that, return here) which can be understood and are utilised in the
agents’ quest fulfilment drive.

• Quest Archetypes deal with general events, with variables that can
be filled as needed (so a KILL QUEST has a variable of X that
designates the target).

x

〈
(Received or Given Focus or response)⇒Say Goodbye

(Received a focus of something to give)⇒Give focus
(Received a Question)⇒Give appropriate response

(Has Given a Quest to NPC previously)⇒Enquire about Quest
(Has Greeted)⇒Ask a question

()⇒Greet

〉
(5)

Figure 7. The Speech Selection competence

4 Example — Generating and Communicating
Quests in a Virtual World

This work was done in a prototype game of a top-down, Legend
of Zelda style, called Shadow Quest that was originally created by
Prageeth Silva [34]. An example screenshot is shown in Figure 1.

We describe how such agents can be used to enable generative
dynamic quest systems. Additionally we offer potential pathways to
increase the flexibility of the current design very easily.

4.1 Designing Generative Quests: The Developer’s
Perspective

There are five main elements to the process by which a developer
could add additional quests to the described quest generator. In the
following sections these elements shall be described, and highlighted
through the example of the addition of a ’Make Poison’ quest type.
The five stages of the implementation would be designing the base
quest, implementing any supporting systems for the quest, imple-
menting base level plans for the NPC agents, defining the related
actions and quests in the memory, and finally adding the various con-
versation options into the conversation plan.

4.1.1 Choosing the Base Quest design

This starting stage essentially is the point at which the quest, from
which all related plans, conversations, and memories etc, will be de-
rived from. Thus, a quest could be designed for a ‘Make Poison’
quest, with a generic understanding of the quest consisting of:

• A quest of this type being given to an individual that is liked rather
than hated or feared

• The quest receiver needing to get a number of items, go to a par-
ticular location, and combine them to create the poison

• The quest receiver returning to give the created poison to the quest
giver

This quest type would be a ‘subclass’ as it were, of the typical
’fetch item’ quest type. From this it is recognised that there would
need to be some sort of game mechanic that would allow items to be
combined to create other items. This leads to the second stage of the
implementation process.

4.1.2 Creating the Base system to enable the quest

Following the generic understanding of the quest, any supporting
game mechanics would need to be implemented. This is why the
main design described above only considers ‘kill’ and ‘fetch’ quests,
as others would require additional game mechanics. An alternative is
to create the general game mechanics, or work with a system with a
set of game mechanics already, and then create quests designed for
those mechanics. This is merely a position determined by the stage of
development, underlying technology of the development, and prefer-
ence of the developer. As such, in this example, the imaginary game
that the ‘Make Poison’ quest shall be added to will need an alchemy
game mechanic, available to the player, and imitable by any NPCs.
This would merely require that NPCs could perform any observable
actions that the player can in the course of using alchemy: getting
items, going to a workbench, creating a large puff of smoke, losing
the correct ingredients, and receiving the right poison.



4.1.3 Creating Definitions in memory

Before an agent can do the elements of a quest, agents need to be
able to understand the quest in terms of whether it is good or bad,
whether it is something you would do to or for a friend or an enemy
etc. Thus, memory structures would need to be created to describe
the alchemise action(s). This would actually consist of adding to an
enumerated list of actions available, and adjusting any perception
routines as necessary. So instead of agents perceiving other agents
of doing nothing while standing at a work bench, they can retrieve
the ‘alchemise’ enumeration, and add that into an action memory
along with the agent’s name, and maybe the resulting poison that
was created from doing the alchemise action.

4.1.4 Creating the Plan for the Agent

The next stage of development would require that there be the various
plans created for the agents to enable use of alchemy. There would
generally be at least two, possibly three, different plans at this stage
to create:

• The Drive to Alchemise items to create the poison
• The Competence in the Quest Action Designation to describe the

order of actions to complete the quest
• Any memory processing needs to place quests in memory and alter

emotions.

Thus, the Drive collection (figure 2) would have an alchemise
drive, that takes the agent to the workbench, and transfers the items
to the workbench, calls the game mechanic to convert the items into
the poison, and then picks up the poison. The competence for com-
pleting the entire quest would not only designate the target of an
Alchemise action, and designate who to return to when finished, but
also a repeatable section of the competence to retrieve as many items
as were needed for the alchemise action to be successful, utilising
a reuse of the already created ‘fetch’ quest type, or a ‘subclass’ of
it, to ensure the agent went and found all the ingredients. Meanwhile
changing memory processing rules etc merely adds an additional rule
or set of rules to deal with the particular quest. So creating a poison
would possibly be something to be scared of the agent it is made for,
or something to like the agent for if the design of conversations later
on tie the intention of making a poison to a potential target, who is
disliked.

4.1.5 Creating Conversation Options

Once agents can perceive others as doing the ‘alchemise’ action, they
have memory structures for the quest. Thus, they merely need to have
any appropriate string(s) created to be inserted in the already exist-
ing conversational strings. There would be very little aspects of con-
versation that would be created entirely from scratch. Agents could,
instead of asking ‘Would you please KILL BOB for me’, they can ask
‘Would you please MAKE A POISON for me’, or other such permu-
tations of basic sentences. In a similar way, gossip and memory pass-
ing sentences such as ‘Did you hear that BOB KILLED BILL’ could
become ‘Did you hear that BOB CREATED A POISON’ or even ‘Did
you hear that BOB CREATED A POISON FOR JILL’. There would
be no need to create whole new structures for the conversations, as
most elements would already exist and would not need specific con-
text, such as acknowledgements (‘yes, i did hear that’), and accep-
tance and refusal of the proposed quest.

4.2 Procedural Quests from the Player’s
perspective

From the player’s perspective, the added quest can fit into gameplay
and interaction with NPCs reasonably fluidly. Thus, in the imaginary
new game, where alchemy and the alchemy quest has been imple-
mented, and an expanded ‘kill’ quest has been created (of the form:
1) get give quest, 2) make, take, or ask for poison, 3) kill target with
poison 4) return to original quest giver), the following sequence of
events could occur:

• Bob dislikes Bill (due to random initialised emotion, or an actual
memory)

• Bob asks Jill to kill Bill, because of the memory or emotion.
• Jill also dislikes Bill, and so accepts.
• Jill uses the expanded kill quest form, asking Jack to make her a

poison.
• Jack, liking Jill, accepts, and performs the quest; getting ingredi-

ents, making the poison and then returning to Jill.
• Jill, now with the poison, goes and fulfils her quest by killing Bill

with it. She returns to Bob, who is pleased with her.

The above, preliminary, sequence of events also has a number of
secondary effects:

• To get the ingredients, Jack takes something from Bob. Bob then
dislikes Jack slightly.

• Jack, who liked Bill, hears about, or witnesses, Jill killing Bill. He
then hates Jill.

• Upon meeting the player, Jack gives the player a quest to kill Jill.
• The Player kills Jill, Bob hears and hates the player, asking Jack

to kill the Player. Jack, liking the Player alot, refuses. Bob then
attacks both the Player and Jack.

The secondary effects of the original kill quest produces a range
of different actions. In this example quite extreme results, but further
quest design and conversation options can allow for reproach, lies,
and refusals to help in other situations, possibly even watching oth-
ers getting attacked and killed without helping. However, what the
effects, the quests given, and the conversations and gossip that occur
in the game, all begin to tie each individual in the game together. Ad-
ditionally, although there can be numerous effects of people liking
some people, others hating others, and so on, it does not get confus-
ing for the player, because in all conversations the NPCs can state
their position. They will not just go ‘kill Bob, because I say so’, they
will command ‘kill Bob, because I hate him/ he killed my brother’,
or ‘I don’t like Bill, he stole my MacGuffin, go get it back for me’.

5 Discussion
We have proposed a suitable design for NPCs that can perceive ac-
tions around them, communicate those perceived actions between
each other, and use such memories as the context for various sid-
equests in RPGs. Although currently the design is relatively basic,
there are sufficient strengths to warrant further development. In par-
ticular, there are various aspects of the design that mean it can be
easily used in videogames, and expanded upon.

5.1 Creating a continuum from Local to Global
effects of actions

Due to the agent’s capability to perceive actions nearby, remember
them, and then transmit them in ‘conversation’ to other agents, there



can arise a fluid continuum of effects. Locals effects, as seen cur-
rently, of NPCs running screaming from a murder remains. However,
now, instead of an automatic global morality value that is effected
by the murder, the NPCs can pass information between them, which
can be used to colour interactions. Eventually, it can reach a state
where most NPCs know about the action, which can approximate the
global value. Furthermore, as time goes by, the individual action is
‘forgotten’ in the NPC memory structures, leaving only the long term
emotional valence. Whether this is preferable to the current situation
would require a large amount of testing in a more aesthetically com-
plete game, rather than a prototype.

5.2 Suitability for Use in Games

The proposed design is reasonably suitable for use in videogames in a
number of ways. In terms of memory and processor use, the design is
not currently optimised, but hints at opportunities in that area. POSH
action selection is designed to reduce the combinatorial bottleneck
of tree searches, and is unlikely to be more processor intensive than
a similar Behaviour Tree implementation, which, as has been noted
previously, is a method rapidly gaining popularity for videogame AI.
Additionally, the memory design of the agents is suited to working
with limited resource situations, as memories can decay, leaving only
an emotional valence that can still be used to justify quests. Admit-
tedly there could still be a certain amount of resources required for
holding the emotion variables for each NPC, but again, these could
be easily designed to decay if not used. Quests meanwhile need only
be instantiated if an NPC accepts the quest, while could be automat-
ically rejected if there is not enough available memory.

In terms of actual use in videogames, this proposed design only
deals with the creation of quests, and the surrounding context for
them. It does not however deal with the creation of Quest Spaces in
which to perform quests. As such, this system would need to be able
to be combined with some amount of procedural level generator [2],
or an AI ‘Director’ to populate a static space with challenges in a
similar way to Valve’s Left 4 Dead.

Additionally, through use of this design, additional NPCs can be
created with no increase of authorial effect. Once a single NPC is
complete, the only areas that need to be added to are the list of basic
strings which form sentences (there does not need to be a one to one
relationship between Conversational Primitive and string. EG: There
can be multiple ways to greet someone, not just ’Good morning X’),
quest types, and names. To create differences, the NPCs just need to
have randomised starting emotions to some NPCs, and be left to run
for a while.

5.3 Freedom for expansion of the NPC design

The design, having been developed using BOD, errs on the side of
simplicity and ease of redesign. As such, although the current de-
sign only deals with a limited number of behaviours, conversational
options and quests, it is relatively trivial to implement additional ca-
pabilities. Of particular interest are the following:

5.3.1 Meta-Level Agents

Meta-level agents can, in this context, encompass a range of possi-
bilities for more complex NPC interactions. With a slight addition,
there can be non-physical ‘Gods’ that talk to only one individual, or
put particular individuals on quests. Additionally, Meta-level agents

can serve the purpose of creating factions, allowing groups of indi-
viduals to perform the same quests, or have telepaths, common goals,
or even specialised behaviours (see below). By Meta-Level Agents,
it is meant a non-physical agent that can interact with other agents,
or an agent that serves as the aggregate of many agents memories or
emotions.

5.3.2 Expanded Quest Design

Although at the moment there are just two types of quests accounted
for in the design, kill quests and fetch quests, two points need to be
considered. Firstly, Kill quests and Fetch quests are so prevalent in
games due to the variety they can achieve. There can be assassina-
tions (kill quests with stealth requirements), protection quests (kill
everything apart from the target), stealing quests (Fetch quest with
stealth requirements), information quests (Fetch quest but with the
requirement being information instead of an item) and so on. There
are a great variety of quests that are descended from Kill and Fetch
quests, and that is without considering Quest arcs and the alterna-
tive conception of quests offered by Wibroe [37]. All of these can be
easily implemented into the proposed design, merely adding the nec-
essary behaviours to the agent, creating new quest archetypes, and
memory or conversational primitives.

Additionally, large amounts of variation could be achieved through
changing the focus of quests to become procedural behaviours. Such
that instead of an NPC performing a quest once, he checks that he
is constantly performing the quest. A trivial example of this would
be creating a behaviour archetype that says the agent has to hop on
one foot constantly. Combining this with the Meta-Level Agents de-
scribed above, can easily create factions with particular idiosyncratic
behaviours (eg: a warrior clan that hops on one foot all the time).
It would then be a trivial matter to use perceptions of other agents
Not performing that behaviour as an issue, which would result in a
location based ‘law’ stating that an agent would need to hop on one
foot when in the camp of those particular warriors. Again, although
this example is humorous, the underlying possibilities are both easily
adaptable and an expansion of the proposed NPC design.

5.3.3 Personality and Speech

Finally, there is no consideration of personality and other idiosyn-
crasies in the proposed design. These would also be very easy to im-
plement into the design if necessary. Most RPGs have a large number
of statistics to create individual differences, ranging from strength to
charisma and intelligence. These are perfectly situated to enable in-
dividual differences in the proposed NPC design. Combining these
statistics with basic signal processing concepts such as compression,
expansion, and transfer functions would easily allow the opinions of
other NPCs to be affected by base personality stats. The result would
be that NPCs could have varying levels of emotional responses, so
that a murder next to them does not effect them, or someone saying
hello to them instantly makes them loath the NPC. Additionally, a
simple addition of an emotional variable to the Conversational Prim-
itive design would allow variation in the generated human readable
text of NPCs, allowing greetings to easily range from ‘Good morn-
ing X!’, to ‘oh, its you’, with only the required change to the CP,
the speech selection action, and the addition of meta data to the se-
lectable strings available for speech.



6 Conclusion and Future Work
We have presented a design and basic methodology for easily im-
plementable NPCs for use in RPGs. These NPCs have the capability
to observe others, remember actions, and communicate remembered
actions with other NPCs. They can use such memories to justify the
request or offering of performing particular quests. Additionally, we
have shown how the design is easily expandable to deal with other
common elements of RPGs such as factions and personality.

Future work can take a number of distinct pathways. We plan to
address the theoretical nature of this paper by implementing the AI
design into a custom made, aesthetically complete game. We then in-
tend to run a number of tests to investigate the effects of such ‘capa-
ble’ NPCs on player experience. It may be that only some proportion
of a crowd should be ‘interesting’, not all of it. Regardless of this,
we think Social Agents of this type could be a powerful creative use
of AI in videogames. We also intend to investigate their application
into the field of dynamic, computer generated music.
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Playing Tetris Using Bandit-Based Monte-Carlo Planning
Zhongjie Cai and Dapeng Zhang and Bernhard Nebel1

Abstract.
Tetris is a stochastic, open-ended board game. Existing artificial

Tetris players often use different evaluation functions and plan for
only one or two pieces in advance. In this paper, we developed an ar-
tificial player for Tetris using the bandit-based Monte-Carlo planning
method (UCT).

In Tetris, game states are often revisited. However, UCT does not
keep the information of the game states explored in the previous plan-
ning episodes. We created a method to store such information for our
player in a specially designed database to guide its future planning
process. The planner for Tetris has a high branching factor. To im-
prove game performance, we created a method to prune the planning
tree and lower the branching factor.

The experiment results show that our player can successfully play
Tetris, and the performance of our player is improved as the number
of the played games increases. The player can defeat a benchmark
player with high probabilities.

1 INTRODUCTION
In 1985, Alexey Pajitnov et al. first invented the puzzle video game
Tetris. It has now spread to almost all game consoles and desktop
systems.

The standard Tetris is a stochastic, open-end board game. Players
control the falling pieces in the game field and try to build fully occu-
pied rows, which are removed in each turn. The standard Tetris field
contains 10 × 20 cells, and the pieces are randomly chosen from 7
pre-defined shapes of blocks. In addition to the current piece, the in-
formation of the next piece is provided to the player. Removing rows
in a single turn has certain rewards, which in our approach is given as
0.1 for a single row, and 0.3, 0.6, 1.0 for two to four removed rows.
This encourages the players to remove multiple rows instead of only
one row in one turn. The challenge of this game is that, the player
needs to place the pieces in the proper positions in the game field in
order to best accommodate the next pieces and remove as many rows
as possible. An inappropriate placement of one piece often results in
a bad situation of the game, and causes the player to spend more time
to deal with. The game is over if the top of the game field is occupied
by blocks and the next piece cannot be placed onto the field.

In the two or more players’ competitions, if one player has re-
moved n(n > 1) rows in one turn, all other players will receive an
attack of (n− 1) rows of blocks, adding to the bottom of their game
fields. Each attack row would contain (n− 1) empty cells in random
positions. Thus removing multiple rows in single turns brings even
more benefits than rewards. Highly skilled human players prefer to
plan and remove three or even four rows using a single falling piece,
while beginners and many of the existing Tetris artificial players tend

1 Universtiy of Freiburg, Germany, email: caiz, zhangd,
nebel@informatik.uni-freiburg.de

to remove rows as soon as possible in each turn to survive the game.
The game is over when only one player is still alive in the competi-
tion, and of course the last player is the winner.

Researchers have created many artificial players for the Tetris
game using various approaches[12]. To the best of our knowledge,
most of the existing players rely on evaluation functions, and the
search methods are usually given less focus. The Tetris player devel-
oped by Szita et al. in 2006[11] employed the noisy cross-entropy
method, but the player had a planner for only one piece. In 2003,
Fahey had developed an artificial player that declared to be able to
remove millions of rows in a single-player Tetris game using a two-
piece planner[6]. Later in 2005, genetic algorithms were introduced
to the Tetris players by Böhm et al.[3], in which a heuristic func-
tion was evolved by using an evolutionary algorithm. In our previous
work, we have developed an artificial player with a one-piece plan-
ner by using learning by imitation[14] that could successfully play
against Fahey’s player in the Tetris competitions.

Yet most of the existing artificial players known are based on a
planner for only one- or two-piece. This paper was motivated by cre-
ating an artificial player based on the planning of a long sequence of
pieces. We modeled our player in Tetris planning problem with the
Monte-Carlo planning method. In order to balance the exploration-
exploitation trade-offs in the planning process, we employed the ban-
dit algorithm to guide the planning process. As for state revisiting,
we created a method to store the visited game states in a specially
designed database. We also created a hash function to quickly locate
and operate the information of a given game state in the database.
In order to reduce the branching factor of Tetris planning, we cre-
ated an intuitive evaluation function and combined it with the UCT
algorithm.

The highlights of this paper can be summarized as follows:

• We modeled the artificial player of Tetris using the UCT algorith-
m.

• Our method of the database of the visited states provided support
to UCT and improved the performance of the planner.

• By pruning the planning tree, the player can defeat the artificial
player developed by Fehey, which is regarded as the benchmark.

This paper is structured in the following manner. First in section
2, we present our solution on modeling the Tetris planning problem
with the bandit-based Monte-Carlo planning method. Our method
to design the knowledge database and store the information of the
visited game states is presented in section 3. The idea of combining
the evaluation function to the UCT algorithm is discussed in section
4. The experiments and the results are shown and analyzed in detail
in section 5. In the final section 6, we draw the conclusion and discuss
the future work.



1.1 Related Works

To create an artificial player for a board game, the general compo-
nents are the search method and the evaluation function. The board
games which are solvable by brute-force methods, such as Othello,
have already been dominated by game programs using various search
methods, such as LOGISTELLO [5]. Board games such as Checkers
are solvable using knowledge database combined with search meth-
ods, one such example is the program named CHINOOK [10]. Many
board games, e.g. Chess and Go, are currently unsolvable, thus are
still challenging tasks for artificial intelligence researchers. To im-
prove the performance of the artificial players for these board games,
one of the tasks for the researchers is to balance the trade-offs be-
tween the search depths and evaluation functions [2].

The Monte-Carlo planning method (MCP) has offered a new solu-
tion to artificial players of board games. In 1993, Bernd first modeled
the board game Go with the MCP algorithm [4], and his Go player
had a playing strength of about 25 kyu2 on a 9 × 9 board. Soon the
MCP method was successfully applied in other board games, such as
Backgammon[8]. In 2006, Levente Kocsis and Csaba Szepesvri de-
veloped a new search technique named UCT, which stands for Upper
Confidence Bound applied to Trees [7], and proved that UCT to be
more efficient than its alternatives in several domains. Instead of uni-
form sampling of the game actions, UCT uses the multi-armed bandit
algorithm to guide the action selection of the planning process. Later
applications using the technique, such as MoGo3, demonstrated that
this technique can be successfully applied to the game of Go.

Learning techniques have also been applied to improve the perfo-
mance of artificial players of board games. The first such approach
was the one by Samuelson in 1959 [9]. He was able to show how
a program can learn to play Checkers by playing against itself. In
2010, Takuma Toyoda and Yoshiyuki Kotani suggested the idea of
using previous simulated game results to improve the performance
of the original Monte-Carlo Go program [13], and their work an-
nounced positive results on the larger Go board. In Tetris, Böhm et
al. used genetic algorithms for the heuristic function, and our previ-
ous work had introduced learning by imitation to the artificial player
of multi-player Tetris games[3].

Yet to the best of our knowledge, UCT has not been applied in
artificial players for Tetris.

2 PLANNING TETRIS USING UCT

In this Section, we discuss how we model the Tetris planning prob-
lem using the UCT algorithm.

There are two possible values for every cell in the game field, e.g.
occupied and unoccupied, so the standard Tetris search space consist-
s of 2200 game states. The branching factor is 162 for a given game
state without the piece information, which is the sum of all possible
placements of actions from the 7 different pieces. The large branch-
ing factor brings us to the idea of using the Monte-Carlo planning
method in our solution to the artificial Tetris player. The core feature
of the Monte-Carlo planning is to sample as many future states as
possible from all actions of the given state of the game for a certain
period of time, and for each episode evaluate only the leaf state using
a fast evaluation function. In the end, the algorithm takes the action
with the best evaluated reward in the planning as the result of the
algorithm.

2 In Go, the rank of 30−−20 kyu refers to a Beginner level.
3 Website: http://www.lri.fr/ gelly/MoGo.htm

Figure 1: Node of game field state and piece in planning tree

A sample of the planning tree is shown in the Figure 1. In our
model of the Tetris planning, we consider each state of the game
field, together with a given piece, as a single node in the planning
tree. For instance, the root node consists of a game field, which is the
rectangular area with gray square blocks inside, and a piece, in this
case a ”Z” shaped piece displayed by four black square blocks. The
fields in the nodes are the so-called ”cleared fields”, which means
that no fully occupied, removable rows are contained in such fields.

Figure 2: Procedure of removing fully occupied rows

The paths connecting the nodes of the planning tree represent the
actions associated to the given piece. By following a path of a starting
node, the piece is added to the game field according to the index-
encoded action, and an intermediate field is generated. The field will
then be checked for removable rows, and if there are rows removed
in the field, such rows are removed and the reward will be given
according to the game rules. This procedure is described in Figure
2. Then the result field, together with the next piece in the sequence,
form a new node, which is the child node of the starting node.

2.1 Planner Structure

The pseudo code describing our planner is displayed in Algorithm 1
and 2.

In the beginning of a planning episode, a state of the game field
and a sequence of pieces are given as the inputs to the planner. The
planner initiates the planning tree and starts its planning phases. The
ranks of the paths in the planning tree are calculated directly by using
the rewards gained from performing the actions and removing the
fully occupied rows in the field. The rewards are based on the game
rules discussed in Section 1.The planner continues to run as many
phases as possible until a certain time out rule is reached, and returns
the action by which the highest reward is gained. The subtree of the
node following the path of the selected action is preserved for future



Input: state, list of pieces
Output: action

1 initialization;
2 while not time out do
3 search(state, first piece);
4 end
5 action←selectBest(state, pieces);
6 updateTree();
7 return action;

Algorithm 1: One Planning Episode : Function doPlanning

planning, and other nodes are deleted at the end of each planning
episode to reduce memory consumption.

Input: state, piece
Output: reward

1 type←stateType(state, piece);
2 switch type do
3 case type == normal node
4 action←selectAction(state, piece);
5 state,reward←performAction(state, piece,

action);
6 updateTree(state, piece, action, reward);
7 return reward;
8 case type == leaf node
9 return 0;

10 case type == terminal node
11 return -1;
12

13 endsw
Algorithm 2: One Planning Phase : Function search

In each planning phase, the planner selects and performs one of the
actions for each piece in the given sequence. Each performed action
results in a child node in the planning tree, together with a reward
accordingly. A leaf node is reached once all the pieces in the given
sequence have been performed with an action. The planner then sums
up the total reward gained in the current search path, and updates the
reward information in each node in the search path backwards from
the leaf to the root.

In Tetris, a common game state usually does not have any informa-
tion on the winning chance. To simplify the evaluations on the leaf
node, we consider it to be with zero reward, which means leaf nodes
do not have any influence on their parent nodes in the search path.
One exception is that, if a node contains a state of the field which
is, according to Tetris rule, a terminal state, the reward is always set
to a big negative value. Such behavior makes the actions leading to
terminal states much less likely to be chosen by the planner during
the planning phases.

The method for sampling the actions is the key feature of the
Monte-Carlo planning. Comparing to the traditional uniformed and
randomized sampling methods, the multi-armed bandit algorithm has
advantages in balancing the trade-offs between explorations and ex-
ploitations during the planning process, and is proved to be more
efficient than other methods in many domains[7].

2.2 Bandit Algorithm
To model the action selection using the bandit algorithm, we con-
sider each state of the Tetris game field, together with a given piece,
as a separate K-armed bandit machine, where K is the number of
possible actions for the piece given.

The action selection is performed for each visiting node in the
current search path. According to the algorithm UCB1[1], the action
selection is based on the upper confidence bound of the reward and
bandit score of every arm (action) of the bandit machine (game state),
which is described by Formula 1.

I = argmax
i∈1,...,K

{Ri + ci} (1)

The Ri in the formula is the reward from performing the action
i and removing the rows in the result game field. The ci is a bias
sequence chosen as:

ci = λ

√
ln s

t
(2)

where λ is a constant factor manually chosen for balancing the
exploration-exploitation trade-offs. Higher λ values result in higher
chances of randomized explorations based on the bandit scores, while
smaller λ values lead to higher possibilities of selective exploitations
according to the rewards. The number of visits s to every node in the
search tree and the number of visits t to each action path of the node
are kept and updated throughout the planning episode.

In the procedure of action selection, the bandit score of each action
of the given piece is first calculated by using the number of visits
of the node and the action. Then, the gained reward is added to the
bandit score, and the sums of the two are used to rank the actions.
The action with the highest sum is chosen to be the final result of
the procedure. If multiple actions have the same highest sum, the
result is chosen randomly from the list of such actions. Notice that
the formula 2 will be invalid for the nodes in which some of the
actions have never been visited before. For such nodes, an action is
selected randomly from the unvisited actions.

In the standard UCT algorithm, only the sub-tree of the node fol-
lowing the selected action path will be kept for the next planning
episode. For board games where game states are less likely to be re-
visited in the future plays of the game, such behavior would have
little influence on the future planning process. But the state revisiting
happens quite often in Tetris because of the game rules. Therefore,
the information of the explored states in previous planning episodes
would play an important role in the planning. In the next section, we
will discuss the state revisiting of Tetris.

3 STATE REVISITING
Before designing our database for the visited game states, we think of
the information that is useful for the future planning episodes. First,
we want to start each planning episode of a root node from scratch.
So the information of the number of visits to nodes and actions is not
to be stored, because such information is a bias to the given sequence
of pieces of the previous planning episodes. The immediate rewards
and targeting states of the actions associated to one node can be easily
and fast computed in the planning phases, thus the information can
also be ignored.

In our method of planning, a node in the planning tree is made of
a state of the game field and a given piece, and the information of the
node consists of the following components which is necessary to be
stored:



1. The highest reward among all the actions, and
2. The reward of each action.

The information of the item 1 is the key to our idea of storing
and reusing the information of the explored game states, because it
represents the summarized results of its associated previous planning
episodes, and can be easily combined with the results of any future
planning episodes. The information of the item 2 can be abstracted
to a list of actions that matches the highest reward, which can be
combined easily with the future planning results.

Considering the planner of the artificial player plays 100 pieces in
a single game, and for each planning episode, the planner explores
1, 000 phases. Then the total number of explored states of a single
game is approximately 100, 000. Assume that one quarter of these
explored states are revisited states, then in the end there are 75, 000
newly explored states in such a game. Rather than saving every sin-
gle node in the planning tree, we store only the root node in every
planning episode. In this way, the size of the stored nodes is signifi-
cantly reduced, whilst the most useful information of each planning
episode is preserved. Since the root node would only be queried once
per episode, the time cost for system operations of the database is ig-
norable.

Now that we have our information stored in a database, the final
task is to find a fast and easy way to load and save such information.
In the following section, we will present our design of the database
using hash functions.

3.1 Hashing In Database

Although not all of the game states will be explored and stored in our
approach, locating a specific state in a huge amount of data is not an
easy task. One of the possible options for locating a state is to use an
existing database management systems. However, such systems are
inappropriate for our approach, as the data we want to store are small
in single sizes and have little relation to each other.

In our early approach, we tried to store the data in a single file,
which is easy to implement. But locating the data of a certain game
state in the file is time-consuming. One of the possible methods is to
use the ”sparse file” system for storage, and every state is stored to
a certain position in the ”sparse file”, where positions are calculated
using a hash function. Since there is an ”offset limit” in the size of a
single ”sparse file”, it is difficult to create a perfect hash function to
generate positions for the 2200 states in Tetris without collisions.

Another option is to use rather a simple file system with each state
stored in a separate file. Like the ”sparse file” system, the simple
file system is also dependent on the operating system to locate the
entry of a certain file. The difference is that the hash function can
easily be created for the simple file system, as there are few limits to
the name and path of a file. Also because game states are stored in
separate files, there will be no ”offset limit” of a single file, and thus
the collisions of positions are avoided.

For any file system, the key issue is to balance the number of files
and folders in one folder, the maximum depth of folders, and the size
of each file containing the data. Too many files or subfolders in one
folder could require more time for the operating system to locate the
entry of a target file in the disk. The size of each file directly affects
the computation time to store and retrieve the data for the program.

In our approach, each state of the game field generates a file name
according to the values of the field encoded by a vector of integers.
In this way, every state would have a unique file name, and collisions
are avoided. Another advantage is that, the data of the game field is

hidden inside the name of the file. And from another point of view,
this hashing method reduces the size of the storage.

Then, all such files are separated into different folders in a folder
tree of 5 depths. In each depth of the folder, there are up to 16 sub-
folders. This scattering method is used to avoid too many subfolders
or files in a single folder. Our later experiment on random sequences
of pieces showed that, for the Linux operating system, the compu-
tational time had less than 1% differences in runtime from the be-
ginning to the end of the experiment, where the number of the saved
states in the database increased from zero to 100, 000.

Input: state, pieces
Output: action

1 initialization;
2 while not time out do
3 search(state, pieces, 0);
4 end
5 combineKnowledge(state, pieces);
6 action←selectBest(state, pieces);
7 updateTreeEx();
8 return action;

Algorithm 3: One Planning Episode : Modified Function do-
PlanningEx

In each planning episode, the planner starts planning from scratch,
using only the information of the game state, the piece sequence, and
the current planning tree. Then after the planning phases are all com-
pleted, the planner retrieves the information of the root node from
the database. Such information is combined with the newly explored
information of the root node. The combination rule is simple. If the
highest reward of the root node in the database is bigger than that
in the planning tree, the information in the database will completely
override the information in the planning tree, and vice-versa. If the
two rewards are the same, then the lists of actions matching the high-
est reward of both the database and the planning tree will be merged.
Algorithm 3 shows a modification to its previous version discussed
in Section 2.1.

4 PRUNING THE PLANNING TREE
The previously introduced method is based on the sampling of all
possible actions of the given piece in the given game state. However,
many of the actions are not worth exploring, because they often lead
to unwanted or even bad game states. In this section, we created a
method to prune the planning tree to reduce the number of actions
that need to be sampled, and improved the performance of the devel-
oped player.

From records of many Tetris games played by artificial and human
players, we studied that one of the most important features of a prop-
er placement of a given piece in the game field is to avoid creating
the ”hole” shapes in the field, as most of the skilled human players
would usually do. Thus, it is intuitive to distinguish between a good
game state and a bad one by examine the number of the ”hole” shapes
contained in such game fields.

Since many of the possible actions of a given piece would create
the ”hole” shapes in their result game fields, we created a method
to prune these actions from the planning tree. The pruning is based
on the increment of holes from the original game field to the result
game field from performing an action. In addition to the reward and
the bandit score of each action discussed in Section 2.2, the number



of holes created by the action is considered as a parameter with a
negative effect on the sum of the former two. This behavior results
in a lower possibility of an action to be chosen during the action
selection process, if there are more ”hole” shapes created from the
action. The Equation 1 is then modified as:

I = argmax
i∈1,...,K

{Ri + ci + Pi} (3)

where Pi is a negative value defined according to the number of
holes created, and is defined by the following equation:

Pi = γHi, (−1 ≤ γ ≤ 0) (4)

where Hi is the number of holes created by performing the action
i to the game field, and γ is a negative factor according to the number
of rows removed from the result game field. The reason for γ being
different is that, unlike the actions that can only create holes in the
field, the actions that can both remove multiple rows and create some
holes may still lead to a good result game state, and thus should have
a certain chance to be explored.

5 EXPERIMENTS
We have conducted three experiments for our artificial Tetris player.

The first experiment was meant to test the validity of our method.
In order to measure the performances of the developed player when
using the database of the visited game states to support the standard
UCT algorithm, we started the experiment on an empty database, and
let the player repeatedly play Tetris on a fixed sequence of pieces. T-
wo parameters of the game are to be evaluated: a) the final score of
the game, and b) the ratio of the roll-outs in one planning episode
of our approach comparing to the standard UCT algorithm. The for-
mer parameter stands directly for the performance of the developed
player, and the latter indicates the effectiveness of the database in the
future planning process.
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Figure 3: Experiment on a fixed piece sequence

The results of the first experiment are shown in Figure 3. The solid
line in the figure displays the final score of each game. The game
score is based on the given game rule described in Section 1. We
can see that the final score grows as the number of played games
increases. This shows that our method to store the information of
the visited game states and reuse it in future planning process can
successfully support the standard UCT algorithm and improve the
performance.

Comparing to the standard UCT algorithm as a basis for the num-
ber of roll-outs per planning episode, the roll-out ratio of each plan-
ning process of our approach is shown in the figure with the thick

dashed line. The number of roll-outs of a state is piled up when the
state is revisited in the future planning episodes. The results show
that the knowledge database helps the standard UCT algorithm to do
more roll-outs during the planning process when the states are revis-
ited, and hence improves the performance.

One observation in the experiment is that, although the trend of the
two parameters is going in a growing manner, there exist some falls
of scores and ratios at some point of the experiment. After analyzing
this phenomenon, we found out the reason is that at some point of
the game, some newly explored actions produced rewards which are
higher than those in the previous planning episodes. This resulted
in the changes of choices of the actions for such pieces, and lead to
some future states which are brand new to the player’s knowledge
database. We can also see in the figure that after some more game
plays, the final scores went up again as such states were covered by
the player’s database.

The second experiment was designed to analyze the total size of
the database and the coverage percentage of the visited game states.
Unlike the first experiment on a fixed piece sequence, we let our play-
er continually playing the Tetris games on randomly generated piece
sequences. The main idea is to let the player explore as many unvis-
ited game states as possible, and analyze the experiment results.
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Figure 4: Experiment on random piece sequences

From the results of the second experiment displayed with the
dashed line in Figure 4, we can see that the total size of the stored
game states in the knowledge database is growing with a constan-
t factor. A conclusion can be drawn that given randomly generated
piece sequences, the player is able to increase its knowledge of the
Tetris game.

Shown with the solid line in the figure, as more visited game states
are stored in the database, the coverage percentage of the revisited
game states is increasing. This means that it is more likely to revisit
a previously explored game state, even when the game has a com-
pletely different piece sequence. On the other hand, the percentage is
still low, which means that currently the database is not big enough
to cover the most useful game states in Tetris.

Combining the results of the first two experiments provides evi-
dence that our artificial Tetris player can successfully play the stan-
dard Tetris game, and has the ability to learn from the played games
and improve its future performance with the help of the knowledge
database of the previously visited game states. By repeatedly play-
ing the Tetris games using randomly generated piece sequences, the
performance of the player will improve, as more game states will be
covered by its knowledge database.

The third experiment was the competitions against Fahey’s bench-
mark player[6] using different approaches. The winning percentages
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are calculated on a basis of 100 rounds of games, and the results
are shown in Figure 5. The three columns represent the different ap-
proaches used to develop the player: 1) the UCT based player with
only the knowledge database, 2) the UCT based player with both
the database and the pruning method, and 3) the SVM based pattern
player in our previous work[14].

As we can see in the figure, with only the knowledge database,
the player’s performance against the benchmark is very low. With
the support of the pruning method, the performance of the player
is significantly improved. As shown in Figure 5, the number of wins
increases from 2 to 91 over 100 games, and is competitive comparing
to our previous work of the SVM based pattern player, which has a
result of 25 wins out of 100 games in the competition.

There is a trade-off in including a pruning method in our approach.
The complexity of the included method affects the efficiency of the
planner in both the action selection and the roll-out sampling. Ac-
cording to the statistics of the experiments, the number of roll-outs
per planning episode dropped by 1/2 when the pruning method is
included, while the number of pieces successfully played per game
raised by 25 times. Conclusion can be drawn that such method is
suitable in our approach to improve the performance of the devel-
oped player, with little loss of efficiency.

6 CONCLUSIONS

In this paper, we have developed an artificial Tetris player using the
bandit-based Monte-Carlo planning method. Different from many
existing artificial Tetris players, our player is built on the ten-piece
planner. Our idea is to use the Monte-Carlo planning method to sam-
ple the possible actions of the given pieces in the game field, and use
the bandit algorithm to balance the exploration-exploitation trade-
offs and guide the planning process.

One of the key challenges of our work is to find a good solution to
make use of the information of the visited states during the planning
process, as such information is not kept and reused in the standard
UCT algorithm. We created a method to store the information of the
visited game states in a specially created database file system. The
information can be loaded and reused in the future planning episodes
when the stored states are revisited, and such a scheme provides the
developed player with the learning ability.

The high branching factor causes the planner to spend much of its
time exploring possible actions, while many of such actions are use-
less and often lead to unwanted game states. We created a method
to prune the planning tree during the planning process to reduce the
number of actions to be explored, and improved the game perfor-

mance of the player.
The experiment results show that our player can successfully play

the Tetris game. By using the stored information of the visited game
states as a support to the standard UCT algorithm, the results of the
experiments show that the performance of the player improves as the
number of played games increases. The player could explore the un-
visited Tetris game states using randomly generated piece sequences
and improves its game performance. With the pruning method, the
developed player has significantly higher chance to win a multi-
player Tetris game in competition against the benchmark of the Tetris
players.

6.1 Future Work
The results of our second experiment on randomly generated piece
sequences showed that our database has not yet covered a high per-
centage of useful game states. In the next step, we will continue the
experiment on exploring unvisited game states for the database, and
analyze the effects of larger database on the Tetris games.

Currently we use an intuitive method to prune the planning tree.
Although the overall performance of the developed player is im-
proved, careful studies are needed to analyze the trade-offs between
more complex pruning methods and the changes in the performance.
This is another interesting topic be in our future plans.
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Determinization in Monte-Carlo Tree Search for the card 

game Dou Di Zhu 
 

Edward Powley1, Daniel Whitehouse1, and Peter Cowling1

Abstract.  Monte-Carlo Tree Search (MCTS) is a class of game tree 
search algorithms that have recently proven successful for 
deterministic games of perfect information, particularly the game of 
Go. Determinization is an AI technique for making decisions in 
stochastic games of imperfect information by analysing several 
instances of the equivalent deterministic game of perfect 
information. In this paper we combine determinization techniques 
with MCTS for the popular Chinese card game Dou Di Zhu. In 
determinized MCTS, there is a trade-off between the number of 
determinizations searched and the time spent searching each one; 
however, we show that this trade-off does not significantly affect 
the performance of determinized MCTS, as long as both quantities 
are sufficiently large. We also show that the ability to see 
opponents’ hidden cards in Dou Di Zhu is a significant advantage, 
which suggests that inference techniques could potentially lead to 
much stronger play.1 

1 INTRODUCTION 

From the inception of the field of game AI until relatively recently, 
the vast majority of research has focussed on games that are 
deterministic (do not have chance events) and have perfect 
information (all players can observe the exact state of the game). 
Chess [1] and checkers [2] are two well-known and well-studied 
examples of such games. 

One recent innovation in AI for deterministic games of perfect 
information is Monte-Carlo Tree Search (MCTS). MCTS iteratively 
builds a partial search tree, using random simulated games to 
evaluate nonterminal states. This makes it well-suited to games with 
long trajectories and high branching factor, as well as games where 
good heuristic state evaluation functions are difficult to find. The 
game of Go exemplifies both of these properties; MCTS has proven 
particularly successful for Go [3], and it is this success that has 
fuelled much recent interest in MCTS. 

Work on AI for games that are stochastic (have chance events) 
or have imperfect information (the state of the game is only partially 
observable) is comparatively recent. One popular approach to such 
games is determinization. The game is reduced to several instances 
of a deterministic game of perfect information (called 
determinizations), by randomly fixing the values of future chance 
events and hidden information. Each of these determinizations is 
analysed by AI techniques for deterministic games of perfect 
information and the results are combined to yield a decision for the 
original game. Although it is not a fool-proof approach for all 

                                                                 
1
Artificial Intelligence Research Centre, School of Computing, Informatics 

and Media, University of Bradford, UK. Email: {e.powley, 
d.whitehouse1, p.i.cowling}@bradford.ac.uk. 

games, determinization has proven successful in games such as 
bridge [4] and Klondike solitaire [5], as well as the domain of 
probabilistic planning [6]. 

There is an important trade-off to be made in determinization, 
between the number of determinizations, and the amount of effort 
spent on analysing each one. However, in this paper we present 
experimental results suggesting that this trade-off is not as 
important as it may appear at first: as long as both parameters are 
sufficiently large, adjusting the balance between them does not have 
a significant effect on playing strength. 

It is common in games of imperfect information for certain 
pieces of information to be visible to some players but hidden from 
others. An important technique in such games is the ability to infer 
this information by observing the actions of other players. An upper 
bound can be placed on the performance gain that can be achieved 
by inference by measuring the performance of a player able to 
observe the exact state of the game, effectively modelling a player 
who is able to instantly and perfectly infer any hidden information. 
Using this method, we show that the potential benefit of inference is 
significant: if two cooperating players can observe the hidden 
information belonging to each other and to their opponent, then they 
can improve their win rate by around 21%. 

The structure of this paper is as follows. Section 2 reviews 
existing work on MCTS and on AI for stochastic games of 
imperfect information. Section 3 introduces the card game Dou Di 
Zhu, which serves as our application domain for the remainder of 
this paper. Section 0 describes the version of determinized MCTS 
we use, and addresses some technical issues of how this is applied 
to Dou Di Zhu. Section 5 presents experimental results, including 
measurement of the variance in win rates for Dou Di Zhu (Section 
5.1), the trade-off between number of determinizations and number 
of MCTS iterations per determinization (Section 5.2), and the 
potential increase in playing strength obtainable through inference 
of hidden information (Section 5.3). Finally, Section 6 gives some 
concluding remarks and directions for future work. 

2 LITERATURE REVIEW AND BACKGROUND 

2.1 Preliminaries 

This section introduces briefly the notions of uncertainty 
(stochasticity and/or imperfect information) in games. For more 
details we refer the reader to a standard textbook on game theory, 
e.g. [7]. 

A game can be thought of as a multi-agent Markov decision 
process; that is, a Markov process where, at each state, one of the 
agents (or players) is allowed to make a decision which influences 



 

the transition to the next state. A game is said to be deterministic if 
taking a particular action from a given state always leads to the 
same state transition. If a game is not deterministic, i.e. there is 
some element of randomness (or chance) to the transitions, the 
game is said to be stochastic. A game has perfect information if all 
players are able to observe the current state of the game. If a game 
does not have perfect information, i.e. the underlying Markov 
process is partially observable, the game is said to have imperfect 
information. For example, many card games are stochastic (because 
they are played with a shuffled deck) with imperfect information 
(because no player is able to observe the cards held by the other 
players). Where there are stochastic state transitions, we may also 
regard this as a deterministic game where chance outcomes (e.g. the 
order of cards in a shuffled deck) are decided in advance, but are 
hidden from all players. This way of thinking gives rise to the 
determinization approach we will discuss later. 

In a game of imperfect information, the states as observed by 
each player are partitioned into information sets, where an 
information set is defined as a set of states that are indistinguishable 
from the player’s point of view. During the game, the player cannot 
observe the current state, but can observe the current information 
set. 

2.2 Monte-Carlo Tree Search 

Monte-Carlo Tree Search (MCTS) is a class of game tree search 
algorithms that make use of simulated games to evaluate non-
terminal states. Simulated games select random actions until a 
terminal state is reached and the reward is averaged over multiple 
simulations to estimate the strength of each action. MCTS 
algorithms have gained in popularity in recent years due to their 
success in the field of computer Go [3]. In particular the UCT 
algorithm [8] proposed in 2006 has led to the recent upsurge of 
interest in MCTS algorithms. UCT enables a selective search to be 
performed where only the most promising areas of the tree are 
searched. This is particularly useful in domains with a large 
branching factor. 

MCTS algorithms build a sub-tree of the entire decision tree 
where usually one new node is added after every simulation. Each 
node stores estimates of the rewards obtained by selecting each 
action and an improved estimate is available after every simulation 
step. In the case of the UCT algorithm, each decision in the tree is 
treated as a Multi-Armed Bandit problem where the arms are 
actions, and the rewards are the results of performing a Monte-
Carlo simulation after selecting that action. The UCB algorithm [9] 
is used to guide the selection of actions at each decision in the tree. 
The UCB algorithm ensures that the tree will be selectively 
explored, performing a deeper search in more promising areas of 
the tree.  

There has been some research on modifying UCT to achieve 
better performance for particular domains (such as Go), with the 
RAVE heuristic [10] being an example of such a modification. Also 
the algorithm can be executed in parallel [11] allowing MCTS 
agents to exploit modern multi-core and multi-processor hardware. 
UCT has been successfully applied to a wide variety of challenging 
domains such as General Game Playing [12], where the rules of the 
game are not known in advance and an AI player must use a very 
general approach which does not depend upon specific game 
knowledge. UCT requires very little domain knowledge and is 
therefore useful in domains where no good heuristics are known. 

The structure of MCTS algorithms is generally quite similar: a 
discrete number of iterations are performed, after which an action 
from the root node is selected according to statistics collected about 

each action. Each simulation step performs four operations on the 
sub-tree built by the algorithm, namely Selection, Expansion, 
Simulation and Back-Propagation. 

2.2.1 Selection 

Starting from the root node, an action is selected at each node in the 
current partial game tree, according to some criterion. This 
mechanism is applied iteratively until it reaches either a terminal 
game state or a node which is not in the current partial game tree. 

In the case of the UCT algorithm the mechanism used for 
traversing the tree is the UCB algorithm. After initially selecting 
every action once, the UCB algorithm selects the action which 
maximizes 

 
 ∑ ��,���(	)����(�) + ��ln(�)�(�) (1) 

 
where ��,� denotes the reward obtained by selecting arm � on trial �, � is the number of times the current node has been visited 
previously, �(�) is the number of these visits in which action � was 
selected, and � is a constant controlling the balance between 
exploration and exploitation (often � = √2). The UCB algorithm 
balances exploration of untried moves with exploitation of known 
good moves. This enables UCT to find the most promising areas of 
the tree and search these further. 

 

2.2.2 Expansion 

If the state reached is terminal then there is no need to expand the 
tree or perform a simulation and the final result of the game is 
Back-Propagated. If the state is not terminal then it is added to the 
tree. 

2.2.3 Simulation 

Starting from the node added in the expansion phase (or the selected 
leaf node if no node was added), the game is played out to 
completion by choosing random moves for each player. The result 
of this simulated game is then used to update the statistics in the 
tree during Back-Propagation. Choosing an effective method for 
quickly selecting random moves which give rise to unbiased game 
simulations, and which are also realistic enough to be strongly 
correlated with the eventual winner from a position, appears crucial 
to strong play in MCTS, particularly for computer Go [13].  

2.2.4 Back-Propagation 

Each node visited during selection has its statistics updated. In the 
case of the UCT algorithm the number of times the node has been 
visited and the cumulative reward of simulations passing through 
that node (from the point of view of the player selecting the action 
at the node) are recorded. These are then used in turn by the UCB 
algorithm during the next selection phase. 

2.3 AI for games with uncertainty 

This section briefly surveys research on AI for games with 
stochasticity and/or imperfect information. 



 

2.3.1 Determinization 

One approach to designing AI for games with stochasticity and/or 
imperfect information is determinization, also known as perfect 
information Monte Carlo (PIMC). For an instance of a stochastic 
game with imperfect information, a determinization is an instance 
of the equivalent deterministic game of perfect information, in 
which the current state is chosen from the AI agent’s current 
information set, and the outcomes of all future chance events are 
fixed and known. For example, a determinization of a card game is 
an instance of the game where all players’ cards, and the shuffled 
deck, are visible to all players. We then create several 
determinizations from the current game state, analyse each one 
using AI techniques for deterministic games of perfect information, 
and combine these decisions to yield a decision for the original 
game. 

Ginsberg’s GIB system [4] applies determinization to create an 
AI player for the card game Bridge which plays at the level of 
human experts. GIB begins by sampling a set � of card deals 
consistent with the current state of the game. (The question of how � is sampled is rather more subtle than it first appears, and indeed 
Ginsberg [4] does not give complete details). For each of these 
deals � ∈ � and for each available action �, the perfect information 
(“double dummy”) game is searched to find the score �(�, �) 
resulting from playing action � in determinization �. The search 
uses a highly optimised exhaustive search of the double dummy 
Bridge game tree. Finally, GIB chooses the action for which the 
sum ∑ �(�, �)�∈�  is maximal. 

A domain closely related to (single-player) stochastic games of 
imperfect information is that of probabilistic planning. Yoon et al’s 
FF-Replan [6] and FF-Hindsight [14] systems apply determinization 
to probabilistic planning problems. Despite the simplicity of its 
approach, FF-Replan outperformed more complex systems to win 
the IPPC-04 and perform well in the IPPC-06 probabilistic planning 
competitions. 

Bjarnason et al [5] present a variant of UCT for stochastic 
games, called Sparse UCT and apply it to the single-player card 
game of Klondike Solitaire. In a stochastic game, a single state-
action pair can lead to multiple successor states (corresponding to 
the possible outcomes of the chance event); Sparse UCT handles 
this by allowing multiple child nodes for each action from each 
state. The selection phase selects actions using UCB, but the 
traversal to child nodes is stochastic, as is the addition of child 
nodes during expansion. Sparse UCT imposes an upper limit   on 
the number of child nodes for each state-action pair. 

Bjarnason et al [5] also study an ensemble version of Sparse 
UCT, in which several search trees are constructed independently 
and their results (the expected rewards of actions at the root) are 
averaged. They find that ensemble variants of UCT often produce 
better results in less time than their single-tree counterparts. The 
ensemble case with  = 1, which Bjarnason et al call HOP-UCT, is 
equivalent to a straightforward application of determinization (more 
specifically, hindsight optimisation [15]) with UCT as deterministic 
solver, in which the determinization is constructed lazily as UCT 
encounters each chance event. 

Bjarnason et al [5] treat Klondike Solitaire as a stochastic game 
of perfect information: rather than being fixed from the start of the 
game, the values of face down cards are determined as chance 
events at the moment they are revealed. This works for single-
player games where the hidden information does not influence the 
game until it is revealed, but generally does not work for 
multiplayer games where the hidden information influences the 
other players’ available and chosen actions from the beginning of 
the game. Hence the specific methods of Sparse UCT and lazy 

determinization are not immediately applicable to multiplayer 
games, but the general ideas are transferable. 

Bjarnason et al show that Sparse UCT is able to win around 35% 
of Klondike Solitaire games, which more than doubles the estimated 
win rate for human players. Determinized MCTS also shows 
promise in games such as Phantom Go [16] and Phantom Chess 
(Kriegspiel) [17], among others. 

Despite these successes, determinization is not without its critics. 
Russell and Norvig [18] describe it (somewhat dismissively) as 
“averaging over clairvoyance”. They point out that determinization 
will never choose to make an information gathering play (i.e. a play 
that causes an opponent to reveal some hidden information) nor will 
it make an information hiding play (i.e. a play that avoids revealing 
some of the agent’s hidden information to an opponent). Ginsberg 
[4] adds weight to this claim by making the same observations 
about GIB specifically. One explanation for this is that, from the 
point of view of the decision-making process in each 
determinization, there is no hidden information to gather or hide. 

Russell and Norvig’s criticisms of determinization are valid but 
equally valid are the experimental successes of determinization. 
Frank and Basin [19] identify two key problems with 
determinization: 

1. Strategy fusion. An AI agent can obviously not make different 
decisions from different states in the same information set 
(since, by definition, it cannot distinguish such states); 
however, the deterministic solvers can and do make different 
decisions in different determinizations.  

2. Non-locality. Some determinizations may be vanishingly 
unlikely (rendering their solutions irrelevant to the overall 
decision process) due to the other players’ abilities to direct 
play away from the corresponding states. 

Building on the work of Frank and Basin, Long et al [20] 
identify three parameters of game trees and show that the 
effectiveness of determinization has some dependence on the 
game’s position in this parameter space. The parameters measure 
the ability of a player to influence the outcome of a game in its late 
stages (leaf correlation), the bias in the game towards a particular 
player (bias) and the rate at which hidden information is revealed 
(disambiguation). Long et al [20] demonstrate how these 
parameters can be used to predict whether determinization is an 
appropriate method for a given game. 

2.3.2 Other approaches 

One alternative approach to tree search for stochastic games is 
expectimax search [18]. This is a modification of the well-known 
minimax algorithm to game trees containing chance nodes. The 
value of a chance node is the expected value of a randomly chosen 
child (i.e. the sum of the values of its children weighted by the 
probabilities of the corresponding chance outcomes). Unfortunately, 
expectimax is not well-suited to the type of card games studied in 
this paper, where there is a single chance node with a very large 
branching factor (corresponding to the initial shuffling of the deck), 
as the resulting game tree is too large to search even with MCTS. 

As noted previously, the field of game AI focussed on 
deterministic games of perfect information until relatively recently. 
The same is not true in the field of game theory, where stochastic 
games of imperfect information have been well studied [7]. Thus a 
popular approach to AI for such games is to compute (or 
approximate) a Nash equilibrium strategy; examples of this 
approach include Gala [21] and counterfactual regret [22]. While 
there is undeniable appeal in finding a strategy that is provably 
optimal, we feel that searching for Nash equilibria is often not the 



 

most appropriate approach to building strong game AI. The 
definition of Nash equilibrium requires only that the strategy is 
optimal against other optimal (Nash) strategies, so Nash strategies 
often fail to fully exploit suboptimal opponents. 

2.3.3 Inference 

In games of imperfect information, it is often possible to infer 
hidden information by observing the actions of the other players, 
according to some model of the other players’ decision processes. 
This type of inference has frequently been applied to the game of 
poker [23-25], but also to other games such as Scrabble [26] and the 
card game Skat [27] which has similarities to the card game Dou Di 
Zhu which we study in this paper. Developing an inference engine 
for Dou Di Zhu is a subject of current and future work. Section 5.3 
discusses the increase in playing strength we expect to see from a 
strong inference engine. 

3 DOU DI ZHU 

3.1 History and Popularity of Dou Di Zhu 

Dou Di Zhu [28] is a 3-player gambling card game which originated 
in China. It falls into the class of Climbing Games but also has 
similar elements to Trick Taking Games. The name Dou Di Zhu 
translates into English as “Fight The Landlord” and is a reference to 
the class struggle during the Cultural Revolution in China where 
peasants were authorized to violate the human rights of their 
Landlords. In the original version of the game two players play 
compete together against a third player, the Landlord. There are 
other versions of the game involving four and five players but these 
are less popular. 

The game was only played in a few regions of China until quite 
recently, when versions of the game on the Internet have led to an 
increase in the popularity of the game throughout the whole 
country. Today Dou Di Zhu is played by millions of people online, 
although almost exclusively in China, with one website reporting 
1,450,000 players per hour. In addition there have been several 
major Dou Di Zhu tournaments including one in 2008 which 
attracted 200,000 players.Dou Di Zhu is interesting from an AI 
perspective as it necessitates both competition (between the 
Landlord and the other two players) and cooperation (between the 
two non-Landlord players). 

3.2 Rules 

Dou Di Zhu2 uses a standard 52 card deck with the addition of a 
black joker and a red joker. Suit is irrelevant but the cards are 
ranked with 3 being the lowest rank and 2 being the highest rank 
(higher than Ace). The jokers are ranked higher than a two, with the 
red joker ranked higher than the black joker. Each player is dealt a 
hand of 17 cards from a shuffled deck and the remaining three cards 
are placed faced down on the table. 

3.2.1 Bidding Phase 

Each player takes turns to bid on their hand with the possible bids 
being 1, 2 or 3 chips. Bids must be strictly higher than the current 
bid but each player has the option to pass. This continues until two 
of the players pass consecutively. If any player bids 3 chips then the 
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bidding phase immediately ends. If all three players initially pass, 
the cards are shuffled and dealt again. The winner of the bidding 
phase is designated as the Landlord and this player adds the three 
extra cards on the table into their hand, and plays first. The winning 
bid determines the stake for the game. 

3.2.2 Card Play Phase 

The goal of the game is to be the first to get rid of all cards in hand. 
If the Landlord wins, the other two players must each pay the stake 
to the Landlord. However if either of the other two players wins, the 
Landlord pays the stake to both opponents. This means the two non-
Landlord players must cooperate to beat the Landlord. The 
Landlord always plays first and then play moves around the table in 
a fixed direction. At the end of the game the stake is doubled if a 
player has failed to remove any cards from their hand. 

The card play takes place in a number of rounds until a player 
has no cards left. Whoever plays first can play any group of cards 
from their hand provided this group is a member of one of the legal 
move categories (see Table 1). The next player can play a group of 
cards from their hand provided this group is in the same category 
and has a higher rank than the group played by the previous player. 
If a player has no compatible group they must pass. This continues 
until two players pass, at which point the next player wins that 
round and may start a new round by playing a group of cards from 
any category. 

There are a few special rules for some of the categories. If the 
move being played is a straight run (of singles, pairs or trios) then 
the next player must play a straight run of the same type and length, 
ending on a higher ranked card. Straight runs can contain cards of 
any rank from 3 to Ace, but not cards of rank 2 or jokers. A Bomb 
or a Nuke (also known as a Rocket) may be played at any point but 
doubles the stake of the game. A Bomb may be followed by another 
Bomb of higher rank but not a Quadplex. 

Some categories allow extra kicker cards to be played with the 
group which have no effect on the category or rank of the move 
being played. A kicker can be any card provided it is of different 
rank to all the cards in the main group. If the kicker cards are single 
cards they must be of different rank and if the kicker cards are pairs 
they must be differently ranked pairs. Also a Nuke cannot be used 
as a kicker. If a move with kickers is played, the next player must 
play a move in the same category with the same number of kickers, 
although the ranks of the kicker cards are ignored. 

Table 1 summarises the categories of moves in Dou Di Zhu. 
 

Table 1. Description of the different move categories in Dou Di Zhu 

Name Description 
Solo Any individual card, for example A or 2. It is also possible to 

play runs of sequential cards with length at least 5, for 
example 345678 or 89TJQKA. 

Pair Any pair of identically ranked cards for example 55 or 77. It 
is possible to play runs of sequential pairs with length at least 
3, for example 334455 or TTJJQQKK. 

Trio Any three identically ranked cards for example AAA or 888. 
It is possible to play runs of sequential trios of any length, for 
example 444555 or TTTJJJQQQ. Each trio may also have a 
kicker attached, for example 444555TJ or 999QQ. 

Quadplex Any four identically ranked cards with two kickers attached, 
for examples 4444TJ or 999955KK. 

Bomb Any four identically ranked cards, for example 5555 or 2222. 
Nuke The red joker and the black joker together. 



 

3.3 Basic Strategy 

Dou Di Zhu is a game which requires substantial levels of skill from 
expert human players. The player who wins the bidding phase 
usually has a high confidence they were dealt a good hand although 
they have three extra cards to discard. Often a hand contains lower 
ranked individual cards that cannot form part of a bigger group and 
it is possible to play these by using them as kicker cards. In general 
most plays should reduce the number of moves needed to get rid of 
all cards. Bombs and Nukes are powerful since they can be played 
at any point, but they double the stake of the game. For this reason 
playing them early in the game is risky. 

Starting a new category is a good position to be in, allowing a 
player to choose a category where he holds multiple groups, or 
holds a high-ranking group that opponents are unlikely to be able to 
play on. Hence inference is an important aspect of Dou Di Zhu 
especially concerning the location of the high ranked cards in 
opponents’ hands. The two non-landlord players also need to work 
together since they either both win or both lose. This can be 
achieved by making plays that allow the other non-Landlord player 
to play cards or prevent the Landlord from making further plays. 

4 METHODOLOGY  

In order to focus only on the card play phase, it is possible to 
remove the bidding phase and designate that an arbitrarily chosen 
player gets the extra cards and is the Landlord.  

4.1 Perfect Information Dou Di Zhu 

It is possible to modify Dou Di Zhu to be a game of perfect 
information by playing with all cards face up at all times. This 
removes the need to make inferences about other player’s cards and 
allows the exact consequences of every action to be studied when 
searching the game tree. This version of the game we call Perfect 
Information Dou Di Zhu. 

In order to compare the results of playing multiple games of Dou 
Di Zhu, we count numbers of wins instead of cumulative rewards, 
ignoring the effects of player bidding and bombs/nukes.  We award 
a player 1 point for winning a dealt hand and 0 points for a loss. 
Since the UCB algorithm has been well studied with rewards in {0,1} we can benefit from the work of others in setting the 
parameter � which trades off exploration and exploitation in the 
UCB formula (1). 

4.2 Imperfect Information Dou Di Zhu 

By hiding from each player the cards held in the other players’ 
hands during a game of Perfect Information Dou Di Zhu we create 
the game of Imperfect Information Dou Di Zhu. Note that the 
number of cards held by each player and the history of cards played 
so far are still visible to all players, only the ranks of the held cards 
are hidden. Since there are unknown cards, the game tree has a huge 
branching factor for every possible combination of cards each 
player could hold. Instead of searching this tree we apply a 
determinization approach similar to the approach Ginsberg [4] uses 
for Bridge. This involves searching multiple determinizations of the 
game at each decision step. However, where Ginsberg uses 
minimax search, we use the UCT algorithm. 

At each decision our agent samples multiple determinizations by 
randomly distributing the hidden cards between the other players. 
Each of these determinizations is a game of Perfect Information 

Dou Di Zhu, to which the UCT algorithm is then applied. The 
actions available in the first layer of the tree are the same for each 
determinization since the cards our agent holds are the same in each 
case. The visits to each action for each determinization are summed 
and our agent selects the action with the highest total number of 
visits. 

5 EXPERIMENTS 

In the experiments described in this section we use determinized 
UCT, where � denotes the number of determinizations (i.e. � 
independent search trees) and % denotes the number of UCT 
iterations per determinization. 

5.1 Variation in Dou Di Zhu win rates 

Although the strength of decisions made by each player has a 
significant effect on the outcome of a game of Dou Di Zhu, some 
random deals may favour one player over another, whereas others 
may be much more sensitive to the players’ decisions. In an effort 
to reduce the variance of subsequent results and thus allow them to 
be compared more easily, we begin by choosing a set of 1000 Dou 
Di Zhu deals to be used for the remainder of the experiments. The 
practice of specifying deck ordering in advance is common in 
Bridge and Whist tournaments between human players, to minimise 
the effect of luck when comparing players. This set of deals is 
chosen such that when played by a set of identical AI agents (in this 
case determinized UCT), the number of wins for a particular player 
is as close as possible to the mean number of wins for 1000 random 
deals. In order to choose such a set, we must first determine what 
that mean is. 

We generated 100 sets of 1000 random Dou Di Zhu deals, and 
for each deal we played a single game with three determinized UCT 
players, each with � = 50 determinizations and % = 250 UCT 
iterations per determinization. For each set, we recorded how many 
of the 1000 games were won by player 1. Figure 1 shows a 
histogram of these numbers of wins. 

From these results we find that the number of wins appears to be 
normally distributed. The mean is � = 433.47; thus we choose a set 
of deals for which player 1 achieved exactly 433 wins in this 
experiment as our “representative” set for the remainder of this 
paper. The standard deviation is + = 16.27 and so a 95% 
confidence interval for the mean number of wins for player 1 is 
[433.37, 433.57]. 

 



 

 

Figure 1. Histogram of win rates for the landlord player in 100 sets of 1000 
Dou Di Zhu games. 

5.2 Effect of - and . on playing strength 

In these experiments, we played a number of games for each of our 
1000 deals. In each game, players 2 and 3 used determinized UCT 
with 40 determinizations and 250 UCT iterations per 
determinization, whereas player 1 used determinized UCT with � 
determinizations and % iterations per determinization, each game 
with a different value for � and/or %. For each combination of � and %, we counted how many games out of the 1000 trials were won by 
player 1. 

5.2.1 Varying � while % remains fixed 

In this first experiment, we fixed four values for %, namely 50, 
100, 250 and 500. For each of these, we used a number of values for �, ranging from 1 to 100. 

Figure 2 plots the number of wins against �. We see that playing 
strength increases rapidly with � < 20, with rapidly diminishing 
returns for � ≥ 20. However, there seems to be slightly more 
benefit to increasing the number of determinizations beyond 30 
when the number of UCT iterations is low. 

 

 

Figure 2. Plot of number of landlord (player 1) wins against number of 
determinizations, for fixed numbers of UCT iterations per determinization. 

5.2.2 Varying % while � remains fixed 

The conditions for this experiment were similar to those for the 
previous experiment, with the exception that we fixed four values of � (namely 5, 10, 25 and 40) and varied % (from 25 to 1000). The 
results are plotted in Figure 3. For % ≤ 300 the playing strength 
increases logarithmically with the number of simulations, levelling 
off for % > 300. 

 

 

Figure 3. Plot of number of landlord (player 1) wins against number of UCT 
iterations per determinization, for fixed numbers of determinizations. 

5.2.3 Varying � and % while �% remains fixed 

Arguably the fairest comparison of the relative strength of different 
AI agents is to allocate them the same length of time (or the same 
number of CPU cycles) to make their decisions. However, this is 
not ideal from a scientific point of view since such measurements 
are inherently noisy and depend on issues of implementation and 
hardware. Instead, we simulate this by allocating a fixed number of 
UCT iterations per decision, making the (not unreasonable) 
assumptions that the time for a single iteration is roughly constant 
and the overall decision time is roughly linear in the number of 
iterations. 

In this experiment we fixed four values of a constant Σ (namely 
2500, 5000, 10000 and 15000), varied � from 1 to 100, and took % = 45�6 for each value of � (so that �% ≈ Σ). With our current 

implementation and hardware Σ = 10000 equates to approximately 
1 CPU second of computation per move. Note that in this 
experiment (as in the preceding two experiments), players 2 and 3 
have �% = 40 × 250 = 10000. 

Figure 4 plots the number of wins for player 1 against �. Given 
the results of the preceding experiments, it is not surprising that 
determinized UCT is weaker when � or % is too small, nor that its 
strength is somewhat independent of these parameters when both 
are sufficiently large. 
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Figure 4. Plot of number of landlord (player 1) wins against number of 
determinizations, for a fixed number of UCT simulations divided equally 
among all determinizations. 

5.3 Benefit of observing hidden information 

As noted in Section 2.3.3, it is often useful in games of imperfect 
information to make inferences about the hidden information. 
However, it is not always clear how useful this inference may be. 
Richards and Amir [26] demonstrate the usefulness of inference in 
Scrabble by playing an AI agent with no inference engine against an 
AI agent with the ability to “cheat” and observe directly its 
opponent’s hidden rack of letters. The benefit of direct access to the 
hidden information is an upper bound on the possible benefits of 
inference. 

In our experiment for Dou Di Zhu, we played two types of AI 
agent against each other in various combinations: the determinized 
UCT player used in previous experiments (with � = 40 and % = 250) and a perfect information player in which the 40 
determinizations are replaced by 40 copies of the actual state of the 
game. (This player still uses multiple UCT trees, but all trees have 
the same root state, which is the actual state of the game). 
Specifically, we take as a baseline the number of wins when each 
player uses determinized UCT (i.e. has only imperfect information) 
and measure the increase in numbers of wins when various players 
instead use perfect information. 

Table 2 and Figure 5 show the results of this experiment. We see 
that knowledge of the other players’ hidden cards increases the 
number of wins by around 7-12% (the benefit appears to be slightly 
less for the landlord, and slightly greater for the player preceding 
the landlord). Furthermore, if both non-landlord players can observe 
the hidden information, their win rate increases by around 21%.  

When all three players have perfect information, players 2 and 3 
win 12.7% more games than if all three have imperfect information. 
This suggests that perfect information is more beneficial to the non-
landlord players than to the landlord. 

 

Table 2. The increase in numbers of wins over 1000 games when the 
specified player(s) gain perfect information, and all other player(s) have 
imperfect information. For example, if player 2 has perfect information and 
players 1 and 3 have imperfect information, player 2 wins 86 more games 
than if all three players have imperfect information. Note that a win for 
player 2 is also counted as a win for player 3, and vice versa. 

Player(s) with 
perfect information 

Increase in number of wins 
(1000 games) 

Player 1 
Player 2 
Player 3 

Players 2 and 3 

69 
86 
119 
210 

 
 

 

Figure 5. Number of wins for players with perfect versus imperfect 
information. Each pair of bars shows the numbers of wins for the specified 
player(s) when they have perfect or imperfect information and all other 
players have imperfect information. 

6 CONCLUSION 

In this paper we presented the hugely popular Chinese card game 
Dou Di Zhu as an interesting game for investigation. We applied a 
determinization approach using the UCT algorithm to search each 
determinization. Although we have yet to accurately determine the 
playing strength of the resulting AI agent (not least due to the lack 
of other strong AI for Dou Di Zhu against which to test) our 
informal experiments (playing against this paper’s authors) suggest 
that it is on a par with human players. The nature of Dou Di Zhu 
suggests that the effects of some of the problems with 
determinization outlined in Section 2.3.1, are unlikely to be major: 
in particular, strategies such as information hiding or bluffing do 
not generally play an important role.  

We showed that the performance of determinized UCT is not 
particularly sensitive to the trade-off between the number of 
determinizations and the number of UCT iterations per 
determinization. When the number of determinizations is fixed, 
performance scales approximately logarithmically with respect to 
the number of UCT iterations; when the number of simulations is 
fixed, performance increases rapidly with the number of 
determinizations until some threshold (approximately 20 in our 
experiments) is reached, after which increasing the number of 
determinizations does not significantly increase the playing 
strength. We do not see any obvious reason why these results 
should be specific to Dou Di Zhu; however we plan to repeat these 
experiments for other stochastic games of imperfect information to 
investigate this further. 

We have shown that the increase in playing strength from an 
accurate inference engine is potentially large. One of our future 
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aims is to find an inference method for Dou Di Zhu that achieves 
some of this increase. Conceptually, it is easy to combine an 
inference model with determinization: instead of sampling 
determinizations at random, use determinizations that the inference 
model identifies as being close to the actual state. Our next step is to 
design an inference model that can identify such determinizations. 
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Abstract

The goal of this work is to design and im-
plement an agent which generates hints
for a player in a first person shooter game.
The agent is a computer-controlled char-
acter which collaborates with the player
to achieve the goal of the game. Such
agent uses state of the art reasoning tech-
niques from the area of artificial intelli-
gence planning in order to come up with
the content of the instructions. Moreover,
it applies techniques from the area of nat-
ural language generation to generate the
hints. As a result the instructions are both
causally appropriate at the point in which
they are uttered and relevant to the goal
of the game.

1 Introduction

Nowadays, most game tutorials make the player
follow a fixed script. As a result having a good
or bad tutorial is still an art that depends on
how good the script is at faking some freedom
(for instance, by foreseeing possible reactions
of the player) in order to make it more enter-
taining. Natural language generation can offer
game designers with techniques that, in the fu-
ture, may transform good tutorial design not in
an art but in a science by providing insights and
efficient algorithms for calculating the players
knowledge and dealing with the players reac-
tions in a dynamic way.

The goal of this work is to design and im-
plement an agent (a computer-controlled char-
acter) which is able to generate hints that help a
player advance in a game situated in a 3D vir-
tual world. The agent knows information that
is necessary to win the level and is not known
by the player, hence the player needs to collab-
orate with the agent in order to finish the level
successfully. Such agent uses state of the art
reasoning algorithms such as planning in or-
der to come up with the content of the instruc-
tions which are relevant at each point in the
interaction. Furthermore, it applies techniques
from situated natural language generation such
as common ground management to generate the
context-aware hints.

We believe that our contribution is interest-
ing for the game industry as well as for the
players. For players, this work is a first step
towards more flexible, effective and entertain-
ing tutorials. In order to sustain our claims we
performed a human based evaluation. The re-
sults of the evaluation, though preliminary due
to the amount of subjects, are indeed encour-
aging. For the game industry, good tutorials
are expensive to develop because it is costly to
script all the appropriate game behaviors caused
by different potential player reactions (some of
which might never be triggered). Our approach
can be seen as a way of automatically produc-
ing scripts that change according to the unpre-
dictable player behavior and the changing envi-
ronment, reducing the burden on the developer.



The paper proceeds as follows. In Section 2
we briefly introduce the area of natural lan-
guage generation. Section 3 describes the game
environment where our game partner lives, and
discusses the process of planning problem gen-
eration from the game environment. Section 4
presents the process used to generate an instruc-
tion according to a plan. Section 5 describes
the integration of our generated instructions into
the game interaction as well as the management
of common ground between the player and the
agent. Section 6 presents the results of our hu-
man evaluation. Section 7 concludes the paper.

2 Related work

Natural language generation (NLG) is a sub-
field of Artificial Intelligence (AI) and Com-
putational Linguistics. It is concerned with
the construction of computer systems which
can produce understandable texts in English
or other human languages from some under-
lying non-linguistic representation of informa-
tion. NLG systems combine knowledge about
language and the application domain to auto-
matically produce documents, reports, explana-
tions, help messages, and other kinds of texts.

The area of NLG is a new area of research,
with less than a couple of decades of experi-
ence (Reiter and Dale, 2000). However, it is
a rapid developing field that has put forward
promising techniques in the last few years, in
particular thanks to the shared challenges pro-
posed for comparing current NLG technolo-
gies. One of such challenges is called GIVE
(Giving Instructions in Virtual Environments).
GIVE (Koller et al., 2010) is particularly rel-
evant for our work since it applies NLG tech-
niques to the problem of generating natural
language instructions in a 3D virtual world.
As a result several techniques investigated by
GIVE’s research community are directly appli-
cable to this work. In the GIVE task, human
players try to solve a treasure hunt in a virtual
3D world that they have not seen before. The

Figure 1: The player’s view in the GIVE Challenge.

computer has a complete symbolic representa-
tion of the virtual world. The challenge for the
NLG system is to generate, in real time, natural-
language instructions that can guide the player
to the successful completion of their task. Only
the player can effect any changes in the world,
by moving around, manipulating objects, etc.
Figure 1 shows a screen-shot of the user’s view
on the 3D world. On the top of the picture, the
current instruction given by the NLG system is
displayed.

The NLG tasks and techniques that are rel-
evant for GIVE and for this work are content
determination through planning, situated gen-
eration of referring expressions and common
ground management; we will briefly discuss
each of them.

The task of content determination consists in
deciding which information to communicate to
the player such that the information is appropri-
ate at the current point in the interaction. Such
task can be implemented using the inference
technique of planning (Benotti, 2010). As a
result, the instructions are both relevant to the
goal of the game and causally appropriate at the
point in which they are uttered.

The situated generation of referring expres-
sions area (Reiter and Dale, 2000) provides al-
gorithms for coming up with descriptions of ob-
jects so that the player can identify such objects



(e.g. “the door in front of you”) taking into ac-
count both static (e.g., color) and dynamic prop-
erties (e.g., visibility) of an object.

Finally, common ground management is the
task of generating grounding acts when appro-
priate according to the behavior of the player.
Grounding acts are utterances that, in a strict
sense, do not add new information to the dis-
course but instead they reinforce old informa-
tion. For example, if the NLG system tells the
player “take the left green kit” and the player
turns slightly left to face an object, the system
may generate a positive grounding act such as
“yes” if that was the right object, or “no” other-
wise (Traum, 1994).

These three techniques are useful for gen-
erating hints that convey appropriate informa-
tion to the player and that consider the player
reaction in order to reinforce the information.
In (Garoufi and Koller, 2010) the authors pro-
pose to cast all three tasks as a planning prob-
lem. Such integration is proven to be success-
ful for small and discrete game worlds, however
it does not scale to continuous game worlds in
which the player can move freely (and continu-
ously) in 3 dimensions. As a result in this paper
we propose to use planning for handling only
content determination while we use more tradi-
tional NLG methods for the other two tasks.

3 Finding plans from a game state

The design of game characters decision making
is one of the most challenging tasks when de-
signing a game; the expert game partner is, by
no means, an exception to this rule. In most
games, the characters decision making is ei-
ther implemented in an ad-hoc way which is
scripted for that particular game, or designed as
a state machine which needs to be kept small
because of scalability issues (Millington and
Funge, 2009). A believable game partner can
not get away with a decision making process
that is either scripted or small. First, the agent
needs to react appropriately to infinitely many

player reactions which cannot be predicted and
scripted. And second, it needs to reason over
complex game states in a goal directed way in
order to be able to give instructions that are both
causally appropriate at the point in which they
are uttered and relevant to the goal of the game.

Our approach to implement the decision
making process of the expert game partner
(a.k.a content determination in the NLG area)
is to use an off-the-shelf automated planner.
The planner that we use is FastForward (FF).
FF (Hoffmann, 2005) can handle big planning
problems (with over a million objects) and re-
turn plans of thousands of actions in seconds
and can handle our game environment (with a
couple of hundreds of objects and plans with a
maximum length of 250 actions) in a few mil-
liseconds. Planning problems are specified in
PDDL (Gerevini and Long, 2005).

Automated planners are ready to be used in
industry applications. They have reached a ma-
turity level in which they can be used in real
time applications even if the need of re-planning
is high. In our setup there is a high need for
re-planning because the behavior of the player
is non-deterministic and unpredictable. More-
over, planners are domain independent, in order
to come up with a plan which wins the game
they just need an specification of the actions
that are possible in the game and a discretized
representation of what the agent knows about
the state of the game. The agent knowledge
about the region locations and adjacencies is
discretized using the game waypoints (Milling-
ton and Funge, 2009).

The game environment for which we have
implemented our game partner lives is first per-
son shooter game (FPS). The game scenario,
called Igor1, was developed using the Irrwizard
framework2 and extended in C++. As in most
FPS games the player is situated in a 3D world
where he can perform several actions such as

1https://sites.google.com/site/nicolasbertoa/igor
2http://irrwizard.sourceforge.net/



walk, jump, climb stairs, shoot and pick up dif-
ferent items which have different effects. The
goal of the game is to kill a creature that is wan-
dering in the 3D world. The creature cannot be
killed only by shooting at it because it has a self
healing mechanism that needs to be turned off
first by deactivating a series of power rays in
a given order. The NLG agents knows which
is the right sequence of rays as well as the po-
sition of each of these rays. It is also able to
recognize other items (such as poison or health)
and is aware of their effect. All this information
is stored in the specification that is sent to the
planner and the planner returns a sequence of
actions that, if executed in the current state of
the game, would achieve the goal of the game.

The agent must extract information from the
environment and represent it in the planner
language: PDDL (Gerevini and Long, 2005).
PDDL is intended to express the physics of a
domain, that is, what facts are true in the world,
what actions are possible, and what the precon-
ditions and effects of actions are. The agent
represents the number of rays that the player
needs to pick up and its order. Also, the agent
codifies in the planning problem the waypoints
and adjacencies which are used by the planner
to find the nearest path between the player and
the items to pick up. Moreover, the agent needs
information about the player and the enemy po-
sition and state. The agent constantly verify the
health level of the player and enemy and up-
dates its condition (attacking, wandering, dead
etc) in the planning problem.

Once the agent has joined all the information
about the problem, it generates a planning prob-
lem and sends to the planner. Then the planner
generates a plan and the agent uses the plan to
generate the instructions (see next section). The
planner takes, in average, 8.61 milliseconds to
find a plan for our game planning domain (with
a standard deviation of 7.46 milliseconds). The
maximum length of a plan in our game environ-
ment is 250 actions (notice that plans and plan
length varies depending of the current state of

the interaction). Once a plan was obtained, the
agent needs information about the environment
to check if the plan was accomplished or not,
and to know the situations in which must re-
plan (we address these issues in Section 5).

4 Using plans to decide what to say
This section explains how the agent uses the
plan obtained from the planner. The plan is
composed by a series of steps that the player
must follow to meet the plan goal. When the
agent has a new plan, it must decide what in-
struction to say next. Suppose that the planner
give us the plan steps that shown in Figure 2.
This plan contains two types of actions, MoveTo
and TakeKey. The first type of action indicates
that the player has to move from one way-point
to another, and the second indicates the ray that
the player hast to pick as well as the way-point
where it is located.

Figure 2: Plan steps generated by the planner.

These steps a plan to pick up the ray blueKey
as illustrated in Figure 3. Now, the agent has
the problem of deciding which plans steps to
verbalize, that is it needs to do content deter-
mination based on the plan steps. Notice that
the naive approach of verbalizing all plan steps
would result in a very repetitive and over re-
strictive game partner. Therefore we made the
content determination process of our agent de-
pendent of the actions whose waypoints are di-
rectly visible to the player or visible by turning
around on his current position, we will say that
this waypoints are visible 360.



Figure 3: Path of the plan in Figure 2 with waypoints
visible 360 highlighted (one uniquely referable).

The Figure 3 shows that there are only three
visible waypoints of the plan at 360 degrees
from the position of the player. These are the
waypoints 4, 5 and 6. The others are blocked
by the environment. From the visible waypoints
we verbalize the one that has a referring expres-
sion which uniquely identifies it. In our case,
the waypoints 4 and 6 are waypoints that are
in the middle of rooms, so, there are no re-
ferring expressions to unambiguously describe
them. But in the case of the waypoint 5, there
is a door, so we can use a referring expression
to uniquely identify the object involved. As a
result, in the situation illustrated in Figure 2 the
instruction “go through the door in front of you”
is generated.

But, what happens in the case when there are
more than one object that can be uniquely iden-
tified? The Figure 4 shows this case. There are
seven visible waypoints of the plan at 360 de-
grees from the position of the player, and three
of them have an object that can be uniquely
identified: 5 (has a small door), 7 (has a big
door), and 9 (has some stairs). In this case, the
agent generates an instruction which refers to
the the furthest visible object in the path of the

Figure 4: Path of the plan in Figure 2 with waypoints
visible 360 highlighted (many uniquely referable).

plan and verbalizes “see those stairs in front of
you?” before saying “take them” (these strat-
egy is used when referring to objects that are far
away from the player, see Section 5 for details).

The screen-shots in Figure 5 illustrate the
process we just explained. In the screen-shot we
have drawn the visible waypoints and the paths
between them.The arcs between waypoints il-
lustrate the actions in the plan. In the screen-
shot in the top of Figure 5 the planned ac-
tions could be verbalized as “go forward, go
through the door, go forward, go forward, do
you see those stairs in front of you?, take them,
go forward”. As we said, we have decided
to verbalize the last action in the sequence
which contains a referring expression which
uniquely identifies the object involved in the ac-
tion. In this example, this is the case for the ac-
tion “do you see those stairs in front of you?”
since “those stairs” are a distinguishing refer-
ring expression (given the current position of
the player) for the stairs that are further away.
We say that the first actions, namely “go for-
ward, go through the door, go forward, go for-
ward” are left tacit (Benotti, 2007) and they
are expected to be inferred by the player given



Figure 5: Instructions generated using the plan and
the player’s visibility

the causal constraints of the world (in simpler
terms, in order to see “those stairs” better the
player will need to approach them). The screen-
shot at the bottom of Figure 5 (“Turn left”), il-
lustrates an instruction whose goal is to make
directly visible a waypoint that is visible 360.

5 Interaction and common ground
Once the agent generates the instruction, it will
show that instruction to the player as illustrated
in Figure 5. Of course, the player may decide to
follow the instruction or to do something else.
A good game partner should handle both situ-
ations robustly; we discuss our strategy for do-
ing this in Section 5.1. Furthermore, not only
the player but also our environment can behave
in a non deterministic way. The game partner
should be able to sense and react to a changing

environment in an appropriate way; Section 5.2
addresses this issue. In both of this situations
grounding acts can be use to reinforce instruc-
tions that were already communicated but were
not successfully accomplished yet; we illustrate
how positive and negative grounding acts are
used by our agent in Section 5.3.

5.1 Dealing with unpredictable behavior
Our strategy for dealing with the player’s un-
predictable behavior is to find a new plan (that
is, to replan) every time the player gets too far
away from the current plan. The crucial point
here is to define what it means to get too far
from the current plan. Since we base our con-
tent determination procedure in the player vis-
ibility we also use the same strategy to decide
when to replan. The agent will replan when all
waypoint in the plan are no longer visible 360
for the player.

Let’s illustrate our strategy by an example.
Figure 6a shows an example scenario and the
waypoints of the plan which are visible 360.

Figure 6: Re-planning example.

Now suppose that the player does not follow
the instructions and ends up in the situation il-
lustrated in Figure 6b. In this new situation re-



planning is needed because none of the way-
points in the plan is visible anymore from the
current player position.

Summing up, the agent will re-plan when
there are not visible waypoints of the plan, be-
cause is very difficult that the agent achieves
the reorientation of the player towards the goal.
This strategy results effective (and not overly
restrictive) while guiding the player to the game
goal as shown by our evaluation results in Sec-
tion 6.

5.2 Dealing with a changing environment
Suppose we have 4 ray items: blue, green, vi-
olet and red and the correct sequence to deac-
tivate the enemy’s defense mechanism is red,
blue and red. The Figure 7 shows the plan that
the agent obtained from the planner (the plan
is simplified not to show move actions for pre-
sentation simplicity). What the planner cannot
handle is the fact that, when the player picks up
some object of the game, the object repositions
randomly in another way-point. For example, in
the Figure 8 we can see that the obtained plan is
incorrect because the red ray was repositioned
at a different way-point. The planner assumes a
deterministic environment, we deal with a non
deterministic environment, such as our game,
by means of replanning. That is, when the po-
sition the environment changes in a non deter-
ministic way (for example when a ray changes
its position), the agent replans.

5.3 The importance of the grounding acts
Grounding acts are utterances that, in a strict
sense, do not add new information to the dis-
course but instead they reinforce old informa-
tion. Grounding acts are not required from an
informational point of view of communication,
however, they play an important role in order to
cope with changing environments, and the un-
predictable behavior of the player.

The Figure 9 shows a case of the positive
grounding act “Get this ray” which follows the
instruction “Turn left to see the ray” when the

Figure 7: Steps to get the sequence of rays.

Figure 8: The plan was incorrect due dynamic prop-
erties of rays.

ray becomes visible. This utterance is a positive
grounding act because, it does not add new in-
formation to the discourse. The player should
be able to figure out that he should pick up
this ray, otherwise, why would have the agent
guided him to it? However, natural language
is ambiguous and the player may not draw this
conclusion so the reinforcing achieved by the
grounding act is indeed useful.

The other screen-shot in the Figure 9 illus-
trates a case of negative grounding acts with
“This is not the ray you need”, which follows
the instruction “we need to find the green ray”,
when the player hovers the mouse pointer on
the red ray. With this instruction, the agent pre-
vents the player from re-activating the protec-
tion mechanism of the creature as a result of



Figure 9: Grounding acts that can be generated as a
reaction to the player actions

picking a ray in the wrong sequence. Again, in
a strict sense, the negative grounding act is not
necessary because the player has already been
told that the next ray that is needed is green.
However, the player may not remember this and
may try to take the red ray which is directly in
front of him.

The screen-shots in Figure 10 illustrates a
typical example of common ground creation be-
tween the agent and the player. The screen-shot
in the top shows the instruction “Do you see that
ray in front of you?”. With this instruction the
agent wants that the player to focus his atten-
tion in a ray with is in front of him. As a result
it is to be expected that the player gets closer
to the ray. In this new situation, the agent gen-
erates the instruction “Pick it up”. It is clear
from this instruction that the agent wants that

Figure 10: Multi-utterance instructions which create
and use the common ground

the player picks up the blue ray in front of him,
but we can see that neither the ray nor its posi-
tion are included in the instruction. This can be
done because this information is already in the
the common ground between the agent and the
player.

6 User evaluation
In this section we describe the results of the hu-
man evaluation of our agent. You can see a
gameplay video at https://sites.google.com/site/
nicolasbertoa/ai4games video.

For our evaluation we used objective and sub-
jective metrics. Objective metrics were col-
lected by logging the player behavior and the
subjective metrics by asking players to com-
plete a questionnaire after finishing the tutorial
level. We used the same metrics that are used



in the GIVE Challenge (Koller et al., 2010) to
evaluate systems in terms of the effectiveness,
naturalness of instructions and the engagement
of the interaction. We gathered 10 volunteers
for the evaluation. Each of them played the
game in his own. The demographic character-
istics of the volunteers that we collected are the
following: they were all male, the average age
was 20 years old and all of them were gamers.
This subject population is the target market of
the kind of game we implemented.

The results that we obtained using the objec-
tive metrics are shown in Figures 11 and 12.

The Figure 11 shows the number of success-
ful instructions, minor faults and serious faults.
An instruction is considered successful if the
player did exactly what the system asked him
to do, an instruction is considered a minor fault
if the player deviated from the instruction with-
out causing a replanning, and an instruction is a
serious fault if the agent had to replan after ut-
tering it. Their averages are 44.1, 28.9 and 4.4,
and their standard deviations are 9.74, 17.04
and 3.92, respectively. We can see that there
were very few serious faults, this suggests that
the agent was successful in the task of guiding
the player. Also, we can see that players devi-
ated from 40% of the instructions and, accord-
ing to the game logs, this is due mainly to the
presence of enemy which obviously causes the
player to not follow the plan. Finally, approx-
imately 60% of the instructions were directly
successful, the player did exactly what the agent
asked him to do in more than half of the cases.

The Figure 12 shows the average of the other
objective metrics we collected. The success-
ful instructions were completed quickly, which
suggests that the instructions were easy to un-
derstand and execute. Also, players were able
to complete the level quickly without visiting
all the map waypoints (they only visited, in av-
erage, 70% of the map).

The Figure 13 shows the results of the subjec-
tive metrics. On the one hand, the players con-
sidered that the instructions were too repetitive.

Figure 11: Objective metrics: Successful instruc-
tions, minor and serious faults per player.

Figure 12: Objective metrics: average times and dis-
tance traveled.

Also, they considered that the instructions were
few time at the screen and that the instructions
were generated too early. Also, some players
said that sometimes they were confused about
the direction to go in. On the other hand, the
statements that are related to entertainment ob-
tained very high percentages, which suggests
that the player had fun, that is the main objec-
tive of any game. Another strong point is that
the instructions were very clearly worded and
were understood. Also, players perceived that
most of the time the agent helped to the players
when they were confused.

We consider that these results are encourag-
ing, in particular because one of the main goals
of our agent was to be able to participate in an
engaging interaction while still providing useful
instructions whenever the player needed help.
We are considering different techniques to im-
prove the agent in those characteristics in which
it did not get such good results (for example, by
doing corpus based generation in order to avoid
being repetitive (Gandhe and Traum, 2007)).



Figure 13: Results of the subjective metrics.

7 Conclusions

In this paper we have presented an agent which
is able to generate hints that help a player win
a level in first person shooter game. Such agent
uses state of the art reasoning such as planning
in order to come up with the content of the in-
structions and state of the art techniques from
natural language generation to context-aware
generate referring expressions and grounding
acts.

Currently, most game tutorials make the
player follow a fixed script. It must contemplate
as many situations as possible. To achieve that,
the developers often use state machines, which
needs to be kept small because of scalability
issues (Millington and Funge, 2009). Also, it
is very difficult to predict all the player’s re-
actions, therefore, when a reaction is contem-
plated, the developer must add new source code.
Our approach is a way of automatically produc-
ing scripts that change according to the unpre-
dictable player behavior and the changing envi-
ronment, reducing the burden of the developer.
This paper is a first step to motivate the interac-
tion between the game industry and the research
area of generation of natural language.

References
Luciana Benotti. 2007. Incomplete knowledge and

tacit action in a dialogue game. In Workshop on
the Semantics and Pragmatics of Dialogue, pages
17–24, Italy.

Luciana Benotti. 2010. Implicature as an Inter-
active Process. Ph.D. thesis, Université Henri
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Representing Personality Traits as Conditionals
Richard Evans1 

Abstract. This paper compares two approaches to representing 
personality traits in synthetic agents. It proposes a set of goals 
that any computational implementation of personality should 
satisfy. It describes the personality trait system used in The Sims 
3.1Then an alternative system is described, in which traits are 
represented as conditionals relating world state to emotional 
state. It is shown that the conditionals model does a better job of 
satisfying the desiderata.2 

1 INTRODUCTION 
The more highly evolved the species, the more one individual’s 
behaviour differs from another’s within that species [1, 2]. If we 
want to build evolved synthetic characters, they too must express 
individual personality.  

Modelling individual personalities enables the 
following novel sort of player interaction: first the player makes 
some synthetic characters and chooses their personalities. 
(Perhaps, for example, he chooses an irascible old man, and his 
sweet forgiving daughter). Then he drops them into a particular 
social situation. (Perhaps, for example, he makes them 
homeless). Then he just sits back and watches the emergent 
drama unfold: the social situation they are in presents them with 
problems and their different personalities give them unique 
solutions to those personalities. 

The Sims 3 has a model of individual personality that 
has allowed many players to experiment with exactly this sort of 
interaction [3]. One notable example is documented in the very 
popular Alice & Kev blog.  Robin Burkinshaw [4] created two 
Sims with very different personalities: an irascible old man and 
his sweet, forgiving daughter. He dropped them into a 
particularly challenging social situation: he gave them no money, 
no job, and made them homeless. Then he sat back, recording 
the events that unfolded autonomously: 

“I have attempted to tell my experiences with the 
minimum of embellishment. Everything I describe in here is 
something that happened in the game. What’s more, a surprising 
amount of the interesting things in this story were generated by 
just letting go and watching the Sims’ free will and personality 
traits take over”. 

In Burkinshaw’s emergent unfolding story, Kev (the 
irritable old homeless man) is always trying to find a place to 
stay the night. But whenever he finds people who are kind 
enough to have him, he ends up arguing with them. Eventually, 
he irritates them so much that they ask him to leave, and he is 
back on the streets again. It is a hard life, and he takes it out on 

                                                
1 RichardPrideauxEvans@gmail.com Thanks to Michael Mateas for 
feedback on a previous draft. Thanks also to Matt Brown, Ray Mazza, 
Peter Ingebretson, Tom Wang, Eric Holmberg-Weidler and Matt Goss 
for many illuminating discussions on these isssues. 
 

his daughter. But she is remarkably sweet and always forgives 
him. 

Part of what makes Burkinshaw’s blog so compelling 
is the heartfelt description of the homeless situation. But it is the 
combination of the social situation with the unique personalities 
that makes it dramatic. As Schopenhauer once wrote: 

“The revelation of the idea of man is accomplished 
chiefly by two means: by accurate drawings of significant 
characters, and by the invention of poignant situations in which 
they reveal themselves.” [5]  

This paper outlines two different computational 
models of individual personality. It proposes a set of goals for 
any representation of personality. Then it sketches how The Sims 
3 models personality, and evaluate how well it meets the 
desiderata. Next an alternative model of personality traits is 
proposed, in which each trait is modelled as a declarative 
conditional, relating world state to emotional state. It is shown 
that this alternative model does a better job of meeting the 
desiderata.  

2 DESIDERATA FOR A COMPUTATIONAL 
MODEL OF PERSONALITY 

Before evaluating different models of personality, we 
need a list of explicit requirements and goals that we can use to 
help us adjudicate. 

The first requirement on any computational model of 
personality is that a personality be composed of atomic units, 
which can be reused in a variety of different personalities. 
Satisfying this compositionality requirement is essential if we 
want to be able to generate a wide variety of personalities 
cheaply. As Chris Crawford puts it, we should “apply the ideas 
of vector analysis to the problem and look for a complete set of 
vectors that span the vector space of the problem” [15]. 

The second major requirement is that each personality 
trait has a distinct and obvious effect on autonomous behaviour. 
If you create a character that is a foul-mouthed extrovert, and 
leave him to his own devices, he should go out meeting new 
people and swearing at them. Further, the way he autonomously 
manifests his personality should be transparent to the player: the 
player shouldn’t have to take careful notes of every action the 
character does for many days, compile them in a spreadsheet, in 
order to notice that this character is 11.3% ruder. Manifestation 
of personality has to be obvious in individual behaviour without 
recourse to statistical patterns. 

The third major requirement on our model of 
personality is that it explains how personality connects with 
emotion. We all know that different people are differently 
affected by the same external stimuli. Our model of personality 
must handle this. 

The fourth requirement is a practical authoring 
requirement when building a large multi-agent system. If we are 



going to build a world with a large number of personality-traits, 
we will have to minimize the amount of authoring needed when 
adding a new trait. We must minimize the amount of code and 
data that needs to be touched when adding a new trait. If there 
are n affordances and m personality traits, we need an authoring 
approach which requires considerably less content than n * m. 

The remaining goals are nice to have, but not as 
important as the preceding.  

The fifth goal is that our computational mechanism for 
generating personalities is sufficiently compositional that we can 
generate an indefinite number of personalities. A system that can 
generate a large, but finitely bounded, set of personalities is not 
as rich as a recursive generative system. 

Personality traits seem to have varying degrees of 
resolution and specificity. For example: some people are 
aggressive (tout court), others become aggressive if humiliated. 
Our sixth goal is that our model of traits should allow us to 
specify traits at different levels of specificity. 

Some traits are incompatible with others. For example: 
a character cannot both have a good sense of humour, and also 
be completely humourless. Now trait incompatibilities such as 
these could be hand-authored, or (preferably), the 
incompatibility between traits could be a derived fact, entailed 
by the description of the traits themselves. Our seventh goal is 
that incompatibility between traits should be automatically 
derivable in the model (rather than having to be painstakingly 
hand-coded). 

One’s past affects one’s personality. Different people 
narrate early life-events differently, and their interpretation of 
those events determines their understanding of their current 
possibilities of action. Our final goal is that the system can 
express the way personal narratives explain personality. 

To summarize, the computational model of personality 
should satisfy the following goals: 

1. Each personality must be decomposable into atomic 
units which can be reused in other personalities 

2. Personality trait must affect autonomous action. When 
we leave the characters alone, we want them to 
autonomously behave in-character  

3. Each personality trait must affect emotion 
4. Requirements for authoring: minimize the number of 

places we need to touch in order to add a new trait 
5. The model should be able to make an indefinite 

number of personalities 
6. It should provide for the idea that some traits are fine-

grained refinements of others  
7. The model should provide the means for automatically 

deriving which pairs of traits are incompatible 
8. The model should make it possible for personal 

narratives to explain personality  

3 HOW THE SIMS 3 REPRESENTS 
PERSONALITY 
The Sims 3 has a model of individual personality based on 
simple traits. Each Sim can have up to five traits from a pool of 
80. This means there are 80-choose-5 (240 million) distinct 
personalities.  

Personality traits affected autonomous behaviour in 
three main ways. (1) For each trait there was a unique motive 
associated with it. For example: a mean-spirited Sim was given 

an extra desire to undermine the self-worth of other people. This 
extra motive affected his autonomous behaviour, so he behaved 
in character. Actions that were specially suited to that 
personality trait were tagged as satisfying the corresponding 
motive. (2) When a Sim was interacting with objects, traits 
affected emotional state via a large number of ad-hoc if-thens 
scattered throughout the code. Naturally, these were rather 
difficult to find, and difficult to maintain. (3) When a Sim was 
interacting with other Sims, traits affected emotional state via a 
set of if-then rules expressed in a simple declarative language 
(horn-clauses with a small fixed set of free variables). For 
example: 

• If my interlocutor makes a joke, then find it amusing. 
• If my interlocutor makes a joke, but I have no sense of 

humour, find it boring. 
• If my interlocutor makes a joke, but I have no sense of 

humour, but we are good friends, then find it friendly. 
Trait-specific conditionals would override the more general-
purpose conditionals, so the person would respond in character. 
 The implementation of traits in The Sims 3 involved a 
variety of approaches. (1) and (3) were strongly data-driven 
approaches, whereas (2) involved a lot of procedural code. One 
of the motivations for the traits-as-conditionals approach, which 
this paper proposes in the next section, is precisely to replace 
this heterogeneous hodgepodge with a uniform representation 
where all the data is in one place. 

Traits in The Sims 3 satisfied some of our core goals. 
Personality traits affected autonomy via a distinct motive 
associated with each trait. Further, different personalities did 
have different emotional responses to the same stimulus: Sims 
who disliked children would get irritable in the presence of 
children, while family-oriented Sims would enjoy their 
company.  

The trait system was a major step forward from 
previous versions of The Sims, and many reviewers noticed how 
the trait system in The Sims 3 made the characters richer: “The 
Sims themselves are now powered by much more sophisticated 
psychological systems than found in earlier games… Traits are 
designed to reflect how people describe themselves in the real 
world and are so eerily portrayed in their behavior that The Sims 
3 feels like an anthropology study with teeth” [19]. 

But a number of our other goals were not satisfied. To 
start with, adding a new personality trait meant making a wide 
number of different types of changes before it was manifest in 
behaviour: you needed to add an associated motive, define a 
variety of trait-specific social interactions, define how that 
personality-trait responded to social interactions initiated by 
others. If you wanted that personality-trait to have different 
emotional responses, you had to sprinkle the code with if-
statements. Each of these aspects of trait manifestation was 
expressed in a different representation, so there was a substantial 
authoring burden when adding a new trait. 

Although you could make a large number of 
personality types in The Sims 3, the number was finitely 
bounded. There was no concept of describing personality traits 
in a language with recursive structure, allowing an infinite 
number of possible traits.  

Further, the personality traits were simple atomic 
objects (elements in an enumeration). This meant there could be 
no explanation in the model of why one trait was incompatible 



with another, so incompatibility between traits had to be 
authored by hand.  This was time-consuming and error-prone. 

Because traits were atomic objects, there could be no 
understanding of why personal events could determine 
personality. Intuitively, if a character suffered a traumatic early 
event involving a dog, this would explain a subsequent fear of 
dogs. But in The Sims 3, the personality trait of fearing-dogs had 
no constituent structure – it had no understanding that fearing-
dogs involved dogs, so there was no way to connect the event 
(being traumatized by a dog) with the trait (fearing dogs). 
 
4 AN ALTERNATIVE: REPRESENTING 
PERSONALITY TRAITS AS CONDITIONALS 
This paper describes a richer model of personality traits than that 
used in The Sims 3. Instead of a trait being a simple atomic 
object, whose effects are scattered through the code and data, 
now a personality trait is represented by a declarative3 
conditional specifying the condition under which the character 
has an emotional state.  For example, Jealousy could be 
represented as: 
 
 If my partner talks to another → Anxiety 
 
Thrill-seeking could be represented as: 
 

If I perform a risky action → Excitement 
 

Tearful could be represented as: 
 
 If something gets the better of me → Upset 
 
Honest:  
 

If I say something false → Shame 
 
Compliant: 
 
 If I don’t do what somebody tells me to do → Shame 
 
The general pattern is that the left-hand-side of the conditional is 
a world-state, and the right-hand side is an emotional state.  The 
emotional states are intrinsically motivating: the agent wants to 
achieve some, and avoid others. So by specifying emotional 
consequences we are indirectly specifying what the agent wants. 

Some personality traits are represented by a cluster of 
conditionals. For example, Argumentativeness could be 
represented by a pair: 

• If somebody contradicts something I say → 
Angry(Contradiction) 

• If Angry(Contradiction) /\ I prove someone else wrong 
→ Anger dissipates 

                                                
3 Isn’t it redundant to say that the conditional is declarative? 
Aren’t all conditionals declarative? No – some conditionals are 
deontic: they specify what should happen under certain 
circumstances, not what will happen under certain 
circumstances. I previously considered an alternative model of 
personality traits based on these deontic conditionals [11]. This 
is why I stress the declarative aspect of the conditionals used 
here – to distinguish them from deontic conditionals. 

The first specifies the condition under which the argumentative 
person becomes annoyed. The second describes the conditions 
under which that anger dissipates: by proving somebody else 
wrong.  
 
Being Vengeful can also be represented as a pair of conditionals: 

• If x harms me → Vengeance(x) 
• Vengeance(x) and I take revenge on x → 

Vengeance(x) dissipates 
(Note that this example requires emotional state with constituent 
structure: the Vengeance emotion is directed towards a specific 
individual, x. In my implementation, this structure is encoded 
naturally in Exclusion Logic [10]). 

5 AN AGENT ARCHITECTURE WHICH 
SUPPORTS TRAIT-CONDITIONALS  
In The Sims 3, actions are tagged directly with the trait-motives 
that they satisfy. This involves a tight coupling between the set 
of actions and the set of traits: 
 

 
Figure 1. Tight Coupling between Actions and Traits  

 
The action promises that if you perform it, it will satisfy the 
motive in question. A large number of autonomy bugs came 
from places where this promise is broken: places where an action 
claimed to satisfy a motive, but in fact did not do so for one 
reason or another, because of failure or unforeseen conflict. In 
these cases, the Sim is unmasked: continually repeating the same 
action sequence over and over again, falsely believing that this 
time he will get the satisfaction that has so far eluded him. 
(Another set of problems from the opposite direction stem from 
the fact that the advertised motives specify what typically should 
happen when the action is performed. But if this particular 
instance of the action in this particular situation would also 
satisfy another motive, this fact will be entirely lost on the Sim. 
Sims will never, in other words, be opportunistic because 
satisfied motives are assigned to action-types at design-time, 
rather than assigned differently to different action-instances at 
run-time).  

To support traits-as-conditionals, we need a different 
agent architecture – one which involves a looser coupling 
between actions and traits. In this alternative agent-architecture, 
actions specify declarative post-conditions. They specify what 
will be true when the action has been performed – not what goals 
will be satisfied when the action has been performed. These 
post-conditions in turn make true the antecedents of the trait-
conditionals: 



 

 
Instead of actions directly tagged with motivating factors, there 
are two extra levels of indirection: actions are tagged with 
postconditions, and those postconditions make the antecedents of 
the conditionals true, which in turn activate the emotional 
response. This involves a looser coupling between the actions 
and the emotions: 
 

 
Figure 2. Looser Coupling between Actions and Emotions  

 
In this alternative architecture, the trait conditionals are 
performing double-duty: 

• They are used by the planner to decide what action to 
perform: the agent calculates the emotional state he 
would be in if he performed the action. The emotional 
state is intrinsically attractive or unattractive. 

• They are used by the simulator to update the emotional 
state of the agent. When he performs an action, the 
postconditions are added to the database. This in turn 
makes the conditional’s antecedent true, which in turn 
updates the agent’s emotional state.  

6 EXAMPLES OF TRAITS REPRESENTED AS 
CONDITIONALS 
The conditional model can naturally express a wide variety of 
personality characteristics. For example, it can express the so-
called Big Five traits (a statistical agglomeration of a very large 
number of traits). For each of the big five, there is a pair 
representing positive and negative values of the trait: 
 
Open to Experience: 
 

If I receive a new experience → Excitement 
 
Closed to Experience: 
 

If I receive a new experience → Anxiety 
 
Conscientious: 
 

If I do a job properly → Satisfaction 
If I do a job badly → Shame 

 

Careless: 
 

If I do a job badly → Satisfaction 
 
Extroverted: 
 

If I meet a new person → Excitement 
Shy: 
 

If I meet a new person → Anxiety 
 
Agreeable: 

If I am friendly to somebody → Satisfaction 
 
Disagreeable: 
 

If I am mean to somebody → Satisfaction 
 
Neuroticism comes in a variety of flavours. We give one 
example - neuroticism with respect to bodily contact: 
 

If I am touched by somebody → Repulsion 
 
Well-adjusted (the opposite of neurotic): 
Again, we only give one example: being well-adjusted with 
respect to bodily contact with someone I trust: 
 

If I am touched by somebody who I trust → Warmth 
 
This model can also accommodate the more specific personality 
traits of The Sims 3. For example: 
 

• Childish: Performing childish action → Enjoyment 
• Commitment issues: being in committed state → 

Anxiety 
• Couch-Potato: Exercise → Anxiety; Eating → 

Enjoyment 
• Coward: Doing brave action → Anxiety 
• Dislikes children: Being around children → Irritation 
• Excitable: Unremarkable event occurs→ Excited 
• Family-Oriented: Giving nurturance/help to children 

→ Enjoyment 
• Flirty: Receiving attention from attractive men → 

Enjoyment 

7 TRAITS-AS-CONDITIONALS SATISFY THE 
DESIDERATA ABOVE 
(1) Decomposition. This model satisfies the decomposability 
requirement, just as The Sims 3 does: a personality is a bundle of 
independent personality traits. But now each trait is represented 
by a conditional with constituent structure, rather than by an 
atomic unit.  
 
(2) Autonomy. In the traits-as-conditionals model, traits directly 
affect emotion, and indirectly affect autonomy. The trait 
conditional specifies an emotional state on the right-hand-side. 
This emotional state is intrinsically motivating: he either wants 
to be in it or wants to avoid it.  So the conditional indirectly tells 
him what he should do. 
 



(3) Personality affecting emotion. The conditional does double-
duty in this architecture. It is used by the planner to decide what 
to do, and it is also used by the simulator to update emotional 
state: when the conditional fires, the emotional state is updated 
directly.  
 
(4) Minimize the authoring requirements to add a new trait.  In 
The Sims 3, traits were linked directly to action. If there were n 
actions and m traits, there was a sparse matrix with n * m entries. 
In the conditional model proposed here, by contrast, there is a 
small finite intermediary between the world state and the traits: a 
list of emotional states. So adding a new trait is significantly less 
burdensome in this conditional model than in The Sims 3.  
 
(5) Supporting an indefinite number of personalities. One 
significant advantage of the traits-as-conditionals model is that it 
can express an indefinite number of traits. A trait is just a 
conditional, expressed as a horn-clause. There are just as many 
possible personality traits as there are possible horn clauses.  
 
(6) Supporting various levels of granularity. Traits-as-
conditionals make it very natural to express traits at varying 
levels of specificity. We can define a generally mean-spirited 
character as: 
 

If I am mean to somebody → Enjoyment 
 
We can define somebody who is mean-spirited to women by 
adding an extra conjunct on the left-hand side: 
 

If I am mean to somebody female → Enjoyment 
 
We can keep adding conjuncts on the left-hand side, without 
end, to make more and more specific conditionals. 
 
(7) Supporting the idea that some traits are incompatible.  The 
traits-as-conditional model also provides an explanation of why 
certain traits are incompatible. Two traits are incompatible if the 
left-hand-side of one is entailed by the left-hand-side of another, 
but the emotional state on the right-hand side of one is different 
from the emotional state of the other. For example, Good-Sense-
of-Humour could be characterized as: 
 

If somebody tells a joke → Amused 
 
No-Sense-of-Humour could be described as: 
 

If somebody tells a joke → Bored 
 
The constituent structure of the conditionals makes it possible 
for the machine to automatically detect which traits are 
incompatible, rather than (as was the case in The Sims 3) having 
to hand-author all incompatibility-pairs by hand. 
 
(8) Supporting the idea that past history can explain personality. 
Finally, because the traits-as-conditionals approach treats a trait 
as a declarative sentence with structure, it can naturally 
accommodate the idea that personal narratives explain traits. For 
example: it is easy to see how, after being traumatized by a dog 
in infancy, to add a conditional:  
 

If I see a dog → Anxious 
 
If traits are conditionals, particular traumatic or transformative 
moments could be turned dynamically into traits that have been 
generated on the fly by the situation: 
 

If I am in a situation which has aspect F, and I am 
having a traumatic / transformative experience, then 
add a trait conditional: If the situation satisfies F→ 
Anxiety / Enjoyment 

 
This last suggestion is largely programmatic. I have brushed 
over the considerable issue of how the agent chooses which 
aspects of the traumatic situation merited the anxious response. 
If the agent was traumatised when standing in front of a barking 
dog on a sunny Tuesday, which trait conditional does he add: 
 
 If I see a dog → Anxious 
 If it’s sunny → Anxious 
 If it’s a Tuesday→ Anxious 
 
Nevertheless, acknowledging that this architecture does not 
directly answer this question - if we do separately find a good 
answer to it, then the traits-as-conditionals architecture is well 
placed to support the ability to learn traits on the fly based on 
past experiences.  

8 RELATED WORK 
Many games, RPGs in particular [6], have used individual 
personality traits. But the personality traits that are chosen in 
these games merely affect the stats of his avatar - not the 
autonomous behaviour of all the NPCs. What is distinctive about 
the approaches described in this paper is that personality deeply 
affects autonomous behaviour. This is what allows autonomous 
improvisation.  

Some previous systems [8] had a model where traits 
affected autonomy. But in these early systems, each agent had 
the same set of personality aspects. The only thing that differed 
was the numeric value of each aspect: 

“The Universe program uses a trait-based personality 
model. Each story world character is represented by a 
person frame which stores information about that 
character such as the character’s name, stereotypes, 
traits, interpersonal relationships with other characters, 
and the character’s history. Traits, such as intelligence, 
moodiness, and promiscuity whose values range in 
integral value from 0 to 10, are continuous dimensions 
and the degree to which a character manifests a trait is 
stored as an integer value. Traits such as intelligence 
and moodiness and promiscuity have ranges between 0 
and 10. Traits such as guile, self-confidence, and 
niceness have ranges between -10 and 10 where a 
negative value indicates that that character has the 
opposite of the trait”. 

In Universe, the personality differences are quantitative 
differences (the difference between having a 5/10 and a 8/10) as 
opposed to the qualitative difference you get if a trait is modelled 
by having an element that would otherwise not be there at all. 
The Sims 1 & 2 similarly had a personality model based on a 



small number of quantitative differences [12], rather than a large 
pool of qualitatively distinct elements. 
 The approach described in this paper is clearly related 
to cognitive appraisal theory [13]. Cognitive appraisal theory is a 
psychological theory that explains why people have the emotions 
they do, and how the same stimulus can elicit different emotional 
responses in different people. The explanation of an emotional 
response involves two types of judgement: the primary appraisal 
is the agent’s judgement whether the outcome is in line with her 
desires and goals. The secondary appraisal is her judgement 
whether she is able to affect the outcome, or to what extent she is 
helpless. In the traits-as-conditionals approach described here, 
the fact that the situation causes the emotion is unexplained: it is 
just taken as given that this sort of person will respond to this 
sort of situation with this sort of emotional response. The 
cognitive appraisal theory is a deeper theory in that it attempts to 
unpack why this conditional is true by appealing to primary and 
secondary appraisals. The cognitive appraisal theory is more 
cognitive than my trait-conditionals in that it attempts to explain 
the emotion in terms of the agent's judgment about discrepancies 
between what is and what should be the case: it is the 
discrepancy between the agent's judgment of how the situation 
has turned out and how it should have turned out which explains 
the emotional upset. 
 Cognitive appraisal theory has been used to update the 
emotional state of the agent after action has been performed. But 
it has not been used to determine action-selection. In the traits-
as-conditionals approach described in this paper, a trait-
conditional performs double-duty. It is both used to update the 
emotional state based on what did happen, and also used to 
anticipate the emotional consequences of what might happen in 
order to decide what the agent should do next. 
 There are a number of other systems that use 
personality to influence action-selection [16, 17]. In these 
systems, personality affects action-selection in the following 
direct way: the action is tagged directly with the personality-trait 
or emotional state that it satisfies. For example: the action of 
eating chocolate is tagged with the choc-aholic personality-type. 
The model described here, by contrast, is much more truly 
simulationist in that, instead of specifying the consequences of 
the type of action directly in terms of emotional state or 
personality state, we are specifying the consequences of that 
particular action in terms of world-consequence, and then, as a 
separate step, we compute what the emotional update of that 
consequence is in the current context. For example: the 
consequence of eating chocolate is that chocolate is consumed. 
The personality-trait of being a choc-aholic means that 
consuming chocolate is particularly pleasurable. In this 
particular case, the consequence is the same, but the extra level 
of indirection gives us the ability to be sensitive to the 
specificities of the situation. E.g. the consequences of moving a 
pawn forward in a particular chess situation depend on the 
precise state of the board.   

The traits-as-conditionals approach proposed here is 
based on the personality model developed by Walter Mischel 
[7]. Mischel was a situationist and interactionist who developed 
a powerful critique of the big-five trait model, and eventually 
produced a constructive alternative based on situation-sensitive 
conditionals. But one major different is that the conditionals 
Mischel considered were deontic conditionals, relating world-

state to the action the agent should do – rather than conditionals 
relating world-state to emotional state, as proposed here.   

9 IMPLEMENTATION 
The traits-as-conditionals approach described here has been 
implemented in a multi-agent simulation. In one scenario, two 
agents are playing tic-tac-toe. They both want to win, but one of 
the agents has a personality trait of being a bad loser: losing is 
particularly upsetting for him. The other has a trait of being 
sensitive to the other’s feelings: seeing that the other is feeling 
upset means that she also feels upset. In this situation, when the 
sympathetic player is about to win, she will anticipate that her 
winning will upset the other, and sees that him being upset will 
also upset herself. So she deliberately avoids winning, and aims 
for a draw, to spare his feelings.  

Initial results suggest that the authoring burden is 
significantly lighter when specifying traits as conditionals. This 
is precisely because the conditional does double-duty in 
determining both emotional effects and action-selection. 

10 CONCLUSIONS  
This paper has contrasted two ways of implementing 
autonomous personality traits in synthetic characters: the trait 
model in The Sims 3, and the traits-as-conditionals approach. 
This paper proposed a set of requirements and goals that any 
implementation should satisfy. It has been argued that, although 
The Sims 3 does a reasonable job of satisfying these goals, the 
traits-as-conditionals approach does a better job: 
 

 The Sims 3 Traits-as-Conditionals 

Personality 
decomposable into 
traits 

Yes Yes 

Personality affects 
autonomous action 

Yes Yes 

Personality affects 
emotion 

Yes Yes 

Minimal authoring 
for adding new trait 

No Yes 

Indefinite number 
of personalities 

No Yes 

Some traits are No Yes 



refinements of 
others 

Model explains trait 
incompatibility 

No Yes 

Personal narratives 
can explain traits 

No Yes 

Perhaps the major advantage of the traits-as-conditionals 
approach is that, because one conditional does double-duty in 
determining both emotional update and action-selection, the 
authoring burden is lighter. This consideration becomes 
increasingly important as we scale up from academic proof-of-
concept implementations to industrial-size implementations, 
with hundreds of personality traits and tens of hundreds of 
different types of action. 
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Abstract.  We present social objects, a method of enabling 

social interactions between videogame characters based on an 

extension of the smart object concept. Social objects provide a 

mechanism for the control of one or more videogame characters  
in a coordinated group social interaction. Our motivation being 

the reproduction of behaviour seen in any street, park, town 

square or shopping mall setting. Primarily for use as “ambient 

characters” to populate a city environment within a videogame. 

1 INTRODUCTION 

Videogames have become capable of rendering many hundreds  
of characters (often called NPC’s, a shorter term for non-player 

characters) at interactive framerates. This opens up new potential 

for crowds to become part of games in a manner that was 

technically impossible previously. A recent example of crowd 

use in a videogame context is within the game “Heavy Rain” [1] 
which used a potential field approach similar to [2] to simulate a 

dense population within a shopping mall context. Whilst the 

simulation in Heavy Rain serves its purpose (to obscure the 

player’s view of their son during an interactive narrative 

sequence) it does not provide a convincing crowd scenario for 
the general case. Similarly a less dense crowd is simulated in the 

game “Grand Theft Auto IV” [3] as a means to provide an 

ambient background cast to the city within which the player is 

situated. Again, this simulation fails to model many of the social 
interactions one would expect to see in any observation session 

in a similar environment in reality. It is reasonable to assume 

that the focus of the game is primarily on the player controlled 

character and their interaction with the mechanisms of the game 

rather than on the social simulation, however this brings up a 
question. What if the social simulation were part of the game 

mechanisms? 

 

It was this question that motivated the research presented within 

this paper. Interestingly a recent game “Spy Party” [4] has been 
receiving press attention, primarily because it focuses on this 

aspect of social behaviour. To quote the creator Chris Hecker 

“SpyParty is a spy game about human behavior, performance, 

perception, and deception”. 

  
This paper is organised as follows: in section 2 we will cover 

current research relevant to our motivation, in section 3 we will 

present the social object model and the framework within which 

it functions, in section 4 we will address the issue of evaluation, 

finally in section 5 we will conclude with a discussion of the 
current shortcomings of the model and the ongoing development 

intended to address them. 

 

2  RELATED RESEARCH 

 

Allbeck [5] developed an architecture called CAROSA (Crowds 

with Aleatoric, Reactive, Opportunistic, and Scheduled Actions), 

which along with the parameterized action representation (PAR) 
demonstrated an ability to coordinate agents in a variety of tasks 

in a social setting. The PAR concept can be closely related to the 

social object model as one of the core purposes of both is to 

constrain and control the interactions of agents. Each system is 

designed to model the functionality of an item or action and to 
represent the preconditions, failure conditions and semantics of 

interaction. However the focus of Social Objects is the proxemic 

and animation control of a (virtual) bodily interaction between 

multiple agents in a social context, which is an area that the 

CAROSA architecture does not currently address.  
 

Matteas & Stern demonstrate coordinated social behaviours in 

Facade [6] which uses a behaviour tree language called ABL, a 

descendant of HAP in order to coordinate characters within a 

three dimensional world [7]. The focus of Facade is the interplay 
between the player and two characters, within the context of the 

characters’ apartment. The player is challenged to act as a 

mitigating force during a conflict between the two characters 

who are a married couple with a troubled relationship. Whilst the 
Social Object model was very much inspired by the concepts in 

Facade, such as the use of a reactive behaviour tree for agent  

control, the focus of Social Objects is the proxemic and 

animation control of such interactions. The assertion being that 

psychologically we are attuned to social interactions involving 
coordinated acts such as touching, posture, gesture and gaze 

changing and that in order to portray social interactions 

convincingly we should pay specific attention to these areas. 

Essentially the goal of Social Objects is to provide a subset of 

the work presented in Facade but with a focus on the those 
aspects of social interaction that provide the most “human like” 

behaviours for the least amount of development effort. The 

thesis being that a focus on proximity and animation is sufficient  

to reproduce believable human like performances of the type 

typically required for social crowd scenes as previously 
described. 

 

Pedica [8] dicusses social proxemic behaviours in work 

developed by the CADIA research lab at the University of 

Reyjkavic, although this work was focussed on the social 
proxemic organisation within group discussion Pedica also 

describes the importance of gaze and posture changes during 

conversation and incorporates the notions of interpersonal 

distance of Hall [9] Scheflen [10] Kendon [11] and Goffman 

[12]. Similarly the work of Jan & Traum [13] focuses on 



adapting crowd like social forces models to group discussion 

scenes. Both offer insight into the requirement for proxemic and 

orientation control during group conversation. However both of 

these works address group conversation without consideration of 

a greater framework to use for different forms of group social 
activity. 

 

The work of Arinbjarnar [14] is related as it offers the notion of 

“schemas”, which are reactive passages of narrative that are 

formed by applying constraints against an abstract authored 
narrative passage. The advantage being that narrative emerges  

from matching current situations to multiple potential schemas. 

Whilst the focus of such work is on creation of narrative actions, 

it is easy to understand that such work might be applied to social 

interactions. This approach also allows for concurrency as 
schema’s are all considered together within the constraints that 

have been applied. 

 

Within videogames, work by Evans [15] Isla [16] and Orkin 

[17,18] have all demonstrated coordinated human-like 
behaviour. While they have informed and inspired the current  

approach, the specific goal of coordinating proxemic and 

animation behaviour has not been clearly addressed in the 

available videogame literature. 

 
Navigation 

 

Crowd simulation in research tends to be focussed on the 

simulation of large scale crowds, often for the purpose of 

studying crowd flow, but also for the study of crowd behaviour. 
A good overview of the available literature is provided by 

Pelechano et al [5]. Pelechano describes the available literature 

in terms of microscopic and macroscopic approaches. 

Macroscopic approaches such as [2] tend to model crowds as  

aggregates and are suitable for simulations of large crowds. 
Microscopic approaches [19],[20] tend to model individual 

agents, often with models of personality, emotion and memory. 

These microscopic approaches limit the scale of crowd that can 

be simulated at interactive rates, yet they are more suited to the 

type of representation required for videogame use. Typically, 
crowd related literature is concerned with crowd flows [21] or 

aggregate crowd behaviour [22], but these are generally based 

around the requirements of accurate simulation. For the purposes 

of videogames the goal is not to provide “accuracy” but instead 

to provide “believability”.  
 

In order to do this, we must express commonly observable crowd 

dynamics such as lane formation, stacking at points of 

contention such as doorways, alongside more social interactions  

like group discussions, people in a hurry, browsing in shop 
windows and outdoor social activities such as playing a ball 

game. 

 

The core of any crowd simulation is the navigation model [23]. 

Aggregate models such as potential fields [2] tend to treat space 
as a grid and agent movement is determined by a cost function 

within adjacent cells of the grid. Whilst such models achieve 

considerable speed advantages as they can be easily computed, 

they tend to fail when observed on an individual agent level. The 

discreet nature of the grid structure is an inherent problem which 
has also been reproduced in many grid-based approaches used in 

videogames. The problem being that most NPC’s are expected to 

follow relatively straight lines of movement, however anything 

other than horizontal or vertical movement on a grid is liable to 

cause a “stairstep” aliasing effect, as new positions are sampled 

along a the straight line.  
 

Another common approach to navigation is the use of a discreet 

network of world space positions connected by edges which 

represent straight line movements. Typically the straight line 

segments are sampled with simple rays to detect collisions along 
the line. Such naive sampling may result in potential collision 

artefacts as obstacles may be situated anywhere within the world 

space. A more robust sampling mechanism uses a swept volume 

intersection test to determine any potential collisions along the 

volume between the nodes.  
 

However even such a relatively complex test can only determine 

collision intersections with static objects. In videogames with 

crowd simulations it is reasonable to assume that there will be 

many dynamic obstacles (i.e. the crowd agents) moving at any 
given time-step. In order to solve this problem, current  

videogames typically use a navigation mesh. This is a set of 

polygons (typically convex polygons or rectangular areas) which 

represent navigable space and rather than using line segments or 

grids, offer an area within which it can be deemed “safe” for an 
agent to move. Dynamic collision avoidance then becomes a 

matter of solving the positions of all agents such that they remain 

within the bounds of the collision free space of the navigation 

mesh whilst also not intersecting other agents. 

 
Agent to agent intersection is prevented using either a simple 

force based model [20] or a geometric model such as reciprocal 

velocity obstacles [24]. 

 

Assuming the ability to navigate around the world as a 
precondition, we then must consider the actual behaviour of 

agents in the world, how they interact and the qualities of their 

behaviour as seen from a player perspective. 

 

Facade provides a compelling environment in which the AI 
driven non-player characters interact meaningfully with the 

player. However they do not interact convincingly with each 

other. One of the primary aims of this work, is to address those 

shortcomings. We aim to address the need for coordination 

between multiple NPC’s, paying specific attention to the three 
areas of proxemics, coordination and animation.  

 

Proxemics 

 

Hall [9] and others within the field of social psychology  [25-27], 
have identified that humans tend to observe a set of social 

“distances” which can be viewed as a set of concentric rings  

around the subject of interaction. The study of this area led to the 

field of proxemics and has an impact on the representation 

within the social object model. In effect, proxemic distance and 
the angle between interacting NPC’s must be closely monitored 

and controlled if we are to reproduce many social interactions. 

Kendon [28] identifies these proxemic notions in terms of “f-

formations”, these formations represent social spaces, especially 

among groups of individuals involved in discussions and are 



dynamic in nature dependant on the disposition of the group and 

its environment. 

 

 
Figure 1 – Proxemic distances visualised as concentric rings. 
 

Coordination 

 

Most social interactions require coordination between two or 

more individuals. These interactions require that both individuals  
are aware of and can be considered participants in the 

interaction. Many non-verbal signals are sent between the 

participants in anticipation of the interaction in order to 

coordinate the appropriate reaction [8]. For instance two friends 

might approach each other and smile before mutually sharing 
handshakes or hugging each other. 

 

Animation 

 

Specifically for videogames, one of the biggest issues in 
reproducing social behaviour is the issue of animation selection, 

playback and coordination. This is an issue because animation 

data sets are limited and visual errors such as animated body 

parts inter-penetrating are visually jarring. The use of motion 

blending and inverse kinematic models [29] to some extent can 
help alleviate some of these issues, however there remains a 

problem of processing cycles being available to compute the 

expensive inverse kinematic constraints for a large number of 

interactive characters. 

3   THE SOCIAL OBJECT MODEL 

The social object model can be considered an extension of the 
“smart object” model [30] employed in games such as “The 

Sims” [31][32]. The purpose of the smart object model in the 

game was to coordinate the position and animation of an NPC 

such that it could perform tasks related to virtual objects within 

the game environment. A typical example is that the use of a 
shower would require the NPC (called a “sim” in the game) to 

navigate the environment to stand in front of the shower, 

perform an animation to open the shower door, step inside the 

shower, close the shower door, switch the shower on and 

perform an animation whilst showering. The most interesting 
feature of this approach and the reason it is called smart objects, 

is that the functionality for controlling the NPC lay in the scripts 

of the objects being used. In the previous case, the shower would 

have a script that describes how the NPC would use it. Each 

object then propagates through the system its availability and 

function.  

 

This external control is a key feature of the social object model. 

An interesting observation regarding social group behaviour is  
that the duration of many social groupings extend beyond the 

participation of the initiating individuals [11]. Consider the case 

where a couple start a conversation in a public place. Later a 

friend joins them, then another. Soon a small group forms, each 

member participating in the group discussion. Then the original 
couple decide to continue with their previous plan and leave the 

group. Often the group will continue for some time, even though 

the originators of the discussion have now left. 

 

It is the realisation that social groupings exist outside of the 
participants of the group that motivates this work. In practical 

terms, the social object is a multi-agent coordination 

architecture, which can be used to mimic the creation of social 

interactions between two or more agents. 

 
Social objects work by implementing a simple architecture that 

propagates positional, role and animation data to agents accepted 

into the social group. Each social object is defined by a 

behaviour tree [7] which acts to keep the group coordinated by 

performing role allocations during interaction. Individual agents 
are coordinated using a shared blackboard [33] which represents 

position and orientation data for each agent. An event system is 

used to request appropriate animations for each agent in the 

group at the required time. The social object itself is defined as a 

C++ class which contains a behaviour tree and blackboard. This 
class is typically instantiated when an agent reaches a given 

threshold for participation in any particular social activity. For 

example, an agent who perceives themselves to be “bored” will 

then construct a social object which serves to coordinate some 

group social entertainment activity. We term the creator of the 
social object the “proposer”, although the social object  

construction can also be performed without a proposer, as is the 

case where an entertainment situation is represented in the game 

world outside of any given agent. For example, a ballgame might  

require that NPCS’s enter a given play area before they can be 
considered playing the game. Hence the social object would 

essentially be a token in the game world that is described by the 

bounds of the playfield and would reactively respond to any 

NPC’s that enter the area of the playfield in order to coordinate 

the gameplay.  
 

 
Figure 2 – The social object acts as a shared blackboard and 

coordination agent. It propagates events to all participants 

and can alter participating agents’ blackboards in order to 
coordinate activity. 



 

Acceptance into the social group 

 

Normally, the social object would track the location of the 

proposer and be represented in all agents sensory model such 
that they can perceive the availability of the social object. Upon 

the perception of the social object, a second NPC would then 

send an event to the social object that it is available to perform 

the social interaction. The social object places the NPC into a 

potential participants list and responds with an event which 
contains a set of constraints. These constraints are generally 

proxemic, time and/or animation based. For instance the 

proxemic constraint would require that any potential participant 

would be within a maximum distance/time to allow the social 

interaction to take place within a timely manner. Animation 
constraints would require that potential participants are capable 

of playing particular animations required for the interaction. For 

example if the social interaction is “greeting with a hug”, then 

the animation constraint would require that the “hug” or “be 

hugged” animation be available to the participant. 
 

These constraints serve to reduce the number of potential 

participants while ensuring that the social object is not required 

to be fully aware of their capabilities.  

 
If the potential participant is capable of fulfilling the constraints 

for the interaction, it sends an event to the social object to that 

effect. At this point the social object either accepts the event and 

adds the NPC into the social group, or rejects the request (for 

example if the NPC is too far away to realistically join the 
group). The current system is implemented such that all 

constraints must be satisfied before a social interaction is  

performed, however it is worth considering that partial constraint 

satisfaction may be appropriate in specific cases where the social 

interaction is reasonably complex and yet a simplified vers ion of 
the interaction would be suitable.  

 

Once a social group is formed such that there are enough 

accepted NPC’s to perform the interaction, the social object first 

confirms the availability of each agent to ensure they have not 
entered another social group, it then proceeds to coordinate the 

interaction. 

 

Coordinate frames 

 
One of the most important aspects of the social interaction is  

maintaining the appropriate proxemic position and orientation 

for each agent. In order to allow for more accurate animation 

synchronization, especially during interactions where multiple 

agents touch each other, a coordinate frame is selected for all 
proxemic position and orientation values. This coordinate frame 

is typically relative to a specific agent, however it may also be 

relative to the social object itself, another object, or a world 

origin. This allows for accurate creation of animation sequences, 

with known reference distances required between them, for 
example one agent patting another on the back or hugging 

requires a specific orientation and distance between both 

characters if it is not to display inter-penetration artefacts when 

the two characters play their responding animations. 

 

 
Figure 3 – Left, character B is moving to position and 

orientation C, which is defined relative to the transform of 

character A. Right, character B has moved into position as 

seen from another viewpoint. 
 

Proxemic distance and orientation is typically coordinated using 

a simple force based model similar to [20], where position and 

orientation are loosely defined, however more specific 

constraints can be applied for more demanding interactions. In 
general, social interactions of the type seen in a city environment 

require loose proxemic constraints, with the occasional hard 

constraint for interactions such as touch-based greetings. 

 

Sequencing interactions 
 

Interaction sequences are specified within the branches of the 

behaviour tree. Each sequence has a number of constraints which 

are required of the participants, such that the sequence may or 

may not be prioritized for consideration when the tree is 
evaluated. These constraints act as a filter for individual 

sequences of interaction and work much in the same way as the 

constraints were when choosing participants for the group. 

 

Typically each sequence has a decorator applied which modifies  
the sequence priority after the sequence has been executed, 

which allows for other sequences to be applied during the social 

interaction, for example a number of variations of turn taking 

signals may be displayed during a conversation.  

 
The behaviours within each sequence correspond to the phases 

of interaction and are modelled as atomic actions within the tree. 

Actions such as “mark NPC <id> as performer”, “mark NPC 

<id> as listener”, “play animation <id>”, “modify NPC 

blackboard” etc serve to coordinate NPC behaviour. Typically 
they modify the data within the individual agent blackboard such 

that the NPC’s own behaviour tree responds to the new data. In 

this way, the social object behaviour tree can be thought of as a 

method of enabling or inhibiting individual NPC behaviour 

when within the social context.  
 



 
 

Figure 3 – Example behaviour tree showing potential social 

act. Darker node represents a proximity constraint which 

must be satisfied before the social act may be considered for 
activation. Darker arrows represent path of execution when 

this is true. 

 

Gaze control is coordinated such that NPC’s track the current 

nearest “performer” within the group. Individuals in the group 
are labelled as performer or listener depending on the social 

situation being modelled. Multiple performers and listeners are 

possible to allow for a variety of social contexts.  

 

Animations are similarly coordinated, with performer and 
listener each animating differently based on their current role 

and individual personality. It should be noted that each NPC 

within the group is notified of their role, but is  responsible for 

the performance of that role. Thus animation selection is the 

responsibility of the individual NPC allowing variation in 
individual displays for the same social context.  

 

As each NPC perceives the threshold of desire for the current 

social interaction to drop (usually in response to the satiation of 

need) they leave the social group by informing the social object  
of their withdrawal. The social object then monitors the 

remaining participants within the group and once the number of 

group participants drops below a given threshold the social 

object informs any remaining participants of the cessation of 

group activity.  

4 EVALUATION 

 

Evaluation of the proposed model is an ongoing problem which 

we have not yet fully addressed in our current work. Typical 

crowd research tends to use observation of particular crowd 
phenomenon in both a real world situation (normally from film) 

and a simulated environment as a means of evaluating the 

simulation. This is in many ways the approach used in social 

psychology under the name context analysis [11], the so-called 

“natural history” approach. The specification of such subtle 

animation behaviours such as gaze shifts during a conversation 

and extraction of meaningful data from example video suggests 

that automated extraction of such events is a desirable goal. 

Motion capture techniques have been used in crowd modelling 

[34] and virtual character behaviour modelling [35] as a means  
of providing source data for statistical analysis and examples of 

model behaviours. In terms of ease of acquisition and 

invasiveness motion capture currently has many drawbacks, 

however the field of markerless motion capture [36] and the 

introduction of low cost technologies associated with it, such as 
Microsoft’s “Natal” may offer a useful approach in the near 

future.  

 

Another form of analysis used in virtual humanoid research is  

Laban Motion Analysis [37] [38] which uses a notation 
(Labonotation) to describe the Body, Space, Shape, Effort, and 

Relationship of movements. Developed by Rudolph von Laban 

and extended by Bartenieff and others, this provides a method of 

classifying and annotating human bodily movement. It is exactly 

this bodily movement that is key to social interactions. 
 

Hall devised a notation called “Proxemic notation” to describe 

the positional and orientation relationships between participants 

in social interactions. Using this notation, observers were able to 

annotate live observation sessions between humans in a natural 
setting, recording their relative distance and orientation in a 

manner that allowed the observer to capture the changing 

proxemic relationships. 

 

The concept of a notation that is derived from observation, such 
as those seen in LMA and Proxemics, is likely to be a key factor 

in evaluation. Ideally, sequences of actual interactions between 

humans would be automatically annotated from sequences 

captured either on film or via motion capture, thus forming a 

corpus which could be statistically compared to simulated 
examples of similar interactions. A key advantage to such a 

technique would be that there would be no differences between 

observers perception of the interaction, observations could be 

performed more frequently and with a much reduced workload 

for the researcher. Unfortunately there is still significant work to 
be completed in the area of automated capture and annotation for 

this specific purpose. 

 

The question of measuring the players perception of such social 

simulations is a significant one. Work by Bailenson [27,39] may 
offer some insight, however the greater task of measuring 

engagement and immersion suggests that work by Nacke [40] on 

the psycho-physiological measurement of immersion would be 

appropriate. 

5 CONCLUSIONS & FUTURE WORK 

This paper shows how a relatively simple extension of the smart 

object model can allow for coordinated social group behaviour 

within crowds of NPC’s. In the architecture and implementation 

presented so far, there are a number of shortcomings which we 

are working to overcome. One limitation is that each NPC can 
only be a participant in one social group. Whilst this seems like a 

reasonable approach, in reality humans are often constrained by 

several social groups at once. For instance an individual may be 

part of a social group “at a children’s party” whilst 



simultaneously being part of another social group “watching the 

clown perform”. Both groups apply constraints on the behaviour 

of the participant. Another is that social groups do not take into 

account the desire of agents within the group to continue 

participation in the activity  beyond the minimum threshold 
needed to continue the activity. For example a group playing a 

football game requires a given number of agents, however in 

reality the game can continue with fewer and fewer agents if the 

desire to play remains with the participants. A third limitation is 

that currently the behaviours described focus on NPC 
interactions between themselves rather than with the player. 

Being a reactive system, we expect the interaction with players 

to be relatively easy to incorporate, however there are significant  

usability issues surrounding the concept of player acceptance of 

social activity, specifically how to ascertain that the player 
intended to become a part of a social group activity and the 

corresponding timing of when the player is no longer 

participating. Finally there remains the issue of evaluation of the 

behaviours created using this approach. Evaluation of the actual 

behaviours produced seems reasonably straightforward if labour 
intensive, however the key aspect of player immersion along 

with the question of how social interactions of this type can 

effect player perception remains an issue. We hope to address 

these shortcomings with further development of the model and 

test implementation. 

REFERENCES 

[1] Quantic Dream, “Heavy Rain,” 2010. 

[2] A. Treuille, S. Cooper, and Z. Popović, “Continuum crowds,” 
ACM Transactions on Graphics, vol. 25, Jul. 2006, p. 1160. 

[3] Rockstar Games, “Grand Theft Auto IV,” 2008. 
[4] C. Hecker, “Spy Party,” 2011. 
[5] N. Pelechano, J. Allbeck, and B. Norman, Virtual Crowds: 

Methods, Simulation and Control, Morgan & Claypool, 2008. 

[6] M. Mateas, A. Stern, and G. Tech, “Façade : An Experiment in 
Building a Fully-Realized Interactive Drama,” Narrative, vol. 
2. 

[7] M. Mateas and a Stern, “A behavior language for story-based 
believable agents,” IEEE Intelligent Systems, vol. 17, Jul. 
2002, pp. 39-47. 

[8] C. Pedica and H. Vilhjalmsson, “Social Perception and 

Steering for Online Avatars,” Design, pp. 104-116. 
[9] E.T. Hall, “Proxemics -- The Study of Manʼs Spatial Relations 

and Boundaries,” Mans Image in Medicine and Anthropology, 
International Universities Press, 1963, pp. 422-445. 

[10] A.E. Scheflen, Human Territories: how we behave in space-
time, Prentice-Hall, 1976. 

[11] A. Kendon, Conducting Interaction: Patterns of Behavior in 
Focused Encounters (Studies in Interactional Sociolinguistics), 

Cambridge University Press, 1990. 
[12] E. Goffman, Frame Analysis: An Essay on the Organization of 

Experience, Northeastern University Press, 1974. 

[13] D. Jan and D.R. Traum, “Dynamic movement and positioning 
of embodied agents in multiparty conversations,” 
Computational Linguistics, 2007, p. 1. 

[14] M. Arinbjarnar and D. Kudenko, “Schemas in Directed 

Emergent Drama.” 
[15] R. Evans, “Social Activities: Implementing Wittgenstein,” 

Gamasutra, 2002. 
[16] D. Isla, “Building a Better Battle: HALO 3 AI Objectives ,” 

online, 2008. 

[17] J. Orkin, “Simple Techniques for Coordinated Behavior,” AI 

Wisdom 2, S. Rabin, ed., Hingham: Charles River Media, 
2003, pp. 199-206. 

[18] J. Orkin, “Constraining Autonomous Character Behavior with 
Human Concepts,” AI Wisdom 2, S. Rabin, ed., Hingham: 

Charles River Media, 2003, pp. 189-197. 
[19] D. Helbing and P. Molnar, “Social force model for pedestrian 

dynamics,” Physical Review E, vol. 51, 1995, pp. 4282-4286. 

[20] C.W. Reynolds, “Flocks, herds and schools: A distributed 
behavioral model,” ACM SIGGRAPH Computer Graphics, vol. 
21, Aug. 1987, pp. 25-34. 

[21] S. Belbasi and M.E. Foulaadvand, “Simulation of traffic flow 

at a signalized intersection,” Journal of Statistical Mechanics: 
Theory and Experiment, vol. 2008, 2008, p. P07021. 

[22] R. Narain, A. Golas, S. Curtis, and M.C. Lin, “Aggregate 
dynamics for dense crowd simulation,” ACM Transactions on 

Graphics, vol. 28, Dec. 2009, p. 1. 
[23] B. Yersin, “Real-T ime Motion Planning, Navigation, and 

Behavior for Large Crowds of Virtual Humans,” Work, vol. 
4401, 2009. 

[24] J. van den Berg and D. Manocha, “Reciprocal Velocity 
Obstacles for real-time multi-agent navigation,” 2008 IEEE 
International Conference on Robotics and Automation, May. 

2008, pp. 1928-1935. 
[25] W.J. Ickinger, “Psychological characteristics and Interpersonal 

Distance,” pp. 1-17. 
[26] E. Mcdaniel, P.A. Andersen, and P.P. Journals, “International 

patterns of interpersonal tactile communication: A field study,” 
Psychology, 1998. 

[27] J.N. Bailenson, J. Blascovich, A.C. Beall, and J.M. Loomis, 
“Interpersonal Distance in Immersive Virtual Environments,” 

Society, 1984, pp. 1-15. 
[28] A. Kendon, “Movement coordination in social interaction: 

Some examples described.” 
[29] M. Sung, M. Gleicher, and S. Chenney, “Scalable behaviors 

for crowd simulation,” Computer Graphics Forum, vol. 23, 
Sep. 2004, pp. 519-528. 

[30] J. Ciger and D. Thalmann, “Planning with Smart Objects,” 
Virtual Reality. 

[31] K.D. Forbus and W. Wright, “Some notes on programming 
objects in The Sims,” Group, 2001. 

[32] W. Wright, “The Sims,” 2000. 

[33] D.D. Corkill, “Blackboard systems,” AI Expert, vol. 2, 1991, 
pp. 40-47. 

[34] S. Paris, J. Pettré, and S. Donikian, “Pedestrian Reactive 
Navigation for Crowd Simulation: a Predictive Approach,” 

Computer Graphics Forum, vol. 26, Sep. 2007, pp. 665-674. 
[35] P.N. Magnenat-thalmann, “Real-time Animation of Interactive 

Virtual Humans,” 2006. 
[36] B. Michoud, E. Guillou, H. Briceno, and S. Bouakaz, “Real-

Time Marker-free Motion Capture from multiple cameras,” 
2007 IEEE 11th International Conference on Computer Vision , 
Oct. 2007, pp. 1-7. 

[37] R. Von Laban, Mastery of Movement, Princeton Book 

Company Publishers, 1971. 
[38] D.M. Chi, M. Costa, N.I. Badler, D. Chi, L. Zhao, and N. 

Badler, “Center for Human Modeling and Simulation The 

EMOTE Model for Effort and Shape The EMOTE Model for 
Effort and Shape,” Techniques, 2000, pp. 173-182. 

[39] N. Yee, J.N. Bailenson, M. Urbanek, F. Chang, and D. Merget, 
“The unbearable likeness of being digital: the persistence of 

nonverbal social norms in online virtual environments.,” 
Cyberpsychology & behavior : the impact of the Internet, 
multimedia and virtual reality on behavior and society, vol. 10, 
2007, pp. 115-21. 

[40] L.E. Nacke, “Affective Ludology: Scientific Measurement of 
User Experience in Interactive Entertainment,” 2009.  

 



Influence Landscapes - From Spatial to Conceptual
Representations
Luke Dicken and John Levine1

Abstract. In this paper we will present the concept of the ”Influence
Landscape”, an extension to the current ”Influence Map” or ”Artifi-
cial Potential Field” that is commonly used in AI for Games. Influ-
ence Maps have previously only been used purely in relation to a
spatial representation of the world and have been used to guide the
movement of agents, avoiding dangerous areas and being drawn to
rewarding areas. We will describe an extension to this principle that
allows the computationally efficient process to be applied across a
conceptual space, allowing the agent to perform basic reasoning in
this efficient manner.

1 INTRODUCTION

1.1 Motivation

Artificial Intelligence research has previously demonstrated a robust
ability to solve a diverse range of problems. We now have tech-
niques that are capable of very sophisticated reasoning, for exam-
ple, Deep Blue which is able to play Chess at a near-grandmaster
level. However, in order to do this, Deep Blue required enough pro-
cessing power to evaluate 200,000,000 chess positions per second,
making it the 259th most powerful supercomputer of its time[11].
That is to say, AI techniques can produce very high quality results
given enough time or processing power. At the other end of thespec-
trum we can find techniques that require much less power in order
to produce decision making, such as the Brooks Subsumption Archi-
tecture [3], which is designed to be both light-weight and robust in
its decision making by reacting to specific subsets of stimulus within
the environment. In this way, decisions are made very rapidly but
in a highly reactive manner; there is little regard given to the longer
term objectives of the agent. This simplification is where such an ap-
proach gains its speed, but it also the cause of the drop in quality of
solutions.

As AI researchers, this puts us in something of a dilemma. We
have tools that are capable of either good decision making atthe
cost of speed, or fast decision making at the cost of quality.How-
ever, there are any number of applications that require bothfast and
good decisions and increasingly, emphasis is being placed on find-
ing better compromises between these two. This paper will present
an extension to the well proven technique known as the Influence
Map or Artificial Potential Field. Our aim is to show how, by using
techniques from Automated Planning, the concept can be adapted to
provide a fast and powerful approach to a wider class of problem
than it has previously been applied to.

1 Strathclyde AI and Games Research Group, University of Strath-
clyde. Glasgow, UK. (Corresponding Author : Luke Dicken email
luke@cis.strath.ac.uk)

1.2 Paper Outline

The remainder of the paper is structured as follows : In Section 2 we
will discuss the basic underpinnings of the Influence Map along with
a synopsis of recent work that has involved the technique, wewill
also describe the field of Automated Planning, and introducethe con-
cepts that drive our extension. In Section 3 we will outline the manner
in which the current approach to Influence Maps can be reformulated
slightly without altering its function, and then demonstrate how us-
ing the techniques we previously introduced we can extend the con-
cept of the Influence Map into a conceptual representation, thereby
generating what we term Influence Landscapes. In Section 4 wewill
present two worked examples of this process and show that although
the information being handled is now much richer than an Influence
Map would typically represent, the fundamental concepts remain un-
changed. Finally, in Section 5 we will present our conclusions and
discuss future work we feel would be applicable to further develop
this approach.

2 RELATED WORK

2.1 Influence Maps

The Influence Map is a mainstay of the AI Developers arsenal. In
broad terms, it is a heuristic evaluation over a (typically 2dimen-
sional) map, giving the perceived value of every location within this
plane (or space). The main idea is that different elements within the
world can be assigned either a positive or negative influenceand this
influence can be used to guide an agent around the world, attempting
to avoid the negative influences and be drawn to the positives. In or-
der for the influence of an object to be perceived across a distance,
the influence radiates from the point of interest across the remainder
of the map. No particular function is specified for this radiation pro-
cess, but common techniques include Gaussian distributions centered
on the point, or propagation according to an adaptation of the inverse
square law. Visual representations of this may resemble a heat map,
with the colouring of the map being representative of the influence
being exerted on the world. Figure 1 shows an example of this,with
the image on the left being taken from the game Ms. Pac-Man and
the right showing the threatening influence that the ghost characters
are exerting on the environment.

2.2 Automated Planning

Automated Planning, by contrast, is a much more deliberative or
symbolic approach to AI. The aim of AP is to allow agents to achieve
complex sequences of goals without direct intervention by ahuman.



Figure 1. Screenshot of Ms. Pac-Man game and associated Influence Map

This is accomplished by defining three elements and then performing
reasoning. In no particular order these elements are :

• A complete description of the manner in which the environment
of the agent works, a description of the types of object within the
environment and the actions that are possible in the environment,
with associated conditions that must be true before an action can
be applied (for example, it would not be possible to load a package
onto a truck if both these objects were not at the same location)
and the effects that the action will have in the world.

• A full description of the initial state of the world that the agent
will be acting in.

• A partial description of the key facts that must hold in the end
state, in other words, a list of the goals to be achieved.

In recent times the Planning Community has standardised on a
single language with which to describe the domains that are being
worked with, the Planning Domain Description Language or PDDL
[12]. PDDL relies on a fact-based representation of the environment
which is to say facts can be asserted to be true or false. For ease of
writing, it takes a predicate calculus approach to modelingthe world
rather than requiring a purely propositional description be supplied,
and also generally uses a hierarchical notion of typing to allow for
more finegrain control over the expansion of the predicate calcu-
lus into grounded propositions. So to re-use the example from the
previous paragraph, package, truck and location would be distinct
types and packages and trucks might also be extensions to a physi-
cal object type. This allows the definition of two predicates :

at(a physical_object, location)
in(package, truck)

Extensions to the basic version of PDDL have been built to allow
the use of numeric values (Fluents) in the calculus, to allowfor met-
rics to be specified to give better assessments of the qualityof plans
produced and to allow actions to have duration rather than bein-
stantaneous [7]. There is also now support to allow for factsto be
asserted or deasserted at specific times independent of the planning
system, allowing a basic - and fully observable - model of a changing
environment to be created [5]. In the currently most advanced form,
known as PDDL+ [6], an wide array of features are supported, lead-
ing to a very rich modeling language, although in general, uptake of
this variant within the community has so far been limited andPDDL
2.1 remains the de facto standard.

Using the descriptions provided by PDDL, planners attempt to
navigate the state space of the world and find a sequence of actions

that connect the initial state to one of possibly many statesin which
the goal propositions hold. The aim is to find the least cost - whether
that cost be in terms of time or some other measure of quality -
path, although often any path is deemed sufficient. In general, the
task of searching this space for valid action sequences is particularly
complex. The PDDL specification is capable of representing prob-
lems that belong to complexity class PSPACE-Complete (although it
should be noted that the benchmark human-solvable problemstend
to be restricted to NP-Hard) [9]. In order to adequately search this
space, the majority of planning research focuses on search strate-
gies and heuristic guidance. A good example of this is the planner
Fast Forwards [10], which uses Enforced Hill Climbing as itssearch
strategy (best first, failing into breadth-first when an improvement
over the current node is not available) as well as the RelaxedPlan
Graph heuristic, which ignores the negative effects of actions, mean-
ing that all facts that become true remain true. Relatively informally,
this gives an overly optimistic view of the interactions with the world
as goals will be believed to be met before they necessarily have been
due to conflicts between actions (consider a problem in whicha crane
is empty and must move two containers - in the first step it may pick
the first up, in the second step the crane is still empty as thisfact can-
not be deasserted, so it may pick up the second as well). This simpli-
fication has proven powerful as it reduces the complexity of the task
dramatically, and gives a much more easily computable heuristic es-
timate of the remaining work required to get from a given state to the
goal.

3 METHODOLOGY

3.1 Abstract Model

As was previously mentioned, Influence Maps typically describe a
continuous two dimensional world, and highlight the perceived value
of this continuous space to the agent based on points of interest in the
world. The first modification we propose is simply to move froma
continuous world to a discrete world consisting of tiled, abutting lo-
cations. This is a simple enough change that does not drastically alter
the concept of the Influence Map. For each tile, the value perceived
for that tile is equivalent to the function evaluation at a single point
contained within the tile if this were still in the continuous space, for
ease of discussion we will assume that this point is chosen tobe the
center of the tile but this is not a requirement. Effectivelyall we have
done is produce the same heat map style representation, but by dis-
cretisation we have greatly reduced the granularity of change that the
map reflects and introduced distinct steps.

Into this model we introduce barricades, which do not take up
space within the map but are impassable to agents within the
world and consequently also impassable to influence propagation. In
essence, although our tiles still adjoin geographically, we have cre-
ated a maze of passages and barricades which will focus and direct
the agents mobility in this world, as well as the perceived influence
that points of interest will exert - there is little sense in an agent being
threatened by an enemy geographically adjacent if the shortest path
between the two traverses thirty or more other tiles. This can be vi-
sualised as a grid of tiles, with all tiles connected to theirneighbors
to the North, South, East and West. Where a barricade exists,there is
no connection as shown in Figure 2.

3.2 Implementation

We previously explained PDDL as the standard language in which
planning problems were described. Due to its propositionalnature,



Figure 2. Example of disconnected tiles highlighting the presence ofthe
”barricades”.

this gives a representation that can be thought of as having avery
high dimensionality, with each dimension only capable of represent-
ing a true or false value. This is a highly complex representation that
does not give an easy method to see how the dimensions relate to
each directly (except by inspection of the labels placed on the propo-
sitions, which is to an extent cheating). Importantly, thisdoes not give
a representation particularly conducive to exploration ofa space, but
highly suited to parameter tuning.

SAS+ [2] is an alternative formalism to PDDL and rather than
capturing the state of the world as a series of true or false state-
ments, it utilises a collection of multivalued variables torepresent the
current state. Again to refer to the example of packages and trucks,
we noted that in PDDL this would give rise to propositions of the
form at(Package1, Location1) or in(Package1, Truck1) which could
be true or false. In SAS+, these would be condensed into a single
variable reflecting the current position of Package1 :

location_package1 ∈ {Location1, Truck1, ...}

This generates a representation with a much lower dimensionality,
but with more values than the true or false options of the proposi-
tional format. Although this is not an ideal formulation fortypical
styles of search, it generates a nice representation that itis much
more accessible and human-readable. It is also worth notingthat
thanks to work on the planner Downwards by Helmert, automatic
reformulation from PDDL to SAS+ is possible [8], meaning that the
two can be used interchangeably without requiring any intervention
or domain analysis by hand. This is done principally by analysis of
mutually exclusive propositions in the PDDL - although there is no
explicit link between propositions such as at(Package1, Location1)
and at(Package1, Location2) it is intuitive that these two facts can
never both be true simultaneously and analysis of the actions within
the domain can reveal this kind of relation and allow propositions to
be grouped and translated into the multi-valued variables of SAS+.

Furthermore, the same techniques will also discover the manner in
which these variables alter their values by analysis of how the poten-
tial actions within a domain can affect the state of the variables. Thus
it might become apparent that in order to move a package between
two locations, it must first be loaded onto a truck. This allows the
SAS+ formalism to not only define the values that the variablecan
take, but also a sense of the ordering of these values and their mu-
tual adjacency. It is common to represent this as a Domain Transition
Graph (DTG), which essentially lays out the values of the variable as

nodes within a graph, and actions that allow transitions between two
value pairs defining the edges between nodes. This gives riseto the
structure shown in Figure 3 which formalises the recurrent example.

Figure 3. Example of a Domain Transition Graph. Packages may move
between locations by first being loaded into the truck

As was mentioned in the description of the definition, actions have
preconditions that must be satisfied before the action becomes appli-
cable and in SAS+ this is captured by the Causal Graph (CG) and
Causal Links (CL). Again, this information can be generatedauto-
matically without any inspection based on an existing PDDL defini-
tion, or it can be defined directly in SAS+ as part of a model being
created without PDDL. The CG captures the dependencies between
the types of objects found in the environment, for the example we
can see that the actions we can take to manipulate the location of the
package are dependent on both the state of the truck and the location
which the package is currently at.

Causal Links are the actual embodiment of the dependencies high-
lighted by the CG, and more or less enforce that a specific set of
SAS+ variables must take specific values before an action canbe
taken, or put another way, the current state of the world mustbe set
to specific nodes within certain DTGs before an edge between two
values can be traversed. This means that the entire state representa-
tion of the world can be thought of as a cross-section througheach
DTG, and the actions that can be taken at this particular timepoint
are exactly those edges for which the CLs are satisfied.

This presents us with a model very similar to that which we de-
scribed previously, namely the disconnected discrete Influence Map
shown in Figure 2, but rather than dealing with a representation
of spatial coordinates, the DTG/CG space provides the same basic
structure but represents practically any set of discrete concepts.

3.3 Influence Landscapes

We will now show how this structure can be used to form what we
term ”Influence Landscapes”. In the same manner as with IMs, we
designate points of interest within a DTG, and these are the origin
of the influence that the agent perceives. As with IMs, influence may
be positive or negative. As with IMs, we do not formally definethe
manner in which influence can be propagated across the graph,how-
ever we will outline a basic technique below in order to demonstrate
the process as a whole.

3.3.1 Influence Propagation

In a continuous coordinate system, influence propagation isrelatively
straightforward, since influence is typically exerted as a mathemati-
cal function. To evaluate the level of influence at a given point, one



simply supplies the coordinates to the function and receives a resul-
tant value representing the level of perceived influence at that point.
In the Influence Landscape, this is not possible as no such coordi-
nate system exists. Instead we rely entirely on the abstractconcept of
edge-distance [4] to propagate influence across the graphs.We have
used a simple reward sharing algorithm to replace the function def-
inition. In the initial stage of the algorithm, influence is assigned to
the points of interest in the world and these nodes are added to a list.
Then, while the list is not empty the following algorithm is executed
- a node is chosen from the list, one is subtracted from its influence
value and this is then divided by the number of predecessors this node
has in the graph, and the resultant value is assigned to thesenodes if
it is higher than their current influence value. Any nodes that have
had their value updated in this manner are then added to the list. This
stage is repeated until the list is empty, at which point propagation
has converged and the influence landscape has been generated. This
landscape can now be used to guide the behaviour of the agent.

3.3.2 Traversing the Influence Landscape

It is important to note the manner in which we anticipate the In-
fluence Landscape technique to be used. Again, we do not definea
particular algorithm as being a part of the IL technique, butinclude
the information here for completeness. We have experimented with
three different approaches. Strict Hill Climbing was the first and most
obvious, in which the agent will move to the node which is mostat-
tractive, or stay put if the current node is perceived to havehigher
value than any of the alternatives. We found that in certain domains
this produced traps at local maxima that were not intended, so we
next considered a hill climbing algorithm which did not takeinto ac-
count the value of the current node, essentially mandating that the
agent always take some action. Finally, we found that in a class of
domains, looking at solely the next action was not appropriate, and
we moved on to consider a neighborhood-bounded implementation
of A* search which was capable of finding the most promising point
within the nearby area of the graph. This was appropriate in cases
where the agent was forced to take an undesirable choice in the short-
term to reach a more desirable node in the longer-term. Of course, the
addition of a look-ahead search, even one as straightforward as a lim-
ited A* would add to the processing required to select an action, but
again this serves to highlight the flexibility of the IL approach, as it
can be adapted to suit the needs of most domains.

Regardless of how the next action is selected, this action will now
be used to traverse the graph. In order for that to be possible, the CLs
attached to that edge in the graph must be satisfied. Our lightweight
approach to this is simply to solve any CLs that are currentlyviolated
and then traverse the edge. This is by no means fool-proof anda
more detailed discussion of the flaws with this approach is included
in a later section of this paper. To solve the CL, the agent transfers its
focus to the DTG that is currently not set to the correct valueand uses
the IL method there with the goal now being to achieve the correct
value. When the CL is resolved, the agent can transfer focus back
to the original DTG and check for further violations. As the edges
are traversed, both the internal state of the agent is updated, and the
relevant affector is activated to cause the action to be triggered in the
world.

In this way, the agent is able to use the notion of influence to navi-
gate through a space of abstract concepts, as well as spatiallocations.
Preconditions of actions can be highlighted and met before an action
is taken, and influence allows the agent to avoid dangers in its envi-
ronment and find ways to reach the desirable locations.

4 EXAMPLES

We will now demonstrate the power of the Influence Landscape tech-
nique by introducing two example domains that are both more com-
plex than the previous explanatory example, and more oriented to-
wards the area of AI in Games research. The first domain we term
the Tank Domain and is inspired by work by Avery, Louis and Av-
ery [1] as well as work by Thompson, Levine and Hayes [13]. In
this domain, tanks move around a battlefield with the agent under AI
control being one such tank. The agent can decide which direction
to move and whether to be in a ”firing” state, a ”neutral” stateor
a ”shielded” state. The Flight Simulator Domain involves the agent
attempting to land an aircraft. The agent is able to control its direc-
tion of movement, and whether the following are deployed - airbrake,
flaps, landing gear. This second example domain resembles the first,
but highlights the extensibility of the technique to handlea full three
dimensional representation of the world (albeit still using discrete
intervals) and has multiple state variables to control.

4.1 Tank Domain

The Tank Domain is a fairly straightforward example of a scenario
in which IMs are quite applicable for moving the agent’s tankaround
whilst avoiding the enemy tanks. However, we have added the con-
cept of state to the scenario as mentioned above. This takes the sce-
nario out of the realm of the Influence Map, as this type of reasoning
cannot be handled. However, it is now very suited to being dealt with
by the Influence Landscape approach. We can see that locations be-
come a grid representing the battlefield, and for the sake of diagram-
matical simplicity we will again constrain the possible movement
directions to North, South, East and West. An open battlefield is rel-
atively uninteresting, so we will add some obstructions to the world.
An example of such a battlefield is shown in Figure 4.

Figure 4. Example of a Tank Domain battlefield. The triangle is the agent,
the diamond is an enemy tank.

Representing this in the DTG form that the Influence Landscape
requires is relatively straightforward and is shown in Figure 5. We
have labelled the nodes representing locations within the world by
their grid coordinates, and the state variable notation is as follows:
”Sh.” for the shielded state, ”Ne.” for the neutral state, ”Fi.” for the
firing state.

For the purposes of this example, we will make the goal of the
example to reach the bottom left corner, and we will leave theen-
emy static occupying the goal location. It is simple enough to see
that movement alone will not solve this problem, and in the neutral



Figure 5. Example of a Tank Domain DTG space. On the left is the DTG
representing locations, on the right the DTG represents thecurrent state of

the agent’s tank.

state the agent will experience a negative influence radiating from the
enemy and not be able to reach its goal. Equally it is easy to see that
although going into the defensive state would be a viable solution,
this will not allow the agent to reach the final tile and so is not go-
ing to allow the agent to achieve its goal. Therefore, the only way to
complete the task assigned is to switch into the firing state and de-
stroy the enemy, thereby clearing the path for the agent to reach the
objective safely.

4.2 Flight Simulator Domain

The Flight Simulator Domain deals with the problem of landing a
plane at an airport. This requires a three dimensional representation
of the environment since height is obviously a major factor in this
task. For the sake of simplicity we have abstracted several key as-
pects out of the model in order to maintain simplicity, most impor-
tant among these are the orientation of the plane and its airspeed - in
a real-world situation these are of course essential elements. We as-
sume that a plane is capable of moving North, South, East and West
as well as up and down. During the landing process it will be neces-
sary at certain points to deploy the planes flaps, to lower thelanding
gear and to deploy the airbrake. These will be triggered at different
points, and each will have different tolerances on the earliest point
at which it may be triggered as well as a hard deadline on the latest
point it must be triggered by. As you can see, this domain presents a
much more complex and reasoning-centric problem, which canagain
be represented as an Influence Landscape. For simplicity we will
consider a very small representation of a space of 3x3x3 possible
locations for the plane to be in. The plane starts out in a corner with
altitude, so would have position (1,1,3) and must reach the ground
level in the opposing corner or (3,3,1). This scenario is visualised in
Figure 6, with the planes initial position marked in green, and the
target landing site marked in red.

Represented as a DTG, this generates the set of graphs shown in
Figure 7. Again the initial point and the goal point have beenmarked
in green and red respectively. The left hand side again represents the
graph of the location variable for the agent, with each 3x3 grid being
a cross-section layer for a given altitude. The three graphsrepresent-
ing the state of the properties of the plane are labelled on the right
hand side of the diagram.

As can be seen, it is relatively trivial given this formulation to
adopt the Influence Landscape technique and create a system which
can not only be guided to its goal in terms of location, but also ensure

Figure 6. Visualising the example Flight Simulator problem.

Figure 7. Visualising the DTGs generated from the Flight Simulator
Domain problem



that the correct settings within the plane are activated at the correct
time.

5 CONCLUSIONS AND FUTURE WORK

In this paper we have presented a technique that can be used toadapt
”Influence Maps” from being a technique that functions purely across
a spatial representation of the world and indicates good andbad ar-
eas of this world, to being a technique capable of providing the same
level insight at a conceptual level. We do not propose that this is a
complete substitution for the need to perform deliberativereasoning
about the world, however it does offer an efficient alternative in sit-
uations where the overheads involved in full reasoning outweigh the
complexity of the world being reasoned about.

Work with this technique is ongoing, and it currently forms the
basis for a complete agent architecture being developed by the au-
thors aimed at providing a better unification between reactive and
deliberative AI techniques in a single architecture. As such, several
open questions remain, most importantly with the manner in which
Causal Links can be resolved. As laid out above we take a very basic
approach at this juncture of satisfying the demands of the edge we
wish to traverse and then traversing it - this is provably nota sound
approach when domains become more complex. The Planning do-
main Driverlog resembles the early example we used but includes
the notions of drivers for the trucks - in order for a truck to move
between locations it must have a driver onboard. It is relatively easy
to see that this quickly leads to an issue using naive CL resolution:
in order to move a truck we need a driver onboard, in order for the
driver to board the truck it must be at the same location as thedriver,
but in order to move the truck to the same location as the driver it
needs a driver and so forth. For more complex domains in whichrea-
soning needs to be able to identify cyclical dependencies and avoid
them, this approach is not adequate, and part our ongoing work is
in developing a more refined technique that can inform this process
without relying on a fully deliberative process.

With that said, it is our contention that as an extension to the cur-
rent Influence Map technique, our work is currently mature enough to
be suitable for adoption in a number of game-related domains. This is
particularly the case for those domains that were already somewhat
suited to the IM approach as these tend to not require the complex
types of reasoning that a more robust CL resolution system would
provide, but in many cases would benefit from the ability to dobasic
reasoning. We believe that the Influence Landscape technique has the
potential to serve as a useful tool for the Game AI developer.
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SPREE : The Strathclyde Poker Research Environment
Luke Dicken, Nicky Johnstone, John Levine and Phil Rodgers1

Abstract. This paper presents the Strathclyde Poker Research Envi-
ronment (SPREE) which has been developed as a tool to aid research
into the game of Poker, both by enhancing our understanding of the
way human players play the game and providing a standard environ-
ment for autonomous agents to play. We will justify the need for this
tool, outline the principal components and demonstrate potential uses
for the system.

1 INTRODUCTION

1.1 Motivation

When designing and developing stronger Artificial Intelligence (AI)
algorithms, researchers often look to classical multiplayer games as
being microcosmic examples of the decision making process.Al-
though games such as Go, Chess or Poker have simple rules, meaning
that they can be described to an AI system relatively easily,they still
remain complex challenges[7][4]. Of these, Poker is arguably one of
the more interesting to AI as it a game with incomplete information;
whereas with games such as Go and Chess all of the pieces are vis-
ible, and you can therefore make informed assumptions aboutyour
opponents’ future moves, in Poker you have no knowledge of the
cards your opponent is holding and must try to make inferences based
on previous observations of that opponent which influence your de-
cisions.

Poker research typically focuses on the “Texas Hold ’Em” variant,
in which each player is dealt two cards which are hidden to other
players, and subsequently a round of betting takes place based on the
perceived strength of these “hole” cards. Three cards are then dealt
face up and those players who still remain in the pot must now bet
based on the strength of their two cards combined with the three on
the table to make a five card Poker hand. When this is complete,a fur-
ther card is dealt face up, followed by a round of betting, nowbased
on the best five card hand each player can make from the six cards
available to them. A final card is then dealt and a round of betting
concludes the game, with those players still in the game revealing
their hands and the player with the highest ranked hand taking the en-
tire amount wagered by all players. This variant of Poker itself comes
in one of two sub-variants, either “Limit” or “No-Limit”. Inboth
cases, players always have the option to “fold”, forfeitingany wager
made so far, and players may “call”, or meet the amount currently
being wagered by other players. They may also “raise”, increasing
the amount being bet. In Limit this raise is by a fixed amount, in
No-Limit it is of a variable amount. Both are valuable mechanisms
as Limit allows the researcher to deal with a more tractable prob-
lem, as only three actions are available at each decision point, whilst
No-Limit allows a player to telegraph a lot more informationabout

1 Strathclyde AI and Games Research Group, University of Strath-
clyde. Glasgow, UK. (Corresponding Author : Luke Dicken email
luke@cis.strath.ac.uk)

the perceived value of their hand which an AI system could useto
influence its own decisions.

Many approaches to creating an automatic player (or “agent”) for
Poker have been based around the field of machine learning [3][6],
using data about previous games to infer the likely strengthof oppo-
nents, as well as decision theoretic techniques based on theobserv-
able components of the game. However, there is a common weakness
to these systems in that both the quantity and quality of training data
available from which to learn is not sufficient. Typically this data is
obtained from players at online casinos, who observe and record the
actions of their opponents using specialist software such as Poker
Tracker[2], and subsequently trading or selling this data within the
community. A sample training set, such as that used in a recent piece
of work exploring the application of Monte Carlo tree searchtech-
niques to Poker play [5], consists of around a million games of Poker
that have been observed. However, because this data has beencol-
lected by players at an online casino, only the information available
to that player is recorded and able to be used by an AI system based
on the data. As a result of this, the amount of information available -
particularly about certain hand configurations - is quite limited. For
instance, consider a player who is dealt a very bad hand initially.
That player will probably fold immediately, and his hand will never
be shown to the other players, so there is never an explicit connec-
tion (except in those cases where the player making the decision is
the one recording the data) to link a poor initial hand to the fold ac-
tion, it must instead be inferred from the frequency with which poor
initial hands are seen at a showdown. Trying to rectify this large a
priori bias in the dataset is the motivation for requiring such a large
number of example games, but it does not address the fundamental
issue that the partially observable nature of the game introduces.

Additionally, when such Poker agents are created by researchers
they typically play Poker internal to themselves against either other
agents created by the researchers (perhaps based on the workof oth-
ers) or against a hypothetical model of a “human” player based on
the data, rather than an actual human. The results of this play are
then compared against other agents to look for improvementsin per-
formance according to some metric. The assumption underlying this
kind of analysis is that for a large enough sample of games, two
agents will experience an equivalent set of circumstances and thus
be comparable. However, if you assume a full ten player game of
Poker, there are 20 hole cards to be dealt and 5 community cards,
and the number of possible permutations for dealing 25 cardsfrom
a deck is7.41x1039 , and this is before you consider the differences
introduced by the behaviour of each agent’s opponents when faced
with the same situation. As such, it is effectively impossible to offer
a meaningful comparison between two agents on the basis of inde-
pendent experimentation with contrasted results, as the agents will
not have experienced identical circumstances.

The Strathclyde Poker Research Environment (SPREE) aims to



overcome both of these obstacles to Poker research by providing a
casino-like environment from which complete data can be extracted,
enabling researchers to get a much more accurate picture of the deci-
sions players make and the situations that lead to these decisions. In
addition, SPREE provides an experimental platform on whichanal-
ysis can be performed to properly compare different agent imple-
mentations by offering proper experimental practices to befollowed,
such as replicating all conditions including card order andopponent
play-style between tests of two separate agents. Developing agents
is a relatively simple task, with a complete framework for this be-
ing available in the Java language, and the communications protocol
to the SPREE server being available for development in otherlan-
guages.

1.2 Paper Outline

The remainder of this paper is structured as follows. In Section 2, we
will give an outline of the principal components of the SPREEsys-
tem, namely the server implementation, the current GUI client for
human players, the administration interface and the framework for
developing agents. In Section 3 we will discuss the uses of SPREE
with specific reference to two use cases, one in which SPREE isused
to gather information on human Poker playing patterns and another
in which SPREE is used as a tool to comparatively evaluate twodif-
ferent Poker agents. Finally, in Section 4 we will summarisethe con-
tribution that SPREE makes to the field.

2 SPREE OVERVIEW

The SPREE system is broken into a number of distinct components,
each of which will be outlined below. An overview of the interactions
of each component is presented in Fig. 1. All components interact by
TCP/IP except where otherwise noted.

Figure 1. Representation of the interactions of the different components of
the SPREE system.

2.1 Server

The core of SPREE is the server, which is used to control the flow
of the poker game, including dealing cards and handling the betting
options available to each player as play progresses. At its heart, the

SPREE server relies on basic technologies, it is implemented in Java
and utilises standard TCP/IP communications for negotiating with
players. It also requires access to a MySQL server which holds con-
figuration settings and details relating to user accounts.

2.1.1 Casino

The casino component of the server is responsible for controlling
what games are on offer and logging players in. This is the com-
ponent that users initially connect to in order both to authenticate
themselves (or register as a new player) and to retrieve a list of Poker
tables currently active on the server, the configurations ofthese tables
and their location. This information is stored in a MySQL database
(meaning that it is persistent between server restarts). The casino is
also responsible for managing a player’s “bankroll”, or theamount of
virtual money they have associated with their account. Thisamount
can be altered by administrators of the SPREE server (more onthis
below). When a player connects to the casino their current bankroll
is passed to the client, when they sit at a table they must choose an
amount to take to the table which is deducted from their bankroll.
They may then gamble with this amount, and when they leave theta-
ble the database is updated, adding the amount they have remaining
from this back into their total bankroll.

From a user’s perspective, the principal use of the casino isto re-
trieve the list of available tables. The user can then use this list to
connect to the table and communicate with it directly.

2.1.2 Table

Each table runs as a self-contained process initiated by thecasino.
The table component runs a single table of Poker with a specific rules
configuration. The basic game rules are set out using an XML-based
game definition, in a format similar to that used by the AAAI Annual
Computer Poker Competition[1]. The current version of SPREE can
only handle the Texas Hold ’Em variant of the game due primarily
to limitations imposed by the client, but by using a formalism such
as this for the server, SPREE is quite extensible to other variants of
Poker. The game definition used for SPREE’s Limit version of Texas
Hold ’Em is shown below.

<GameDef>
<Description>Texas Hold’Em</Description>
<Rounds>4</Rounds>
<MinPlayers>2</MinPlayers>
<MaxPlayers>10</MaxPlayers>
<MinBet>2</MinBet>
<SmallBlind>1</SmallBlind>
<BlindStructure>1|2</BlindStructure>
<PrivateCards>2|0|0|0</PrivateCards>
<PublicCards>0|3|1|1</PublicCards>
<BetsPerRound>3|4|4|4</BetsPerRound>
<BetStructure>1|1|2|2</BetStructure>

</Gamedef>

In this example, the Description element gives a text description
of the game, which is used by the server to advertise what typeof
game this is. The Rounds element indicates how many rounds of
both dealing and betting occur in the game. MinPlayers and Max-
Players respectively define the minimum players required tomake
a game and maximum. MinBet defines the base bet amount for the
table. The SmallBlind is traditionally set at half of this bet amount.



The BlindStructure element reflects the positions at the table and the
amounts that they must pay prior to the game begining, relative to
the SmallBlind amount, so in this case there are two blinds required,
with the first being equivalent to one SmallBlind and the other be-
ing equivalent to two SmallBlinds. The manner in which cardsare
dealt to players is determined by the PrivateCards element,which in
the example shows that two cards are dealt to each player in the ini-
tial round and none for the remaining rounds. PublicCards reflects
the manner in which community cards are dealt, and for Texas Hold
’Em this follows the pattern of none in the first round, three in the
second and then one each for the third and fourth rounds. BetsPer-
Round sets a cap on the number of times a bet or raise is allowed, in
Limit play this is typically capped at three raises per round, and as
the initial bet would not be counted and the blinds are not counted,
this is achieved by specifying a three bet cap in the first round and
four in the others. BetStructure allows for a common mechanic in
which the minimum bet amount increases in the later rounds ofthe
game, this usually doubles, and as the example shows, the wayof
signalling this in the game definition is by stipulating the bet amount
in each round with reference to the MinBet value. In rounds one and
two this is equivalent to 1*MinBet, increasing in rounds three and
four to 2*MinBet.

When the table is started it does nothing but wait for connec-
tions. A game does not begin until two players are seated at the
table. At this point, the server begins to deal the cards to the play-
ers according to the game definition. It maintains the current state of
the hand and contacts each client using a TCP/IP message called a
gameMessage. There are three possible types ofgameMessage,
a stateMessage which details the current state of the game,
an optionsMessage that offers the client the opportunity to
choose one of the available options and anactionMessage that
is used as a partial update to indicate the action taken by a specific
player. This means that at the begining of each round of betting a
stateMessage is generated which contains the state of the game
after the server has dealt cards and otherwise processed thenecessary
steps between rounds of betting. ThestateMessage contains in-
formation about each player, but replaces cards that the client being
contacted is not able to view (such as other players’ hole cards) with
’x’ to show that information is being hidden. Note that belowwe
will describe an administrative view of this data which is based on
this samestateMessage data without such obfuscation.

2.1.3 Exported Data

The data that the table records is stored in two formats. The first is
a “Recording”, which contains thestateMessage transmissions
that the server has generated during the game. These are usedby
the replayer component (described below) to step through the game
move by move and visualise exactly what happened during thatspe-
cific game.

The second style of exported data which the server generatesis
a “Hand History” file, which is a descriptive account of what has
occurred during the game. This style of data is used by existing tools
such as Poker Tracker[2]. The aim of specifically exporting this data
is to allow games played within SPREE to be analysed in the same
manner as other games that have been played on other systems,and
to maximise interoperability between SPREE and other toolsin use
both by players and by researchers.

Additionally, note that this export system is designed to behighly
modular, and implementations that output the data in a different for-
mat can be easily developed if it is found necessary to extract specific

data that cannot be parsed from the current structure.

2.2 Client

Our client implementation allows a user to connect to a SPREE
Casino and either authenticate to an existing player account or cre-
ate a new one. From there, a listing of the active tables is retrieved
and displayed to the user. An example of this is shown in the lower
portion of Fig. 2, where it can be seen that the casino has onlyone ta-
ble currently active. Details about the tables are made available to the
user to aid them in choosing an appropriate place to play, in much the
same way as would be experienced in a real online casino. Specifi-
cally, the client displays the name of the table, the particular variant
of Poker being played, whether the table is playing Limit or No-
Limit, the size of the initial amount wagered, the current number of
players at the table, the minimum and maximum players allowed and
the minimum and maximum buy-in amounts allowed. The user then
has the option to “sit” or “watch” the table. Sitting means that the
user intends to play at this table, whilst watching is simplyobserving
the game currently in progress without taking an active partin the
game. Additionally, users may request more information about the
table.

Figure 2. Screenshot of SPREE Client. Luke is playing against 9
opponents, Denny won the previous hand.

When a table is selected by the player, the table view portionof
the GUI opens, as shown in the upper portion of Fig. 2. This is in-
fluenced heavily by the look and feel of a variety of graphicalPoker
systems, and is relatively representative of a traditionaltable game
of Poker. Fig. 3 shows a game in progress, in which the commu-
nity cards can be see. Also in this image, the options available to the
player are clearly visible. Lenny has the option to fold check or bet.
It is also possible to use the GUI to “queue up” an action in advance,
meaning that they can make decisions when they first see theircards
and decide what they will do (such as fold) before it is their turn.
This is a common feature of many casino interfaces as it allows the



player to focus their attention elsewhere rather than forcing them to
wait patiently for their turn.

Figure 3. Screenshot of a Poker game in progress. Lenny is playing
against Luke. The game has reached its final phase, with Lennyto bet next.

In all respects, the design of the client tried to closely emulate the
manner in which online casinos present the game to players, on the
assumption that since these casinos succeed in getting players to play
in their free time, the features that they offer to players must be of
use. Additionally, it is hoped that those already familiar with playing
in a commercial environment will find the SPREE implementation
roughly equivalent to the experience they are used to.

2.3 Administration Interface

The SPREE administration interface is designed to allow users of the
SPREE system who are flagged as administrators to control andcon-
figure an active SPREE server. This gives them the opportunity to
alter the set of tables currently used by the server by deleting exist-
ing ones or adding new ones, and to specify the parameters andgame
type of these tables as they are added. Administrators are also able
to edit user accounts, both by changing usernames and passwords as
well as altering the bankroll of a user. It is possible for administrators
to make other users into administrators or remove a user’s adminis-
trator status. It is possible to watch a game in progress at a table from
within the administration interface, which provides a real-time per-
fect information account of the table, including each player’s hole
cards. This is obviously open to abuse by players who are alsoad-
ministrators, therefore we have enforced that a player who is playing
at a table cannot also view that table using the administration inter-
face.

As a separate part of the administration tools, we have also created
a “replayer” system which is able to parse the generated handhistory
files and play back the game step by step, allowing for a view similar
to that seen in the administration interface itself, but after the fact
rather than in real time. This allows the administrators to inspect the
actions that occur within a game, either to look for irregularities in
play or perhaps to analyse an agent’s behaviour under certain circum-
stances more closely. This tool operates offline based entirely from
the file generated, with no requirement of access to a SPREE server.

2.4 Poker Agent Framework

The SPREE Agent Framework is derived from the codebase of the
client component, with the interactive components removed. Like the
client, the Agent Framework is built to maintain an internalmodel
of the current Poker game in progress, which is kept current by the
receipt of update messages from the server.

When a decision is required of an agent, themakeMove rou-
tine of the framework is triggered and is passed the possibleop-
tions that the agent can choose between. This allows the agent de-
veloper to insert whatever algorithm they choose into theirimple-
mentation and send their choice back to the server through the
PokerTableController library provided. This provides a com-
plete solution for researchers to create Poker playing agents and de-
ploy them by removing any necessity for development on compo-
nents not directly related to the AI research.

3 POSSIBLE APPLICATIONS

3.1 Data Gathering

As the SPREE system allows researchers to gather complete infor-
mation about games of Poker that have been played, one of the pri-
mary uses of the system is to expand the amount of data available
for machine learning to take advantage of, and to do so using these
complete hand histories rather than the partial information variants.
In order to achieve this, human players need to play Poker within
the SPREE environment. Despite the information being complete, a
large amount of data will still need to be collected to be of use to the
kind of AI techniques that could benefit from it.

The exact method by which this data will be gathered will vary
from project to project, however it is important to note whengenerat-
ing such data by playing games involving humans that the perceived
value of the virtual money being wagered must be taken into consid-
eration. It is a common phenomenon that when wagering something
that has no intrinsic worth to the player (referred to as “play money”),
they will typically behave in a quite different manner to players who
are wagering something of minor value, such a “low stakes” game,
who play as different again from players wagering somethingthey
consider to be of significant value, such as in a “high stakes game”.
Because of this, it may be necessary to somehow offer incentives dur-
ing the data gathering such that the players involved take itseriously.
In any event, when using the SPREE system for data gathering,this
issue must be considered as it could potentially have a significant
impact on the worth of the data. In the case of machine learning,
not accounting for this variance in play style could lead to an agent
learning specifically how to beat play money humans, which would
be of limited use in a wider context. It is also worth observing that the
SPREE environment would be an ideal tool in order to analyse and
attempt to quantify exactly what effect these differing stakes have on
players’ behaviour.

3.2 Agent Evaluation

Because the SPREE system allows for specific scenarios to be estab-
lished, it is a very good test bed for comparing two differentPoker
playing agents. Typically, the strength of a Poker player israted as
“Big Bets per 100 Hands”, which analyses the player’s winnings
(in terms of the minimum stake at the table) over time. A standard
method of comparison is to use this (or some other “bottom line”
metric) on the assumption that over time, two agents will have en-
countered a similar range of circumstances. As was noted earlier,



there are7.41x1039 possible ways of dealing out the cards required
for a game of Poker. While a number of these configurations arefunc-
tionally equivalent (as suits are not ranked in Poker) this still makes
for an incredibly large number of circumstances to test agents in, in
order for them to have seen a comparable set of aggregate circum-
stances, and therefore making it difficult to minimise the impact of
these differing circumstances on the agents’ performance.

SPREE allows researchers to take a different tack by allowing for
the dealt cards to be established in advance. This allows specific sce-
narios to be engineered, meaning that the agents can be tested un-
der specific conditions, but it also means that the cards can be dealt
identically for two different agents, so they can each face the same
opponents, holding the same cards allowing for a true comparison
to be made between the agents, rather than a statistical analysis that
attempts to factor out the inherent variance in the results.This fea-
ture may also be of use when developing agents, as it allows for a
specific scenario in which the agent performs poorly to be identified,
and then those cases to be specifically retested as the agent is refined,
allowing for a much more targeted analysis of whether these changes
are improving the performance of the agent.

4 DISCUSSION AND SUMMARY

At this time we feel that SPREE is quite a mature project, however
it is far from complete and there are a range of features that would
be of benefit if they were incorporated. Currently, all gamesthat are
handled are of a “cash” variety, in which players sit, play for vir-
tual money and may at any time leave the game, retaining the virtual
money they had remaining at that point in the game. This is different
from the “tournament” style of play, in which a player wagerstheir
money to enter the tournament, receives a number of chips as part
of this “buy in” process and then plays until eliminated withno op-
portunity to leave without forfeiting the game and their wager. It is
currently possible to play pseudo-tournaments by placing meta-rules
on the players external to the environment itself to achievethe same
effect, but this would be significantly more elegant if it waspossi-
ble within SPREE, and would open up further avenues for analysis
since a player’s betting style in this format differs significantly to
cash games due to the emphasis being more on eliminating players
from the tournament rather than ensuring a steady return on wagers.

One of the most obvious features that is currently not implemented
within SPREE is a chat system to allow players to communicatewith
each other. Although this is very common on commercial pokersys-
tems, it has deliberately been omitted from the early work developing
SPREE as we felt that the presence of a chat system was likely to re-
sult in an environment in which detecting agents was trivialas these
would be the players not communicating. We wanted the emphasis in
designing agents to remain firmly on the algorithmic side, rather than
allow the introduction of a Turing Test via a chat system. This may
be introduced at a later date, but would probably be optionalon a ta-
ble by table basis to allow agent-based experiments to be conducted,
for example one in which humans attempt to detect bots based purely
on play style.

Poker research is a very active topic, with many questions out-
standing in a variety of areas from developing stronger AI routines
to creating agents that can pass themselves off as human players. We
have developed SPREE as a tool for our own use to aid us in our
work towards answering these questions, and in this paper weintro-
duce it to the wider community in the hopes that will be of similar
use to others.
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Abstract. In this paper we discuss the early stage design of 
MIXER, a technology enhance educational application focused 
at supporting children in learning about cultural conflict, 
achieved through the use of a game with an effective embodied 
AI agent.  MIXER is being developed re-using existing 
technology applied to a different context and purpose with the 
aim of creating an educational and enjoyable experience for 9-11 
year olds. This paper outlines MIXER’s underpinning 
technology and theory. It presents early stage design and 
development, highlighting current research directions. 

1 INTRODUCTION 
Creating interesting and enjoyable role-play games for a serious 
purpose provides considerable challenges to developers. Role 
play games are notoriously expensive, with most successful 
games the result of large teams and considerable development 
time. Role play games typically include a cast of characters who 
need to act in a credible and believable way that engage the user 
and provide the essential information permitting the user to 
succeed in the game. Whilst games engines such as UNITY 
ensure that games mechanics, graphical display and essential 
functionality are relatively easy to incorporate, achieving 
complex and sophisticated cognitive and affective character 
behaviour typically requires significant development.  
This paper outlines research being conducted as part of the 
European funded FP7 project, eCUTE (education in Cultural 
Understanding, Technology Enhanced). The aim of the project is 
to research and develop computer based innovative techniques to 
make users aware of cultural and group differences around them. 
Conventional role-play and game-based simulations such as 
Barnga! [29] are widely used with the aim of creating safe 
environments in which participants can be exposed to emotional 
states such as culture shock and those arising from intercultural 
conflict and then reflect on their own experience.  In eCUTE, we 
aim to provide such game-based learning, with applications 
under development that are aimed at using role-play based 
intelligent software to engage user with affective synthetic 
characters which simulates cultural differences based on theories 
in Cultural and Social Psychology. 1  
eCUTE focuses on culturally specific expressive emotional 
behaviour using autonomous synthetic characters that display 
behaviour representing a synthetic culture. The project draws 
upon theories in social psychology, emotion and in inter-cultural 
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communication to create these characters. The characters will be 
virtual actors that embody models of culturally-specific 
behaviour; through various interactions with the game, children 
and young adults, differences in cultures experienced and 
explored.. Affective and narrative engagement of learners in 
these scenarios is seen as an important motivating mechanism 
for meeting the pedagogical goals of the system. 
 
Within eCUTE, we are developing an application for 9-11 year 
olds focused at culture-related conflict. MIXER (ModeratIng 
Cross-Cultural Empathic Relationships) focuses on enabling the 
children to identify, explore and understand differences between 
cultures. It was developed with two main criteria: 

• To ensure that users not only learn but that they also 
have enjoyment and fun as part of their interactive 
experience. To achieve this we needed to provide a 
scenario where we could highlight cultural conflict, 
but where the interaction engaged the children in a 
context that would be both interesting and fun for 
them. 

• To re-use FearNot! [6] to provide the existing 
architecture, technology framework, look & feel, 
characters and environment, thus massively reducing 
required development. 

 
This paper presents our early stage design and development 
activities aiming to meet this criteria. Section 2 provides an 
overview of the context, focusing on cultural conflict. Section 3 
provides an overview of our technological context provided by 
FearNot! Section 4.1 outlines our use of Hide and Seek as a 
cultural conflict scenario, with section 4.3 detailing how we 
intend to incorporate cultural dimensions into the synthetic 
cultures. Section 5 discusses our approach and outlines current 
and future research directions. Finally, in section 6 we present 
brief conclusions. 

2 MIXER’s Purpose: Experiential Learning of 
Cultural Conflict 
Europe has become the centre of global diversity, populated by a 
huge diversity of economic, political and social immigrants and 
migrants and annually visited by millions of tourists. In 21st 
century Europe, many cultural, ethnic and religious groups must 
live and work together. However, such integration is not always 
a smooth process and cultural differences can lead to social 
stresses and sometimes outright conflict.  Providing an 
educational experience where such issues are explored is 
difficult in the traditional classroom environment. However, AI 
and games offer considerable potential for experiential and 
enjoyable experiences that could impact upon children’s cultural 
understanding. 



Exploring cultural conflict essentially relates to perceptions of 
group membership. Such membership bolsters self-importance 
and boosts self-esteem of individual members [3]. Thus, children 
(and adults) connect themselves to others through the evaluative 
implications of a set of common physical [27] or moral traits [4]. 
Children however, consistently rationalize differences and 
categorize individuals primarily based on physical characteristics 
(i.e.: skin or hair colour, body size, language etc.) [1, 19]  above 
and beyond gender [27] and moral traits [21, 8]. Consequently, 
they use this attributional information to decide on potential 
friendship (see [27]). Whereas in-groupers are favoured and 
perceived "as different as snowflakes" [8] p.34, – similar but 
positively distinctive, out-groupers are often denigrated and 
stereotyped as being all much the same. While there is some 
debate as to the age at which in-group preference and out-group 
prejudice begin to decline as children develop better cognitive 
abilities (where they start examining the individual 
characteristics of members of out-group rather than stereotyping 
the members as a whole), in-group bias is prevalent throughout 
the primary school years - 7-12 years old [7, 31] and can 
increase during these years [24].  
A child's experience is dominated by his or her affective-
perceptual processes [1] that are associated to fear of the 
unknown and familiarity attachment. Thus to avoid uncertainties, 
a child most likely attaches him or herself to a similar group and 
usually considers out-group members as a threat [27, 23,], or to 
some extent, inferior [21, 20]. Although children’s preference for 
similar group is determined primarily by physical attributes, 
several findings [21, 3, 4, 20] point that discrimination towards 
members of out-group is also based on status, consistent with the 
Social Identity Theory [28] – a widely accepted theory 
accounting to social prejudice in adults.  Nesdale (2004) [21] 
asserts that children as young as 3 years start to develop 
awareness about which groups carry better image, and prefer 
memberships with groups that are regarded highly or considered 
superior.  
The moral circle theory [4] makes a similar assertion. The theory 
posits that people identify themselves with a particular group 
that exhibits a set of moral traits of equal ‘standard’ (moral 
identity). Anyone who is outside this circle is viewed as inferior. 
In children (and adults), the tendency towards prejudice will 
increase as tension and conflict increases between ingroup-
outgroup and will reach its peak when the “inferior” group 
threatens the social standing of the “superior” one [4, 21]. 
Insufficient information about those outside the group causes 
insecurity in children and threatens their social identity (group 
status). This evokes the need to restore a good self-image in 
order to maintain self-esteem [4], and an effective way to 
achieve this is by negatively evaluating the out-group members 
[25, 26].  
Often, prejudice in children is seen as a mirror that reflects the 
society’s attitudes and values [20, 21], regularly transmitted by 
the closest people who daily interact with them. However, there 
is a wealth of evidence that shows that correlations between 
children’s prejudice and prevailing societal norms have been 
between low and nonexistence (see [2]). This shows that 
children do not just sponge up dominant ethnic attitudes by the 
community but also seek to understand and process their 
experiences through active participation in their interpersonal 
worlds, but this depends on whether they have acquired 

sufficient information to be able to engage in proper moral 
reasoning.  
One way to do this is through extended contact [16, 32] – where 
an in-group member becomes an active participant in the 
activities of an out-group member, gets to understand the latter’s 
values and rituals and consequently disconfirms the negative 
beliefs about the whole out-group. In other words, the out-group 
member is seen as a model whose positive exemplar is extended 
to the group as a whole.  Studies by Wright and colleagues (see 
[32]) confirmed that an in-group member that has friendship 
with an out-group member leads to more tolerant and positive 
intergroup attitudes. A similar study was replicated by Liebkind 
and McAlister [16] in promoting tolerance between native and 
non-native Finnish children showed favourable attitude changes 
when a particular child from both groups are brought into 
contact with each other.  
Hence, it is not necessary to completely dispel existing group 
boundaries or forcing them to reach a mutual compromise in 
order to engage children in intergroup play and friendship, but 
rather to keep it less salient while concurrently establishing ways 
to facilitate some sort of contact [13]. This is where an 
application such as MIXER plays a role - as a plausible platform 
in enhancing children’s intergroup attitudes in an anxiety-free 
environment, by engaging children in new cultural experiences 
through active participation with out-group synthetic agent’s 
representative(s) and facilitating the generalisation of the 
positive effects towards out-group peers as a whole. Among 
major advantages of such application include training children to 
combat negative preconceptions by looking at things through the 
perspective of out-group members (i.e. why certain things are 
done in certain ways) and making them experience the feelings 
of such children - which will subsequently enhance empathy 
skills. Additionally, social training of this sort may provide a 
better solution to the problem discussed as observing interactions 
among synthetic agents (or directly interacting with those 
agents) does not evoke anxiety in the user. 

3 MIXER technology: ReUsing FearNot!  
In eCUTE the pragmatic decision to base MIXER on FearNot! 
(Fun with Empathic Agents Reaching Novel Outcomes in 
Teaching) will significantly reduce development time. Re-using 
this architecture enables development effort to focus on the 
extension of FearNot! to incorporate cultural factors.  
FearNot! is a school-based Virtual Learning Environment (VLE) 
consisting of synthetic characters representing the various actors 
in a scenario related to bullying issues. FearNot! uses emergent 
narrative to create episodes with those characters. The goal of 
FearNot! is to enable children to explore bullying issues, and 
coping strategies, by interacting with characters to which they 
become affectively engaged. User empathy is triggered by the 
different properties of the characters such as their appearance, 
behaviours and emotions.  

3.1 What does FearNot! look like? 
FearNot! engages children’s interest by letting the children role-
play as an advisor (invisible friend) to the bullying victim. The 
episodes introduce different characters and then show some 
bullying incidences and then the user interacts with the victim 



character and advises the character what he/she should do to 
cope with the bullying situation. And then the story then emerges 
from there. The following screenshots show the interface for 
FearNot! application. 
 

 
Figure 1: Bullying Episode 
 

 
Figure 2: User Interaction with Victim. 

3.2 FearNot! Architecture 
Autonomous agents running with FATiMA architecture work as 
the character minds to generate affective behaviour for the 
characters as the story goes on [6]. Although FearNot! is driven 
by emergent narrative it is very important to keep the learning 
goals in context and the story to run towards these goals. A story 

facilitator [5] in the architecture  keeps check on the emergence 
and guides the story and interaction. The following diagram 
shows the FearNot! architecture: 
 

 
Figure 3 – FearNot! Architecture  
 
The layered architecture that FearNot! uses consists of three 
layers: The application layer, the world model and the Graphics 
layer. Application layer combines the user-interface, world 
model with the FATiMA architecture which is the architecture 
for the Affective characters in FAtiMA [11] where the character 
minds are running and also initiates the story facilitator. [5]. The 
world model consists of the ION framework which includes 
symbolic representations of entities in the application, The ION 
framework [30] is used create abstraction between to 
communicate between two entities. And finally the last layer 
consists of graphics engine and the graphical objects.  

3.3 FAtiMA (FearNot Affective Mind 
Architecture) 
FAtiMA is used to build the affective agents in FearNot!. 
FAtiMA presents two main layers for the appraisal and coping 
processes. Emotional Reactions and reactive behaviours are 
formulated in the reactive layer, while the goal-oriented 
behaviour is the outcome of the deliberative layer. It’s also 
composed by two main memory components: the Knowledge 
Base that stores semantic knowledge such as properties about the 
world and relations. The autobiographic memory stores episodic 
information concerning previous events and the personal 
experience. Figure 4 shows the major components of FAtiMA 
architecture. 



 
Figure 4: FAtiMA’s architecture. 

 
 
After perception of an event in the world appraisal is done at the 
reactive layer which results in possible generation of a set of 
emotions (emotional concepts in FAtiMA are based on the OCC 
model [22]) memories are updated simultaneously memories are 
updated with the change in the world values and the events are 
stored in to the autobiographic memory of the agent.  The 
perceived event is then used to initiate the goal activation 
process. After a goal is selected the reactive and deliberative 
layers use the information stored in the memory which also 
includes emotional information to decide what action to take 
next. Then the effectors are used to send the selected action to 
the world.   

3.4 Maximizing the Use of existing software 
We know from previous projects that the FearNot! approach is 
plausible and can be quite useful with children of the target age 
[12]. The development of MIXER aimed to develop scenarios 
and interactions that made the maximum use of the existing 
FearNot! software architecture and also identified ways it 
provides to enhance the ability of FearNot!  

4 MIXER’s DESIGN 
With MIXER, we had a number of significant constraints. 
Firstly, that whilst we were looking for a cultural conflict 
situation, however, that cultural conflict was not to be based on 
race, religion or politics rather it was to be based on a synthetic 
culture. We wanted our scenarios to be realistic, yet we wanted 
our cultures to be synthetic (mainly not being translatable to any 
one ethnic group) 
Secondly, as we were using FearNot! we had to follow an 
episodic structure where the role of the user would be that of an 
invisible friend or advisor. And finally, we really wanted our 
users to have a fun interaction, something that sometimes seems 
to be forgotten in the development of serious games. 

 

4.1 Why Hide & Seek? 
Our initial design ideas with MIXER focused on an episodic 
soap opera style format (much as FearNot! had been), where 
conflict between groups would be provided through a storyline  
about an in and out group. Trying to determine who those groups 
should be and why there should be cultural conflict provided us 
with somewhat earnest scenarios. It was readily apparent that 
such serious content would be of little interest to the intended 
users. The fact that we were meant to be providing games based 
learning did suggest that somehow there should be some element 
of fun in the application.  
Our user needed to be more than a commentator about a situation 
within which they had little buy-in and possibly wouldn’t really 
understand. Rather they had to be able to envision themselves in 
the situation of the characters. Returning to the basic fact that we 
were meant to be creating a game we decided to explore the 
games that children play and examined their potential to provide 
an opportunity to explore cultural conflict.  
There are a few games that are played in almost every culture by 
the majority of children. One of the most typical of such games 
is Hide and Seek, played everywhere by both genders. The rules 
for Hide and Seek are not dependant on race, nationality or 
politics, rather they are handed down and modified based on 
children’s experience and agreement in the game space. Children 
are often aware that others (even in the next street) may have 
different rules for Hide and Seek.  
Typically where rules are not the same, conflict will occur, with 
cultural expectations (e.g. the rules of hide and seek) not being 
adhered to. Whilst older children will generally define rules 
before starting to play, late primary children will generally only 
discover the difference in rules when conflict occurs, often with 
game abandonment and shouts of “its not fair” and “I don’t want 
to play any more.”  

 

 

 



4.2 The Scenario 

    
Figure 5: Mixer General Episodic Outline                       Figure 6: Intergrating Emergence in MIXER 

              

 
As figure 5 outlines, MIXER is composed of 5 episodes where 
the user decides who to interact with and has 3 interaction points 
where the user talks to their selected character.  In Episode 0 
(figure 7), the user is introduced to the context with simple back 
story being presented, that 2 schools are attending an activity 
week. One of these schools is the host school and the other are 
visitors. At this point (Choice 1) the user can decide which 
school they want to watch further. The aim of the first episode 
and interaction is for the user to start to make friends with 
character in a positive, non-conflict oriented way, so that user is 
focused towards being an everyday friend rather than shoulder to 
cry on.  
In the next episode (figure 8) the user sees a game of Hide and 
Seek where only 1 child is from the school not selected by the 
user. The rules of the Hide and Seek will not match and the user 
will watch conflict as the children fail to agree how to play the 
game, followed by its abandonment. Again at the end of this 
scene the user can select who they talk to and then discusses 
what has happened. The user will be asked to suggest what the 
agent can do to help deal with the conflict that involves 
cognitive, emotion and behavioural elements (figure 9). This part 
is zoomed out in figure 6, where the user’s suggestion or advice 
combined with the agent’s decision will influence the emergence 
of the events. 
In Episode 3, both schools play together, it may be that more 
conflict ensues or perhaps the agent that the child has talked to 
will ensure that rules are clear early on to avoid 
misunderstanding. The agent could explore different suggestions 
at different times as trial and error in order to see which one 
works best, until he is finally happy (figure 6). As the 
architecture will permit MIXER to exhibit emergent behaviour 
the focus of this episode is not predictable. In the final episode a 
positive message will be given to the child by their selected 
character, either that they will continue to try to improve the 
situation or that the situation is now resolved. 
 
 

 
 

 
Figure 7: Episode 0 
 

  
Figure 8: Possible hiding places 



 
 Figure 9: Discussion point with user 

4.3 Synthetic Cultures: Dimensions of Hide and 
Seek 
Synthetic cultures are simplified notion of real-world cultures, 
inspired by human cultural dimensions, but reflect the 
behavioural tendencies related to a specific extreme of a 
particular dimension [18]. For instance, an event may reflect the 
extreme side the individual/collectivistic dimension, instead of 
introducing elements of all the dimensions, as in real cultures. 
Our approach to synthetic culture is based on that of Hofstede 
[14, 15], who provides a 5-dimensional model. Using this as a 
framework has enabled us to highlight the extremes 3 of the 5 
dimensions within the context of Hide & Seek. Table 1 identifies 
these dimensions and figure 10 an initial indication of how they 
could be represented in MIXER.  
 
Dimension One Cultural 

Extreme 
Other Cultural 
Extreme 

Identity Indivualist Collectivist 
Hierarchy High power 

distance 
Low power 
distance 

Gender Masculine Feminine 
Truth Uncertainty 

Avoidance 
Uncertainty 
tolerant 

Virtue Long term 
orientations 
(Shotor) 

Short term 
orientation 
(Lotor) 

Table 1: taken from [15] 
 
Hide and Seek has a myriad of potential rules, for example, as 
figure 9 reveals, when the rule “has been caught” is applied, 
what happens next? In some games, being caught means that the 
game is finished and the hider returns to base. Or it can mean 
that the hider joins the seeker and assists them in finding hiders. 
In other instances, “has been caught” means that the user is 
“frozen” and can no longer move. In some variants, frozen 
remains the state until the game ends, whilst in other approaches, 
hiders can be unfrozen by other hiders when the seeker moves on 
to another location.  
These differences in rules can be mapped onto Hofstede’s 
dimensions. For example, a more feminine culture is one in 
which the user can be saved (e.g. unfrozen by a fellow hider), 
whilst in a masculine culture, the more extreme position would 
be that once caught the games ends for the player. In an 
uncertainty tolerant culture, seekers might risk being caught, if 
they were aware that they could be re-engaged in the game. 
Although these mappings are relatively simplistic, they do allow 
a game as well known and easy to understand as Hide and Seek 

to provide synthetic cultures that can represent levels of 
extremism on Hofstede’s dimensions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10: A rule mapped to cultural identities 

4.4 Possible changes to existing Architecture 
The prototype being worked on serves multiple purposes, 
initially it will serve as an experiment to implement and evaluate 
the new social framework with the existing architecture. This 
evaluation will act as a requirement analysis tool for possible 
changes required to the existing architecture. It is this 
implementation that will help us understand whether we need to 
change any particular components or concepts within the 
FAtiMA and ION framework. 
Although, possible changes to the architecture will be clearer 
after the prototype has been testing, there are certain concepts we 
envisage in future implementations. One concept is ‘Theory of 
Mind’, since these scenarios may require a character to influence 
the goals and actions of others. ‘Theory of the Mind’ would 
allow the agent to perceive the possible responses or reactions of 
other agents. 
 
Another possible change would enable certain characters in the 
environment to form a group dependent upon certain parameters, 
which serve to maintain relationships and hierarchy inside the 
group providing greater uniformity.  
 
Other adaptations we are currently working are the replacement 
of the graphics environment OGRE with Unity 3D, considerably 
reducing the authoring effort by using Unity’s easier interface 
and asset management. We also aim to make the 
implementations platform independent through the use of Unity.  
This will allow us to implement the game through a web 
browsers or, if required, on mobile phones. The intention here is 
a reduction in the Authoring time. 
 
This approach appears to be viable and works, but as with any 
other innovative technology it requires iterative approach with 
this prototype being used to point the required modifications 
which will improve not only the working of FearNot! 
architecture but also the scope of social concepts that will be 
applied with in it.  

Identity Gender Truth 

Masc – 
That’s it 
(Failing is a 
disaster) 
 
Fem – Can 
be saved 
(Solidarity) 

Inv – 
That’s it 
(loners) 
 
Coll – Can 
be saved 
(Going to 
length for 
friend) 

Shotor  – 
That’s it 
(Quick 
Results) 
 
Lotor – 
Can be 
saved 
(Never give 
up) 

Once 
Caught 



4.5 Next Steps: Evaluating the Early Stage Mixer 
Currently, we are engaged in two separate activities. Firstly, we 
are involved in user testing ensuring that the scenario is 
appropriate, understandable and enjoyable. This very early stage 
user involvement will use a low tech solution, where children 
and teachers are asked to comment on a version of MIXER 
provided through storyboarding software (on the screen, but 
largely passive).  
Secondly, we are authoring the identified episodes and 
interaction points in a mid-tech prototype of MIXER. This mid-
tech prototype will use aspects of the FearNot! technology and 
will have the FearNot! look and feel, with characters, sets and 
animations developed to provide the appropriate backdrop to the 
interaction. Although MIXER will use emergent narrative, we 
will take a scripted approach with this mid-tech prototype as this 
enables us to quickly evaluate it with users. 
The user-centric approach taken in eCUTE requires that these 
scenarios and ideas are evaluated with the intended user group.  
This evaluation not only needs to explore children’s reactions to 
MIXER itself, but additionally needs to identify if children can 
recognize cultural dimensions. The approach we will take to the 
early stage design evaluation of MIXER will be based on the use 
of certain techniques used as a line of enquiry that match the 
recommendations for pedagogy and practice of UK government 
in the area of ‘Engagement Activities’ [9]. 
One of the broad principles of ‘Engagement Activities’ is based 
upon are ‘Directed activities related to text’ (DARTs) developed 
by Lunzer and Gardner in the 1970s and 1980s [17].  In this text 
not only relates to the written word, but also diagrammatic 
representations or pictures. 
These engagement actives, such as the ‘Odd one out’ develops 
thinking skills as they describe reasoning for the difference along 
with similarity; but are also fun as they allow the child to think 
allowed and exchange ideas without the fear of being wrong [9, 
10]. Activities that have been developed, based upon the 
principle of ‘Engagement Activities’ have been developed by 
teaching professionals and educational consultants, and are 
starting to become a common part of a teachers repertoire, with 
it being possible to map them to research tools found in 
Interaction Design or Evaluation with children. 
With MIXER, we will use a range of engagement techniques, 
including card sorting, the use of a ‘Thinking Box’ (where 
children enter up to 9 words related to a specific question), 
discussion groups and “living questionnaires” where children 
take many paces forward or back depending upon their view, or 
a continuum in which pupils negotiate their position along a line 
of pupil or place them self at a given point in a line. Making the 
evaluation add value rather than a burden on stakeholders and 
user, which is a key aim of eCUTE. 

5 DISCUSSION  
This paper has outlined the early stage development of MIXER, 
with MIXER currently just about to be evaluated with the 
intended user group. Our aims with this evaluation are two-fold, 
firstly to ensure that the user experience is fun, but still enhances 
learning about cultures. Secondly, to identify essential 
extensions to the underlying architecture and the digital assets 
(e.g. sets, character animations) to allow us to appropriately 

display the dimensions and to ensure characters behave in an 
expected manner.  
Early and informal discussions with children and teachers 
suggest that Hide and Seek is a good scenario choice: inclusive, 
popular and easy to understand. Currently, we are focusing on 
how we can incorporate the cultural dimensions into Hide and 
Seek in such a way as to make them visible but not intrusive or 
inappropriate. We are also focusing on how we can evaluate the 
users’ awareness of these dimensions in a manner appropriate for 
9-11 year olds. As detailed we intend to use engagement 
techniques and we are engaged in crafting this approach basing 
this on best practice information disseminated by the UK 
Department of Education and verifying with teacher input.   
MIXER has been both enhanced and constrained by the project 
decision to re-use FearNot! to provide the existing architecture, 
technology framework, look & feel, characters and environment. 
Reusing the existing components of the FearNot! architecture 
will save huge amount of effort and time that goes into 
developing such complex AI systems. Autonomous agents are 
the most important part of this scenario and FAtiMA architecture 
provides a very powerful and workable solution for designing 
authored or autonomous agents 
The existing FearNot! Architecture has the ability of combining 
pedagogically motivated emergent narrative produced using both 
autonomous agents and user input. The designed scenario has the 
potential to enhance the emergent narrative output by giving the 
user the option of choosing agents or group to be friends with 
and advise.  
The overall architecture in FearNot! is connected and 
communicates with different components using ION integration 
framework which brings together the different ends of the 
software: the graphical appearance of the environment and 
agents, and the user input together to be used both by the 
graphics engine and the FAtiMA based agents. Although sets, 
props and animations have to be created and incorporated this is 
a relatively simple task with the content separated from the 
architecture thus readily permitting the incorporation of new 
content. 
We have also changed the user interaction for MIXER. In 
FearNot! interaction was limited to free text entered as the user 
interacting as the invisible friend with a child character (this 
child was the victim in a bullying scenario). In MIXER we are 
aiming to give the user more choice. Thus children will be able 
to decide which group do they want to interact with, whose side 
of the story do they want to hear, etc. These choices not only 
extend the interaction and perspective of the user, but are also 
useful information for the development team, particularly the 
psychologists and cultural theorists. In this scenario since the 
interaction will be choice based, it makes it easier for both the 
user and the system to operate and communicate. It helps us in 
avoiding the complex lexical analysers and glossary of inputs 
words and then constructing meaningful events for the agents to 
understand and also, it’s very time consuming and difficult for 
most children in this age group to type text in.  



6 CONCLUSIONS  
This paper has outlined the early stage development of MIXER, 
a game-based learning application that will provide users with 
the opportunity to engage with characters in synthetic cultures. 
Hide and Seek provides an ideal game with which to provide 
synthetic cultures, providing a context where cultural difference 
is not based on race, religion or politics, but rather on the 
application of the rules of a well known game. MIXER has been 
developed using existing technology thus rapidly speeding up 
the development process. A low tech prototype of MIXER is just 
about to be evaluated with 9-11 year olds. A mid tech prototype 
is currently being authored and will be tested in early March 
2011.  
 
This work was partially supported by European Community 
(EC) and is currently funded by the ECUTE project (ICT-5-4.2 
257666). The authors are solely responsible for the content of 
this publication. It does not represent the opinion of the EC, and 
the EC is not responsible for any use that might be made of data 
appearing therein. 
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Recognition of Emotional Brain Activities in Virtual 
Reality Environment: A Position Paper

F. Abbattista1, G. Attolico2, V. Carofiglio1, F. De Felice1 and G. Dimauro1

Abstract.  Emotion recognition is one of the key steps towards 
emotional intelligence in Human Computer interaction (HCI). 
Using a brain-computer interface (BCI) to detect and identify 
emotions could improve the quality and effectiveness of HCI. 
Researchers have shown that it is possible to extract emotional 
cues from electroencephalography (EEG) measurements that 
become a way to investigate the emotional activity of a subject 
beyond his conscious and controllable behaviours. In this view, 
we aim at designing, building and testing a flexible system for 
the recognition of emotions of users on the base of their brain 
activity. This main goal involves several topics of investigation: 
(1) How to design such a system? Which architecture and 
techniques are more suitable? Which is the most proper kind of 
interaction? (2) Which is the best way (instrument, set-up) to 
acquire EEG data with relevant information for evaluating the 
emotional state of the user? (3) What processing techniques and 
classification methodologies are best suited to recognize emotion 
from EEG data? (4) How self-induced emotions could be used in 
a BCI paradigm (real-time data processing)? 
12 
1 INTRODUCTION 
Researchers have recognised that humans show emotions when 
interacting with a computer [1]. This has been largely exploited 
for therapeutic purposes (a good example among many is [2]), in 
educational situations (especially combined with “serious 
games” [3]) or for motivational purposes (see for instance the 
large literature in the recent research area of “persuasive 
computing” [4]). Typically these works concentrate on automatic 
recognition of emotions from speech [5,6,7,8], facial expressions 
[9,10,11] or their combination. Recently, the development of 
haptic technology [12] has enabled the investigation about the 
relationship between emotions and virtual tactile stimuli [13, 14, 
15]. Another method for measuring human emotion is the 
acquisition and processing of physiological signals [16]. Several 
researchers [17, 18, 19] have shown that it is possible to extract 
emotional cues from electroencephalography (EEG) 
measurements, which become a way to investigate the emotional 
activity of a subject beyond his conscious and controllable 
behaviours. The neurons of the brain produce a constantly 
present rhythmic signal that can be divided into several bands 
(namely alfa, beta, theta, delta), based on frequency. One of the 
most apparent results states that different emotional states 
generate different peak frequencies in the alpha band [19]. 
Another important distinction, in the psychology literature, is 
made between two dimensions of emotion: the valence (ranging 
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from negative to positive) and the arousal (ranging from calm to 
excited) [20]. Cognitive researchers have investigated how 
changes along these two dimensions modulate the EEG signals 
and have determined that the position of an emotion in this two 
dimensional plane can be derived from EEG data [8, 21, 22]. 
The advantage of recognising emotion using EEG is that brain 
activity provides direct information about emotion that does not 
depend on user controllable behaviour such as speaking and 
facial expressions. However, the use of EEG signals to this aim 
still needs a lot of improvement. Earlier research has shown that 
human computer interfaces, which exploit this kind of signals do 
not perform very well and are able to recognize emotion 
correctly in about 60-70% of the examined cases [8]. Further 
research is needed: The theory and the methodologies must be 
validated using a wide range of quite different applications. 
 
Using EEG techniques to recognize user’s emotions by using a 
commercial low-cost device could open many other possibilities. 
In the medical field, the automatic recognition of emotions from 
clues other than words or facial expressions could be used to 
objectively assess the emotional state of people (by therapists 
and/or psychologists, by physician to evaluate the results of 
clinical tests whose results are affected by the emotional state of 
the patient, by the people as a bio-feedback to learn the control 
of their internal state, etc.). Another application is to help people 
that suffer from severe muscle diseases to communicate their 
emotions using proper brain-computer interfaces [20]. In the 
field of human-machine interaction this technique could be 
applied in many different situations such as software adaptation, 
educational games or tutoring systems. Moreover, a brain 
computer interface could add emotional information to computer 
mediated human-human conversation (e.g. instant messaging, 
online games, chat rooms).  
 
In this paper we will focus on how Brain Computer Interface 
(BCI, [23]) could be used to detect and identify emotions in 
Virtual Reality Environments (VRE). In doing this, we will 
propose a kind of VRE only as medium in which the BCI-based 
emotion’s recognition system will be tested. Section 2 includes 
related work on emotions and on the correlation between them 
and brain activity, in BCI applications. Section 3 provides an 
overview of the BCI-based system we plan to develop and a 
brief description of the Virtual Reality Environment domain we 
choose to link to it. Section 4 gives a step-by-step description of 
the development phases: Data acquisition, data processing and 
classification and test on real-time applications. An hypothesis 
for performing a preliminary data acquisition is in Section 5.  
Section 6 provides some basic reflections about how to exploit 
recognized EEG pattern of emotions in a BCI-based VRE. Some 
final considerations are in section 7.  



2 RELATED WORKS 
For recognizing emotion from brain activity, we need 
information about how the brain handles emotion, and 
information on how to measure the brain activity. Several 
methods of measuring brain activity exist. Among them we plan 
to exploit EEG signals due to the fact this kind of signals can be 
measured at any moment and by cheap devices.  
 
Moreover, emotion is a phenomenon that is difficult to grasp. 
Psychologists worked at decoding emotions for decades, by 
focusing on two main questions: (i) How can emotions be 
classified?; (ii) Which is their functioning?, i.e. how are they 
triggered? How do they affect behaviour? Which is the role 
played by cognition? Two points of view prevailed: The first one 
assumes that a limited set of basic emotions exists, while the 
second one considers emotions as a continuous function of one 
or more dimensions: see, e.g., the ”circumplex model” of affect 
[20]. Russell’s circumplex model has two “axes” that might be 
labeled as displeasure/pleasure (horizontal axis) and low/high 
arousal (vertical axis). For example, “relaxed” is on the 
`pleasure' side of the first axis, but has a low value on the second 
(arousal) axis whereas ``bored'' also has low arousal but is 
located on the displeasure portion of the first axis (figure 1). Due 
to its simplicity (it is easy to express an emotion in terms of 
arousal and valence, whereas it is much more difficult to 
decompose an emotion into basic emotions) and universality 
(there is little controversy about the first two dimensions of the 
model.), this model is used in most studies. 
A lot of work has be done on the correlation between emotions 
and brain activity, in Brain-Computer Interface applications 
(BCI, [23]): One of the earliest attempts to prove that EEG 
signals can be used for emotion detection is proposed by Chanel 
et al [21]. 
 

 
 

Figure 1. Circumplex model’s of emotion – Russell              
 
The authors tried to recognize the arousal dimension of emotion 
from both EEG and peripheral signals. The accuracy of 
combining both types of signals resulted in a boost of accuracy 
that reached up to 72%. They employed a 64-channel EEG 
device, as a consequence the huge amount of data to be 
processed makes the system heavy in real-time applications. 
Kostyunina et al [24] used 10 different electrodes in order to 
differentiate between four emotions that are joy, anger, fear and 
sorrow. They reached the conclusion that joy and anger emotions 
result in an increase in the peak frequencies of the alpha band 
whereas the case of fear and sorrow emotions result in a decrease 

in the peak frequencies of the alpha band. M.Mikhail et al [25], 
propose an approach that analyzes highly contaminated EEG 
data. They also use a feature selection mechanism to extract 
features that are relevant to the emotion detection task based on 
neuroscience findings and reached an average accuracy of 51% 
for joy emotion, 53% for anger, 58% for fear and 61% for 
sadness. Murugappan et al [18] investigated the possibility of 
using visual and audio-visual stimulus for detecting the human 
emotion by measuring electroencephalogram (EEG). They 
designed visual and audiovisual stimulus based protocols to 
acquire the EEG signals using 63 bio-sensors that were placed 
all over the surface of the scalp. They analyzed the EEG signals 
for classifying five emotions (disgust, happy, surprise, sad and 
anger) and reached a conclusion that the audiovisual stimulus 
based emotion recognition gives better classification accuracy 
over visual stimulus. In [26] a method for single trial 
classification using both EEG and peripheal physiological 
signals is presented. Regarding the EEG, according to the 
authors the obtained classification rate was, on average, 55.7% 
for arousal and 58.8% for valence.   

 
The general approach for any system that rely on brain signals is 
a layered approach: There are three main stages that the signals 
have to pass through in order to reach a final decision which are 
signal pre-processing, feature extraction and classification. 
Signal pre-processing is the stage during which the signal is 
passed through a number of filters for artifact removal and for 
getting the signal ready for the next stages. A number of 
approaches for artifact removal exists (e.g. [27], [28]); after 
removing the artifacts, signals pass through the feature extraction 
stage. Feature extraction is the process of selecting features that 
are representative to the specific cognitive (or emotion) state and 
selective from other extracted features so that the system will not 
suffer from redundant features. This stage normally generates a 
large number of features. This requires extracting relevant and 
distinctive features for the classification task. There are several 
methods used for reducing the number of features [29]. One of 
the most commonly used techniques is principal component 
analysis (PCA) [30]. A classifier is a sort of a function that is 
able to learn the relationship between features and their classes: 
It can infer to which class it belongs. A good review of existing 
BCI classifier is in [31].  

3 EMOTIONAL STATES RECOGNITION IN 
VIRTUAL REALITY ENVIRONMENTS  
We plan to design, build and test a flexible system for the 
recognition of user’s emotions from the brain activity. This 
system will be verified inside different real-time applications. 
The system will be made from three main components: a Virtual 
Reality Environment (VRE), a BCI interface (to capture the 
user’s reaction during his/her interaction with the VRE) and a 
module for emotion recognition (ERC).  
 
In figure 2, the user interacts with a virtual reality environment. 
During the interaction, the EEG device records the brain activity 
of the user and collects EEG data that are supplied to the 
Emotion Recognition Component. The recognized user’s 
emotional state is fed to the VRE that use this information to 



adapt the interaction and/or to guide the user feelings toward 
certain emotions. 
   

 
Figure 2. Example of the integration of a BCI-based module for 

emotion recognition in a Real-Time Application        
 
To verify and validate our system we have chosen to implement 
the following scenario: 
 
After sixtyfive years the possibilities to listening live attestation 
of the Nazi's horrors from the voice of the survivors to the 
extermination camps are getting fewer as they getting older. 
Sooner the only way to preserve the remembrance of that 
terrible phase of the European (and Worldwide) history will 
entrusted on indirect documentation in the form of videos, 
images and texts reporting interviews to last witnesses. However 
next generations pupils could not totally comprehend how 
terrible the Shoah was if relating only to those media. A way to 
maintaining alive the dramatic meaning of that experience could 
be to reconstruct a 3D virtual environment of one of those 
camps, such as Auschwitz. Users enter the camp by the main 
entrance under the sadly notorious motto “Arbeit macht frei”, 
users can navigate among the prisoner's barracks, activating 
links to videos, photos documenting the Jewish and Gipsy's 
lifestyle in the 1940-1945 period, or by hearing songs that some 
prisoners composed during their permanence. A digital 
character representing a prisoner guides users through different 
parts of the camp, users could interact with him by asking, with 
vocal query, questions about his personal experiences. 
 
The BCI is aimed at capturing the players' reaction to the 
presented contents to allow the virtual prisoner to dynamically 
adapt the visit to the user, avoiding media too upsetting for the 
user’s sensibility. Examples of player’s reactions are emotions 
which can be induced with different levels of arousal, valence or 
dominance: Disgust for bloody scenes, anger for abuses or 
sadness for suffering of others, etc.  In our view, the main goal 
of the application will be to maintain alive the dramatic meaning 
of that experience without disturbing too much the more 
sensitive users. This means that the system should not avoid the 
player feels emotions such as disgust, anger or sadness, but it 
should let the player feels that emotions with an intensity below 
a given threshold. If the player feels a too intense emotion (either 
negative or positive) the system should catch his/her attention in 
order to divert him/her from the content that most likely 
triggered the too intense (according to the threshold) emotion.  

 
Moreover, the player's emotional state can change the 
multimodal rendering of virtual objects inside the virtual 
environment. In this way users could be guided along well-
defined emotional and informative paths.  

4 SYSTEM’S DESIGN AND 
IMPLEMENTATION  
The system design will benefit of earlier work on an emotion 
recognition system. During this phase, the architecture of the 
system and the techniques to solve the different problems related 
to its goal will be identified and justified. Since the ability to 
recognize emotions depends on how well the EEG features can 
be mapped onto the chosen emotion representation, two 
important topics will be investigated (1) the optimal emotion 
representation for the application at hand and (2) the way to 
build correspondences between EEG data and emotions. 
Different types of applications need different representations of 
the emotions of interest (basic emotions vs. dimensional model 
of emotions). 
 
The research will deal with three main tasks: data acquisition, 
data processing and classification and test on real-time 
applications. 
 

(a) Data acquisition: this task will investigate a proper 
way to acquire EEG data about the brain activity. The 
selected set-up must contain relevant information to 
evaluate the emotional state of the subject. We will use data 
from public database (e.g. IADS, IAPS, [32], [33]) as a 
reference for the development of algorithms and will 
integrate them with data acquired using a commercial 
device whose performance on the application at hand will 
be checked and experimentally assessed.  

 
(b) Data processing and classification: this task will deal 
with the data processing needed to improve the quality of 
the data and with the analysis required to extract relevant 
features and to correlate them to the emotions of interest. 
The data processing will be mainly oriented to the reduction 
of noise and of the artifacts while preserving the significant 
signal available in the data: beside filtering, techniques to 
detect, measure and remove the regular part of the data will 
be considered to emphasize the emotional variations. The 
feature selection will aim at reducing the dimensionality of 
the data and at make more explicit the information of 
interest for recognizing the emotional state of the users. In 
this part of the activity the use of standard databases will be 
fruitful providing well-defined and reliable examples. The 
features identified in this phase will therefore be correlated 
to the emotions of interest: Fourier coefficients or stroke 
analysis are examples of characteristics of the data that can 
make more explicit the information contents of the EEG 
measures. Supervised learning approaches will be applied 
to automatically extract the mapping between features and 
emotions. The expected result is a process that can associate 
the proper emotions to the EEG patterns exhibited by the 
users. A first validation of the approach using standard 
measures for learning systems will be done. 

 



(c) Test on real-time applications: this final task will use 
the methodologies and techniques identified in the previous 
task to develop a system to recognize the emotional state of 
the user in real-time. Such a system will be integrated inside 
an application based on the user interaction with a virtual 
environment. The emotional reactions of the user will be 
used to understand the impact of contents and to select the 
ones best suited to the specific sensitivity of each person. 
Even the kind of interaction with the contents will be 
guided by the feedback collected using the emotion 
recognition system. A new verification of the system will 
be done: beside a further check of the correct recognition of 
the user’s emotions, a qualitative evaluation of the 
importance of empathy for the effectiveness of the virtual 
experience will be done. Further experiments on changing 
some parameters (such as the set of emotions, the measures 
and features analyzed, the interval of time of observation) 
will be done to identify the best working set-up. 

5 PRELIMINARY DATA ACQUISITION 
The first phase of the research will concern data acquisition and 
will involve several experiments on different subjects, using a 
variety of experimental settings. In this preliminary phase, we 
will use the commercial EEG device Emotiv Systems headset 
(figure 3, http://www.emotiv.com/), which has been selected on 
the base of factors such as the placement of its electrodes as well 
as on matters more properly concerned with data (for example is 
the problem of format conversion of the data provided by a 
proprietary device). This headset is able to detect and classifying 
mental states. This device uses 16 electrodes (see figure 3) and 
covers the four main regions of the brain. The acquired signal is 
prepared through noise filtering and artifact removal (using for 
example techniques such as Independent Component Analysis ). 
The following step is feature extraction to select and identify 
which parts of the data can be used to reduce the dimensionality 
of the data and keep the relevant information. Techniques such 
as PCA [30], Partial Least Squares or the same Independent 
Component Analysis will be verified to deal with this problem. 
The last step will be the association between features and mental 
states, which include emotions such as instantaneous excitement, 
long-term excitement and boredom/engagement. These different 
mental states and emotions affect the signal power of one or 
more of the measured bio-signals. 
To increase classification accuracy, the Emotiv System allows 
each new user to train the system on his/her signals. This is done 
by a method of calibration of the signatures. The training of the 
system using the Emotiv headset will involve the selection of a 
set of emotions of interest over a significant group of subjects 
whose EEG activity will be measured while they are exposed to 
emotional stimulation for a few seconds. The pictures and 
sounds used to induce the desired emotion will be selected from 
two public databases: from the International Affective Picture 
System (IAPS) and the International Affective Digitized Sound 
system (IADS) (see [32], [33]). Because the images from IAPS 
or the sounds from IADS could induce emotions that are 
different from the expected ones, each user will be asked to rate 
his/her own emotional state with respect to a predefined standard 
system [34]. 
 
The acquisition set-up will be further checked by comparing data 

and consequent analysis and classification with measures 
provided by more accurate EEG equipments such as those used 
in the clinical practise. That phase will give more insight into the 
performance of the commercial device in terms of number and 
locations of electrodes as far as on the accuracy and reliability of 
the subsequent analysis.  
 

 
 

Figure 3. EEG device Emotiv Systems headset 

6 ANALYSIS OF REPRODUCIBILITY OF EEG 
PATTERNS 
In this step, we will focus on the effective use of self-induced 
emotions in a BCI paradigm (real-time data processing).  
In this context, by self-induced emotion we mean emotion 
induced in the user as an effect of the feedback from the virtual 
reality environment. To elicit a given emotion in the user, the 
VRE should be able to make a plan by selecting a behavior 
among several possibilities: The recognition of user’s emotions 
is intended to provide a feedback to the VRE system enabling a 
continuous and progressive adaptation of the planned stimuli to 
guide the emotional state toward the desired EEG patterns. 
In the VRE about the Shoah, the main goal of the application 
will be to maintain alive the dramatic meaning of that 
experience without disturbing too much the more sensitive users. 
To reach this goal the system must be able to acquire and 
recognize the player's reactions to the presented contents: On the 
base of the evaluation of his level of interest and on the presence 
of unpleasant emotions, the system will be able to change the 
displayed contents and their rendering to keep the emotional 
engagement at a significant but acceptable level. In this 
perspective, the detailed and correct interpretation of EEG data 
and their mapping into a sufficiently analytic representation of 
emotions provide the necessary tool to guide the user experience 
along well-defined and effective emotional and informative 
paths.  

7 CONCLUSIONS 
Working with the EEG signals is rather complicated due to their 
high subjectivity, therefore it is very difficult to draw a priori 
conclusions. Literature describes very different results in terms 
of performance, obviously depending also on the number of 
subjects involved in the experimental settings. In order to verify 
and validate our system we will implement extremely different 
application scenarios. In this way we aim at evaluate in a more 
reliable way the level of empathy that could be activated in the 
users of a wide range of applications. Specially designed 
questionnaires will enable us to attain a subjective evaluation of 



the method. Some simple questions (e.g [35]) about the emotions 
the player experienced while using the selected application will 
enable us to easily compare the reported player experience with 
the one supposed by the system during the interaction. Since an 
objective measure of the performance of the method is needed 
too, we aim at building a database of EEG data associated to 
metadata (such as Fourier coefficients that have been 
successfully applied to many applications of pattern 
classification) that can represent a reference for comparing 
different approaches to the recognition of emotions and for 
evaluating possible changes of basal EEG features. We are 
confident to develop a software system that will be able to 
correctly classify at least 95% of the patterns already in the 
database: that would be a significant enhancement with respect 
to the state of the art in the field and a serious base for its 
practical application in real life applications. 

REFERENCES  
[1] R.W. Picard. Affective Computing. MIT Press, Cambridge (1997). 
[2] K. Blocher and R.W. Picard. Affective Social Quest: Emotion 

Recognition Therapy for Autistic Children. In Socially Intelligent 
Agents -Creating Relationships with Computers and Robots, K. 
Dautenhahn, A. Bond, L. Canamero and B. Edmonds (Eds.), Kluwer 
Academic Publishers, The Netherlands (2002). 

[3] D. R. Michael and S. L. Chen. Serious Games: Games That Educate, 
Train, and Inform. Muska & Lipman/Premier-Trade. (2005). 

[4] B.J Fogg. Persuasive technology: Using computers to change what 
we think and do. Morgan Kaufmann. (2003). 

[5] V. Carofiglio, F. de Rosis and N. Novielli. Cognitive Emotion 
Modeling In Natural Language Communication. In Affective 
Information Processing. Jianhua Tao (Ed.). Springer. (2010). 

[6] M.W. Bhatti, Y. Wang, and L. Guan. A neural network approach for 
human emotion recognition in speech. In Proceedings of the 2004 
International Symposium on Circuits and Systems (ISCAS '04). 
Vancouver, CA (2004). 

[7] R. Cowie, E. Douglas-Cowie, N. Taspatsoulis, G. Votsis, S. Kollias, 
W. Fellenz, and J.G. Taylor. Emotion recognition in human-computer 
interaction. Signal Processing Magazine, IEEE, 18:32-80 (2001). 

[8] F. Dellaert, T. Polzin, and A. Waibel. Recognizing emotion in 
speech. In Proceedings of  International Conference on Spoken 
Language Processing ICSLP96, Philadelphia, USA. (1996). 

[9] B. Fasel and J. Luettin. Automatic facial expression analysis: A 
survey. Pattern recognition, 36:148-275, (2003). 

[10] M. Pantic and L.J.M. Rothkrantz. Automatic analysis of facial 
expressions: The state of the art. In IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 22:1424-1445, (2000). 

[11] I. Maglogiannis, D. Vouyioukas and C. Aggelopoulos. Face 
detection and recognition of natural human emotion using Markov 
random fields. Personal and Ubiquitous Computing archive, 13:95-
101, (2009). 

[12] K. Salisbury, F. Conti, and F. Barbagli. Haptic rendering: 
introductory concepts. In IEEE Computer Graphics and Applications, 
2:24-32, (2004). 

[13] V.V. Kryssanov, E.W. Cooper, H. Ogawa and I. Kurose. A 
Computational Model to Relay Emotions with Tactile Stimuli. In 3rd 
International Conference on Affective Computing and Intelligent 
Interaction and Workshops, Amsterdam, NL, (2009). 

[14] V.V. Kryssanov, S. Kumokawa, I. Goncharenko, and H. Ogawa. 
Perceiving the Social: A Multi-Agent System to Support Human 
Navigation in Foreign Communities. International Journal of 
Software Science and Computational Intelligence, 2:24-37,  (2010). 

[15] J.N. Bailenson, N. Yee, S. Brave, D. Merget, and D. Koslow. 
Virtual Interpersonal Touch: Expressing and Recognizing Emotions 
Through Haptic Devices. Human-Computer Interaction, 22:325-353, 
(2007). 

[16] K.H. Kim, S.W. Bang, and S.R. Kim. Emotion recognition system 
using short term monitoring of physiological signals. Medical and 
Biological Engineering and Computing, 42:419 427, (2004). 

[17] A. Choppin. EEG-based human interface for disabled individuals: 
Emotion expression with neural networks. Master's thesis, Tokyo 
Institute of Technology, Tokyo, Japan, (2000). 

[18] M. Murugappan, M. Rizon, R. Nagarajan, S. Yaacob, I. Zunaidi, 
and D. Hazry. EEG feature extraction for classifying emotions using 
FCM and FKM. In Proc. Of ACACO. China. (2007). 

[19] D.O. Bos. EEG-based Emotion Recognition: the influence of visual 
and auditory stimuli (online). 
http://hmi.ewi.utwente.nl/verslagen/capita-selecta/CS-OudeBos-
Danny.pdf 

[20] J.A. Russell. Core affect and the psychological construction of 
emotion. Psychological Review, 110:145-172, (2003). 

[21] G. Chanel, J. Kronegg, D. Grandjean, and T. Pun. Emotion 
assessment: Arousal evaluation using EEG's and peripheral 
physiological signals. Technical Report 05.02, Computer Vision 
Group, Computing Science Center, University of Geneva, Geneva, 
Switzerland, (2005). 

[22] W. Heller, J.B. Nitschke, and D.L. Lindsay. Neuropsychological 
correlates of arousal in self-reported emotion. Neuroscience letters, 
11:383-402, (1997). 

[23] J.R.Wolpaw. Brain-computer interfaces (BCIs) for communication 
and control: a mini-review. Suppl. Clin. Neurophysiol, 57:607-613, 
(2004)  

[24] M. Kostyunina and M. Kulikov. Frequency characteristics of EEG 
spectra in the emotions. Neuroscience and Behavioral Physiology, 
26:340-343, (1996). 

[25] M. Mikhail, K. El-Ayat, R. El Kaliouby, J. Coan, and J.J.B.Allen. 
Emotion detection using noisy EEG data. In Proceedings of the 1st 
Augmented Human International Conference (AH '10). New York, 
NY, USA, 2010 

[26] S. Koelstra A.Yazdani, M.Soleymani, C.Mühl, J.Lee, A.Nijholt, 
T.Pun, T.Ebrahimi, I.Patras. Single Trial Classification of EEG and 
Peripheral Physiological Signals for Recognition of Emotions 
Induced by Music Videos. Brain Informatics. 89-100 (2010) 

[27] T.P. Jung, C. Humphries, T.W. Lee, S. Makeig, M.J. McKeown, V. 
Iragui, and T.J. Sejnowski. Extended ICA removes artifacts from 
electroencephalographic recordings. In Advances in neural 
information processing systems. M. J. Kearns, S. A. Solla, D. A. 
Cohn (Eds.), Colorado, USA, (1998). 

[28] J.C. Woestenburg, M.N. Verbaten & J.L. Slangen. The removal of 
the eye-movement artifact from the EEG by regression analysis in 
the frequency domain. Biological Psychology 16:127-147, (1983). 

[29] D.J. McFarland, et al. BCI meeting 2005-Workshop on BCI Signal 
Processing: Feature extraction and translation, IEEE Trans. Neur. 
Syst. Rehab. Eng., 14:135-138, (2006). 

[30] I.T. Jolliffe. Principal Component Analysis, Series: Springer Series 
in Statistics, 2nd ed., Springer, NY, (2002). 

[31] F. Lotte, M. Congedo, A. Lécuyer, Lamarche, and B. Arnaldi. A 
review of classification algorithms for EEG-based brain-computer 
interfaces.  Journal of neural engineering, 4:1-13,  (2007). 

[32] P.J. Lang, M.M. Bradley, and B.N. Cuthbert. International affective 
picture system (IAPS): Affective ratings of pictures and instruction 
manual. Technical Report A-6, University of Florida, Gainesville, 
FL, (2005). 

[33] M. M. Bradley and P.J. Lang. International affective digitized 
sounds (IADS): Stimuli, instruction manual and affective ratings. 
Tech. Rep. No. B-2. The Center for Research in Psychophysiology, 
University of Florida, Gainesville, FL, (1999).  

[34] M. M. Bradley, P. J. Lang. Measuring emotion: The self-assessment 
manikin and the semantic differential. J Behav Ther Exp Psychiatry, 
25:49-59, (1994). 

[35] C.L. Lisetti, F. Nasoz. Using noninvasive wearable computers to 
recognize human emotions from physiological signals. EURASIP 
Journal on Applied Signal Processing, 11:1672-1687,(2004). 



 



Proceedings of AISB ‘11: AI & Games
Dimitar Kazakov and George Tsoulas (eds.)
ISBN 978-1-908187-01-7

Published by the Society for the Study of Artificial 
Intelligence and the Simulation of Behaviour
Printed by the University of York, York, UK


