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Foreword from the Convention Chairs

The AISB’11 call for symposium proposals particularly  encouraged events drawing more strongly 
on the cognitive science aspect of the AISB remit. The result is a coherent programme with a very 
strong interdisciplinary  character, which is also matched in the choice of plenary speakers. The 
three symposia looking at the interaction between Computing and Philosophy, the prospect of 
machine consciousness and the quest for a new, comprehensive intelligence test, form a coherent 
unit where the eternal questions of who we are and what makes us so are asked from a dual Human-
Machine perspective. The Symposia on Active Vision, Computational Models of Cognitive 
Development and Human Memory  for Artificial Agents demonstrate how better understanding of 
the nature and basis of cognitive processes can advance work on Artificial Intelligence and, 
inversely, how computational models of these processes can help better to understand them. The 
prominent multi-agent design and modelling paradigm links the Symposium on Social Networks 
and Multi-agent Systems with the one on AI and Games. Finally, the Symposium on Learning 
Language Models from Multilingual Corpora, which brings together some of the first attempts in 
this area, can also be seen through the prism of such a general notion in Philosophy and Linguistics 
as semiosis, and the dual role of sign and interpretant that text plays in translations.

We are delighted that after another ten successful years in its long history, the AISB convention is 
returning to the University  of York. The 2011 convention takes place on the brand-new Heslington 
East campus, the result of a multi-million pound expansion that  is now the new home of the 
Department of Computer Science, and hosts the Excellence Hub for Yorkshire and Humber, a new 
incubator for interdisciplinary research and interaction between academia and industry. The last few 
years have seen a strong involvement of the Computer Science Department in such interdisciplinary 
collaboration through the York Centre for Complex Systems Analysis (YCCSA), and we hope that 
this convention will provide a boost for more synergy between York departments, with other 
institutions conducting AI-related research in the region, and beyond. As the programme shows, we 
have also made an effort to promote cooperation with industry and use the convention to support 
school outreach. The convention format makes it  perfect for establishing dialogue and collaboration 
in new areas of research, as well as across disciplines, and we hope that this year, it will play again 
this role to the full. We want to thank everyone who has contributed to it or otherwise made this 
event possible and wish all participants a fruitful and enjoyable time in York.

Dimitar Kazakov and George Tsoulas



 

Proceedings of AISB 2011 
Dimitar Kazakov and George Tsoulas (eds.) 
 
978-1-908187-02-4 Computational Models of Cognitive Development 
 
Published by the Society for the Study of Artificial Intelligence and the Simulation of Behaviour 
 

   



Symposium on:  
Computational Models of Cognitive Development 

5th April, 2011 

Organisers 
Frank Guerin, Aberdeen 
John Alexander, Aberdeen 
Philip Quinlan, York 

Programme Committee 
(AI/Robotics) 
John Alexander 
Luc Berthouze 
Frank Guerin 
Sinan Kalkan 
Norbert Krueger 
Mark Lee 
Honghai Liu 
Jonathan Mugan 
Paulo Santos 
Georgi Stojanov 
Nicholas K Taylor 
Emre Ugur 

(Psychology) 
Andrew Bremner 
Philip Quinlan 
Matthew Schlesinger 
Sylvain Sirois 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

Contents 
Katherine E. Twomey and Jessica S. Horst .............................................................................. 3 
                All Things Considered: Dynamic Field Theory Captures 
                Effect of Categories on Children’s Word Learning 
 
Anne S. Warlaumont, Gert Westermann, and D. Kimbrough Oller .......................................... 8 
                Adult Input Causes Less Precise Imitation in a Neural 
                Network Model of Infant Vowel Perception And 
                Production 
 
Alexandra Varga and Michiel van Lambalgen ......................................................................... 13 
                Infants’ Flexible Closed World Reasoning and 
                Imitation-for-Learning 
 
Norbert Krüger, Mila Popovic, Leon Bodenhagen, Dirk Kraft and Frank Guerin ................... 23 
                Grasp Learning by Means of Developing Sensorimotor 
                Schemas and Generic World Knowledge 
 
Michael Miller ............................................................................................................................ 32 
                Piagetian Autonomous Modeller 
 
Timothy A. Furze and Brandon Bennett ................................................................................... 40 
                Using the Principals of Classical Conditioning to Learn 
                Event Sequences 



All Things Considered: Dynamic Field Theory Captures 

Effect of Categories on Children’s Word Learning 

Katherine E. Twomey
1
 & Jessica S. Horst

1 

(k.twomey@sussex.ac.uk, jessica@sussex.ac.uk) 
1
School of Psychology, University Of Sussex, Falmer, BN1 9QH, UK

Abstract. Recent research demonstrates that both real-time variability 

in perceptual input and task demands influence young children’s word 

learning and categorisation. The current study extends these findings by 

testing both children and a dynamic field theory (DFT) computational 

model in a category labelling task. Specifically, children and the model 

were introduced to multiple category members that were either 

moderately or highly variable. Both children and the model were better 

able to learn category labels when the individual category members were 

moderately variable. Overall, these findings have implications for both 

our understanding of children’s categorisation and the use of 

computational models to investigate cognition more generally. 

1 WORD LEARNING AND 

CATEGORISATION 
 

In order to understand the world, children must learn to label and 

categorise objects in their environments; they do so  

astonishingly quickly [1]. The complexity of learning a single 

new word is well-documented [2]: children must not only parse 

the speech stream into individual words but also determine the 

meaning of a word from a seemingly infinite array of possible 

referents [3]. Children’s ability to rapidly link a novel label to a 

novel object is known as fast mapping [4; 5; 6], however, as 

demonstrated by Horst & Samuelson [7], fast mapping is only 

one part of the word learning process. To have truly learned a 

word, children must be able to use that word after a delay or in a 

new context [8]. 

By the time children begin to learn words, they are already 

experienced categorisers. Each new word they encounter refers 

not just to a single object, but to a category of objects [9; 10]. 

For example, when a child learns that their family collie is called 

a “dog”, she may also learn that their neighbours’ poodle is a 

“dog”, that her cuddly toy is a “dog” [11], and so on. Research in 

domains as diverse as motor development [12], phonological 

acquisition [13], and visual categorisation [14] has demonstrated 

that multiple and variable experiences facilitate learning [15; 

16]. Further, variability among category members has also been 

shown to affect categorisation; that is, categorisation is 

facilitated by experience with multiple exemplars [17]. 

However, how variability among category members 

influences category label learning remains unclear. Recent 

research demonstrated that 30-month-old children exposed to 

multiple category members (exemplars) were significantly more 

likely to retain the category label after a 5-minute delay than 

children exposed to a single category member multiple times 

[18]. These data suggest that experience with multiple exemplars 

facilitates word learning. However, in this case the category 

members only varied in one feature (colour). The current 

research extends these findings both empirically and 

computationally with highly variable categories to further 

understand how categorisation influences word learning.  

 

2 SUPPORTING EMPIRICAL DATA 

 
2.1 Method 

 
2.1.1 Participants 

 

Twenty-four typically-developing, monolingual English-

speaking 30-month-old children participated. 12 children were 

randomly assigned to the narrow condition, and 12 to the 

variable condition.  

 

2.1.2 Stimuli 

 

Known stimuli for all conditions consisted of 18 objects likely to 

be known to 30-month-old children (e.g., a toy chicken or a toy 

bike). Novel stimuli consisted of nine novel exemplars from 

three categories (examples are depicted in Figure 1). For 

children in the narrow condition, novel exemplars were 

moderately variable and differed only in colour. For children in 

the variable condition, novel stimuli were highly variable and 

differed in colour, shape and texture. For extension trials atypical 

exemplars from the novel categories were used. On the extension 

trials the same stimuli were used for both conditions. 

  

Narrow exemplars Variable exemplars 

       

hux hux 

  
    

doff doff 

      

cheem cheem 

Extension trial stimuli 

    

 

hux doff cheem 
  

 
 

Figure 1. Novel stimuli used in the experiment 
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2.1.3 Procedure and design 

 

The experiment consisted of three phases: referent selection (18 

trials), retention (three trials) and extension (three trials). An 

example referent selection trial is depicted in Figure 2. On each 

referent selection trial children saw an array of three objects (two 

known, one novel) and were asked to get either the novel or one 

of the known objects (e.g., “can you get the hux?”). Overall, 

children received nine known name trials and nine novel name 

trials. Children received three trials per novel category (e.g., 

hux). Across trials, children saw novel categories with either 

narrow or variable exemplars. 

. 

 

 

 

 

“Can you get the hux?” 

 

Figure 2. Example referent selection trial 

 

After a 5-minute break the test phase began. On each of the 

three retention test trials children saw an array of three objects 

(one from each of the just-encountered novel categories) and 

were asked to get each of the objects across trials (for an 

example, see Figure 3). Extension trials immediately followed 

and were identical to retention trials except that the atypical 

exemplars were used.  

 

 

 

 

“Can you get the hux?” 

 

Figure 3. Example retention trial 

 

2.2 Results 

 

2.2.1 Referent selection 

 

Results are depicted in the left panel of Figure 4. All children 

were very good at referent selection. Children in both conditions 

chose the target object at significantly greater than chance levels 

on both known name trials (.33, all ps two-tailed, t(11) = 10.51, 

p <.0001, d = 3.05 and t(11) = 17.42, p <.0001, d = 5.05, 

respectively) and novel name trials (t(11) = 5.95, p <.0001, d = 

1.73 and t(11) = 15.58, p <.0001, d = 4.52, respectively). 

Unpaired t-tests revealed no difference between conditions for 

either known or novel referent selection (known: t(22) = -0.30, 

ns; novel: t(22) = -0.63, ns.) Thus, whether children saw narrow 

or variable exemplars had no effect on referent selection. 

 

2.2.2 Test trials 

 

Results are depicted in the right panel of Figure 4. Data for test 

trials were submitted to a repeated measures ANOVA with Trial 

Type (retention, extension) as the repeated measure and Stimui 

(narrow, variable) as a between-subjects factor, The ANOVA 

revealed a significant interaction between Trial Type and 

Stimuli, F(1, 22) = 7.86, p = .01. To unpack this interaction, 

planned one-tailed t-tests against chance were performed. Only 

children in the narrow condition retained novel labels at levels 

significantly greater than chance, t(11) = 4.73, p <.001, d = 1.38. 

Importantly, this replicates Horst et al.’s [18] finding: experience 

with a category of objects clearly facilitates children’s ability to 

retain labels. A planned, unpaired t-test revealed a significant 

difference between conditions, t(22) = 2.84, p <.01, d=1.22. In 

contrast, only children in the variable condition extended the 

novel labels at levels greater than chance, t(11) = 2.60, p <.05 , d 

= 0.76. Thus, encountering a variable category facilitates 

children’s ability to extend labels to new category members [15]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Experimental results 

 

2.3 Discussion 

 
Only children in the narrow condition retained novel category 

labels; however, these children did not extend this newly-learned 

label to a completely novel atypical category member. In 

contrast, children in the variable condition did not retain the 

novel labels but were nonetheless able to extend novel category 

labels. We explored this surprising result by simulating the task 

using a dynamic field theory model. 

 

3 WORD LEARNING IN-THE-MOMENT  
 

Dynamic Field Theory (DFT) is a formal instantiation of 

Dynamic Systems Theory (DST) [19] which has been 

successfully implemented to model children’s decision-making 

processes in various motor and perceptual tasks [20; 21] as well 

as larger-scale robotic systems [22]. According to DST, 

behaviour is self-organising in the moment and is thus 

inextricably linked to real-time input, as well as just-past 

experience and longer-term learning history [23]. DST has been 

applied in many domains to explain hitherto puzzling 

phenomena; for example, the sudden disappearance of young 

children’s stepping reflex [24], perseverative reaching in A-not-

B tasks [25] and variable development of goal-directed reaching 

[12]. More recently, DST has been formalised in the DFT [26], a 

dynamic neural field framework in which self-sustaining, stable 

peaks of activation reflect self-organised behaviours. Critically, 

the DFT allows us to examine the interplay of multiple 

timescales underlying children’s in-the-moment choices in 

experimental settings.  

The goal of this simulation is to investigate whether small 

changes in stimuli in word learning tasks can give rise to better 

retention and extension of novel category labels. DFT models 

have successfully captured experimental data from looking tasks 
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[27] dimensional change card-sorting tasks [28] and novel noun 

generalisation tasks [29]. The current simulation adapts Faubel 

& Schöner’s [22] feature binding DFT model of object 

recognition to a word learning context. If the simulation reflects 

the experimental data, this suggests that the apparently complex 

learning processes driving word learning may, in fact, depend on 

the simple, bottom-up, dynamic associative mechanisms that 

underlie DFT models.  

 

3.1 The current simulation 
 

3.1.1 Architecture 

 

DFT models consist of continuous, topologically functional 

neural fields in which spreading activation governed by local 

excitation/global inhibition [30] generates localised, self-

sustaining peaks of activation [31]. The current simulation, 

depicted in Figure 5, consists of two 2-dimensional dynamic 

neural fields; specifically, a perceptual layer coupled 

reciprocally to a memory layer. Activation in the perceptual 

layer is generated by input along the label and object 

dimensions. and is captured by the general equation below: 

xdtxuxxw

txShtxutxu
lololo

′′′−∫+

++−=

)),(()(

),(),(),(
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σ
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                                    (1) 

where ),(
,

txu
lo

& is the rate of change of activation level across 

the object (o) and label (l) dimensions at location x, as a function 

of time (t)  mediated by the timescale of the dynamics, τ. Current 

activation in the perceptual layer, -uo,l(x,t), receives external, 

experimenter-defined input, So,l(x,t). Activation in the perceptual 

and memory layers is subject to excitatory and inhibitory 

interaction defined by a Gaussian kernel with weight w, and 

width σ. The resting level of the system is defined by h <0. 

Units of representation are peaks of activation. The formation 

of a self-sustaining peak at any point in the perceptual layer 

represents a mapping between input along the object dimension 

and the label dimension. Activation from these peaks spreads to 

the memory layer, leaving a corresponding, slow-decaying 

memory trace. Activation in the memory trace acts as short-term 

memory, by feeding activation back to the perceptual layer, thus 

facilitating subsequent object-label mappings. 

 

3.1.2 Stimuli and procedure 

 

Known object stimuli were presented as inputs along the object 

dimension (length = 531 neurons) at intervals of at least 20 

neurons. Novel object stimuli were presented at intervals of at 

least 20 neurons to their nearest known neighbour, with spacing 

between novel stimuli varying according to condition (see 

below). On every trial, each object stimulus was separated from 

its nearest neighbour by at least 75 neurons. Similarly, label 

stimuli were presented as inputs regularly spaced along the label 

dimension (length = 22 neurons). In the current model a single 

neuron on the label dimension was arbitrarily assigned to a 

single label. However, the model is sufficiently flexible for 

future work to explore further effects of categorisation, such as 

phonetic similarity of labels, or the global/basic distinction [32]. 

Variability in object inputs to the model reflects the 

variability in category structure encountered by children during 

the experiment. Specifically, the model is either presented with 

narrow category exemplars, in which novel object input is 

presented at the central category exemplar and two nearby 

locations, or with variable category exemplars, in which novel 

object input is presented at the central category exemplar and 

two more distant locations. For example, narrow stimuli might 

consist of input at locations 114, 115 and 116 along the object 

dimension, while variable stimuli might consist of input at 

positions 109, 115 and 121 along the object dimension. 

Like the children, the model is presented with 18 referent 

selection, three retention and three extension trials, using 

dimensional cueing on each trial to distribute the presentation of 

stimuli and object labelling over time.  

At the beginning of each referent selection trial, the model is 

presented with “known” cues located at the intersection between 

object and label for the two known objects, generating two stable 

peaks, and a “novel” cue at a specific location along the object 

dimension but generic along the label dimension (see Panel A of 

Figure 5). Thus, input for novel objects could correspond to any 

label.  

Next, the model is presented with a ridge of input along the 

label dimension. This new label input intersects with either the 

existing “known” or “novel” object cues (see Panel B of Figure 

5). Formation of a peak at any point in the perceptual layer is 

considered to reflect the model’s choice of object in response to 

a given label; that is, when a peak is formed the model has fast 

mapped a label to an object. Note that both correct and incorrect 

choices are included in the analysis. 

Object cues for test trials consist of three generic ridges of 

activation at the previously encountered novel object locations 

along the object dimension. The model then receives label input 

as during referent selection. The three subsequent extension 

trials are identical to retention trials except that the initial novel 

object cues are given at locations close to but not identical to the 

previously locations. Thus, during extension trials the model 

associates novel labels with completely new novel objects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Architecture of the DFT model 
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3.2 Results 
 

Simulation data are depicted in Figure 6. The model is very 

accurate on referent selection trials, both with narrow and 

variable categories. Like the children in our experiment, when 

the model is presented with narrow categories it correctly 

associates previously-encountered novel category members with 

previously-encountered novel labels on retention trials and does 

not associate completely novel, atypical exemplars with 

previously-encountered labels on extension trials. In contrast, 

like the children, when the model is presented with variable 

categories it does not associate previously-encountered novel 

category members with previously-encountered labels on 

retention trials and does associate completely novel atypical 

exemplars with previously-encountered labels on extension 

trials.. Thus, preliminary simulation data reflect children’s 

behaviour in the word learning task, even reproducing the 

counterintuitive result in the variable condition. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6. Simulation results 

 

4 DISCUSSION 
 

We have demonstrated both experimentally and computationally 

that word learning is susceptible to task effects; that is, small 

changes in stimuli during a fast-mapping task can dramatically 

influence retention and extension of novel labels. For example, 

when children encounter wide within-category variability, they 

do not show evidence of retaining a label for this category, 

despite being able to extend this label to a completely novel 

category member. A dynamic field simulation captures this 

phenomenon by repeated association of different perceptual 

input over time, generating a remarkably similar pattern of 

results. 

This model offers considerable opportunity for further 

investigation of the interplay between category variation and 

word learning. For example, when a child sees an object, she is 

aware of its colour, shape and the visual components of its 

texture. In the current model, however, visual input is simplified 

and schematised: all visual input is collapsed across an overall 

“perceptual similarity” metric and presented to a single 

perceptual layer. The addition of further layers representing, for 

example, colour, shape and texture, allowing the separation of 

colour, shape and material inputs (cf. [22]), represents an 

important step towards understanding what constitutes 

“variability” for children learning to categorise. Comparable 

extensions of the model, for example taking into account motor 

feedback, and potential hybridisation with other connectionist 

architectures more commonly used in computer vision (for 

example, Self-Organising Maps, [33]), also offer opportunities 

for its deployment in an embodied agent. 

These results have implications for our broader understanding 

of cognitive development. First, we have extended the DFT to 

reliably simulate children’s fast mapping and word learning 

behaviour. Second, simulation data suggest that absence of 

evidence for a behaviour in one context does not imply that the 

behaviour will not be seen in a different context. Further, as DFT 

models are simple, associationist, spreading-activation networks, 

the present data lend further weight to the growing body of 

evidence suggesting that cognition develops in a bottom-up 

manner via associations learned from statistical regularities in 

the input, without recourse to innate learning mechanisms [34]. 

Taken together, the present data suggest a productive future 

direction for the integration of psychological and computational 

research in cognitive development. 
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Self-production facilitates and adult input interferes in a 
neural network model of infant vowel imitation

Anne S. Warlaumont1, Gert Westermann2, and D. Kimbrough Oller1 

Abstract.  It is well known that greater amounts of adult input 
facilitate a child’s language development. Thus, one might 
expect that increased amounts of adult input would help an 
infant learn to accurately imitate the vowels of his/her native 
language. In addition, an infant’s own production of sounds 
during cooing, babbling, etc. is known to be important to the 
development of speech abilities. We simulate infant vowel 
development using a neural network that contains a layer of 
auditory neurons, a layer of motor neurons, and bidirectional 
connections linking these perceptual and motor layers. During an 
initial babbling phase, the system produces random motor 
activations, hears the acoustic consequences of these motor 
activations, and adjusts the weights between its auditory and 
motor layers in a Hebbian fashion. In simulations, passive 
auditory input from an external “caregiver” is also included 
during the babbling phase, and is used to update existing 
auditory-motor connections. In a testing phase, the model is 
given adult vowels as auditory input and asked to imitate them. 
Results indicate that self-productions do promote the 
development of the ability to imitate, but, somewhat counter-
intuitively, the more adult input this model receives during 
babbling, the less accurate its imitations are during test. 
Explanations and implications of this finding are discussed.12  

1 INTRODUCTION 
Numerous studies have shown that language input from 
caregivers has a positive effect on language acquisition. For 
example, a canonical finding is that the number of words a child 
hears from his/her caregivers predicts later vocabulary size and 
language test scores [1]. In the phonological domain, research 
suggests that infants tend to produce sounds that resemble those 
of the language spoken by their caregivers as opposed to other 
languages and to produce vocalizations that sound like those 
they have just recently heard [2-4] (but see [5] for a critical 
review).  

For example, Kuhl & Meltzoff [2] presented 12- to 24-week 
old infants with recordings of a female adult producing 
exemplars of a single American-English vowel: /a/, /i/, or /u/. 
They recorded the cooing vocalizations produced by the infants 
during this exposure period. The infants’ vocalizations were 
transcribed into broad phonetic categories and it was found that 
/a/-like vowels tended to correspond to sessions where adult /a/ 
vowels were played, /i/-like vowels tended to correspond to 
sessions where /i/ vowels were played, and /u/-like vowels 
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tended to correspond to sessions where /u/ vowels were played. 
Understanding how this ability to imitate is achieved is 
important because the ability to imitate is thought to provide an 
important foundation for language learning in general [6]. It was 
proposed that two factors drove the observation in [2]: (1) 
perceptual re-organization based on hearing the auditory input 
and (2) learning of auditory-motor mappings based on self-
production. These two factors were noted to be theoretically 
separable. 

A number of connectionist modeling studies have 
demonstrated that artificial neural networks are sensitive to 
external input. Such work has shown how that input can be 
beneficial from the standpoint of helping the neural network 
develop language ability, including imitating the sounds of its 
ambient language. For example, Heintz et al. [7] show that a 
model consisting of a layer of auditory neurons and a layer of 
motor neurons, connected to each other by weighted Hebbian 
connections, can learn to correctly imitate adult vowels. In their 
model, a training trial consists of jointly presenting acoustic 
features of an adult vowel such as /i/ with the positions of vocal 
tract organs, such as the tongue and lips, required for the child to 
produce that same vowel.  

Li, Zhao, and MacWhinney’s connectionist word-learning 
model, DevLex-II [8], also learns the sounds of its language 
from external input and also contains layers (in their case 
phonological input, phonological output, and semantic layers) 
connected by weighted Hebbian connections. During training, 
the Hebbian weights between the phonological input and the 
semantic layers are updated in response to simultaneous 
presentation of phonological and semantic representations and 
the Hebbian weights between the semantic and the phonological 
output layers are also updated in response to simultaneous 
presentation of phonological and semantic representations. In 
addition to Hebbian weights between layers, each layer also has 
its phonetic or semantic features updated using a self-organizing 
map algorithm. Words are presented with frequencies 
corresponding to those observed in real caregivers’ speech. After 
training, the model is successfully able to comprehend and 
produce words in its language. 

Yoshikawa et al. [9] use a similar neural network architecture 
but a different training approach to model the development of 
vowel imitation ability. An auditory self-organizing map and a 
motor self-organizing map are linked to each other by Hebbian 
connections. The model is trained by having it produce a random 
action of a robotic vocal tract. A human “caregiver” judges 
whether the sound produced by the robot’s vocal tract is similar 
to a vowel in their repertoire. If so, the human imitates the robot, 
and the first four formant frequencies of the human caregiver’s 
imitation are fed to the model’s auditory layer. The Hebbian 
connections between the auditory and motor layer are then 
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updated to reflect the correspondence between the caregiver’s 
production and the child’s.  

Westermann and Miranda [10,11] show that a model 
consisting of an auditory and a motor layer, again linked by 
weighted Hebbian connections but without self-organization of 
its perceptual and motor nodes’ tunings to the external world, 
can learn to adapt its auditory percepts of vowels to the 
language-specific input it has heard (it also adapts those same 
percepts to reflect the auditory correlates of sounds produced 
during random babbling training trials). A unique feature of this 
model is that the correspondence between the sensory and motor 
pairings for a given speech sound is not assumed beforehand. 
The present study makes this same conservative assumption 
regarding what information is available to the child, but rather 
than focusing on changes in perceptual representations resulting 
from self-production and caregiver input, we focus on changes in 
imitation ability as a function of self-production and caregiver 
input. Given that modification of Hebbian auditory-motor 
connections based on adult input was sufficient to achieve 
language-specific perceptual reorganization, one might expect 
the same kind of mechanism to facilitate imitation.  

The present study describes a connectionist model of vowel 
perception and production development. The model is tested on 
its ability to imitate adult vowels as in [2]. The approach is 
similar to some of the other connectionist models described 
above in that it contains an auditory neuron layer connected via 
Hebbian weights to a motor neuron layer. However, unlike some 
of the other models that are tested on the ability to imitate adult 
input, e.g. [7, 9], it makes the more conservative assumption that 
activations of the model’s motor neurons can only be achieved 
(1) through the action of the model itself and subsequent 
perception of self-produced vocalizations or (2) through 
propagation of adult-generated activation on the auditory input 
layer via Hebbian connections to the motor layer. In other words, 
our study is novel because we test how well a model can learn to 
imitate when it is not given any direct information about which 
of its own motor articulations correspond to the adult targets. We 
systematically vary the number of adult-input trials to see how 
much passive adult stimulation acting through existing auditory-
motor connections contributes to the model’s development of the 
ability to imitate an adult. We hypothesized that, as [2] suggests, 
both self-production trials and passive-adult-input trials would 
contribute to learning. 

2 METHOD  

2.1 Auditory and motor neural networks 
The model architecture is illustrated schematically in Fig. 1. It 

has two layers of neurons: an auditory layer and a motor layer. 
The auditory and motor layers are fully interconnected via 
modifiable weighted connections.  

The auditory layer contains 25 neurons. Each node in the 
auditory layer has a set of weights to each acoustic input feature 
(relative first and second formants; see the Vowel Synthesis 
section below). A neuron’s set of weights to input features 
defines the center of the neuron’s receptive field; the closer an 
input gets to the center of the receptive field, the greater the 
activation of the neuron. An acoustic input activates the auditory 
neurons by multiplication (dot product) with these weights.  

The motor layer contains 100 neurons. Each node in the motor 
layer has a receptive field defined by its set of weights to each 
upper vocal tract muscle (see the Vowel Synthesis section 
below).  

A winner-takes-all function is applied to each layer of neurons 
before allowing its activation to spread to other layers and before 
making any Hebbian updates to the weights connecting the two 
layers. This prevents the auditory and motor representations 
from being heavily biased toward central regions in the input and 
output spaces, respectively.  

During training, when the auditory and motor networks are 
simultaneously activated, the connection weights between two 
networks are updated according to the following Hebbian 
learning with decay rule: 

 
 W (t +1) =W (t)+!(a ! "m #W )  (1) 

 
where t  is the current learning trial, t +1  is the next learning 
trial, W  is a matrix representing the weights from each auditory 
node to each motor node, a  is the vector representing the set of 
auditory neuron activations, m  is the vector representing the set 
of motor neuron activations, and !  is a learning rate parameter 
that starts at .1 and decreases by a factor of .99 on each learning 
trial until it reaches a minimum value of .01. Weights are 
initialized to zero at the start of training. 

Prior to training, all auditory and motor receptive field 
weights are set to random uniformly distributed values. For the 
main model version, these receptive fields remain static 
throughout the course of training. In alternate model versions, 
the auditory receptive fields and/or the motor receptive fields are 
updated with each auditory input or motor production, 
respectively. This updating is done according using the standard 
self-organizing map algorithm [12]. The algorithm specifies that 
neurons in each layer be assigned locations on a square grid. On 
a given trial, the most activated node as well as its neighbours 
have their receptive field centers (i.e., their weights to acoustic 
features or muscle activations) modified to more closely 
resemble the current acoustic features or muscle activations. 
Such updates occur before the winner-takes-all function is 
applied. 

2.2 Vowel data 
The model simulations rely on a database of 4,022 synthesized 
vowels and a set of 30 real adult vowels. 

The synthesized vowel database was created using the 
articulatory synthesis and formant and pitch extraction tools 
available as part of Praat, a free phonetics program [13]. Sounds 
were generated by randomly varying fourteen upper vocal tract 
muscle parameters related to the face, mouth, tongue, and 
pharynx. These were superimposed on a 1-second fixed pattern 
of lung volume and laryngeal muscle parameters. Praat uses 
these lung, larynx, and upper vocal tract parameters to define a 
system of masses and springs that represent the vocal tract 
boundaries in an adult female. Praat then derives the air 
pressures in this vocal tract model, which determine the 
synthesized vocal sound.   Fundamental frequency (f0), first 
formant frequency (F1), and second formant frequency (F2) 
traces were estimated for each resulting sound and sounds that 
did not contain at least 40 consecutive milliseconds where an f0 
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was detectable were discarded. For each remaining sound, we 
measured the mean F1 minus mean f0 and mean F2 minus mean 
F1 over all portions of the sound where there were at least 40 
consecutive ms of detectible f0. Each database entry was thus 
comprised of a set of 14 muscle activation values and several 
acoustic measurements on the resulting sound. 

Adult sounds consisted of 10 exemplars each of the English 
/a/ /i/ and /u/ vowels, produced by a female adult American 
English speaker. F1-f0 and F2-F1 were obtained for these vowels 
using the same procedure as for the synthesized sounds. Relative 
formants were normalized to the combined range observed in the 
synthesized and human adult data. 

2.3 Learning and test trials 
Two types of learning experiences are modeled. The first type of 
learning trial is the infant production trial, which models the 
infant’s experience of exploring his/her own motor capabilities 
and hearing the resulting sound. An infant production trial 
begins with a random activation of the model’s motor neurons. 
This specifies a set of upper vocal tract muscle activations. The 
item in the synthesized vowel database that has muscle 
activations most similar to those specified by the winning motor 
neuron’s receptive field is identified. The acoustic features 
associated with that vowel are then presented to the network, 
where they cause activation of the auditory layer. The auditory 
neurons are at the same time stimulated by activation 
propagating from the motor layer through the auditory-motor 
connection weights. At this point, both the auditory and motor 
layers of neurons are active, so the connection weights between 
them are updated according to the Hebbian learning rule 
described above. This concludes the infant production trial.  

The second type of learning trial is the adult input trial, which 
models the infant’s experience of hearing his/her caregiver 
vocalize. An adult input trial begins by choosing an item at 
random from the set of adult vowels. The acoustic features of 
that item are then presented to the model, which causes its 
auditory neurons to become active. This in turn causes activation 
to spread through the auditory-motor connection weights to the 
motor layer. At this point, both layers of neurons are active and 
their Hebbian connection weights are updated, concluding the 
adult input trial. 

In the present study, different versions of the model were run, 
each with with differing amounts of adult input. In no-adult-

input simulations, there were 500 infant-production training 
trials. In adult-input simulations there were either 600, 700, or 
800 training trials; at each learning trial the probability of that 
trial being an adult input trial was proportional to the total 
number of training trials minus 500.  

The model is tested on an imitation task. An imitation trial is 
initiated by presenting the model with acoustic features of an 
adult vowel. This activates the model’s auditory neurons, which, 
via the auditory-motor connections, activate the model’s motor 
neurons. The synthesized vowel that best matches the pattern of 
activation at the motor neuron level is then taken as the model’s 
imitation. The Euclidean distance between the acoustic features 
of the imitated sound and those of the adult sound are then 
compared. Smaller distances indicate better performance. The 
model is tested on its imitation of each of the 30 adult vowels. 

3 RESULTS 
We ran a large number of simulations, systematically varying 
model parameters, specifically the number of adult input trials 
given in addition to the infant production trials and whether or 
not the auditory and motor layers had self-organizing receptive 
fields. 

Prior to any training, it was common for all inputs to result in 
the same imitation sound, since the weights between the auditory 
and motor layers are initialized to zero. Across training, the 
model’s ability to accurately imitate adult input improves as 
evidenced by the imitations’ acoustic features becoming more 
similar to the input vowels’ acoustic features. Figure 2 illustrates 
this change for one of the simulations. Measurement of the mean 
distance between the target input and the model’s imitation in 
relative formant space corroborates this observation that 
performance improves with training (see the leftmost column of 
Fig. 3).  

In contrast, increased amounts of adult input had a negative 
effect on performance. Figure 3 shows this detrimental effect of 
adult input for model versions in which receptive fields are static 
throughout training. This effect can be quantified statistically by 
regressing the change in mean imitation accuracy across training 
on the number of adult input trials, yielding r = -.268, t(148) = 
-3.385, p < .001. This effect also held when self-organization of 
auditory and/or motor layers was turned on and when using 
different acoustic input features, such as spectra. 

 

 
Figure 1. Schematic diagram illustrating the model architecture. 
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Figure 2. Imitated vowels’ normalized formants for one of the 
model simulations before (above) and after (below) learning. 
Adult inputs are shown in red and the model’s imitations are 
shown in blue. Letters indicate the adult vowel phone targets. 
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Figure 3. Model performance as a function of amount of adult 

input during training. Positive values on the y-axis indicate 
improvement from before training to after training. 

 
 

4 DISCUSSION  
The present study tested the hypothesis that modification of 
auditory-motor connections based on both self-production and 
passive adult input would improve performance of a neural 
network model on a vowel imitation task.  

Results indicate that learning from self-productions is 
important to the model’s development of imitation ability. This 
implies that random motor exploration and perception of the 
auditory correlates of that motor exploration can be a powerful 
driver of learning. An implication is that findings of infant vowel 
imitation in early infancy [2] may be explainable in large part on 
the basis of mappings achieved during self-production. 

On the other hand, we found that modification to auditory-
motor connections based on external inputs where the exact 
motor correspondence is unknown interferes with imitation 
performance. Given the numerous previous studies such as those 
reviewed in the Introduction finding that adult input plays a 
facilitative role in bringing children’s language closer to that of 
their native language, our finding that adult input is associated 
with worse imitation accuracy is surprising. 

One possible explanation is rooted in the fact that imitation in 
our model is a reinterpretation of the input stimulus within the 
developed system’s own learned sensorimotor mappings. Every 
infant production trial provides by its nature the completely 
veridical mapping from motor representation to acoustic 
representation. In contrast, since adult input in this model does 
not accompany a known motor representation, adult input may 
amplify any errors in the model’s current mappings. Thus, the 
present results show that the assumption made by other models 
[7-9] that the child knows the motor origins of the behavior it 
observes from a caregiver is nontrivial. Such an assumption 
makes a difference to performance, so its biological plausibility 
should be considered.  

Since adult input is known to facilitate language learning but 
does not show such an effect in our model, what mechanisms 
could underlie its role in real children’s language development? 
One possibility is that passive exposure to adult input affects 
learning not through modification of the auditory-motor 
connections but through reorganization of the perceptual system 
alone, e.g., through adjustment of receptive fields in the auditory 
system as shown by [14] and modeled in [15].  

That being said, adult input effects on perception are not as 
strong for pre-recorded stimuli [14] and passive TV viewing is 
associated with reduced rates of language acquisition [16]. Since 
the TV does not respond differentially to child productions 
compared to caregiver inputs, which adapt dynamically to the 
state and abilities of the infant [17,18], the experience of an 
infant hearing speech on TV might be more like our model’s 
experience hearing adult input. Thus, the finding here that adult 
input is not associated with increased language performance 
might not reflect merely a problem with the model but could 
potentially reflect how an infant might be expected to be affected 
by passive, non-contingent/non-adaptive input such as that from 
a TV or radio, especially when such exposure reduces the 
frequency of the infant’s own vocal productions. 

Another possibility is that the value of adult input is in 
actively reinforcing the infant and/or directing the infant’s future 
motor exploration. Reinforcement may help an infant determine 
when to update neuronal connections, perhaps only updating 
connections that produce accurate imitations of an adult or 
updating connections when an adult has imitated the infant and 
so perceptual activation reflects both the self-vocalization and 
the caregiver’s vocalization, as in Yoshikawa et al.’s model [9]. 
With regard to shaping exploration, in the model presented here 
as well as in [7, 9-11], motor activations are drawn completely at 
random and the entire range of possible motor activations is 
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covered. The real infant, however, likely starts with a limited 
repertoire of vocal productions and expands on this. The 
direction of expansion could presumably be driven by auditory 
priming from adult input as well as by feedback in the form of 
perceptual, social, or other rewards [17-19]. 

Future computational modeling studies should expand on the 
foundations supplied by this and the handful of other neural 
network models of infant vocal imitation, to further explore 
various mechanisms by which external (i.e., adult) input might 
shape infant vocal development. For example, perhaps by 
modifying the model’s perceptual representations of speech 
sounds but not modifying its auditory-motor connections, 
passive external input could improve performance. In another 
scenario, perhaps differential reinforcement of the model’s 
productions might be used to adjust the amount of sensorimotor 
learning on a given trial or to influence where the model 
concentrates its motor exploration.  
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Infants’ Closed World Reasoning and
Imitation as Evidence for Learning

Alexandra Varga1 and Michiel van Lambalgen2

Abstract. Based on empirical evidence from developmental psy-
chology (Gergely et al. 2002, Király et al. 2004), we outline a com-
putational model for the reasoning claimed to explain preverbal in-
fants’ selective reenactment of observed novel instrumental action.
Selective imitation evidences learning about new means actions. We
set forth an argument for the possibility of modelling in terms of
the event calculus (Kowalski & Sergot 1986) with constraint logic
programming (van Lambalgen & Hamm 2005) as an inferential en-
gine, which embody default reasoning with closed-world assump-
tions about actions and their effects. The argument is supported by a
description of the main reasoning processes involved in the task, and
by showing how these can be captured by the formalism.

1 Introduction.

The paper is structured as follows. We begin by introducing two de-
velopmental studies that bring evidence for early manifestations of
human rationality in action. The first is the seminal task of Gergely
and colleagues [15]. It emphasizes the selectivity of infants’ imitative
behavior, underlain by teleological interpretation of observations. A
subsequent experimental manipulation by Király and her colleagues
[26] provides a more fine-grained understanding of the social fac-
tors that modulate selectivity. In Section 3 we go on to highlight the
empirical facts that demand an integrated explanation. We also in-
troduce the developmentalists’ theoretical account: 14-month-olds’
imitative behavior is a rational manifestation of learning. The model
adopts, and attempts to refine this perspective of the empirical data.
Section 4 presents in a nutshell the reasoning framework that the
model uses to explain the data. We detail the explanatory strategy,
and spell out the features of the reasoning processes that lead to
infants’ exhibited behavior. Section 5 shows that these features are
available in the formal environment of the event calculus with con-
straint logic programming. Drawing on a minimal package of for-
mal technicalities, in Section 6 we describe the sequence of reason-
ing processes that would lead to action execution along the lines of
the experimental results. The focus is on the most complex such se-
quence, hypothesized to underlie infants’ behavior in the only exper-
imental setup where learning is manifested. We conclude that a full-
fledged formal model is possible and helpful, and we stress the points
where more work needs to be done. The practical implementation of
the model is a concrete direction for future research. Had we aimed
to build a silicon-based system able to learn wisely (i.e. selectively)
from observations of the environment, it would be beneficial to equip

1 Department of Philosophy, Central European University, Budapest, email:
varga alexandra-lucia@ceu.phd.hu

2 Institute for Logic Linguistic and Computation, Department of Philosophy,
University of Amsterdam

it with processing skills like the ones described (see also the related
suggestions in [16]). Representing them in logic programming terms
may be but a first step.

2 The developmental experiments.

In [15] a head action is demonstrated by an adult to 14-month-old
observers as a new way to turn on a light-box. The dependent mea-
sure is infants’ performance of the novel action in the test phase. The
experimental setup is as follows. The experimenter enters the room
exhibiting behavioral signs of distress for being cold; she thus takes
a scarf and wraps it around her shoulders. In one of the experimen-
tal conditions (HandsOccupied) she performs the novel action while
holding the scarf, which would otherwise fall down. In the Hands-
Free condition she makes a knot tying the scarf around her; after-
wards she places her free hands on the table next to the light-box.
Consequently half the infants see that the demonstrators hands are
occupied while executing the unusual head action (HandsOccupied
condition), the other half observe her acting with hands visibly free
(HandsFree condition). After a one-week delay subjects are given the
chance to act upon the light-box themselves. Reenactment of the ob-
served novel head action is selective between conditions: 69% of the
infants in the HandsFree, and only 21% in the HandsOccupied. In-
terestingly, all infants, whether they reenacted the head touch or not,
acted on the light-box with their hands.

In a further experiment Király and her colleagues [26] have shown
that selectivity is contingent on a communicative action demonstra-
tion. This involves that throughout the demonstration session the
experimenter behaves prosocially towards the infant seated in front
of her, using non-verbal (eye contact, followed by gaze shift to the
target object) as well as verbal (‘Look, Baby, I’ll show you some-
thing!) communicative-referential cues. The Communicative condi-
tion in [26] is similar to the original experimental setup in [15],
and the results have been replicated (60% vs. 11% reenactment in
the HandsFree vs. HandsOccupied condition). Interestingly however,
when the novel action is performed aloof, without infant-directed
gaze or speech, and spatially distant from the infant (Incidental con-
dition), reenactment of the head touch is always below chance level,
and there is no significant difference between the HandsFree and
HandsOccupied conditions. In the Incidental condition infants’ at-
tention was triggered by a sound signal from the light-box, activated
by another experimenter not visible to them. Demonstration started
only when she indicated to the agent-experimenter that infants ori-
ented toward the artifact. Only those infants who watched the full
action demonstration were included in the analysis. Consequently
failure to attend to the novel action is not a plausible explanation for
the different patterns of results in the Communicative and Incidental
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conditions.
In Table 1 we plot the experimental results of the two studies. The

findings of [15] are taken to belong to the Communicative setup. The
Incidental columns only apply to [26].

Table 1. The experimental results under focus:
Gergely et al. 2002 (top rows), Kiraly et al. 2004 (bottom rows).

Infants’ action performance Communicative Incidental

Hands Free Hands Occupied Hands Free Hands Occupied

Head action 69% 21% – –

60% 11% 11% 29%

No head action 31% 79% – –

40% 89% 89% 71%

3 The empirical explanandum.
We lay emphasis on two aspects of infants’ performance in these
tasks. They constitute the primary motivation for the reasoning pro-
cesses suggested to support behavior (see Section 4.2), and, conse-
quently, for our choice of a formalism to model the data (see Sec-
tion 5). First, infants’ imitative behavior is goal-driven. Second, in-
fants’ selective performance of the novel observed action stands as
evidence for observational learning.

We proceed with some terminological specifications. We then list
what is to be explained in the tasks. Next, we relate the listed items
to the two issues mentioned above. Finally we introduce the explana-
tory strategy to be pursued in modelling, and highlight its expected
outcomes.

A prepotent action is a default response, most strongly associated
with a certain outcome. It has priority over other response tendencies
especially by virtue of developmental primacy. Commonsensically,
human agents’ default way to act upon artifacts is with their hands.
Empirical results backup the claim: hands are prepotent agentive re-
lata for instrumental action from very early ages. Infants tend to act
on tools with their hands [27] (see also item (5) in the list below).
Moreover, infants assign causal power to human hands when they
observe them to be involved in goal-directed actions [39], [40], [41].
We will thus refer to hand actions as prepotent responses. A prepo-
tent action is, until further evidence, optimal with respect to its goal:
it is readily available in an agent’s motor repertoire, hence it requires
the least amount of processing effort. In this sense it provides the
most efficient route to a physical desired end state. Accordingly, any
alternative to a prepotent action is suboptimal. The crucial aspect of
the described imitation studies is the novelty of the presented head
action relative to a prepotent hand response.

So far we used the terms ‘imitative behavior’, ‘imitation’, and
‘reenactment’ to describe infants’ behavior in the task. We now wish
to call attention to the related notion of ‘emulation’. The distinction
between ‘imitation’ and ‘emulation’ upon observation of instrumen-
tal actions resides in the teleological status of the information that
an observer reproduces from an observed agent [7]. Imitation refers
to copying means actions. Emulation refers to copying goals, and
bringing them about according to the observer’s behavioral strate-
gies. However, because of the hierarchical nature of means – ends
relations, the contrast between imitation and emulation is not ab-
solute. They can be understood as the two ends of a continuum of
decreasing fidelity of action reproduction [57]. Along this lines, low
fidelity of imitation places it closer to emulation, and thereby shows

that goals are a driving force of imitative behavior. If goals are copied
in emulation, they modulate imitation tendencies.

Taken together the items in the list below constitute the empirical
explanandum that the model is engaged with. Items 2 to 4 character-
ize the kind of learning evidenced by imitative behavior. Items 5 and
6 support the claim that infants’ imitative behavior is goal-driven.

1. The experimenter always turns on the light-box with a head touch
(as if executing an action rule of the kind For lighting up box con-
tact box with head);

2. If the experimenter’s hands are occupied, infants reproduce the
goal ‘light-on’ by enacting prepotent hand touch (as required by a
prepotent action rule such as For lighting up box contact box with
hand);

3. If the experimenter’s hands are free, infants reproduce the goal
‘light-on’ by re-enacting head touch;

4. Unless the experimenter conveys communicative cues during
demonstration, performance of head touch is below chance level,
and the difference between conditions is not significant;

5. Action reproduction exhibits low fidelity. Infants’ head actions ap-
pear in various forms, many times different from the demonstrated
behavior (e.g. lifting up the light-box, touches with mouth/ nose/
cheek);

6. Across conditions, all infants enact hand touch at least once, al-
ways before reenacting head touch, i.e. prepotent rule is never
fully or primarily inhibited3.

Both the light-box and the action performed on it are new to the
babies (criteria for novelty available in [34]). For this reason what-
ever interaction they may have with the artifact is a manifestation
of observational learning broadly construed. In other words, both
emulation and imitation characterize learning processes. However,
there are several things that can be learnt upon observation of the
experimenter’s head-banging onto the light-box, e.g. about the affor-
dances of the artifact (item 2), about new ways to make it work (3
in the list). The model focuses on the latter kind of learning, which
manifests itself in imitative behavior. More specifically, it provides
a computational framework for human infants’ observational learn-
ing about means actions, when an alternative prepotent action for
bringing about the goal is available. The imitative response that ev-
idences such learning occurs selectively. Infants learn the observed
new means action only when the agent’s prepotent agentive relata
are not involved in another goal-directed activity (item 3 in the list),
and when the agent displays communicative signals (item 4 in the
list).

Evidence abounds with respect to inter-species differences regard-
ing learning from conspecifics by means of either imitation or emu-
lation. The general line is that, unlike human children, primates fo-
cus primarily on the physical goal of demonstrated actions (namely,
to obtain food), which they attempt to bring about most efficiently
(although, see [58] for a slightly different pattern of results). The
ones who behave similarly with children, i.e. imitate selectively,
are enculturated (raised by humans). Their social abilities are more
developed than the ones of individuals raised by conspecifics [1].
These primates by and large emulate the goal by means of a pre-
potent response. They reenact observed novel actions only when
these facilitate obtaining the food, which is otherwise not accessi-
ble [2], [4], [23]. The robust difference between human infants and
the other primates has been taken to make a case for pedagogy as a

3 There are experimental manipulations that check precisely the factors influ-
encing robustness of the performance of the prepotent response, e.g. [27].
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human-specific method, extremely effective, of knowledge transmis-
sion among individuals [9].

3.1 A direction for the pursued explanation.
The question arises with respect to the cognitive mechanisms that
support infants’ imitative learning, and that, presumably, other pri-
mates lack. Two main answers have been proposed in the devel-
opmental psychology literature. One favors bottom-up processes; it
links learning to direct perception of actions, access to prior experi-
ence, and motor resonance. From the other standpoint, a top-down
approach focuses on interpretation of, and further computations over
the perceived actions. Irrespective of the differences between the two,
it is by now a commonplace that actions’ goals are involved in im-
itative learning of goal-directed actions, for both human and non-
human primates. For one, understanding observed instrumental ac-
tions is inherently tied to understanding their goals [15], [34], [35],
[44], [60]. Non-human primates have a much easier task, because of
the very restricted search space for goals [17]. Human infants’ job,
on the other hand, is tremendously more difficult, especially when
confronted with novel actions. Furthermore, we wish to emphasize
that the production of actions fit for one’s goals, especially when
those actions are not in one’s motor repertoire, involves quite refined
planning abilities. Bottom-up theories, like the ones based on action-
effect associations [13], motor resonance or simulationist accounts
[37], [50], [36], do not provide a satisfactory account for goal attri-
bution to observed novel actions.

Consequently better sense may be made of the empirical explanan-
dum above if the robust selectivity of performing novel means ac-
tions is explained in a top-down approach. The developmentalist ex-
planatory strategy (e.g. [15], [45]) that we pursue in modelling be-
longs here. It claims that selective imitation is a form of rational be-
havior, supported by teleological (goal-centered) interpretation of the
observed actions in the context of their occurrence [19]. Teleological
interpretation means inferential action processing, grounded in the
idea that observed (human) actions have a purpose (‘the teleologi-
cal stance with respect to action understanding’ [8], [10], [19]). It
results in understanding an action context in terms of relations be-
tween goals and means. Teleological reasoning is better able than the
low level processes to explain goal attribution to novel actions, be-
cause it is not inherently tied to prior experience. Rather, it solves the
problem of goal attribution through normative principles with a wide
range of applicability, e.g. actions bring about goals most efficiently
(see Section 4.2.1).

4 Spelling out the explanatory strategy.
The model elaborates the developmentalist explanation in two ways.
First, it extends the notion of goals that drive teleological interpre-
tation (see Section 4.2.2). It does so in order to capture the findings
of [26], where social factors are shown to influence behavior. The
claim is that infants’ rational processing of teleological information
involves non-physical factors. Already at that age, not just goals may
be attributed to actions, but also intentions to observed agents (see
[54] for arguments that infants are capable of thinking about others’
intentions). Hence efficiency considerations need not be restricted to
physical efficiency. The claim serves to explain the differential per-
formance of social (human infants, enculturated chimpanzees) Vs.
non-social primate species mentioned above.

Second, it adds to teleological interpretation an action planning
component. We believe it to be necessary for an exhaustive expla-

nation of infants’ action production (their exhibited behavior). The
interpretation of observed actions constrains infants’ planning com-
putations. The model aims to capture in a principled way the inter-
action between goal-centered interpretation of observed actions, and
planning infants’ own. The main formal tool for so doing is the use
of integrity constraint on computations (see Section 5).

Such a strategy refines and clarifies the underlying top-down
mechanisms of imitative behavior as a manifestation of learning in
infancy. A full-fledged model that connects univocally the input vari-
ables to infants’ behavioral output, by means of inferential processes,
would corroborate the claims of the top-down approach. Moreover,
because empirical evidence for primates’ capacity for planning is
scarce if not nonexistent, the formal work sets forth a direction for
where the difference between humans and non-human primates may
reside.

All in all, the account we set forth explains infants’ performance in
the test phase as a result of the computations in teleological interpre-
tation of actions, and action planning. Teleological action interpre-
tation starts with goal attribution. Because the inferential outcomes
are uncertain, especially for novel actions, they require validation.
This process is twofold. For one, infants generate an offline plan for
the goal, based only on their prior knowledge. Second, in order to
understand the action context, they need to understand in an inte-
grated fashion the agent’s plans for actions. This abductive process
uses planning computations for a better understanding of the current
situation. We use interchangeably the terms ‘abduction’ and ‘plan
recognition’ to refer to it. Once a stable interpretation of the context
is available, infants compute an online plan, which they execute. At
all steps, derivations are guided by maintenance goals (see Section
4.2.2) expressed formally as integrity constraints. We elaborate on
these stages in Section 6.

4.1 The cognitive abilities involved.

The proposed explanatory strategy requires that infants have a num-
ber of high-level cognitive skills. We discuss them in what follows.
For each ability, we refer to empirical evidence showing its availabil-
ity to children before the age of the subjects in the light-box tasks
(i.e., 14 months). We do this as an argument that the model is psy-
chologically well grounded.

An ample body of empirical evidence shows that from the first
year of life infants use the teleological stance to understand actions.
They exhibit a tendency to interpret actions as being for something.
They specify in concrete terms this ‘something’ in the observed con-
text as a justificatory reason for the action (e.g. [6], [8], [18], [19]).
For instance, 12-month old babies were presented with an animated
event of two differently sized circles moving on a computer screen.
The big circle followed the small one in a heat-seeking fashion.
Adults had catalogued this as a chasing event. The two circles dis-
appeared from the screen before the babies could see any outcome.
After habituation, they were presented with two test events. In one
of them, the chaser makes an unnecessary detour as if ‘changing its
mind’ with respect to catching the chasee. In the other test event,
the chaser went on to follow the small circle, continuously reducing
the distance between them. Infants’ looking times were significantly
longer in the latter, incongruent case, showing infants’ surprise [6].
These results confirmed the hypothesis that infants expect actions to
have goals, and that goals provide forward-looking sufficient reasons
for the actions. Goals should justify actions in the given context.

A goal is a particular kind of physical causal effect of an action
(but see Section 4.2.2 for a more nuanced understanding). Hence
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goal-centered reasoning about actions is supported by causal repre-
sentations. In order to attribute goals to actions, and to understand
some actions as means for some states of the world, one must have a
grasp of physical causal relations. Empirical evidence demonstrates
that infants reason in terms of causes and effects about motion events
and qualitative state changes before 12 months of age [40]. More-
over, by 2 years, causal reasoning is co-opted for learning, e.g., about
artifact functions [20].

Two principles that guide causal reasoning in infancy are of spe-
cial interest to us (see Section 6): contact causality, and inertia. The
former refers to the fact that observation of spatio-temporal contigu-
ity between events signals a causal relation. The principle of inertia
states that a property persists unless acted on by an outside force.
We briefly introduce the empirical evidence that shows infants’ re-
liance on the two causal principles. We begin with contact causality.
Because of its early development (around 6 months of age [31]) and
its generative power, it has been argued that it serves as the founda-
tion of human causal understanding (see [40] for a critical discus-
sion). When 7.5-month-olds observe repeatedly that contact between
a moving object and a stationary one, is followed by the latter’s be-
ing set in motion, they take the resulting motion state to be an ef-
fect of the contact event. This is evidenced by surprise if contact is
not followed by motion, and if the second object starts to move al-
though contact between the two is rendered impossible by the pres-
ence of a barrier [28]. The latter condition of surprise may also be
taken as evidence for some rudimentary use of inertia in causal in-
ferences. Just several months later, 10-month-olds’ causal inferences
show clearer signs of using the principle of inertia; the evidence be-
comes even more reliable in 1-year-olds [51]. For example, infants
are surprised by objects moving rectilinearly, and change their rec-
tilinear path (e.g., by making a sudden U-turn) without any interfer-
ence.

Planning is a notable kind of goal-based reasoning, which leads
to proactive behavior. It is particularly relevant in action production.
Claxton and her colleagues [5] have proven that 10-month-olds al-
ready show an impressive level of sophistication in adapting the kine-
matics of their reaching actions to the particular goal they set in a
given context (i.e. throwing a ball into a tub, or fitting it into a tube).
The ability to plan motor responses for a desired outcome is therefore
in place several months before infants engage selectively in imitation
of observed novel means actions. We suggest that planning compu-
tations play a role not only in action production, but that they are
recruited in the explanatory interpretation of the actions performed
by an observed agent (see Section 6).

The other crucial aspect that we introduced in Section 3 was that
selective imitative behavior attests observational learning. Human in-
fants proneness to learn from conspecifics has been often taken to be
a uniquely human feature [4], [9]. Aside from the physical factors
that influence the differential imitation rate in HandsFree – HandsOc-
cupied, selectivity of behavior is also shaped by social determinants.
This requires credulity in the rationality, authority, and bona fide of
observed agents. Only some agents trigger infants’ credulity. In [61]
it was shown, in an experiment in the same paradigm as the light-box
tasks, that no learning occurs if the role of the experimenter is played
by a same-aged peer, or by an older (3-4 years old) child. In [26] only
agents with pro-social behavior, agents who communicate to the chil-
dren, are granted a credulous perception of their suboptimal actions.
Such results bring support for the developmentalist thesis of natural
pedagogy [11]. The thesis holds that human communication is such
that it allows the transmission of relevant, useful knowledge between
individuals, and that human infants are adapted to play the receptive

role by particular sensitivity to being addressed in communication.
This is, infants’ readiness to learn by imitation is a manifestation of
the pedagogical stance with respect to observed human actions.

Given the cited empirical data, we conclude that an explanation of
the experimental data on selective imitation that hinges on the capac-
ities introduced above is not like putting the cog in infant cognition
(cf. [21]).

These cognitive skills manifest themselves in the reasoning pro-
cesses claimed to support behavior; Section 4.2 zooms in on the pe-
culiarities of the processes. In Section 5 we go on to show how these
abilities may be captured in a formal system. Section 6 details how
the computations unravel.

4.2 Central features of the reasoning processes.

We propose that the processes that support observational learning by
imitation are a form of closed world reasoning. Moreover, infants’
goals are represented at different levels of abstraction. Relatedly, the
selectivity of behavior is underlain by multi-level reasoning threads
that go beyond object-level inferences, within the realm of physical
causality.

Closed world reasoning refers to the use of assumptions in order
to bring the inferential space to manageable dimensions, under time
constraints. The basic format is the closed world assumption for rea-
soning about abnormalities – CWAab. It prescribes that, if there is
no positive information that a given event occurs, one may assume
it does not occur. In practice, these ‘given events’ are abnormali-
ties with respect to the smooth, habitual running of a process. For
example, if every day I cycle to university, having a flat tire is an ab-
normality. Before I observe it, my plan to go to the university need
not take into account the possibility that it occurs. I can safely as-
sume that I need everything there is to know about the journey from
my house to the university. A similar intuition is expressed in [30]
by referring to principles like the CWAab as “hidden auto-epistemic
premises”. Reasoning with such assumptions is defeasible, and its
conclusions are open to revision. When new facts are added to the
reasoning database, e.g., the observation of a flat tire, the conclusion
previously licensed by CWAab, e.g., an action rule of the form In or-
der to go to university, mount on the bike, may have to be retracted.
In this sense the use of CWA is flexible, and closed world reasoning
is non-monotonic. And it’d better be, for else, how would we ever
learn anything new?

4.2.1 Goal-centered reasoning: interpretation and planning
with closed world assumptions.

The basic aspect of action processing that may result, under cer-
tain conditions, in imitative behavior was hypothesized to be the use
of the teleological stance for interpretive explanatory purposes [15].
Children’s teleological interpretation of actions aims to make sense
of the observed context. It does so by searching justificatory reasons
for the actions observed. Goals provide the expected justifications.
The processing involved in teleological interpretation is tripartite. It
aggregates an observed action, relevant aspects of the context of ob-
servation, and a goal state [6], [19]. The inferential processes may
be performed in two directions: attributing goals to observed actions
(action-to-goal), and understanding observed actions as means for
previously derived goals (goal-to-action). These processes constitute
a normative appraisal of actions with respect to the goals that they
are expected to bring about.
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The concerns of goal-centered reasoning are well known in phi-
losophy [14], logic and artificial intelligence [33], [46], or empirical
sciences of the brain and mind [49], [10]. They threaten the attempts
to make reasoning about goals explicit, both in the case of goal at-
tribution and in the reverse direction of action planning. How is one
to attribute goals to actions, or to plan ahead one’s actions for one’s
goals, if one is faced with multifinality, equifinality, and quasi infinite
possibilities of unexpected events? Nevertheless, despite computa-
tional complexity, even the youngest members of the human species
show in their behavior the ability to bypass gracefully the problem.

One relevant attempt to explain this proneness and ease to reason
about goals has been by resort to positing the use of constraining as-
sumptions on inferences; their function is to reduce the inferential
scope to manageable dimensions. An example of such a strategy is
spotting causal relations of the kind ‘x causes y1, y2, . . . , yn’, and
then picking yk to be x’s goal based on evaluation of the efficiency
of x in bringing about yk. An assumption of this kind was labeled ei-
ther the principle of rational action, or the principle of efficiency, the
two being used interchangeably. “The outcome (the effect) of an ac-
tion may, or may not, be seen as the goal, depending on whether the
outcome is judged to justify the action in the given situation. Such
normative evaluation of actions is based on the principle of ratio-
nal action (Csibra & Gergely, 1998; Gergely & Csibra, 2003), which
allows for the assessment of the relative efficiency of the action per-
formed to achieve the goal within the situational constraints given.”
([10]: 7).

With certain reserves regarding a blunt equation of rationality with
processing in terms of physical efficiency (see Section 4.2.2), we
share the proposed strategy for dealing with reasoning about goals.
More specifically, along the lines of [53] and [55], we propose that
the inferential processes at work in the current task are guided by
closed world assumptions. In this sense we take the principle of ef-
ficiency to be but one example of such an assumption. Should the
explanatory attempt fail to provide a satisfactory teleological inter-
pretation grounded in this principle, ‘efficiency’ may be understood
with a wider scope where non-physical factors are taken into consid-
eration (see Section 4.2.2). Thus, the assumptions are used flexibly.

Closed world assumptions require the reasoner to construct a min-
imal teleological interpretation of a situation. This process has been
labeled reasoning toward an interpretation [53]. A useful formulation
of the CWA for action interpretation is All actions are forced to occur
by the data.. In the context of teleological evaluation ‘the data’ refers
to the physical goals of actions. This formulation of the assumption
captures the idea introduced above, that goals justify actions. More
precisely, an action is forced to occur by its goal if it is the most
efficient one, given contextual constraints, for the goal. Initially just
the first-order physical features are relevant for considerations of ac-
tions’ efficiency in bringing about goals.

The next step is the process of reasoning from this minimal inter-
pretation [53]. For the tasks in question, this process refers to plan-
ning. The ‘conclusions’ of the inferential process are action rules
that eventually lead the reasoner to action execution. The CWAab for
planning prescribes that, If there is no positive information that some-
thing is amiss, one can assume that nothing abnormal is the case and
proceed to action according to prior knowledge. Under a minimal in-
terpretation, as far as they know, the infants in the described task may
proceed to action. Closed world reasoning licenses action upon the
artifact the way they already know how, i.e. enactment of the prepo-
tent motor response of a hand touch.

4.2.2 Multi-leveled goal representations: beyond physical
efficiency.

One way to understand the reasoning processes involved in the task is
to see them as connecting goals represented at different levels of ab-
straction, and thereby supporting action performance. We introduce
such a distinction between maintenance and achievement goals. The
distinction arises from taking seriously the hierarchical nature of goal
representations.

Agents have concrete achievement goals, or desires to make a cer-
tain state of the world come about. One’s desire to submit a paper,
or to turn on a light are good examples of this kind. In the suggested
model, these are the kind of goals that infants reduce through back-
ward reasoning to executable actions, both in the case of plan recog-
nition (for the observed agent), and of the generation of their own
action plans.

At a more abstract level4, agents can have maintenance goals,
which maintain the agent in some desired, stable, balanced relation
with the ever changing state of the world. They refer thus to states
that must remain true. Their function is to motivate agents to set
achievement goals upon which to act.

This distinction originates in the AI literature with respect to au-
tonomous intelligent agents and multiagent systems (e.g., [12], [22]).
It is particularly useful for understanding the processes that under-
lie infants’ imitation of novel suboptimal means actions. In short,
the idea is that behavior may be suboptimal with respect to con-
crete goals, yet optimal for maintaining a certain relationship with
the world.

Neither concrete, nor the more abstract goals are activated ex ni-
hilo. Goals are elicited by things in the world. The conditions of ac-
tivation specify in greater detail, narrow down as it were, the goal
representation itself. The fact that goals are activated under some cir-
cumstances can be captured in a formal language by a conditional5

representation: ‘If certain conditions obtain then a certain state of af-
fairs is to be pursued’. Once the antecedent is made true by a certain
context, the consequent must be made true by the reasoner. It is rep-
resented formally as an integrity constraint (see Section 5). Further
reasoning derives an instance of the maintenance goal. This is set as
the achievement goal to be pursued. Planning derivations then reduce
it to action, which the reasoner executes.

The distinction between maintenance and achievement goal repre-
sentations has significant consequences for the computational strate-
gies used to reason with such goals. The continuous nature of mainte-
nance goals manifests itself in that, once activated, their conclusions
constrain the upcoming inferential processes. As such, reasoning is
shaped by maintenance goals.

The model is developed on the empirically grounded assumption
that infants’ maintenance-goals in these tasks are:

1. If action then physical goal (i.e., assign goals to actions);
2. If communication then trust (i.e., trust communicating agents);
3. If trust and abduction with respect to physical goals fails then

learn (i.e., learn from trustworthy agents whose actions do not bear
a univocal plan assignment with respect to physical goals).

(1) expresses the teleological stance [19], [10], whereas (2) and

4 The characterization of achievement goals as ‘concrete’, and of mainte-
nance goals as ‘abstract’ refers to proximity, and distance, respectively, to
concrete realization in action.

5 The conditional as used here has a different semantics from the non-
monotonic conditionals of logic programs, used to express infants’ rep-
resentations of action rules. See, for instance, the discussion about the se-
mantics of integrity constraints in the Appendix to [30].
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(3) flesh out the pedagogical stance [11]. (1) is an object-level goal –
it accounts for a basic level of understanding actions in terms of the
physical goals that they bring about. Thus it guides infants’ reasoning
across conditions, irrespective of manipulations of social factors. The
second and third maintenance-goals, on the other hand, pertain to
meta-reasoning. They involve thinking about the observed agent’s in-
tentions (e.g. potential pedagogical intention), and not simply about
the goals of her actions. The constraint ‘trust’ is triggered by the
communicative, prosocial manifestation of the observed agent6. If
the agent is communicative, her actions may be trusted. The inability
to provide a goal-framed object-level explanation for observations,
and trust in the observed communicating agent, are prerequisites of
learning. In case both obtain, actions may be interpreted as manifes-
tations of the intention to convey new and relevant knowledge [11]
about how to operate the light-box, and learnt.

4.2.3 Overriding what is known: learning as
non-monotonic processing.

Although an optimal action response (the prepotent hand action) is
always available to infants, under some conditions many of them
reenact the observed suboptimal means action. This is learning by
imitation. We emphasize a particularly significant feature of the rea-
soning that supports learning: non-monotonicity.

Learning amounts to overriding the prepotent response because of
evidence for abnormalities. In order to make explicit that action rules
can be overridden, we formulate them like To bring about state s do
action a, unless something abnormal is the case. When there is posi-
tive evidence that something abnormal is the case, the optimal action
a can be set aside. In such conditions performance of a suboptimal
action does not deviate from rational behavior.

In the light-box tasks, the choice of suboptimal behavior with re-
spect to physical efficiency may be seen as the result of violation of
the CWA for action interpretation. More precisely, we suggest that
in the Communicative-HandsFree setup the interpretation of the cur-
rent context outputs an abnormality. If a certain observed action is
not forced to occur by physical, object-level teleological processing
of the context in which it occurs, it constitutes an abnormality.

But in a Communicative context, the maintenance goal ‘trust’ has
been activated by the communicative agent. This means that the two
conditions of the epistemic maintenance goal are both active. There-
fore the constraint ‘learn’ is triggered, and it takes effect on infants’
further computations.

Learning then means that if the interpretation of the current con-
text calls for (e.g. by exhibiting a violation of the CWA in a com-
municative setting), then the database available for planning own ac-
tions should be augmented to include the action that generated the
abnormality. The CWAab for planning no longer guides infants’ on-
line planning computation in the presence of an abnormality. The
integrity constraint ‘learn’ requires the reduction of the achievement
goal to the novel action (see Section 6). The prepotent rule for ac-
tion is overridden. The novel action is thus a rational substitute for
the prepotent response. Its reenactment is optimal with respect to in-
fants’ maintenance epistemic goal.

This flexible application of the CWAab for planning is an overt

6 More likely than not the conditions of activation of trust go beyond this
plain treatment. Although a basic sort of trust seems to be indeed activated
automatically, by plausibly low-level perceptual mechanism (cf. [11]; see
also [59] for behavioral effects of trustworthiness judgments on adults fa-
cial processing) future work, both empirical and modelling-theoretical, is
called for.

manifestation of the non-monotonic character of the human inferen-
tial strategies involved in observational learning about actions.

5 The logical formalism.

In [30] Kowalski makes the general point that agents “may use Logic
to represent their beliefs about the way the world is, and to repre-
sent their goals for the way they would like the world to be”. We in-
tend to make use of the representational format of the event calculus
[47], [48] and the computational resources of constraint logic pro-
gramming (CLP) [24] for precisely these purposes. We model how
young reasoners interpret the instrumental actions that they observe
another human agent performing, thereby set achievement goals, and
subsequently compute their own action plans. The model’s working
assumption is that the dynamic reasoning processes performed over
representational structures expressed with the event calculus pred-
icates output by means of CLP derivation rules the behaviors that
infants exhibit in their task performance.

The event calculus was introduced by Kowalski and Sergot [29]
as a formalism for representing events and their effects. Originally it
was meant to address the concerns with respect to path planning in
robotics, using logic programming as an inferential engine.

Constitutive features of the formalism composed of the
event calculus language and CLP, furnish background rea-
sons for its use in cognitive modelling. First, the expressive
capacity of the event calculus is fairly good. Its causal pred-
icates formalize two notions of cause, instantaneous and
continuous [55]. Initiates(action, property, time) and
Terminates(action, property, time) represent the instanta-
neous effects of actions. They are just what is needed to form
causal representations with the principle of contact causality.
Trajectory(force, time, property, duration) expresses continu-
ous causation, by linking a property to a force exerted over time that
makes it be the case. It is a needed ingredient to represent infants’
causal observations that are grounded by inertia. We reckoned
these two principles to be essential for infants’ causal processing in
general (see Section 4.1). We are thus justified to believe that the
formalism can capture the understanding of the world’s dynamics
necessary for performance in the light-box tasks (see the empirical
evidence reviewed in Section 4.1). Some examples of infants’
representations of the current context using the event calculus are
provided in Section 6.

Second, the non-monotonic consequence relation specific to logic
programming with the closed world assumption is computationally
efficient [55]. It is less complex than other formalisms (e.g. classical
logic) whose inapplicability to formal descriptions of actual human
reasoning has been shown times and again (e.g. [3], [56]). Moreover,
logic programming is also less complex than other non-monotonic
logics, such as Reiter’s default logic [42] because it does not involve
consistency checks [55]. The logical notion of reduced complexity
implies that, as a computational tool, it places lower demands on the
processing capacities of working memory. Consequently it may serve
well cognitive modelling endeavors.

Finally, the cognitive relevance of the event calculus with CLP
has been demonstrated explicitly from a variety of perspectives: suc-
cessful applications to discourse interpretation [55], formalization of
cognitive tasks, which facilitated the derivation of predictions with
respect to autistic subjects’ performance on those tasks [38], or ap-
pealing implementations in neural networks [53]. The first example
is particularly relevant because it exploits precisely the use of hu-
man cognitive capacities for planning in the construction of temporal
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meaning; thereby a cognitive formal semantics of tensed speech is
provided based on a formalism for planning.

We argued in Section 4.2 that infants’ inferential processes in the
light-box tasks are a form of non-monotonic goal-centered closed
world reasoning. Negation as failure (NAF) is the basic formal man-
ifestation of closed world reasoning [53], [55]. It can be used to de-
scribe each of the three parameters of the formalism, i.e., syntactic,
semantic, and notion of validity. Therefore the suggested logical for-
malism embeds closed world reasoning at each of these levels.

Syntactically, NAF is a rule of inference itself [30]. Moreover,
the event calculus axiomatizes the commonsense principle of iner-
tia. Happens(e, t) ∧ Initiates(e, f, t) ∧ t < t

′
∧ ¬Clipped(t, f, t

′
)

→ HoldsAt(f, t
′
) is Axiom 2 in the set of the event calculus axioms

in [55]. It is an expression of the principle of inertia with respect
to instantaneous change. It states that unless there is explicit infor-
mation about a causally relevant event in a given temporal interval
(¬Clipped(t, f, t

′
)), the resultant state of an event continues to hold.

This serves well to formalize infant’s inertial causal reasoning.
Semantically, NAF is linked to the idea that computations with the

CLP inference rules are performed in minimal models [55], [53]. A
model of a situation is minimal in the sense that the occurrences of
events and their causal influences are restricted to what is required
by the observed facts, and the axioms of the event calculus. Such
minimal models are closed worlds. With respect to the meaning of
truth connectives, it is especially worthwhile to emphasize that the
→ of logic programming is an excellent candidate for formalizing
default action rules, open to revision (see Section 4.2.3).

From the standpoint of the definition of validity, CLP has a non-
monotonic consequence relation. The addition of new information
may defeat and lead to retraction or revision of previously held con-
clusions, such as previously known action rules. This allows flexible
computations with the principle of inertia, and thereby it allows up-
dates and changes in knowledge databases.

Consequently, the event calculus with CLP serves as a good rep-
resentational and computational specification of practical reasoning
with the features outlined throughout Section 4.2.

We use by and large the same version of the formalism as in [55] to
model the processes that subserve imitative learning. Goal-centered
reasoning about actions proceeds in two directions, by means of two
inference rules: reasoning forward (as used in, e.g., attribution of
goals to actions), and reasoning backward (from the inferred goals,
as in planning)7. The main syntactic strategy in forward inferencing
is unification using algorithms provided in [43]. Forward reasoning
also manifests itself in cumulative application of the axioms of the
event calculus to make inferences about properties of the world that
hold at certain time points. Backward reasoning is the basic proce-
dure to reduce a goal to subgoals, all the way down to executable ac-
tions. Infants’ planning computations are essentially backward com-
putations from goals. We suggested in Section 3.1 that they are also
recruited in the process of action interpretation. Devising plan struc-
tures for an observed agent serves explanatory purposes. The iso-
morphism between planning and explanatory practices has been ex-
ploited before (e.g. by representing both processes in terms of the
logical language of the event calculus in [47], [48]). We suggest that
the young reasoners use abduction for teleological interpretation of
observations in the light-box tasks in the form of plan recognition
(see Section 6).

Activated maintenance goals are expressed as integrity constraints

7 Note the overlap with the psychological problematization of teleological
action processing introduced in Section 4.2.1

[55], [30] on subsequent derivations. They impose norms on how
one interprets a set of observations and, consequently, on what one is
willing to do. Integrity constraints require, or prohibit, certain move-
ments in the reasoning strategies used.

6 The reasoning steps.

Finally, we detail the reasoning steps suggested to underpin infants’
behavior in the light-box tasks. Table 2 provides a synopsis of the
kinds of reasoning processes, and their inferential/ behavioral out-
puts.

Table 2. The reasoning processes involved in task performance.

Reasoning Database Syntactic Outcomeprocess strategy

Goal attribution current observation unification goal hypotheses

Offline planning prior knowledge bwd. chaining action rule
from main goal (own)

Abduction updated bwd. chaining action rule
(plan recognition) current observation from both goals (agent’s)

Online planning updated bwd. chaining action
current observation from main goal (agent’s)

Infants behave as rational observers and, consequently, rational
actors. The reasoning is two-staged: teleological interpretation of
the observed context, and backward action planning. Computations
are guided by meta-reasoning, which sets the maintenance socio-
epistemic goals of infants. Interpretation is a psychological term to
refer to model construction. Credulous reasoning engages in con-
structing a single, intended model [53]. This is a minimal model,
whose construction is guided by closed world assumptions. The prin-
ciple of efficiency of actions with respect to physical goals (referred
to in Section 4.2.1) is one such assumption that regulates the process
of goal attribution.The output from the interpretation stage shapes
the computations involved in infants’ planning of their own actions.
It does so by outputting an achievement goal to be pursued. The ac-
tivated integrity constraints regulate the goal-reduction derivations.
These reasoning processes result in plan execution. This is infants’
action performance, which constitutes the dependent variable in the
tasks described. As such, goal-centered reasoning mediates between
the experimental input variables and the behavioral output.

Upon action presentation infants individuate events and construct
a database of current observations, which consists of a narrative of
events, and a causal model. A clause in the narrative looks like
Happens(contacthead, t); it expresses infants’ observation that the
agent contacts the light-box with her head. The constitutive ele-
ments of the causal model are the principle of contact causality,
and the principle of inertia. The former allows a clause such as
Happens(contact, t1)∧ Initiates(contact, light− on, t2)∧ t1 <
t2 to represent infants’ observation that the light-on state is an ef-
fect of the contacting event. The latter licenses the use of the formula
Trajectory(scarf(on), s, warm, s + d) to express infants’ infer-
ence that if the scarf is on the agent for some time, then she will feel
warm.

The young reasoners open placeholders for actions’ goals, and en-
gage in goal attribution. The teleological stance integrity constraint
looks like ?Initiates(action, goal, t) succeeds. It is resolved via
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forward inferential processes over the observed actions. These pro-
cesses apply the unification algorithm [43], which results in concrete
goals assigned to the observed actions. We suggest that in this first
stage two goals are derived. Firstly, the agent is attributed the main-
tenance goal ‘keep warm’ triggered by the behavioral signs she con-
veys. It is reduced by backward reasoning to a concrete achievement
goal of the kind ‘action to the effect not-cold’, or ‘make warm’. Sec-
ondly, the unusual head contact causes the light activation (by con-
tact causality). Since there is no other salient effect of the action the
state ‘light-on’ is conjectured to be the achievement goal. Because
novelty generates uncertainty, this goal is defeasible and it requires
validation.

Validation is done via planning derivations. The first step is offline
planning, whereby backward computations generate infants’ motor
plan for the uncertain achievement goal. The result is an action rule
that allows exceptions. It reads as Light-on, if hand contact and noth-
ing abnormal is the case. In other words, the goal activates the pre-
potent response most strongly associated with it. The rule is arrived
at via backward reasoning from the goal ‘light-on’ over a database
comprising only infants’ prior knowledge; current observations are
ignored. The computations here account for one of the components
of the explanandum, namely that across conditions all infants per-
form a hand action on the light-box.

If state light-on is observed but hand contact is not, the action
rule derived by offline planning is in conflict with the current ob-
servations. Conflict resolution amounts to searching in the observed
context an abnormality with respect to infants’ own action rule.
The abnormality condition is expressed in the model as yet an-
other integrity constraint, stating that simultaneous goals may pro-
vide exceptions to action rules: if hand is necessary for goal g2 at t,
then there is an abnormality of hand with respect to g1 at t. More
formally, IF ?x 6= hand, Initiates(hand, g2, t) fails THEN
?ab(hand, g1, t)succeeds. The abnormality would provide an ex-
ception to the prepotent rule. This would explain agent’s choice of an
unusual action to the effect light-on. Infants engage in planning com-
putations starting from both assigned goals. The process is abductive:
it seeks an integrated action plan to be assigned to the observed agent
who pursues more than one goal at a time. The conflict is resolved
if that ‘something abnormal being the case’ that justifies the unusual
action is found.

In the HandsOccupied condition the agent’s side achievement goal
‘make warm’ reduces to the observed hand action with the scarf.
Their continuous exertion of force on the scarf is necessary to bring
about the agent’s maintenance goal ‘keep warm’. The integrity con-
straint above recommends it as an abnormality with respect to the
prepotent rule. Because she couldn’t have done otherwise, the agent’s
execution of an action rule like Light-on if head contact is justified.
It is acceptable as the plan assigned to a rational agent in the excep-
tional conditions where she has two goals to pursue simultaneously.
The reasoner, whose context is not exceptional (i.e., she does not
have a side goal to accomplish), has no good enough reason to en-
gage in further time-consuming computations. Thus infants execute
the action computed in offline planning.

In the HandsFree condition, the object-level plan recognition en-
deavor fails because nothing (i.e., no side goal) forces the occurrence
of the head action. It is impossible for infants to derive a univocal
plan of actions for the observed agent. The CWA is violated. Her
action choices are not justified in a minimal model where only the
physical goals of actions are relevant: she could have done otherwise.
The Communicative setup provides information about the potential
pedagogical character of the demonstration. This furnishes a way to

manage failed abduction. The activated ‘trust’ constraint sets infants
in a learning-prone mode. It links the social notion of ‘communica-
tion’ with the epistemic notion ‘learn’ when the reasoner’s abductive
attempts fail. Their goal is now epistemic, and the criterion of phys-
ical efficiency in action performance can be overridden. The content
of the knowledge conveyed by the agent is specialized to the abnor-
mal means action performed with the head. The constraint ‘learn’
takes effect on infants’ online planning computations. It constrains
the reduction of the achievement goal ‘light-on’ to the novel, under-
explained ‘head-contact’. This is how imitation takes place, and how
children learn a new way to use the light-box.

All in all, in a Communicative setting, infants are inclined to revise
their own prepotent action-rule Light-on, if hand contact and nothing
abnormal is the case upon observation of an under-explained novel
head action to the effect ‘light-on’.

7 Conclusions: wrapping up and further on.

As we showed through fleshing out the reasoning steps at work
in the only experimental case where imitation is significant
(Communicative–HandsFree), the modelling explanatory strategy al-
lows a detailed perspective upon the kind of learning behavior exhib-
ited by infants in the light-box tasks. It provides a red thread that
connects the experimental manipulations with the findings. We have
made at least some steps toward clarifying the complex interaction
between action evaluation in terms of physical causality, and the in-
clusion of higher-order reasons for actions involving (communica-
tive – pedagogical) intentions, that seem to support observational
learning. The developmental trajectory of these complex reasoning
skills is a proper avenue for future research, from which modelling
should not be missing. Moreover, the model sets directions for expla-
nations of the differences between human infants’ and primates’ per-
formance in similar tasks. These may have to do with the cognitive
capacity for planning and its use for action understanding, as well as
with understanding the pedagogical intentions of conspecifics.

We have shown that infants imitation in the light-box paradigm
qualifies as rational behavior that evidences selective learning. We
did so by showing that it is supported by non-monotonic reason-
ing processes with closed world assumptions about actions’ goals
and agent’s intentions. We briefly reviewed empirical evidence that
shows 14-month-old infants’ capacity for the required complex rea-
soning. The proposed approach recommends that the rationality of
the exhibited behavior is to be formulated as efficiency with respect
to socio-epistemic goals that bypass the more basic efficiency princi-
ple with respect to physical goals. We provided an informal descrip-
tion of the computations, and showed that they could be captured
with the means made available by the formalism of the event calcu-
lus with CLP. Therefore we put forth an argument that the modelling
enterprise is possible. The current formal approach should inspire
research into the issue of practical implementations of the computa-
tions that lead to selective learning from action observations.

A lot more is left to be explained, from within the same perspec-
tive. For example, more needs to be added to the conditions of the
‘trust’ constraint on action interpretation; most likely it is not as sim-
ple as communicative agents trigger epistemic trust which thereby
fosters learning new instrumental actions. The older the children
grow, the more complex the activation conditions of trust based on
social and epistemic factors is reckoned to be (see [32]’s study with
3-5-year olds, or [52] for a theoretical overview). The formalization
is meant to facilitate integrated explanations for these phenomena,
and to capture their evolution throughout development.
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All in all the benefit of formalization is expected to manifest itself
on at least two directions. First, by providing principled descriptions
of the succession of internal states that connect the experimental in-
put variables to the behavioral output, it corroborates and refines the
claim of some developmental psychologists that infants behavioral
performance is supported by reasoning processes. Second, such fine-
grained explanations are expected to integrate various trends of re-
lated research, and to lead to new and precise experimental predic-
tions. Hence the model is not only empirically well grounded, and
thus psychologically plausible, but its further development is called
for.
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Grasp Learning by Means of Developing Sensorimotor
Schemas and Generic World Knowledge

Norbert Kruger1 and Mila Popovic1 and Leon Bodenhagen1 and Dirk Kraft1 and Frank Guerin2

Abstract. We present a cognitive system in which grasping com-
petences are coded by means of a formalisation of sensory motor
schemas in terms of so called ‘object action complexes’ (OACs).
OACs define the knowledge of the system via the effects and precon-
dition of certain behavioural patterns, and also code the uncertainty
associated with their execution. OACs are grounded through the ob-
servation and evaluation of individual executions generating ‘exper-
iments’, and dynamically adapt through using these experiments for
learning. Moreover, in parallel with the development and refinement
of OACs, generic world knowledge is permanently generated by the
system which affects the OACs on a meta level and provides a means
for the generation of new competences and better generalisation. We
present an example of a developing system executing OACs which
code the grasping of known and unknown objects, and thereby illus-
trate (i) the refinement of OACs and (ii) building up generic world
knowledge. We see this as particularly important since these inter-
action processes, although fundamental for human development, are
usually difficult to observe by means of techniques in neurophysiol-
ogy and developmental psychology.

1 Introduction

Cognitive development seems to proceed at a number of different
levels of abstraction: for example there are low level developments
such as perception-action control loops for basic sensorimotor skills
involved in reaching, grasping, object manipulation, and walking; in
parallel with this there are higher developments in the knowledge of
objects, physical causality, and spatial relationships (these are more
abstract than the lower level, and allow for application in a range
of scenarios). There is a strong connection between these parallel
tracks; higher-level knowledge seems to be abstracted from lower
level context specific sensorimotor routines (see e.g. [31]), and seems
to arrive after the acquisition of skills at the lower level. In the other
direction, the higher level knowledge, once attained, can be used to
improve the appropriate application and adjustment of lower level
skills (see e.g. Piaget on the “support” [24, 25]). A major challenge
is to explain (mechanistically) how this parallel development works.
Such an explanation seems to be necessary in order to understand
how such advanced abilities as tool-use develop ontogenetically in
humans; contemporary opinion in psychology holds that advanced
tool-use has its origins in infants’ early exploratory interactions with
objects and surfaces, and that the development from these precursors
to advanced manipulations is gradual and continuous [19].
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In this paper we tackle one fragment of this development: that is
the fragment related to grasping; at lower levels of abstraction we can
learn specific sensorimotor routines for grasping specific objects, but
at a higher level (and in parallel) we can learn more generic object
knowledge which can improve the grasping of known objects, and
also help us to grasp novel objects. More specifically we capture the
sensorimotor skill of grasping within the framework of Object Ac-
tion Complexes (OACs) (a formal framework introduced in [18, 38]).
The formalism of OACs is a skeleton — which integrates existing
concepts in the field of artificial intelligence as well as (behavioural
and) cognitive robotics (see Sec. 2) — that can be used to formalise
adaptive and predictive behaviours on different levels of the process-
ing hierarchy. OAC executions generate empirical data in terms of
so called ‘experiments’, and these lead to different kinds of learning
which are clearly distinguished. This learning ensures grounding and
leads to an ongoing improvement of the overall system through adap-
tation and learning. By that OACs should be able to reach from low
level reactive actions to conscious planning through the experience
of actions applied to objects in the world (for details, see [18]). In
this paper, we will use this OAC concept to outline a framework for
the development of sensorimotor skills associated with grasping as
well as the parallel development of generic world knowledge.

As one innate grasping mechanism we make use of simple man-
ually defined feature–action associations (see [27]) triggered by the
early cognitive vision system [29]. These association are motivated
by innate ‘grasping reflexes’ in infants although they differ in detail
due to different embodiments (see [17] for a discussion of similar-
ities and differences to infant’s grasping). This initial ‘grasping re-
flex’ is coded as an object action complex OACgen. It becomes re-
fined during its application in the exploration process through learn-
ing. In a process (described in detail in [17]) triggered by OACgen,
world knowledge in terms of object shape knowledge is extracted.
Once this shape knowledge is available to the system, object spe-
cific grasp knowledge is learned and coded in terms of a second
OAC OACgrasp

o . While OACgen codes generic feature grasp as-
sociations, OACgrasp

o associates grasp knowledge with a specific
learned object o based on the concept of grasp densities as outlined
in [10]. OACgrasp

o and OACgen code two different strategies as-
sociated with different branches of grasp research. While OACgen

codes generic grasp affordances (see, e.g.,[30, 8, 5, 27] for work re-
lated to generic grasping), OACgrasp

o addresses the grasping of spe-
cific objects (see, e.g., [4, 20, 15, 10]).

In this paper, we outline how these two kinds of OACs develop
in parallel in a cognitive system, generate generic world knowledge
and in particular support each other by making use of this developing
generic world knowledge. This builds on existing work where we
have shown that
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• Innately defined feature action associations can already lead to
rather high performance grasping [27].

• Both OACs are refined over time through learning processes asso-
ciated with the OACs individually [27, 10].

• OACgen can be used to initiate the developmental process of
OACgrasp

o [17].

Building on this background, the current paper shows that conver-
gence speed is a fundamental problem associated with OACgrasp

o

which is basically ‘learning by heart’ with only little generalisa-
tion by means of local interpolation (See Sec. 5.2). Furthermore, on
the strength of our first experimental indications described here, we
make the following speculative predictions

• OACgrasp
o delivers the statistical material for the branching of

OACgen into new OACs expressing new grasping affordances.
This is done by finding indicative feature relations–grasp associ-
ation in co-occurrence tables coding visual feature relation and
the grasping success associated with grasps related to them (see
Sec. 6.2).

• OACgrasp
o and OACgen deliver the statistical material to

fundamentally change the learning algorithm associated with
OACgrasp

o and by that lead to a faster convergence of OACgrasp
o .

This is done by using the co-occurrence statistics to refine kernels
in the KDE approach [32] applied in the grasp density concept
(See Sec. 6.1).

• Finally, at the end of the developmental process, OACgen (cod-
ing grasping without object knowledge) eventually becomes pow-
erful enough to generate grasp densities close to the ones which
are initially tediously learned by OACgrasp

o , hence that there is
no fundamental difference between grasping known and unknown
objects anymore.

This paper will partly refer to already published work [27, 10, 17]
while putting it in a developmental context, partly refer novel and
ongoing work with new (and to a certain degree intermediate) results
and partly make speculative predictions based on available data. The
aim is to put existing and ongoing work in a wider context addressing
the fundamental problem of learning of sensory motor schemas for
tool use in an embodied robot system.

2 Sensorimotor schemas and object action
complexes

The sensorimotor schema3 as defined by Piaget and others [26, 9]
is a dynamic entity that gathers together the perceptions and asso-
ciated actions involved in the performance of a habitual behaviour.
The schema represents knowledge generalised from all the experi-
ences of that behaviour. It also includes knowledge about the context
in which the behaviour was performed as well as expectations about
the effects. During cognitive development these schemas are refined
and combined. Object Action Complexes (OACs) are a formalisation
of such schemas to be used in artificial cognitive systems (see [18]).

An OAC’s definition is split into three parts, (1) a symbolic de-
scription consisting of a prediction function defined over an attribute
space, together with a measure of the reliability of the OAC, and (2)
an execution specification that defines how the OAC is executed by
the embodied system and generates experience in terms of ‘exper-
iments’ and (3) a specification of how the learning associated with

3 also called “sensorimotor process” [33], “skill” [13], or “perception-action
routine” [19].

Figure 1: Graphical representation of an OAC and the OAC learning
problems. This shows how the actual state wsa (corresponding to sa
in the model) resulting from the execution of the control program CP
diverges from the state sp predicted by the OAC’s prediction function
T . This divergence drives the learning (i.e. refinement) of the OAC.
For further explanation see text. Figure courtesy of Christopher Geib.

the OAC is realised based on the ‘experiments’ generated by the ex-
ecuted OACs. More formally (see also Fig. 1):

Definition 2.1 An Object-Action Complex (OAC) is a triple

(id, T,M) (1)

where:

• id is a unique identifier for an execution specification,
• T : S → S is a prediction function defined on an attribute

space S encoding the system’s beliefs as to how the world (and
the robot) will change if the control is executed , and

• M is a statistical measure representing the success of the OAC
within a window over the past.

An execution function execute (see below) can map an OAC id
to an ‘experiment’ which is defined the following way:

Definition 2.2 Given an attribute space S and an OAC with identi-
fier id defined on S, an experiment is a triple

(so, sp, sa) (2)

where:

• so ∈ S, captures the state of world before execution
• sp ∈ S such that OAC id predicts that state sp will result from

its execution in so, i.e., sp = Tid(so), and
• sa ∈ S such that sa is observed as a result of actually executing

OAC id in state so.

Thus, an experiment is an empirical event by which OACs will be
grounded in sensory experience.

As an empirical grounded event, such experiments can be used
to update OACs in cycles of execution and learning based on evalua-
tions of their success (see below). Note that sometimes an experiment
is actually not used directly for learning but stored in some short term
memory (see, e.g., [3]) until resources for learning are available (e.g.,
during ‘sleeping phases’).

The execution, i.e., the actual action associated to the OAC is de-
fied as following:
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Definition 2.3 execute is a function that maps an OAC id to an
experiment, i.e.,

execute : id→ expr = (so, sp, sa). (3)

The execute function is an operation that performs the OACs execu-
tion specification in the current world state, returning an experiment
expr.

The definition of OACs as capturing both symbolic and control
knowledge about actions highlights a number of learning problems
that must be addressed for OACs to be effective. We note that while
each of these learning problems can be addressed by recognising
the differences between predicted states and those states actually
achieved, they may still require different learning algorithms (e.g.,
Bayesian, neural network-like, parametric, non-parametric, etc.). It
is up to the OAC designer to choose an appropriate learning mecha-
nism.

As such, the following characterisations are intended to specify
those aspects of the OAC that are modified through learning, not the
method of learning. We consider four main learning problems, each
of which is labelled by its respective number in Fig. 1. These are (1)
learning control programs, (2) learning the prediction function, (3)
learning the mapping from states of the real world to states of the
model and (4) learning the prediction function’s long term statistics.
In our context, it is only the learning problems (1) and (4) which are
of relevance, these are referred to by updateCP and updateM respec-
tively. All learning functions take an experiment as an argument, e.g.,
updateCP(expr).

3 Overview: Developmental process in a cognitive
architecture

As mentioned in Sec. 1, cognitive development seems to proceed at a
number of different levels of abstraction. Fig. 2 shows two such par-
allel tracks of development. On the bottom is the sensorimotor track
which shows the development of lower level sensorimotor schemas
(SMSs), which are observable in infant behaviour. Each node in the
lower track corresponds to an SMS. A directed edge travels from
each ancestor node to its descendents; for example the SMS for
pulling a string descends from a basic grasping SMS. Some SMSs
have more than one ancestor; for example an infant means-end be-
haviour will have as ancestors one SMS for the means and one for
the goal. The top of Fig. 2 is the abstract track which shows the par-
allel development of the underlying world knowledge. Nodes in the
upper track correspond to (for example) fragments of object knowl-
edge which are common to a number of SMSs, and fragments of
spatial relationships; these are gradually linked up as development
progresses (to the right), to eventually form a more comprehensive
knowledge of objects and space. We must stress here that the early
fragments of object and spatial knowledge are likely to be very con-
text specific, and strongly associated with the sensorimotor schemas
they have been abstracted from. It is only after a long developmental
process moving to the right in Fig. 2) that these fragments become
more objective, and this developmental process must involve some
sort of “representational redescription” [7]. The evidence from the
psychology literature suggests that it is doubtful that very much ob-
jective knowledge is achieved during infancy, but rather that a high
degree of context specificity persists [34, 36, 1, see for example].

For the lower track we see a developmental process in which a
small set of innately defined SMSs lead to a large variety of SMSs
through branching and specialisation. During this developmental
process, the effects of the SMS become increasingly predictable and
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Figure 2: Conceptual diagram, overviewing infant developments on
both a low level sensorimotor track and a higher level representa-
tional track; for explanation see text (Sec. 3).

can then be used more and more purposefully by the cognitive agent
for the planning of behaviour. In parallel to (and triggered by) the
development of individual SMSs more generic world knowledge is
built up; as illustrated in the upper track of Fig. 2. This is done
through the abstraction of empirical data gained during the execution
of the SMSs on objects and associated actions. The central topic of
this paper is the parallel development and interaction of observable
sensorimotor schemas and the increasing abstract world knowledge
which is based on the experiments generated by the OACs.

In our case an “innate” SMS is a generic grasping OAC (which
would correspond to a single node to the lower left of Fig. 2). This
OAC then branches as different objects are encountered, spinning off
a new specific grasping OAC for each new object (in this paper three
example objects are tackled). On the upper track we have representa-
tions of objects which are acquired in “object memory” (see Fig. 7),
and also generic knowledge about the relations between low-level
visual features and the existence of grasping affordances.

Figure 2 also illustrates (with dashed curves) links between the ab-
stract and sensorimotor tracks; these links are bidirectional. To avoid
clutter only six links are shown, but in reality all representational
fragments will be linked to sensorimotor schemas. In one direction
representations are linked to the schemas they have been generalised
from (and hence can immediately link to actions which can manip-
ulate the represented object or spatial relation). In our grasping sys-
tem this means that the object representations, and general feature-
grasping relationships have been abstracted from lower level inter-
actions. In the other direction, more advanced schemas make use of
the newly formed representations, for example in their description of
the context in which a behaviour may be performed, or its effects, or
the control policy followed during execution of the schema. In our
grasping system this means that (i) the grasping of the three specific
objects which the system has practised on will be able to make use of
this more abstract knowledge once it is available, so the grasp success
rate will be much higher once sufficient statistics are gathered on the
general relationships between visual features and grasp success; (ii)
the grasping of novel objects, using the generic grasp OAC will also
leverage this generic knowledge leading it to also have a high degree
of success.
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Figure 3: System architecture, see section 4.1

4 Formalising grasping with and without object
knowledge: OACgrasp

o and OACgen

Grasping novel objects is one important example of sensorimotor
schemas (SMS) (see, e.g., [26, 21]). An important property of an
SMS is that it becomes grounded, refined and sometimes signifi-
cantly modified during the developmental process. In this section we
present the two OACs which formalise two sensorimotor schema as-
sociated with grasping, with and without object knowledge. Before
we describe these two OACs in more detail in section 4.2 and 4.3, we
give some basic information on the robot vision system in which the
developmental process is taking place in section 4.1.

4.1 System in which development is taking place
In the system we envisage, the grasping process is organised as
sketched in Fig. 3. The two OACs, OACgrasp

o and OACgen, follow
different paths. OACgen is based on combination of visual features
computed by the early cognitive vision (ECV) system (described be-
low). The output of the ECV system is used directly for produc-
ing grasping hypotheses (see also Fig. 11). In case of OACgrasp

o

the acquired image representation is compared against a database of
stored object models, and once the pose estimation is done it is pos-
sible through OACgrasp

o to access abstracted grasp knowledge for
the known objects in the scene (see section 4.3). Suggested grasp-
ing hypotheses can be tested (both in simulation or with the real
setup) and the results are used to continuously improve OACgrasp

o

and OACgen.
The visual representation extracted by the early cognitive vision

(ECV) system [29] provides rich visual representations for edge
structures, surfaces and junctions. Sparse 2D and 3D features, so-
called multi-modal primitives, are created along image contours and
textured areas. These 2D features represent a small image patch in
terms of position, orientation and also appearance information (e.g.,
colour and phase). Primitives describing edge patches are called line
segments, primitives describing textured surfaces are called texlets
and primitives describing corners (intersections of edges) are called
junctions. 2D primitives are matched across two stereo views, and
pairs of corresponding 2D features permit the reconstruction of a 3D

Figure 4: (a) an example stereo image pair. (b.1) 2D line segments
for the left and the right image. (b.2) a detail from b.1. (b.3) 3D line
segments. (b.4) 3D contours. (c.1) 2D texlets for the left image. (c.2)
disparity image. (c.3) a detail from c.1. (c.4) 3D texlets. (c.5) 3D
surflings.

equivalent. The 2D and 3D primitives are organised into perceptual
groups in 2D and 3D (called contours for line segments, or surflings
for the texlets). The procedure to create visual representations (line
segments and texlets) is illustrated in Fig. 4 on an example stereo
image pair.

The sparse and symbolic nature of the multi-modal primitives al-
lows for the coding of relevant perceptual structures that express rel-
evant spatial relations in 2D and 3D [2]. The relations between con-
tours (and also surflings) allow us to define grasping hypotheses (see
section 4.2 and Fig. 11).

4.2 OACgen: Grasp affordances as feature
relation - action associations

OACgen is used to gain physical control over unknown objects, a
grasp computation mechanism based on previous work [27] is used.
Pairs of 3D contours that share a common plane and have similar
colours suggest a possible grasp (see Fig. 5b). The grasp location is
defined by the position of one of the contours. Grasp orientation is
calculated from the common plane defined by the two contours and
the contour’s orientation at the grasp location.

During execution, grasping hypotheses from co-planar contour
pairs are computed. The initial attribute space is given by

so = (|Ω|, (C1, C2), statusGrasp),

where |Ω| is the number of elements in the set Ω, and (C1, C2) is the
concrete pair of extracted contours that was picked earlier. Recall that
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Figure 5: (a) The image of the scene captured by the left camera. (b) A
possible grasping action type defined by using the two coplanar con-
tours C1 and C2 shown in red. (c) A successful grasping hypothesis.
The 3D contours from which the grasp was calculated are shown.
Note that the information displayed is the core of an “expr”. (d) A
selected set of grasping hypotheses generated for a similar scene. (e)
Change of performance as a result of the learning process.

OACgen = (id, T,M). The prediction function T in our context
is trivial, since a stable grasp (statusGrasp = stable) is predicted.
M measures the percentage of successful grasps in a certain time
window (see Fig. 5e).

The computed grasping hypothesis is then performed and the
grasp status sa = statusGraspt+1 is sensed after picking up the
object, resulting in an experiment (see Fig. 5c for the main compo-
nents of an experiment):

expr = {so, statusGraspt+1 = stable, statusGraspt+1}.

Each experiment can either be used directly for on-line learning, as
in the following learning cycle:

while true do
choose pair of contours C1, C2

expr=execute(gen);
updateCP(expr);
updateM(expr);
drop object

end

or stored in an episodic memory for off-line learning at a later stage
by calling the function updateCP (see [27] for details). There we
have shown that, based on these labelled experiences, we can learn
an improved feature-based grasp generation mechanism. updateCP
uses an artificial neural net to determine which feature relations pre-
dict successful grasps. Fig. 5e shows how the success rate increases
when on-line learning is performed on the evaluated grasps. The
learning is limited by the amount of grasp data available and by the
noise that is present in the data. However, as the objects are unknown
by the system, the performance is not expected to increase to nearly
100 % even if unlimited training data would be available.

4.3 OACgrasp
o : Object specific grasping

OACgrasp
o expresses affordance relative object-gripper configura-

tions that yield stable grasps. The grasps we consider are parame-
terised by a 6D gripper pose composed of a 3D position and a 3D

(i)

a) b) c)

(ii)

statusGrasp =
stable

statusGrasp =
unstable

0.
00

0.
50

1.
00

d)

Figure 6: Grasping affordances are represented using kernel-based
grasp densities. a) Iso-probable surface of a ‘grasp kernel’, and rela-
tion between a two-finger grasp and a kernel representing this spe-
cific grasp in the model. b) Kernel-based grasp density. The right-
hand side shows lighter sampling for illustration purposes. D repre-
sents the density, while wi and Ki represent the individual weights
and kernels. c) Grasp success rates for the object ‘basket’ after dif-
ferent learning cycles (i) counting kinematic path planning errors
as failures, and (ii) excluding such errors from the score. Red bars
show the success rate of grasps before learning has been applied.
Green bars correspond to grasps that have been drawn randomly from
the learned grasp density. Blue bars correspond to the maximum-
likelihood grasps from the learned grasp density. d) shows examples
of a succeeding and a failing experiment. Figure adapted from [10],
with kind permission by the authors.

orientation. Affordances are represented probabilistically with grasp
densities [10], which correspond to continuous probability density
functions defined on the 6D pose space. Their computational repre-
sentation is non-parametric: A density is represented by a large num-
ber of weighted grasp observations. Density values are estimated by
assigning a kernel function to each observation and summing the ker-
nels [32]. An intuitive illustration of a grasp kernel is given in Fig. 6a
and 6b illustrates a kernel-based grasp density.

OACgen is potentially applicable whenever the gripper is empty
and an instance of object o is present in the scene. As in the previous
example, the prediction function T always returns statusGrasp =
stable. The attribute space S is defined by

S = {targetObj = o, statusGrasp}. (4)

Here, the state description includes an attribute targetObj that spec-
ifies which object model o is to be applied by the execute function;
this model is chosen by processes external to the OAC. M is defined
in such a way as to maintain cumulative outcome statistics of execu-
tions of this OAC, updated via updateM (see Fig. 6c).

The execute function is defined in such a way as to return an
experiment

expr = (so, statusGraspt+1 = stable, statusGraspt+1),

in sa, the attribute statusGrasp is the observed status after the

27



grasping attempt (see Fig. 6d). In addition, the data structures rep-
resenting so, sp and sa may include further state information such
as object and gripper poses. Such information is used, in particular,
by updateCP to update the grasp density by integrating new exper-
iments, which leads to increasingly reliable performance as can be
seen in Fig. 6c.

5 Extraction of World knowledge by exploration
In this section we briefly describe the process of generating world
knowledge by means of executing the generic and specific OACs.
An important intermediate stage is sketched in Fig. 7. The top row
in Fig. 7 represent the innate state of the system in which object
and grasp memory is empty. It illustrates the usage of OACgen to
grasp an unknown object based on the scene representation which is
available in the iconic memory. Once an object is grasped, an object
model is generated (see [17] for details). Subsequently the model can
be used for pose-estimation in future scenes and thereby enable the
association of actions to the specific object by OACgrasp

o — this is
illustrated in the bottom row in Fig. 7 representing a more advanced
state of the system.

The experiments generated by the OACs coding object indepen-
dent and object specific grasp knowledge are stored in the episodic
buffer and are the basis for more abstracted representations in two re-
spects. First, object dependent grasp knowledge is stored in the grasp
densities (see section 5.2) and second, so called ‘co-occurrence ta-
bles’ store the statistics of feature relation - action associations (see
section 5.3). Both kinds of knowledge are stored in the long term
memory. Moreover, object shape knowledge is generated and also
stored in the long term memory (see section 5.1).

5.1 Object shape knowledge
By successfully grasping a new rigid object initially (using
OACgen) full physical control over it is achieved. This allows the
object to be viewed from a variety of perspectives. From these views
an accumulated description of multi-modal primitives is extracted.
A detailed technical description of the accumulation process is given
by Pugeault and Krüger, [28]. Besides other uses this generated shape
description allows us to recognise the object in the scene and estimate
its pose (see [11] for more information). The ability to estimate the
object’s pose is essential to be able to associate actions to the object
as done by OACgrasp

o .

5.2 Grasp Densities
The object specific grasp experiments generated by OACgrasp

o are
used to create grasp densities. The pose of each successful grasp de-
fines one point in the 6-dimensional space and kernel density estima-
tion is used to achieve a continuous density (see [10] and figure 6 for
more details) based on the individual points. Once a grasp density is
learned it can also be improved later on for instance by evaluating
samples from it and use these to create a new, refined density which
will lead to an improved success likelihood of OACgrasp

o . Moreover,
the grasp densities represent abstracted grasp knowledge which can
be used for further learning, e.g., about how to improve the speed of
convergence of the grasp densities (see section 6.1).

The width of each kernel is currently selected manually and de-
pends on the specific use case. Typically they are chosen just large
enough to ensure that neighbouring kernels overlap in order to ensure
continuous density. The more detailed and fine grained the resulting
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Figure 8: Using scenes containing one object, grasps have been cre-
ated from pairs of contours using OACgen and compared against the
grasps density associated with the object. This has been done using
three different objects in total. The co-occurrence table shows the
success likelihood of the grasps relative to the values of the feature-
relations between the contours.

density has to be, the more experiments are needed to ensure that
the density is not incomplete and appears patchy. The level of de-
tail depends one the usecase. When searching for a maxima it might
be less critical how fine-grained the density is. For other investiga-
tions, e.g. as those described in section 5.3.1, it is beneficial to have a
fine-grained density. As the density exists in a 6-dimensional space,
the required number of experiments to reach a dense coverage grows
quickly when a higher level of detail is required.

5.3 Co-occurrence tables
The experiments generated by OACgen can directly be used to im-
prove the success likelihood of OACgen by calling the update func-
tion that is intrinsic to the OAC (illustrated in Fig. 3). Moreover,
experiments generated by OACgrasp

o are used to create so called
co-occurrence tables (see Fig. 8 and 9) which represent projections
of the grasp densities abstracted from the accumulated experiments.
We discuss two different projections.

5.3.1 Co-occurrence tables for OACgen

The co-occurrence tables such as Fig. 8 store the values of relations
between pairs of contours as well as the success likelihoods of grasps
generated on these contour pairs and can thereby be used to improve
the success likelihood of OACgen. Fig. 8 is based on grasps of three
different objects and addresses coplanarity. It shows that coplanarity
indeed seems to be an indicator for grasp affordances. Beside intro-
ducing additional relations, e.g. colinearity or cocolourity which is
based on the colour-difference between those sides of the contours
that face each other, also additional experiments using different ob-
jects will ensure that the statistic becomes more and more complete.

5.3.2 Co-occurrence tables for OACgrasp
o

The kernels used in the grasp density approach in [10] are isotropic.
This is unsatisfying in two respects. First, there is a certain arbi-
trariness in the selection of kernel parameters which requires man-
ual selection. Second, it turns out that the convergence speed for the
grasp densities is rather slow as many isotropic kernels are used to
model the grasp affordances in sufficient detail. Both issues can be
addressed when using the grasp densities as basis for the learning of
the statistical dependencies of grasps in the vicinity of an already suc-
cessfully tested grasp. More specifically, a simulation environment
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Figure 7: Illustration of how the system interacts by means of the two OACs interacting with the environment at two different stages of
development. The top row represents this interaction at an innate state of development while the bottom row represents a more mature state.

(a) Translations (b) Rotations

Figure 9: Each successful grasp has been (a) translated or (b) rotated
and subsequently its success likelihood is estimated using the grasp
density associated with the object. This figure shows only the results
for two dimensions of translation and rotation.

has been used to achieve a very dense grasp density, subsequently
each successful grasp is transformed locally by a rigid body motion
and using the density it is investigated whether the transformed ac-
tion still would be successful. In order to reduce the complexity, only
translations (see Fig. 9a) or rotations (see Fig. 9b) have been ap-
plied, not a combination of them. In these co-occurrence tables a
clear anisotropy in the conditional probabilities are visible indicating
that isotropic kernels are indeed a sub-optimal choice. In section 6.1
we argue that these co-occurrence tables can be used to define more
optimal kernels.

6 Interaction of the development of SMS and
world knowledge

As indicated in Fig. 2, the SMSs and the generic world knowledge
develop in parallel and complex interactions are to be expected. Mak-
ing statements about this interactions in humans is difficult since only
the change of behaviours, i.e., the executions of OACs/SMSs is di-

rectly observable. Statements of the change of internal representa-
tions are very difficult to achieve by means of neurophysiology. For
example, it is virtually impossible to do single-cell recording experi-
ments during development in awake behaving monkeys [23] (see also
[16]). Developmental psychology can generate insights into that is-
sue by means of sophisticated experiments. However, these insights
are only indirect. Hence we find it to be valuable to look at such
interactions in a developing robot system. This allows for making
algorithmic problems explicit on a high level of detail.

In this section and based on the generic world knowledge accumu-
lated by means of the OACs and abstracted in terms of grasp densities
and co-occurrence tables as described in section 5, we intend to ex-
emplify these interactions. First, we will discuss the need to improve
the grasp density learning by means of learning more appropriate ker-
nels in section 6.1. Then we discuss the role of co-occurrence tables
for finding grasp affordances by means of statistics in section 6.2.

6.1 Kernel learning

The observations manifested in the co-occurrence tables in figure 9
lead to the idea of an anisotropic kernel where the iso-probable sur-
face for the positional part becomes a ellipsoid rather than a sphere
(see figure 10). We are currently working on developing these ker-
nels in the density computation process. Besides having an empirical
justification of the kernels themselves we also expect a much better
convergence performance. The main benefit of the anisotropic kernel
is that fewer kernels can be used to describe the density. As a direct
consequence of this, we expect that fewer experiments are needed
to achieve a “complete” density, which will then also speed up the
convergence and will reduce the memory usage.
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(a) Gripper (b) Kernel

Figure 10: (a) The orientation of the grasp corresponding to the mean-
value of the kernel and (b) visualisation of how an anisotropic kernel
could be formed.

Figure 11: Top row: Grasping hypotheses derived from a pair of co-
planar contours, (see section 4.2). Bottom row: Grasping hypotheses
based on a single surface feature.

6.2 Co-occurrence tables as basis for justifying and
improving grasp reflex

The co-occurrence tables also allow for a statistical justification
of the originally hardwired behaviours as used in the execution of
OACgen. Looking at the co-occurrence tables in Fig. 8 it becomes
visible that the co-planarity relation is indeed indicative for success-
ful grasps. It can be expected that the statistical analysis of the space
of feature-relation action associations will reveal further indicative
relations. In Fig. 11 besides edge pair related grasp affordances (top
row) also surface related grasp affordances (bottom row) are shown.
It is likely that many more indicative feature relation-grasp affor-
dance relations do exist, potentially also for feature relations of very
high order. Once enough grasp data in terms of grasp densities is
available to the system even such higher order relations can be anal-
ysed. These can then be the basis for new OACs (i.e., branching
OACs) coding more sophisticated grasp affordances.

Note that also in this context it is important to generate a large
number of experiments and to integrate them in the co-occurrence
tables. Hence the principle of ongoing learning on all levels as re-
alised by the OACs is decisive for selecting the required material.

7 Related Work on Sensorimotor Schemas
Work on computational models of sensorimotor schemas includes
several works on explicitly Piaget-inspired sensorimotor schemas

[12, 6, 35, 22]; however, these either do not have objects to perceive
(e.g. using sensorimotor schemas to navigate in mazes), or have ob-
jects that are only sensed in a binary way (present or not), and so
these are not comparable with our work on gathering knowledge of
objects. On the other hand, recent work on affordances [37], though
not explicitly modelling sensorimotor schemas, is quite close to our
work. Ugur et al. [37] use supervised learning to learn the patterns
of visual features which are indicative of graspability (and other af-
fordances). Given the appropriate selection of input features, and ap-
propriate training data, this approach could implicitly capture rela-
tionships which are similar to our co-occurrence tables for example.
However our approach is capturing and representing object knowl-
edge more explicitly, and this should give greater generality in appli-
cation.

In an alternative approach, Hart and Grupen [14] describe a Pi-
agetian inspired framework for constructing adaptive robot control
strategies. While our OACs place little restrictions on control pro-
grams or learning schemes, Hart and Grupen’s approach limits the
usable control programs to a specific set of functions and the learn-
ing scheme to reinforcement learning. The authors show how the Pi-
agetian notions of assimilation and accommodation are implemented
and give examples of their usage within their system. Most inter-
estingly they allow composition of schemas; this goes beyond our
current work, and if combined with our ideas of developing generic
world knowledge, this could potentially facilitate the learning of sen-
sory abstractions which capture relations among objects, or spatial
relationships (i.e. a higher order of world knowledge). This would be
the next logical step for the learning of world knowledge in the upper
track of Fig. 2, and according to Piagetian theory it is through per-
forming combinations of schemas that such knowledge is acquired
[24, 25]).

8 Discussion

In this paper we demonstrated an important developmental process
which is very hard to observe by means of developmental psychol-
ogy or neurophysiology, namely the interaction of emerging generic
world knowledge and developing sensory motor schemas. In this
context, we have used the formalisation of sensory motor schemas
in terms of object action complexes. We investigated two OACs cod-
ing grasping with and without prior object knowledge. Although still
partly speculative, we could concretise potential interactions between
developing generic world knowledge and the execution of OACs. In
future work we will realise embodied systems in which such an in-
teractive development will take place and we will further specify and
quantify such interactions.
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egy for grasping unknown objects based on co-planarity and colour
information’, Robotics and Autonomous Systems, 58(5), 551 – 565,
(2010).
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Abstract.  The Piagetian Autonomous Modeler (PAM) is a 
proposed architecture for a system that constructs an internal 
representation of a real or simulated environment based on its 
interaction with the environment. The novel aspects of PAM 
are: (1) how it spreads activation; (2) its use of two kinds of 
schemata (structural and behavioral) to connect the represen-
tational units (monads); (3) its use of multi-strategy inference 
to extend the internal model; (4) its use of a consolidation 
component to provide automaticity and forgetting; and (5) its 
evolution of successful behaviors through genetic techniques. 
The system is called Piagetian because it employs the notion 
of Monads (fundamental representational units), Schemata 
(patterns of structure and behavior), Assimilation (incorporat-
ing external elements) and Accommodation (modifying inter-
nal structures in accordance with environmental feedback) 
which are essential to the theories of Human Cognitive De-
velopment espoused by Piaget [7] [8]. 

1  BACKGROUND  

The work in “early developmental AI” as surveyed by Guerin 
[17] is replete with examples of artificial intelligence comput-
er programs that can interact with an environment, learn, and 
synthesize new concepts. Most prominent among them is 
Gary Drescher’s seminal program, the  Schema Mechanism 
[1], which employed the theories of Jean Piaget to demon-
strate aspects of learning and planning in infant cognitive 
development.    

  The PAM architecture inter-connects and advances the 
work of earlier system architects such as Drescher [1], Heib & 
Michalski [2], Tecuci & Michalski [3], Holland et al. [4], 
Goldberg [5], Riesbeck & Schank [6], Chaput [14], and oth-
ers.   

 This architecture is compatible with the developmental 
theory and embodied-social cognition theory of language 
learning as described by Kaplan, Oudeyer, and Bergen [22].   

Although embodiment (sensing and acting upon the envi-
ronment) is central to the PAM system, this work deliberately 
does not address attention, curiosity, motivation, drives, be-
liefs, desires or intentions. This omission was made in order to 
limit architectural concerns in the initial design of the system.  
These phenomena may be revisited in later phases as the PAM 
system evolves. 

2  RESEARCH GOALS 

The PAM effort is a multi-phased inquiry into early develop-
mental AI which has several objectives:  

(1)  to replicate Piaget’s sensorimotor and pre-operational 
stages of cognitive development including language ac-
quisition; 

(2)  to create smarter computer systems based on Piaget’s 
genetic epistemology that   (a) are capable of modeling 
their environment, (b) exhibit stages of development, (c) 
predict transformations in their environments, (d) learn 
from failure,  and (e) perform multistrategy inference;  

(3)  to explore the validity of the hypothesis that monads and 
schemata can be used to model a learner’s environment;  

and (4) to unify the work of Drescher and Michalski. 

3  ARCHITECTURE 

The PAM architecture described herein represents the first 
phase1 of the research effort.   

3.1. Assumptions 

The system assumptions for PAM are: 
(1)  Human learners construct a mental model to represent 

(a) the structure of and (b) transformations within their 
environment. 

(2)  Monads and schemata are sufficient to construct a pre-
dictive model of an environment. 

(3)  The PAM system is implementable on existing compu-
ting technology. 

(4)  The system performs in real time, is resilient, available, 
and scalable. 

(5)  The system is domain agnostic.  Any  domain specific 
percept and effect assertions made to the system are irre-
levant since all assertions are transformed into an inter-
nal representation of monads and schemata.  Therefore, 
only the concurrence and recurrence of the assertions are 
salient. 

3.2. Views 

Figure 1 shows PAM interacting with its environment.  
Figure 2 depicts the data tiers of the evolving model.  
Figure 3 describes the structural and behavioral schemata that 
PAM employs. 
Figure 4 shows a sample inference operation on a portion of 
the heterarchy. 
Figure 5 shows the decomposition of the system elements by 
process and object.  
Figure 6 shows the use cases for each system element. 
Figure 7 shows the system elements as components exchang-
ing data. 
Figure 8 shows the actual data flows across the elements of the 
system. 

3.3. Monads  

A monad is a data structure which represents a percept, effect, 
or concept.  Percepts represent encodings of sensor data from 
an external environment.  Effects represent the status of ac-
tions that have been performed on the external environment. 
Concepts are internally synthesized monads which represent a 
completely new entity within the model arising from some 
underlying pattern of structure or behavior. Hence, a concept is  

                                                 
1 Note that language acquisition is a long term goal and will 
not be addressed in phase 1. 
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Figure 1. PAM Context view. 

 
a schema. Schemata are structural relationships among mo-
nads, or behavioral  patterns identifying transformations in the 
environment. 

In Drescher’s Schema Mechanism, concepts are called 
“Items” (which can be in a Boolean state of On or Off).  
Drescher’s “items” correspond to “monads”. In PAM monads 
are not Boolean and hence do not represent a binary On or Off 
state.  Instead, they are continuous and use an activation time 
which denotes when they were last considered active. This 
strategy establishes an implicit notion of “decay” which is 
novel.  

Monads actually have two activation times: fact activation 
and goal activation.  These denote when they were last per-
ceived or inferred (as a fact) and when they were last needed 
to enable a prediction (as a goal). Monads also contain the 
concept of Tier which sorts them into levels of abstraction and 
allows them to form hierarchies within the larger heterarchy2.  

3.4. Detectors and Effectors 

To use PAM, one or more detector programs and one or more 
effector programs must be constructed.  Each detector pro-
gram provides PAM with continuous or discrete sensor data 
transformed into PAM’s internal representation, percept mo-
nads.  

When sense data arrive in the detector program, the pro-
gram makes assertions in the model (Figure 2). Each assertion 
either creates a new percept monad or retrieves an existing 
percept monad, which is then marked active.   

Each effector program allows PAM to issue commands to a 
device and retrieve feedback about the status of the command 
issued.  The status (unknown, pending, executing, failure, or 
success) is asserted to PAM’s model and its corresponding 
monad is created or retrieved and marked active. 

                                                 
2 The model heterarchy is the sea of monads akin to Lenat’s 
sea of assertions in Cyc[16]. 

3.5. Schemata  

In contrast to Drescher’s Schema Mechanism, which has one 
type of schema, PAM has two types of schema: structural and 
behavioral. The two types of schemata are needed because of 
the system’s primary assumptions: that both structure and be-
havior exist in an environment, and that they are different. 
Structure pertains to the relationships among entities within the 
environment, while behavior pertains to the transformations 
occurring within the environment. Structural schemata are 
defined in PAM in order to allow PAM to perform inference 
above and beyond what would be encompassed by behavioral 
schemata alone because  a human (our archetypal learner) can 
make subtle inferences which go well beyond predicting the 
effects of actions.  

Drescher’s schema consisted of a context, action, and result. 
PAM’s schemata differ substantially (see Figure 3).   

As behavior, a schema defines a predicate then(C, P, s) that 
posits: when the context C is true, the prediction P will also be 
true within a given time span s. Thus, PAM’s behavioral 
schemata contain a context and a prediction. The context con-
tains two lists: enablers and impeders. The prediction also 
contains two lists: enables and impedes. Monads can be 
present in these lists within a behavioral schema.  

As structure, a schema defines a relation R(a1..a3, i) among 
monad collections  aj  in a1..a3 at a given instant in  time i.  
PAM uses several types of structures including unary relations, 
binary relations, ternary relations, to form cases, events, types, 
plans, goals, and other concepts. 

3.6. Activation  

In PAM activation is defined as “recency,” and therefore a 
system lifespan time function is used to mark active model 
entities. A system-wide activation interval parameter is also 
defined which demarcates the cutoff between active and inac-
tive model entities.  
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Figure 2. Assertions, monads and schemata. 
 

 
The Tier Activator system element is responsible for acti-

vating monads representing structural schemata, and the Pre-
diction Matcher system element is responsible for activating 
monads representing behavioral schemata. Percept monads are 
activated by Detectors and Effect monads are activated by 
Effectors. 
 
3.7. Cases and Events 
 
Holland et. al [4] describe mental models as “assemblages of 
synchronic and diachronic rules organized into default hierar-
chies and clustered into categories.”  The PAM system con-
tains processing elements which use structural schemata to 
form synchronic (concurrent) and diachronic (sequential) 
relationships among monads.   
As monads become activated within PAM, a concurrence 
associator process connects groups of concurrently active 
monads into “cases.” A case represents a synchronic relation-
ship (existing at one instant in time) as specified by Holland 
et. al.[4].  Similarly, a sequence associator process clusters 
monads into temporal “events.” An event represents a diach-
ronic relationship (existing across a period of time)[4]. 

 
3.8. Types and Plans  
 
Cases represent instances of types (i.e., Classes). An inductor 
process synthesizes new types and clusters existing cases into 
these types. Types can also be clustered to form hierarchies of 
types. In a similar fashion events represent instances of plans.  
The inductor process aggregates events into newly synthe-
sized plans, and may further form hierarchies of plans. Pickett 
& Oates [20] have done extensive work in concept formation -
- as demonstrated by their work on the Cruncher.  An incre-

mental concept formation algorithm based on the Cruncher is 
used in the Inductor. 

A reasoner processing element in PAM builds upon these 
cases, types, events and plans by using structural schemata to 
form other higher level relationships. 
 
3.9. Inference 
 
Ryszard Michalski [1] [3] [12] has long been involved in mul-
tistrategy learning and inference. His work has largely focused 
on logical models of inference in Artificial Intelligence sys-
tems.  He and his co-authors have developed a method of infe-
rence involving Dynamically Interlaced Hierarchies.  The 
premise is that language is organized into disparate hierarchies 
or taxonomies which are connected by traces (i.e., sentences, 
in PAM, cases).  Inference then is simply a matter of perform-
ing transformations on traces (i.e., substitutions of words with-
in sentences) according to the placement of the nodes (words) 
in the related hierarchies. (See Figure 4).  

In their work on Multistrategy Inference, Heib and Mi-
chalski [2] define some basic knowledge generation transmuta-
tions which can be performed by making simple substitutions 
of select nodes in a case or event (referred to as a “trace” in the 
literature) from various related taxonomies within a model.   
By substituting constituent monads of a case (or event) accord-
ing to specific transmutations, new cases (or events), and by 
extension new inferences, can be formed. 

Hauser [13] defines thinking as navigating through the con-
tent of a word bank   (a flat ontology, or heterarchy).  “Naviga-
tion is the temporary activation of certain propositions in a 
potentially vast amount of content for purposes of inference 
and conceptualization (selecting what to say).” This view is 
consistent with Michalski’s traces in Dynamically Interlaced 
Hierarchies.  
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Figure 3. Schemata varieties in PAM. 
 

 
Riesbeck & Schank [6] discuss the utility of Case based 

reasoning and implement a system to demonstrate their theo-
ries, Unfortunately, their system is largely constructed a-priori 
and does not employ dynamically constructed cases and 
events based on interaction with an environment.  The Rea-
soner element in PAM is responsible for performing inference 
based on Michalski’s theories of Inference [1] [3] [12]. This 
combination of interactionist model construction and multi-
strategy inference is novel. 

Tecuci and Michalski [3] further define specific transmuta-
tions which can be applied to cases and events to make infe-
rences: Generalization, Specialization, Abstraction, Concre-
tion, Similization, Dissimilization, Agglomeration, Decompo-
sition, Prediction, Explanation, Selection, Generation, Charac-
terization, Discrimination, Association, Disassociation, Re-
formulation, Randomization, Insertion, Deletion, Replication, 
Destruction, Sorting, Unsorting. 

3.10. Equilibration 

Piaget [7] [8] discusses the notion of equilibrium and equili-
bration. Soros [9] also discusses the notion and use of equili-
brium.  For Soros, equilibrium occurs when predictions are 
consistently successful (with minor divergences). Disequili-
brium, conversely, is when predictions are consistently failing 
[9]. Convergence with reality means trending towards more 
and more successful predictions. Divergence with reality 

means more and more failed predictions. (George Soros' theo-
ries of Human Uncertainty and Reflexivity are instructive 
here.) 

Soros further theorizes that divergences occur in two ways: 
through Static and Dynamic Disequilibrium. Static Disequili-
brium occurs when reality changes and the mental model does 
not change. Dynamic Disequilibrium occurs when a mental 
model changes but the underlying reality has not changed 

The PAM system contains an Equilibrator component 
which modifies predictions based on prediction success or 
failure.  The Equilibrator regulates the accuracy and consisten-
cy of the systems predictions.  Failed predictions are refined to 
identify a failure cause through a process called Marginal At-
tribution (Drescher [1]). 

In addition, PAM applies genetic techniques to successful 
predictions. Behavioral schemata which are successful in pre-
dicting outcomes of actions become candidates for genetic 
transformations such as crossover and mutation per Goldberg 
[5].  

3.11. Consolidation  

This component performs the automaticity and forgetting func-
tions within PAM and serves to reclaim any low utility or use-
less model entities.   
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Figure 4. An inference example (adapted from Heib & Michalski [2]). 
 
 

 
 

Figure 5. PAM Decomposition. Note that perception elements interact with the environment, structure ele-
ments activate and create new associations among structural schemata, behavior elements activate and re-
ward behavioral schemata, and action elements determine which actions should be performed. 
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Figure 6. PAM Use Cases. 
 

 
3.12  Components 
 

(1) Detector. Transforms sensor data into activated percept 
monads within the model.  

(2) Tier Activator. Activates the monads of structural schema-
ta. 

(3) Effector. Transforms actions into environmental com-
mands, receives feedback on the execution status of the 
commands, and activates the corresponding effect monads 
within the model.  

(4) Context Matcher.  Matches behavioral schemata contexts 
with activated monads in the model. A context is satisfied 
when all enabling  monads are active and no impeding 
monads are active. 

(5) Prediction Matcher.  Matches  expectations (i.e., expiring 
predictions) to activated monads in the model, and when 
satisfied, activates the monads representing the behavioral 
schemata.  

(6) Concurrence Associator. Creates “Cases” based on the 
concurrently activated monads in a lower tier. 

(7) Sequence Associator. Creates “Events” based on the se-
quentially activated monads in a lower tier. 

(8) Inductor. Aggregates “Cases” into “Types” and “Events” 
into “Plans”. 

(9) Reasoner. Infers new relationships using multiple strate-
gies. 

(10) Equilibrator. Revises behaviors according to failure and 
evolves behaviors according to success. 

(11)  Predictor.  Sets an expiration time for a behavior’s 
prediction (thereby creating  an “expectation”) based 
on actions the system has committed to undertake.  

(12) Action Requestor. Bids for actions to be performed 
based on goals (inactive predicted monads), and satis-
fied behavior contexts. 

(13) Action Selector. Decides which action to schedule for 
execution based on multiple biases [22]. 

(14) Executor.  Invokes an action.  
(15) Consolidator. Removes useless items and combines 

useful items.  
(16) Administrative User Interface. Provides a system con-

trol dashboard and allows parameter adjustment. 

4  EXPERIMENTS 

Two experimental domains are proposed for this phase. A 
foraging domain (based on the Pioneer 3 DX robot simula-
tion environment as described in Chaput [14]) , and a robot 
play domain  (similar to Kaplan et. al. [22]) where a wireless 
mobile robot with audio and visual sensors can interact with 
various objects. 

5  IMPLEMENTATION STATUS 

The prototype is in the detailed design phase. It will be im-
plemented using an agent platform and a database (either 
conventional SQL, high performance SQL, or NO-SQL).  
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Figure 7. PAM Components. 
 

 
Figure 8. PAM  Data Flow. 
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6  CONCLUSIONS & FUTURE WORK 

The PAM architecture promises to be an exciting direction for 
experimentation in early developmental AI.  In contrast to 
systems such as Chaput’s CLA [14] which uses self organiz-
ing maps (SOMs), the PAM architecture seeks to exploit 
structural schemata, multi-strategy inference, cases, events 
and novel time based interconnections between percepts, ac-
tion effects, and synthesized concepts. 

7  ACKNOWLEDGEMENTS 

This author would like to thank Frank Guerin for his broad 
knowledge of the field and copious references; Marc Pickett 
and Tim Oates for references and code for the Cruncher; and 
Roland Hausser for sharing his thoughts on learning and infe-
rence. 

8  REFERENCES 

[1]  Drescher, Gary L.  Made Up Minds: A Constructivist 
Approach to Artificial Intelligence.  (1991) 

[2]  Heib, Michael R. & Michalski, Ryszard S.  Multitype 
Inference in Multistrategy Task Adaptive Learning: Dy-
namic Interlaced Hierarchies. Proceedings of the Second 
International Workshop on Multistrategy Learning, Har-
pers Ferry WV. (1993) 

[3] Tecuci , Gheorghe & Michalski, Ryszard S.  Inferential 
Theory of Learning.  Machine Learning, A Multistrategy 
Approach, Volume IV. (1993) 

[4] Holland,, John H.,  Holyoak, Keith J., Nisbett, Richard E, 
Thagard, Paul R.  Induction: Processes of Inference, 
Learning, and Discovery. (1989) 

[5]  Goldberg, David E.  Genetic Algorithms in Search, Opti-
mization, and Machine Learning. (1989) 

[6]  Riesbeck, Christopher K. & Schank, Roger C.  Inside 
Case-Based Reasoning. (1989) 

[7]  Piaget, Jean & Rosin, Arnold  The Development of 
Thought: The Equilibration of Cognitive Structures. 
(1978) 

[8]   Piaget, Jean, Brown, Terry, Thampy, Kishore J.  Equili-
bration of Cognitive Structures: The Central Problem of 
Intellectual Development (1985) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[9]  Soros, George.   The Alchemy of Finance: Reading the 
Mind of the Market. (1993) 

[10]  Kuhn, Thomas.  The Structure of Scientific Revolutions. 
(1962) 

[11] Indukhya, Bipin. Metaphor and Cognition: An Interac-
tionist Approach. (1992) 

[12] Alkharouf , Nabil W. & Michalski, Ryszard S.  Multi-
Strategy Task Adaptive Learning Using Dynamic Inter-
laced HierarchiesProceedings of the Third International 
Conference on Multistrategy Learning. (1996) 

[13] Hausser, Roland.  A Computational Model of Natural 
Language Communication: Interpretation, Inference and 
Production in Database Semantics. (2010) 

[14] Chaput, H.  The Constructivist Learning Architecture: A 
Model of Cognitive Development for Robust Autonomous 
Robots. (2004) 

[15] Pickett, Marc, Miner, Don, Oates, Tim. Essential Pheno-
mena of General Intelligence. (2005) 

[16] Lenat, Douglas B. & Guha, Ramanathan V.  Building 
Large Knowledge-Based Systems: Representation and In-
ference in the Cyc Project. (1990) 

[17] Guerin, Frank . Learning Like Baby: A Survey of AI Ap-
proaches. Accepted for Knowledge Engineering Review 
(to appear) 

[18] Michalski, Ryszard S. & Stepp, Robert E.  Learning from 
Observation: Conceptual ClusteringMachine Learning An 
Artificial Intelligence Approach, Michalski, Carbonell, 
Mitchell (Eds.) (1983) 

[19] Morrison, Clayton T., Oates, Tim, King, Gary W.  
Grounding the Unobservable in the Observable: The Role 
and Representation of Hidden State in Concept Formation 
and Refinement (2001) 

[20] Pickett, Marc & Oates, Tim.  The Cruncher: Automatic 
Concept Formation Using Minimum Description Leng-
thAbstraction Reformulation and Approximation, 6th In-
ternational Symposium, SARA 2005. (2005) 

[21] Miller, Michael S. P.  The Piagetian Autonomous Mod-
eler Architecture, (Unpublished) (2010) 

[22] Kaplan, Frederic, Oudeyer, Pierre-Yves,         Bergen, 
Benjamin.  Computational Models in the debate over lan-
guage learnability. Infant and Child Development 17(1). 
(2008) 

 

39



Using the Principles of Classical Conditioning to Learn
Event Sequences

Timothy A. Furze 1 and Brandon Bennett 2

Abstract. In order for an autonomous agent to interact rationally
within its environment, it must have knowledge of that environment.
Given that the wealth of knowledge that even small children evi-
dently quickly acquire, it is infeasible for an agent to be directly
encoded with much, if any, knowledge about the real world. This
means that it would be best to instead imbue the agent with the abil-
ity to learn the knowledge for itself. Given the non-triviality of the
problem of programming an agent with this ability, this paper looks
at a system that qualitatively replicates one of the main psycholog-
ical processes that biological agents use to learn about their envi-
ronment, that of classical conditioning. Initial testing of the system
shows results that are inconclusive but are encouraging. This leads to
the conclusion that further work is needed to ascertain the utility of
the approach.

1 INTRODUCTION

Classical Conditioning is a phenomenon of learning that begins dur-
ing an early stage of development, according to Piaget’s theory of
cognitive development [18]. Due to its prevalence within animals it
can be argued to be central to any agent’s development of its un-
derstanding of its environment. The theory of classical conditioning,
primarily introduced by Pavlov [17], allows for an agent to passively
learn about its environment. The principal mechanism of classical
conditioning is that of an agent learning to associate two stimuli that
the agent observes as repeatedly occurring in pairs. The pair of stim-
uli is usually one stimulus that causes a reflex action in the agent and
another stimulus that, if encountered in isolation prior to any pairing,
would not cause any reflex.

By considering examples of stimuli pairings that would become
associated through classical conditioning in a natural environment of
a biological agent, the utility of such a mechanism to the agent can
be seen. The smell of a particular food pairing with its taste and the
sight of fire pairing with the sensation of heat are two examples of
pairs of stimuli that a biological agent could conceivably learn to as-
sociate with one another in the course of its development in a natural
environment. These sorts of examples suggest that classical condi-
tioning can be seen as a mechanism to infer relationships between
stimuli that can be treated as two aspects of the same, more complex,
stimulus without the agent having any prior knowledge.

With this conception of classical conditioning in mind, it suggests
that the mechanisms of classical conditioning could be used to infer
relationships between pairs of events and so allowing the construc-
tion of patterns and sequences of events in an unsupervised manner
with no prior knowledge. This paper introduces a system that uses

1 University of Leeds, United Kingdom, email: phy3taf@leeds.ac.uk
2 University of Leeds, United Kingdom, email: B.Bennett@leeds.ac.uk

a model of classical conditioning in order for an agent to learn to
recognise increasingly complex sequences of events starting from a
limited set of observed geometrical changes within its environment.

The system that was developed to test and expand on this the-
ory, is comprised of three sub-systems that each provide data to one
another forming a feedback loop to allow the system to find increas-
ingly complex sets of patterns. The first sub-system reads a stream
of events that describe simple geometrical changes within the ob-
served scene and recognises patterns of those events that occur in
its database of event patterns. The second sub-system takes both the
base events and the instances of the recognised patterns and provides
pairings of event instances that satisfy temporal and event complex-
ity measures. The third sub-system takes the pairs of event instances
and provides a list of those event pairs that should be considered sig-
nificant to the first sub-system to use as its database of event patterns.
The third sub-system uses a model of classical conditioning to decide
which of the event pairs is significant.

The system was applied to the domain of visual extrinsic object
motion (i.e. object tracking) in order to evaluate the system. The test
that was done was that of a video of a person throwing a ball in the
air. The prediction was that given the data derived from this scene, the
system would infer that when the ball went up, that it would expect
that the ball would later come down. This would be evidence of the
system having developed a simplistic account of gravity.

This paper is structured as follows. Section 2 covers the back-
ground of the phenomena of classical conditioning and previous
work in the learning and recognition of event sequences. Section 3
looks at the workings of the system that learns the event sequences
and how this is done by modelling the mechanisms of classical condi-
tioning. The work done to evaluate the system is presented in section
4. Concluding remarks and potential future directions for this work
is then covered in section 5.

2 BACKGROUND

2.1 Classical conditioning

This theory is also known as Pavlovian Conditioning, named after
Ivan Pavlov, one of the primary people who introduced the theory.
Pavlov’s widely-known experiments with dogs, first published in En-
glish in 1927 [17] were among the first experiments to demonstrate
the collection of phenomena that are now collectively known as clas-
sical conditioning. Pavlov’s famous experiment conducted with dogs
was to create an audible tone (mostly a bell or metronome) immedi-
ately prior to the dogs having a substance directly placed into their
mouth that would cause the reflex action of salivation (usually meat
powder or a weak acid). This was done multiple times. The same au-
dible tone was then presented to the dogs without the presentation of
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the substance. The result was that the dogs’ salivary response was ob-
servable with the tone even when substance was not presented. This
salivary response without the substance correlated with the number
of presentations of the tone where the substance was jointly pre-
sented. Pavlov used this experiment and others like it to derive a
theory of animal learning.

The derived theory of animal learning from this is that an arbi-
trary neutral stimulus can become associated with any non-neutral
stimulus, (i.e. a stimulus that triggers a reflex response) based on
their similar co-occurrence in time. Thus when the neutral stimulus
is presented alone, the subject gives a similar response to the uncon-
ditioned response, as it has come to expect that the non-neutral stim-
ulus will follow. In the literature around classical conditioning, the
names of the stimulus and the responses have particular names. The
neutral stimulus is known as the conditioned stimulus (CS) which
in Pavlov’s experiment corresponds to the generated tone. The non-
neutral stimulus is termed the unconditioned stimulus (US) which in
Pavlov’s experiment corresponds to the substance placed in the dogs’
mouths. The response to the non-neutral stimulus is called the uncon-
ditioned response (UR) which in Pavlov’s experiment corresponds to
the salivary reflex the dogs had to the substance. The response to the
neutral stimulus after the association had been formed is the condi-
tioned response (CR) which in Pavlov’s experiment corresponds to
the salivary response the dogs had to the tone when the substance
was not present.

There are several phenomena that have been observed in the inter-
action of CSs and USs. The most notable of these are: Acquisition,
Extinction, Reacquisition, Blocking, Secondary Conditioning, The
Inter-Stimulus Interval, Intermittent Stimulus Facilitation and Con-
ditioned Inhibition.

• Acquisition – Acquisition is the process whereby the CS becomes
associated with the US and thus the CR. This is the phenomenon
that was discussed above. The strength of the association (e.g.
measured by the amount of saliva produced) is a sigmoid-like
function of the number of reinforcements of the CS (i.e. the num-
ber of presentations of the CS where the US follows).

• Extinction – Extinction is the process whereby a CS that is al-
ready associated with the US is repeatedly and consistently pre-
sented to the subject without the US. The strength of the asso-
ciation is weakened and eventually returns to the same level of
association as observed prior to acquisition.

• Reacquisition – Reacquisition is the name given to the phe-
nomenon where a previously extinguished CS-US association is
acquired again. During reacquisition, it takes a fewer number of
reinforcements to re-acquire the same strength association than it
did the previous time that association was acquired.

• Blocking – Blocking is where a previously conditioned CS stops a
second CS from acquiring an association with the US (i.e. demon-
strating a CR) when the two CSs are reinforced simultaneously.

• Secondary Conditioning – Secondary Conditioning is where a
secondary CS can be conditioned to elicit a CR through reinforce-
ment only with a primary CS (where the primary CS has been
reinforced with the US). This effect is typically weak as the ex-
tinction of the primary CS will happen while the secondary CS is
being conditioned.

• The Inter-Stimulus Interval – The inter-stimulus interval is the
time between the start of the CS and the start of the US. This time
gives rise to several situations that affect the acquisition process.
This leads to two modes of acquisition, Delay and Trace condi-
tioning. Delay conditioning is where the CS overlaps or finishes

immediately before the US appears. Trace conditioning is where
the CS finishes with a period of inactivity before the US appears.
The inter-stimulus interval affects the rate of acquisition of a CS-
US association. The rate follows a curve where small intervals
are negligible, it then rapidly moves up to a peak and then gently
decays, similar to the curve of a log-normal distribution. The dif-
ference between delay and trace conditioning is that the latter has
a much faster decay after the peak.

• Intermittent Stimulus Facilitation – During conditioning, a
longer inter-stimulus interval gives a weaker CR. If a second CS
is presented between the first CS and the US, the CR of the first
CS is stronger.

• Conditioned Inhibition – Conditioned Inhibition refers to an ef-
fect where a CS can be made to create an inhibitory effect on a
CS-US association. This can be demonstrated in the following ex-
periment: two CSs,CS1 andCS2 are conditioned separately to
associate with the US. A third CS,CS0, is then non-reinforced si-
multaneously withCS1. PresentingCS0 simultaneously withCS2

will then not elicit a CR.

Ever since classical conditioning became widespread in the dis-
course of psychology, there has been numerous models of classical
conditioning that vary in complexity and fidelity. The most well-
known model is Rescorla and Wagner’s model that was presented in
1972 [22]. This model has served as the basis of later models [12, 30].
The Rescorla-Wagner model works by calculating a difference be-
tween the current association strength and what the new trial implies
it should be. The rate of learning is based on the salience of both the
CS and the US. More recently, there has been a trend to use artifi-
cial neural networks to model classical conditioning [26, 25, 10, 7].
Balkenius and Moŕen [2] presented a comparative study of a number
of modern models, including artificial neural network based models,
those based on Rescorla and Wagner’s model, among others.

2.2 Event sequence learning

Research into learning patterns of event sequences mainly comes
from two different fields of computer science research, namely data
mining and computer vision. Data mining applies the algorithms that
learn event sequences to discover important frequent sequences of
events from data that has a temporal component. For example, within
the domain of shopping, finding rules that state that certain items
have a tendency to be bought at the same time during particular
points in the day, or customers who bought one specific item later
return to buy another specific item. The main work in the area of
mining rules of association (independent of a temporal context) is
the work by Agrawal [1]. Work more directly involved with min-
ing associations in a temporal domain is the work of Mannila [13],
among others [31, 8, 19]. This work looks to mine sequential pat-
terns of events that appear frequently. This area of data mining as a
whole looks more on optimising time, space and I/O write complex-
ity rather than trying to optimise the output rules themselves. There-
fore this area, while being relevant in that it attempts to find the same
sort of output, is not fully relevant to the work of this paper as the
emphasis of the field is more on optimising computational resources
rather than trying to have the rules more closely match that of human
experience.

Computer vision research in this area more looks at optimising the
output itself against a calculated ground-truth with computational ef-
ficiency as a secondary goal. One of the influential works in this
field, though looks at recognition rather than direct learning is that
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of Ivanov and Bobick [9] who presented the idea of finding patterns
as being akin to parsing a stochastic variant of a context-free gram-
mar. This allowed the powerful idea of looking for events at different
levels of abstraction, which is used in this current work. Another im-
portant work in the area is that of Stauffer and Grimson [28], who
extended their seminal work in object tracking [27] to learn clas-
sifications of activity sequences by applying statistical methods to
determine co-occurrences.

One approach that has been particularly successful in learning
event sequences is to use Inductive Logic Programming. Inductive
Logic Programming [15], or ILP, is a branch of machine learning
that, through a variety techniques, attempts to find generalised logi-
cal rules that explain a set of specific relations. Typically, the rules are
expressed as first-order horn clauses. While the technique has been
used in the data mining aspect of event sequence learning [19], it has
had a larger impact on the computer vision aspect. There have been
two prominent works that have used the ideas of ILP to learn event
sequences. The first of these is Needham et al. [16], in which the sys-
tem presented is able to learn from observation only, the rules to a
number of simple games, such as paper-scissors-stone. This was ac-
complished by using an ILP system (PROGOL) [15] to learn generic
rules that state the required action given a particular game state. The
second work is that of Fern et al. [6], which does not directly use
an ILP system, as the authors came to the conclusion that first-order
logic horn clauses was a poor representation to use for learning tem-
poral event sequences. However, many of the ideas of ILP were used
on a language specifically developed by the authors to represent tem-
poral events. This event system was then used to learn to recognise
a variety of verbs from the system being presented a video of that
action.

While the system does use first-order logic as to represent its
events, the system presented by this paper does not use ILP. The rea-
son for this is two-fold. Firstly, ILP systems in wide use are batch-
based programs, where the learning happens in a separate phase to
the recognition and all the data the system is required to learn from is
required before any recognition can be done. The second reason ILP
could not be used by the current system is that ILP requires examples
to be labelled as either positive or negative examples of a particular
concept, meaning ILP methods are supervised learning methods. The
system presented by this paper is an unsupervised system.

3 THE SYSTEM

The purpose of the system is to find sequences of events that are tem-
porally associated with each other by utilising the theories of classi-
cal conditioning. This utilisation of the theory of classical condition-
ing makes one important divergence from most theories of classi-
cal conditioning, namely that this system does not assume the need
for there to be a reflex-causing stimulus at all, and that a neutral
stimulus can gain association with another neutral stimulus via the
same mechanism. The reflex response to particular stimuli and the
response of stimuli conditioned to them allows for the effects of this
association to be measured.

There is evidence that supports this particular divergence. The first
piece of evidence is in the phenomenon of classical conditioning
known as secondary conditioning, as described in the previous sec-
tion. This supports the divergence by showing that an association
can occur between two conditioned stimuli and that there is noth-
ing inherent in the nature of non-neutral stimuli that causes this as-
sociation effect to happen. Another piece of supporting evidence is
in Rescorla’s substantiation of the S-S interpretation of condition-

ing [21]. The S-S (stimulus-stimulus) interpretation of conditioning
states that the CS becomes associated with the US, as opposed to the
S-R (stimulus-response) interpretation where the CS becomes asso-
ciated with the UR. This supports the divergence as it shows that it
is not a direct back-propagation of the response when two stimuli
become associated.

The remainder of this section describes how the system operates.
The system comprises of three component sub-systems that feed data
between each other. Figure 1 shows the modules and the data that is
passed between them.

Module 1:
Recognition

Module 2:
Association

Module 3:
Model
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Figure 1. The three sub-systems and the data flows between them.

As input to the system, the system takes a series of time-ordered
bounding boxes for each object of interest in the observed scene. In
the case of the experiment, this input data would be the bounding
boxes for the ball and the person. This is then processed to find ge-
ometrical changes, which are used as events to be passed to the first
sub-system.

The first sub-system takes the stream of basic events and com-
pares these events with a database comprising of event patterns to
be recognised as more complex events. The sub-system recognises
both positive and negative instances of these complex events. Posi-
tive complex event instances are those event patterns where a pattern
is observed. Negative complex event instances are those events where
the first half of a pattern is observed, but the latter half of the pattern
does not follow.

The second sub-system then identifies and outputs pairings of the
positive events whose temporal relationship satisfies a set of criteria
such that they can be said to happen together. Only those events that
have an equal pattern length are compared for reasons of efficiency.

The third sub-system has two input sources. The first input source
is the instances of the identified event pairings with the second input
source being the negative complex event instances. To these inputs,
the sub-system applies a functional model of classical conditioning.
In the model, instances from first input source are treated as positive
reinforcements and the instances from the second input are treated as
negative reinforcements. This results in a list of pairs of types event
instances (both complex and basic) together with a measure of their
association strength. The pairs that have a high association strength
measure are then fed back to the first sub-system. In the first sub-
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system, these pairings are treated as a single composite event and
are added to the database of events that the first sub-system recog-
nises. Should the association strength of an event pairing that has
been allocated a composite event subsequently weaken such that it
is no longer considered to have a high association strength, its corre-
sponding composite event is removed from that same list of events.

3.1 The recognition sub-system

The recognition system recognises two types of event instance,
atomic events and composite events. Atomic event instances are gen-
erated through an analysis of processed sensor data provided as in-
put. The recognition system for atomic events is an expansion of the
system presented by dos Santos et al. [5]. Composite event instances
are generated by matching their component events against the list of
generated events. Composite events may have either atomic events or
composite events as their component events but for reasons of com-
putational efficiency, both component events of a composite event
must be of equal recursive depth. In other words, the depth of atomic
events is zero; the depth of composite events comprising of two
atomic events is one; and the depth of a composite event compris-
ing of two composite events that each both comprise of two atomic
events is two.

The sub-system outputs positive and negative instances of events.
Positive event instances are instances of event pairings that have been
observed to happen. Negative event instances are instances of event
pairings that were expected to happen but did not. An event is ex-
pected to happen when the first component event of a composite
event happens, but the second was not observed to happen. By those
definitions, all atomic events are positive event instances. The posi-
tive event instances are passed to the association sub-system whereas
the negative event instances are passed directly to the model of clas-
sical conditioning.

The external input to the recognition system used within this pa-
per is data that represents the extrinsic motion of objects within the
agent’s field of view (i.e. objects moving around a scene, rather than
the movement of sub-components of the object while the object itself
is static). This data is split into temporal frames. In each frame each
object is represented as a bounding box labelled with an identifier
unique to that object. It is expected that the system is general enough
to be applicable to different domains.

For each frame, a set of state information regarding the objects
present within the frame is generated. The set of state variables ini-
tially includes the x and y position of the centre of each box. The
remainder of the state variables are based on each pair of objects.
Each pair of objects has four state variables that describe their rela-
tionship. The first state variable is the distance between the centres of
each box. The next state variable represents one of the mutually ex-
clusive possible states of“A is coalescent with B”(which means that
the boxes of the two objects A and B overlap to the extent that the
two objects cannot be reliably distinguished),“A is externally con-
nected with B”(the two boxes are touching but do not significantly
overlap) or“A is disconnected with B”(the two boxes are distinctly
separate). These three possible states are based on a variant of the re-
gion connection calculus [20, 24]. The third state variable represents
one of the possible mutually exclusive states“A is to the left of B”,
“B is to the left of A” or “Both A and B are in-line in the X axis”. The
final state variable represents one of the possible mutually exclusive
states“A is above B”, “B is above A” or “Both A and B are in-line
in the Y axis”.

After these states have been generated for a frame, they are com-

• Approaching(X,Y) – X andY are approaching each other.
• Receding(X,Y) – X andY are receding from each other.
• Static(X,Y) – The distance separatingX and Y does not

change.
• MergeR(X,Y) – X is merging withY on the right ofY.
• MergeL(X,Y) – X is merging withY on the left ofY.
• MergeT(X,Y) – X is merging withY on the top ofY.
• MergeB(X,Y) – X is merging withY on the bottom ofY.
• EmergeR(X,Y) – X is emerging fromY on the right ofY.
• EmergeL(X,Y) – X is emerging fromY on the left ofY.
• EmergeT(X,Y) – X is emerging fromY on the top ofY.
• EmergeB(X,Y) – X is emerging fromY on the bottom ofY.
• MakeCR(X,Y) – X has made contact withY on the right ofY.
• MakeCL(X,Y) – X has made contact withY on the left ofY.
• MakeCT(X,Y) – X has made contact withY on the top ofY.
• MakeCB(X,Y) – X has made contact withY on the bottom ofY.
• BreakCR(X,Y) –X has broken contact withY on the right ofY.
• BreakCL(X,Y) – X has broken contact withY on the left ofY.
• BreakCT(X,Y) – X has broken contact withY on the top ofY.
• BreakCB(X,Y) – X has broken contact withY on the bottom of
Y.

• MoveRight(X) – X has moved right.
• MoveLeft(X) – X has moved left.
• MoveUp(X) – X has moved up.
• MoveDown(X) – X has moved down.
• Lost(X) – ObjectX has ceased to be detected.
• Found(X) – ObjectX has been newly detected.

Figure 2. The event types that the system uses to describe the transition
between the states of one frame and the states of the next for the domain of

extrinsic motion.

pared with the states of the previous frame. Based on the changes in
each state type, multiple atomic events are generated based on each
atomic event’s logical definition encoded within the system. Figure 2
lists the names and English definitions of the events that can be gen-
erated. Note that the last two events are generated by comparing the
lists of objects present in a frame rather than from any of the states
generated. These atomic events are those that have been identified as
being pertinent to the test domain of the extrinsic motion of objects.

The list of atomic events is then compared with the list of com-
posite event types (which is initially empty and is grown by the feed-
back from the model of classical conditioning sub-system). Where
an atomic event is the first event of a composite event that appears in
the list, an event instance of the type of the matched composite event
is generated and is marked as being a potential event (as the second
sub-event has yet to be observed). A potential event is an event that is
believed to be currently ongoing but there is not the evidence to know
for sure. The generated potential event is then recursively compared
with the list of composite event types to generate further potential
events of increasing complexity.

After the potential events have been generated, they need to be
grown to so they can represent their true observed duration. The set of
both the atomic and potential events of the time in-between the cur-
rent and previous frame are compared with the events that were gen-
erated when the now-previous frame was the current frame. Where
the same event has been generated in both consecutive frames, the
event token of the event in the previous frame is extended to cover
the current time frame of the event and the duplicate newly generated
event instance is removed.
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At the next stage, the list of potential events that are within a pre-
determined window of time before the current frame is compared
to the list of atomic events that were generated during the current
frame. If any of the atomic events are the second event of a poten-
tial event, the potential event instance in its entirety is replaced with
an actual event as that potential event has now been confirmed. The
set of newly confirmed potential events is then recursively compared
with the list of potential events to generate further confirmed events
of increasing complexity.

Where a potential event has yet to see its second event, but the
first event has finished and its finishing time was longer ago than the
width of the predetermined window of time before the current frame,
then the potential event is classed as a negative event instance and is
passed as such to the model of classical conditioning.

These stages outlined above are repeated for every subsequent pair
of frames provided as input. Note that the system has been designed
to be able to be used in an on-line manner. This on-line nature was
required so that the system may continuously learn new associations
throughout the lifetime of the agent.

3.2 The association sub-system

The purpose of the association system is to systematically record
each pairing of event instances that are temporally close enough to-
gether that, based on defined criteria, they can be said to happen to-
gether.

The criteria that define the notion of two events happening together
is based on the modes of conditioning that are a part of the inter-
stimulus interval phenomena of classical conditioning, namely delay
and trace conditioning. Delay conditioning notes that the period of
the conditioned stimulus can either stop at the start of, or overlap,
the period of the unconditioned stimulus. Whereas trace condition-
ing shows that end of the conditioned stimulus can have a short gap
before the start of the conditioned stimulus, though the longer the gap
the slower any association is formed. These ideas suggest for criteria
for the notion of two events happening together, either the two events
must temporally overlap or that the first event must have its finishing
point within a defined window of time before the beginning of the
second.

Due to these criteria, the association sub-system calculates its pair-
ings based on whether an event is starting, stopping or continuing. An
event instance is considered to be starting if the event that was gener-
ated in the current frame but not in the previous frame. An event in-
stance is considered to have stopped if was generated in the previous
frame but not in the current frame. An event instance is considered
to be continuing if it was generated in both the current frame and the
previous frame.

For every starting event that the recognition system generates, the
association system records the list of events that occurred within the
defined window of time before the current frame including those that
are ongoing. Where an event is ongoing, it is marked as so in the list.

As each event finishes, the association system looks for all the
occurrences of that event in the list of event pairings and notes its
finishing time against those listings, removing the marker that it is a
continuing event. As the parings get to the stage where both events
have finished, they are passed to the model of classical conditioning
sub-system.

Figure 3 depicts the moving window and 12 intervals of events.
Each interval is inclusive at both ends, so for instance, event interval
1 is over six time steps. The current time step is marked ast, meaning
that in the diagram, event 12 has not started happening yet. In the

diagram, event 8 is starting, event 7 is stopping and events 5 and
11 are continuing.W is the length of time of the window; again,
this is inclusive at both ends so that the system would generate an
pairing instance for events 8 and 9. In fact, for this diagram only 3
of all possible pairings of the events would not be generated, being
3&8, 3&12 and 9&12. The density of the events is for illustration
purposes and in the practical example of the test case, the events are
more sparse.

1

2

3 4 5

6 7 8

9 10 11 12

AS AE

BS BE

W

tt − W

Figure 3. A demonstration of the window in relation to a series of events.
Note that the vertical grouping of event intervals in the diagram is arbitrary.

3.3 The model of classical conditioning

The purpose of the model of classical conditioning as a sub-system is
to create a mapping from a list of instances of event pairings and a list
of negative event instances to a measure of the association strength
for that pairing each event type present. While the other parts of the
system also are responsible for modelling some of the phenomena
of classical conditioning, it is this sub-system that attempts to model
the main phenomena.

The model presented by this paper is a relatively simplistic model
that does not claim to be able to compete neither on fidelity nor on
complexity with those models that were developed as an exercise in
of themselves. This raises the question of why the effort was un-
dertaken to produce a new model at all, after all, if there are better
models already in existence, why was one of these models not im-
plemented instead? The reason is due to the divergence in the theory
stated at the beginning of this section, that neutral stimuli can as-
sociate together without the presence of a reflex-causing stimulus.
All of the models that have been encountered make the assumption
that there is a natural strength of reflex of the reflex-causing stimu-
lus that can be propagated across an association and is available to
be factored into the calculation of the association strength. This as-
sumption means that they cannot be used in this system. This is due
to the very definition of being neutral stimulus, they cause no reflex
action and so do not have any measure of the strength of reflex that
could be propagated. So the model in this system attempts to be a
proof-of-concept model.

The two inputs of the sub-system, the list of event pairings from
the association sub-system and the list of negative event instances
from the recognition sub-system, represent the twin notions of rein-
forcements and non-reinforcements. This sub-system treats them as
such in the modelling.
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The model was primarily developed through examining and at-
tempting to approximate in a function, the response curves of the var-
ious phenomena as described in [2]. While this approach does not at-
tempt to provide any explanatory power, it does allow for the desired
responses. This approach has led to the production of three functions
that determine different aspects of the association strength. All three
functions are designed so that they perform in an iterative manner. In
other words, the functions output the amount the current association
strength (YN ) should be changed by (δY), rather than calculating the
new association strength (YN+1) directly. This means that only the
current association strength needs to be stored in memory rather than
retaining all the inputs to each of the functions. Note that the associa-
tion strength is real-valued and constrained to the range0 ≤ Y ≤ 1.
The new association strength is updated according to equation 1.

YN+1 = YN + δY (1)

The first function, shown in equation 2, models the curve observed
in the acquisition phenomenon. This function is applied for each re-
inforcement of an event pairing. As described previously in the back-
ground section, the acquisition phenomenon follows a sigmoid-like
curve. In the equation,δX is the amount one reinforcement instance
is to be counted (this is normally equal to 1),k1 is a constant rep-
resenting the learning rate of acquisition andZ is the output of the
functions that model the effect of a change in the inter-stimulus in-
terval.

δY = Z
(1 − YN )ek1δX + YN − 1

ek1δX + YN + 2

YN
− 3

(2)

The next function, shown in equation 3, models the effect of ex-
tinction. This function is applied for each non-reinforcement (i.e. a
negative event instance) the sub-system receives for a given pair of
events. Note that the functions that model the effect of changes in
the inter-stimulus interval are not applied to the extinction function.
This is because in the case of a negative instance, the size of the
second event is not available, this means there is no inter-stimulus
interval to be measured and so the functions cannot be applied. [2]
did not provide any description of the extinction decay curve, how-
ever, Pavlov provided a small sample of data in lecture 4 of [17] that
suggests a linear decay. In the equation,δX is the amount one non-
reinforcement instance is to be counted (this is normally equal to 1)
andk2 is a constant representing the learning rate of extinction.

δY = −k2δX (3)

The final functions, are the functions that model the change in re-
sponse due to changes in the inter-stimulus interval. These functions
are only applied when dealing with reinforcements, as opposed to
non-reinforcements. The reason that these functions have not been
merged into equation 2 is due to the complexity of the equations.
To allow for these functions to alter the output of acquisition func-
tion, its output is constrained to0 ≤ Z ≤ 1. As described previ-
ously in the background section, the phenomena due to changing the
inter-stimulus interval suggests a curve similar to the curve of the
log-normal distribution. In these equations,Z is the factor that the
output of the acquisition function is to be multiplied by,I andJ are
intermediary values used to allow the function to be shown in a sim-
pler form,AS is the start time of the first event,AE is the end time
of the first event,BS is the start time of the second event,BE is the
end time of the second event andW is the defined size of the mov-
ing window. Figure 3 shows these variables in relation to the pair of
events 1 and 2 in that diagram.

I =
1

2
−

(

max
(

0,
AE−BS

BE−BS

)

2

)

+

(

max
(

0,
BS−AE

W

)

2

)

(4)

J = max (0, (|BS − AS | − 2I)) (5)

Z =
2(2 − I)e

−2(ln(J)−1)2

(2+I)2

J(2 + I)
√

π

2

(6)

When an association strength goes above a certain defined thresh-
old, that pairing is added to the list of rules that the first sub-system
uses to recognise as a composite event. If a pairing drops below the
threshold through the extinction processes, that pairing is removed
from the list.

This feedback of information is one of the central ideas of the sys-
tem as it both allows for patterns of arbitrary length to be built up yet
does not allow any combinatorial explosion to take place. It also has
to be recognised that this can mean that the more complex the com-
posite event the system needs to learn, the more examples it requires.
This means that this list builds up simple representations first, creat-
ing the event representations that have a minimum description length
before updating them with longer ones as required. With the ability
to remove sequences that no longer have a strong enough evidence
base, the system is able to retract locally maximal artifacts that are
due to coincidences.

4 EVALUATING THE SYSTEM

The intention of the system was for it to passively learn about its
presented environment without any initial data regarding that envi-
ronment. To this end, the system was tested to see if it could find any
patterns of events that can be argued to be semantically important
with reference to the environment. The domain of extrinsic object
motion was chosen due to its prevalence within computer vision and
that it was the domain used by the work of dos Santos et al. [5] that
formed one of the bases of this work. The domain also allows for the
use of the principles of physical mechanics to form predictions.

The environment that was chosen was that of observing a person
repeatedly throwing a ball in the air and catching it. The prediction
was that the system would find a pattern of events that would repre-
sent the ball being thrown upwards followed by it falling downwards.
This would mean that the system has come to expect (and through
the system of potential events, generates expectations) that whenever
the ball moves upwards, it will at some point come down again, this
would be an expectation of gravity to enact on the ball.

Note that this application domain may appear to be similar to the
application domain presented Bennett et al. [3]. However, this is not
the case. The domain in Bennett et al. [3] used a basketball-like do-
main with multiple moving people as well as a moving ball as a
source of complex movement to test the capabilities of the presented
tracking system. The domain of the current paper uses a single, static
person and a moving ball to allow for a domain simple enough to
allow for a testable prediction to be made of what the system should
learn.

An approximately 2:45 minute video (5006 frames at 30fps) was
shot of a person throwing a ball in the air. This video was then hand-
processed using the ViPER annotation tools [4, 14] so that the ex-
trinsic motion of the relevant objects within the viewer could be ex-
tracted without need for an object tracking system, so that the inaccu-
racies of a tracking system could be avoided. The tracking data was
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then converted into a suitable format and input into to the system.
The system was run with a window size of 30 frames, a rule associ-
ation strength threshold of 0.85 and equation constantsk1 andk2 set
at 3 and 0.1 respectively.

The list of rules that had been generated by the system after it
had completed processing every frame had 30 rules. None of these
rules were compound rules. On inspection of the list of all association
strengths, the majority of the associations were for compound events,
and some were only marginally outside the threshold.

Figure 4 shows those pairings of events that were above the thresh-
old. These are a mixture of encouraging results with a couple of
anomalous results. For an effect that was reasonably expected, there
is the tendency of groupings of related concepts. For example, results
2 to 5 indirectly imply that when static(A,B) holds that static(B,A)
holds and that when an object A makes contact with the bottom of
an object B, then object B has made contact with the top of object A.
The knowledge of these implications is not coded into the system in
any capacity as each atomic event is independently searched for and
generated.

The main encouraging results given the prediction made, is that of
7 & 8 and 11 to 14. 7 & 8 show that the system is expecting for the
ball to be receding from the person when it is moving up, and 11 to
14 show that the system expects that when the ball emerges from the
bounding box of the person, that it also breaks contact with the box.

The majority of the anomalous results relate to the relations show-
ing various types of stasis. A number of these can be explained by the
nature of the recorded video. The video recording was of a relatively
low quality, which included the movement being jerky in places. The
prevalence of the static events could be attributed to this. This throws
up the question of the utility of recording the stasis events at all.

One interesting and unexpected rule is number 29. It was unex-
pected as the person does not make many movements other than with
the arms. This result is due to the person moving their arms up above
their head to throw the ball up. This makes the bounding box of the
person taller and so the centre point of the bounding box moves up.

5 CONCLUSIONS AND FURTHER WORK

The results found in testing the system presented in this paper appear
to be inconclusive but encouraging. The best explanation that can be
offered for the lack of composite rules is that the video used was
too short to give the system the time that would be needed to see
these rules gain a high enough association strength to be included.
The results are encouraging though, as several parts that would be
required for a full composite rule that would expect gravity to enact
on the ball are present.

Further work in the short term would be to re-run the experiment
for a longer period of footage that is recorded with higher quality
equipment. From this, a more concrete conclusion could be formed.

Beyond that, the first area of improvement to the system would
be to create a model of classical conditioning that models a greater
number of the phenomena in better quality. For instance, reacquisi-
tion, blocking and inhibitory phenomena are not implemented in the
model presented.

Within a wider field, the system could be adapted to also model
operant (instrumental) conditioning, this could be done by adding in
agent actions as events in the system along with reward and punish-
ment events. The work by Touretzky et al. [29, 23] may be useful in
assisting work towards this goal.

It can be observed that animals learn both passively and actively. It
is argued that an effective agent must be able learn using both modes.

1. staticX(personA), moveDown(personA)
2. static(personA, ball), makeCB(personA,

ball)
3. static(ball, personA), makeCB(personA,

ball)
4. static(personA, ball), makeCT(ball,

personA)
5. static(ball, personA), makeCT(ball,

personA)
6. staticX(personA), moveRight(personA)
7. moveUp(ball), receding(personA, ball)
8. moveUp(ball), receding(ball, personA)
9. moveLeft(ball), static(personA, ball)

10. moveLeft(ball), static(ball, personA)
11. emergeB(personA, ball), breakCB(personA,

ball)
12. emergeT(ball, personA), breakCB(personA,

ball)
13. emergeB(personA, ball), breakCT(ball,

personA)
14. emergeT(ball, personA), breakCT(ball,

personA)
15. moveLeft(ball), approaching(personA, ball)
16. moveLeft(ball), approaching(ball, personA)
17. static(personA, ball), mergeB(personA,

ball)
18. static(ball, personA), mergeB(personA,

ball)
19. static(personA, ball), mergeT(ball,

personA)
20. static(ball, personA), mergeT(ball,

personA)
21. staticX(ball), staticY(ball)
22. staticX(personA), staticY(ball)
23. staticX(personA), moveDown(ball)
24. staticY(personA), moveDown(ball)
25. staticX(personA), staticY(personA)
26. staticX(personA), moveRight(ball)
27. staticX(ball), moveRight(ball)
28. staticX(ball), moveDown(ball)
29. moveUp(personA), moveUp(ball)
30. staticX(personA), moveLeft(personA)

Figure 4. The resultant pairs of events that the system considered to be
compound events after processing all the input data.

For instance, an animal can associate the sound of a rock slide with
the sight of falling rocks. It can also be learn to actively avoid be-
ing hit by a rock. Only when both passive and active learning are to-
gether can the animal associate the sound of a rock slide with danger,
without actually being caught in a rock slide. For another example,
consider using a hairdryer to move a toy sailing ship. For a planning
system to decide that course of action, the agent would need to have
passively associated air currents with moving sailing ships and ob-
served that the action of activating a hairdryer causes an air current.

During the development of the system, a question kept surfacing
about randomised outcomes to event sequences. How should the sys-
tem deal with event sequences where the outcome event is not deter-
ministic but can be one of a set of outcomes? For an example, the
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rolling of a die; here there is a definite sequence of events leading
up to the outcome. However there is not a single outcome but a def-
inite set of outcomes. For example, one would not expect a seven to
appear on a standard six-sided die. There are methods that do learn
stochastic event sequences [11] but these operate in a batch manner.
If it is possible for the system presented in this paper to learn stochas-
tic events, then the system would be capable of adapting its existing
hypotheses as new examples of the patterns of events are presented.
This system, when combined with an extension to account for instru-
mental conditioning, could, in an unsupervised manner, dynamically
learn about how an agent expects its environment to behave, in a way
that allows adaptation to changes in that environment.
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